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Pauli graphs when the Hilbert space dimension contains

a square: why the Dedekind psi function ?

Introduction

The q-level quantum systems (also denoted q-dits, or qudits), and tensor products of them, possibly with a different number of levels in each factor, are basic constituents of quantum information processing. Multiple qubits, that are tensor products of two-qubit systems are routinely employed in quantum algorithms, but multiple copies of q-dits (with q > 2) may turn to be more interesting in terms of self error-correction, and in relation to multipartite communication, as on the quantum Internet. The most general system would be a mixture of multiple qudits corresponding to the factors of a integer factorization of the Hilbert space dimension as q = i q p i i . Let us point out that, for a given dimension q, there exists several such factorizations, leading to distinct quantum systems. In the lowest dimensional case involving a square, one has either q = 4 or q = 2 2 , corresponding to the single quartit and two-qubit systems, respectively. It may be convenient to use a 4-level system (like the states of a nuclear spin 3 2 ) to physically implement the two-qubit CNOT gate [START_REF] Hirayama | Nanometer-scale nuclear-spin device for quantum information processing[END_REF], and in some respect both systems display similar symmetries (like in the Bloch sphere representation) [START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF], but in general they have distinctive features (like in the Pauli group of observables and in the structure of the maximal commuting sets).

In this paper, we focus on the commutation relations of observables attached to a selected decomposition of the Hilbert space dimension q. The observables in a factor are defined from the action on a vector |s of the q i -dimensional Hilbert space of the q i -dit Pauli group generated by two unitary X (shift) and clock Z operators via X |s = |s + 1 and Z |s = ω s |s , with ω a primitive q i -th root of unity. Then the observables in dimension q are obtained by taking tensor products over the q i -dimensional observable of each factor. A Pauli graph is constructed by taking the observables as vertices and a edge joining two commuting observables. Maximal sets of mutually commuting observables, i.e. maximum cliques of the Pauli graph, are used to define a point/line incidence geometry with observables as points and maximum cliques as lines.

In recent papers, multiple qubits [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF][START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF], single qudits [START_REF] Havlicek | Projective line of a specific qudit[END_REF][START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF][START_REF] Albouy | The isotropic lines of Z 2 d[END_REF] and a few examples of qudit mixtures [START_REF] Planat | Qudits of composite dimension, mutually unbiased bases and projective ring geometry[END_REF] were already explored. Further work was published to clarify this earlier work dealing with symplectic polar spaces of multiple qudits [START_REF] Thas | The geometry of generalized Pauli operators of N -qudit Hilbert space, and an application to MUBs Europh[END_REF][START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF][START_REF] Havlicek | Möbius pair of simplices and commuting Pauli operators Math[END_REF] and, in what concerns multiple qubits, its link to units in Clifford algebras [START_REF] Sengupta | Finite geometries with qubit operators Infin[END_REF], to Lie algebras [START_REF] Rau A R P | Mapping two-qubit operators onto projective geometries[END_REF] and to a class of singular curves in phase space [START_REF] Klimov | Graph states in phase space[END_REF]. Prior to the advent of quantum information science, the incidence properties of the q-dimensional geometry and the relations to Clifford algebras were published in [START_REF] Shaw | Finite geometries and Clifford algebras[END_REF][START_REF] Shaw | Finite geometries and Clifford algebras II[END_REF]. The link of mutual unbiasedness to the general theory of angular momentum is explored in [START_REF] Kibler | An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group[END_REF], and its link to Feymann's path integral may be found in [START_REF] Tolar | Feyman's path integral and mutually unbiased bases[END_REF].

In this paper, we focus on quantum systems of Pauli observables defined over the Hilbert space of dimension q containing a square. In the single qudit case, studied in Sec. 2, the maximal mutually commuting sets of observables in the Hilbert space of dimension q are mapped bijectively to the maximal submodules over the ring Z q [START_REF] Havlicek | Projective line of a specific qudit[END_REF][START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF]. If q contains a square, there are ψ(q) = q p|q (1 + 1 p ) points on the projective line P 1 (Z q ) (in the Dedekind finction ψ(q), the product is taken over all primes p dividing q) and the remaining σ(q) -ψ(q) = 0 independent points (with σ(q) the sum of divisors function) is playing the role of a reference frame and possess their own modular substructure. The number theoretical properties of the modular ring Z q are used to count the cardinality of the symplectic group Sp(2, Z q ) [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF][START_REF] Vourdas | Symplectic transformations and quantum tomography in finite quantum systems[END_REF][START_REF] Novotný | On orbits of the ring Z M n under action of the group SL(m[END_REF]. In Sec. 3, we remind the established results concerning the point/line geometries attached to multiple qudit systems in dimension p n , that symplectic polar spaces W 2n-1 (p) of order p and rank n govern the commutation structure of the observables. Here, the number theoretical functions σ(p 2n-1 ) and ψ(p 2n-1 ) are found to count the number of observables in the symplectic polar space and in the punctured polar space, respectively. In Sec. 4, we study composite systems when at least one of the factors q i of the Hilbert space dimension is a square. It is shown, that the non-modularity leads to a natural splitting of the Pauli graph/geometry into several copies of basic structures such as polar spaces, punctured polar spaces and related hyperdimensional structures.

A few properties of the structures we have checked are in table 1. Details are given in the subsequent sections.

Most calculations are performed on Magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF]. High dimensional computations have been made possible thanks to the supercomputer facilities of the Mésocentre de calcul at University of Franche-Comté.

Pauli graph/geometry of a single qudit

A single qudit is defined by a Weyl pair (X, Z) of shift and clock cyclic operators satisfying

ZX -ωXZ = 0, (1) 
where ω = exp 2iπ q is a primitive q-th root of unity and 0 is the null q-dimensional matrix. In the standard computational basis {|s , s ∈ Z q }, the explicit form of the pair is as follows

X =        0 0 . . . 0 1 1 0 . . . 0 0 . . . . . . . . . . . . . . 0 0 . . . 1 0        , Z = diag(1, ω, ω 2 , . . . , ω q-1 ).
(

) 2 
The Weyl pair generates the single qudit Pauli group P q = X, Z , of order q 3 , where each element may be written in a unique way as ω a X b Z c , with a, b, c ∈ Z q .

It will be shown in this section that the study of commutation relations in a arbitrary single qudit system may be based on the study of symplectic modules over the modular ring Z 2 q , and conversely that the elegant number theoretical relations underlying the isotropic lines of Z 2 q have their counterpart in the maximal commuting sets of a qudit system. Our results may be found in various disguises in several publications where the proofs are given [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF][START_REF] Albouy | The isotropic lines of Z 2 d[END_REF][START_REF] Vourdas | Symplectic transformations and quantum tomography in finite quantum systems[END_REF][START_REF] Novotný | On orbits of the ring Z M n under action of the group SL(m[END_REF].

Let us start with the Weyl pair property (1) and write the group theoretical commutator as [X, Z] = XZX -1 Z -1 = ω -1 I q (where I q is the q-dimensional identity matrix), so that one gets the expression

ω a X b Z c , ω a ′ X b ′ Z c ′ = ω cb ′ -c ′ b I q , (3) 
meaning that two elements of P q commute if only if the determinant ∆ = det b ′ b c ′ c vanishes. Two vectors such that their symplectic inner product [(b ′ , c ′ ).(b, c)] = ∆ = b ′ c -bc ′ vanishes are called perpendicular. Thus, from (3), one can transfer the study of q name [Ref.] # cliques geometry spectrum aut. group quartit [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF][START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF] 6 + 1 [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF][START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF] 135 [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF][START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF] 2295 1. The main properties of the studied Pauli graphs. The first and second column gives the selected decomposition of q and the name of the corresponding Pauli system, respectively. Third column represents the number of maximal sets of mutually commuting observables of size q -1 (i.e. the number of maximum cliques in the corresponding Pauli graph) and how it splits into two numbers of geometrical significance explained in the paper. The fourth column provides a geometry that may be identified. The fifth column provides the spectrum of the Pauli graph, that of its dual geometry or that of an important subgraph, depending on context (see the corresponding section for details). The automorphism group of the selected geometry is given in the last column. The notation S n , A n and D n is for the symmetric, alternating and dihedral group, respectively. Symbols ×, ⋊ and . are for the direct, semidirect and not semidirect products of groups, respectively. The notation W 2n-1 (p) is for the symplectic polar space of order p and rank n [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF][START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF]. The polar space W 3 (2) is the generalized (self-dual) quadrangle of order two GQ(2,2), also called the doily. The notation W 2n-1 (p) ′ means the polar space W 2n-1 (p) minus a perp-set (i.e. a point and the maximum cliques passing through it). Whenever multiple polar spaces are featured in the table, it means that we are dealing with the mutual incidence of cliques at multiple points (see Sec. 4 for details). † The incidence geometry is associated to the maximum cliques of the Pauli graph and the spectrum is that of all cliques (see Sec. 2 for details). commutation relations within the group P q to the study of perpendicularity of vectors in the ring Z 2 q [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF]. From (3), one gets the important result that the set P ′ q of commutators (also called the derived subgroup) and the center Z(P q ) of the Pauli group P q are identical, and one is led to the isomorphism (P q /Z(P q ), ×) ∼ = (Z 2 q , +),

P 1 (Z 4 ) † {4 1 , 0 3+1 , -2 2 } G 48 = Z 2 × S 4 2-qubit [3, 4] 15 GQ(2, 2) {6 1 , 1 9 , -3 5 } S 6 octit [6, 2] 12 + 3 P 1 (Z 8 ) † {8 1 , 0 9+3 , -4 2 } Z 6 2 ⋊ (Z 3 3 ⋊ G 48 ) 2 × qubit/quartit [9] 36 + 3 3 × GQ(2, 2) ′ {5 1 , 1 6 , -1 2 , -3 3 } 3 G 3 48 ⋊ S 3 3-qubit
W 5 (2) {30 1 , 3 35 , -5 27 } Sp(6, 2) 9-dit [6] 12 + 1 P 1 (Z 9 ) † {9 1 , 0 8+1 , -3 3 } G 648 ⋊ G 48 2-qutrit [3] 40 GQ(3, 3) {25 1 , 5
) † {16 1 , 0 21+7 , -8 2 } A 3 8 ⋊ G 48 2 × qubit/octit 72 + 15 6 × GQ(2, 2) ′ {5 1 , 1 6 , -1 2 , -3 3 } 6 G 6 48 ⋊ S 6 4 × 2-quartit 120 + 30 + 1 15-cube {-3 1 , 3 1 , -1 3 , 1 3 } 15 G 15 48 ⋊ S 15 2 2 × 2-qubit/quartit 360 + 15 3 × W 5 (2) ′ {13 1 , 5 25 , 3 9 , -1 70 , -5 5 , -7 10 } 3 (Z 5 2 ⋊ S 6 ) 3 ⋊ S 3 4-qubit
W 7 (2) {126 1 ,
i.e. multiplication of observables taken in the central quotient P q /Z(P q ) transfers to the algebra of vectors in the Z q -module Z 2 q endowed with the symplectic inner product ".".

Isotropic lines of the lattice Z 2 q

Let us now define a isotropic line as a set of q points on the lattice Z 2 q such that the symplectic product of any two of them is 0(mod q). From ( 4), to such an isotropic line corresponds a maximal commuting set in P q /Z(P q ).

Taking the prime power decomposition of the Hilbert space dimension as q = i p s i i , it is shown in [START_REF] Kibler | An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group[END_REF] of [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF] that the number of isotropic lines of the lattice Z 2 q reads

η(q) = i p s i +1 i -1 p i -1 ≡ σ(q), (5) 
where σ(q) denotes the sum of divisor function ‡ It may be checked from table 1 (colum 3), that the number of maximum cliques in the Pauli graph of P q [i.e. the number of maximal commuting set in P q /Z(P q )] in the considered single qudit decompositions q = 4, 8, 9, 12, 16 and 18 are σ(4) = 1 + 2 + 4 = 7, σ(8) = 1+2+4+8 = 15, σ(9) = 13, σ(12) = 27, σ(16) = 31 and σ(18) = 39, respectively.

Another important quantity is the number η(q; x) of isotropic lines through a given point x = (b, c) of the lattice. Denoting by

t i = v p i (x) the p i -valuation § of x, it is shown in (36) of [7] that one obtains η(q; x) = i p t i +1 i -1 p i -1 ≡ σ(q(x)), (6) 
where q(x) = i p t i i ≤ q is a local dimension defined at the selected point x.

The projective line P 1 (Z q ) and the symplectic group Sp(2, Z q )

As shown in [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF], a isotropic line of Z 2 q corresponds to a Lagrangian submodule, i.e. a maximal module such that the perpendicular module M ⊥ = M. Let us now specialize to Lagrangian submodules that are free cyclic submodules

Z q (b, c) = {(ub, uc)|u ∈ Z q } , (7) 
for which the application u → (ub, uc) is injective. Not all Lagrangian submodules are free cyclic submodules. A point x = (b, c) such that Z q (b, c) is free is called an admissible point, and the set of admissible points is called the projective line

P 1 (Z q ) = {Z q (b, c)|(b, c) is admissible} . ( 8 
)
‡ The identification of η(q) to σ(q) is not provided in [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF]. However, it is easy to see that the factors in ( 5) are

p s+1 i -1 pi-1 = 1 + p i + p 2 i + • • • + p s i = σ(p s i
) and, since σ(q) is multiplicative, (5) immediately follows. Similarly, the identification of η(q; x) to σ(q(x)) given in ( 6) is easy to establish. § The p-adic valuation v p (x) of a integer number x is the highest exponent t suct that the power of prime p t divides x.

Following theorem 5 in [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF], the number of points of the projective line is

|P 1 (Z q )| = i (p s i i + p s i -1 i ) ≡ ψ(q), (9) 
where ψ(q) = q p|q (1 + 1 p ) and the product is taken over all primes p dividing q . Note that one has ψ(q) ≤ σ(q), where the equality holds if q is square-free integer.

In the considered single qudit decompositions q = 4, 8, 9, 12, 16 and 18, that contain a square, one gets ψ(4

) = 4(1 + 1 2 ) = 6, ψ(8) = 8(1 + 1 2 ) = 12, ψ(9) = 12, ψ (12) 
= 24, ψ(16) = 24, ψ(18) = 36, as it it is also shown in table 1 (column 3).

Then, still using theorem 5 in [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF], the number of points of the projective line containing a selected vector x = (b, c) of the lattice reads as

|P 1 (Z q ; x)| = ψ(q(x)), (10) 
where q(x) is the local dimension introduced in ( 6). As for the projective line P 1 (Z q ), the symplectic group Sp(2, Z q ) contains interesting number theoretical features.

We defined an admissible vector (b, c) as one leading to a point of the projective line P 1 (Z q ). If q = p s , there are p 2s -p 2(s-1) admissible vectors and, for arbitrary dimensions q = i p s i i , the number of admissible vectors is

q 2 i (1 - 1 p 2 ) = φ(q)ψ(q) = J 2 (q), (11) 
where φ(q) = q i (1 -1 p i ) is the Euler totient function and J 2 (q) is known as the Jordan totient function.

Following the same line of reasoning than ( 6) and [START_REF] Thas | The geometry of generalized Pauli operators of N -qudit Hilbert space, and an application to MUBs Europh[END_REF], one may also define a finer structure of admissibility from the number J 2 (q(x)), with q(x) = i p t i i ≤ q is the local dimension. If q = p s , one has q(x) = q and the structure is simpler than in the composite case such as q = 12 and q = 18.

The symplectic group Sp(2, Z q ) is built from all matrices b ′ b c ′ c such that (b, c) is an admissible vector and the symplectic inner product, i.e. the determinant [START_REF] Vourdas | Symplectic transformations and quantum tomography in finite quantum systems[END_REF][START_REF] Novotný | On orbits of the ring Z M n under action of the group SL(m[END_REF].

∆ = b ′ c -bc ′ = 1. The cardinality of such a group is is |Sp(2, Z q )| = qJ 2 (q)

The Pauli graph of a qudit

In the previous subsections, we investigated the bijection between sets of operators of the Pauli group P q and vectors defined over the modular ring Z q . More precisely, from (4), elements of the central quotient of the Pauli group P q /Z(P q ) were mapped to vectors of the lattice Z 2 q and, from (5) the σ(q) isotropic lines of Z 2 q were mapped to its maximal commuting sets.

As for the relation [START_REF] Havlicek | Projective line of a specific qudit[END_REF], the identification of |P 1 (Z q )| to the Dedekind psi function ψ(q) is not provided in [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF]. The proof is easy to establish since ψ(q) is a multiplicative function One can see these bijections in a clearer way by defining the Pauli graph G q of the qudit system. The Pauli graph G q is constructed by taking the observables as vertices and a edge joining two commuting observables. A maximal set of mutually commuting observables corresponds to a maximum clique of G q , and one further defines a point/line incidence geometry with observables as points and maximum cliques as lines. One characterizes this geometry by creating a dual graph G ⋆ q such that the vertices are the cliques and a edge joins two non-intersecting cliques. The connected component of G ⋆ q corresponds to the graph of the projective line P 1 (Z q ) (as defined in previous papers [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF]- [START_REF] Havlicek | Möbius pair of simplices and commuting Pauli operators Math[END_REF]).

In the subsequent sections, we shall also introduce the graph

G (k)
q , in which the vertices are the maximum cliques of the Pauli graph G q and a edge joins two maximum cliques intersecting at k points.

The quartit system For the four-level system, there are 4 2 -1 observables/vertices in the Pauli graph G 4 . The σ(4) = 7 maximum cliques

cl := {(X 2 , Z 2 , Z 2 X 2 ), (X, X 2 , X 3 ), (X 2 , Z 2 X, Z 2 X 3 ), (Z, Z 2 , Z 3 ), (ZX, Z 2 X 2 , Z 3 X 3 ), (ZX 2 , Z 2 , Z 3 X 2 ), (ZX 3 , Z 2 X 2 , Z 3 X)} (12) 
are mapped to the following isotropic lines of Z 2 4 il := {{(0, 2), (2, 0), (2, 2)}, {(0, 1), (0, 2), (0, 3)}, {(0, 2), (

{(1, 0), (2, 0), (3, 0)}, {(1, 1), (2, 2), (3, 3)}, {(1, 2), (2, 0), (3, 2)}, {(1, 3), (2, 2), (3, 1)}}. ( 2, 1), (2, 3)}, 
) 13 
From the latter list, one easily observes that non-admissible vectors belong to the first line {(0, 2), (2, 0), (2, 2)}, that corresponds to the maximum clique (X 2 , Z 2 , Z 2 X 2 ). The remaing vectors in Z 2 4 generate free cyclic submodules of the form [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF]. The sequence of degrees in G ⋆ q is obtained as (1, 0, 0, 0, 6), meaning that the first clique given in (12) (of degree 0) intersects all the remaing ones, and that cliques number 2 to 7 in (12) (of degrees 4) form the projective line P 1 (Z 4 ). Indeed, one has |P 1 (Z 4 )| = ψ(4) = 6. There are J 2 (4) = φ(4)ψ(4) = 12 admissible points.

The graph G ⋆ 4 is strongly regular, with spectrum {4 1 , 0 3+1 , -2 2 } (in the notations of [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF]); the notation 0 3+1 in the spectrum means that 0 3 belongs to the projective line subgraph and there exists an extra 0 eigenvalue in the spectrum of G ⋆ 4 . The automorphism group of P 1 (Z 4 ) is found to be the direct product G 48 = Z 2 × S 4 (where S 4 is the four-letter symmetric group).

The 12-dit system The main results for all qudit systems with 4 ≤ q ≤ 18, such that q contains a square, are given in table 1. We take the composite dimension q = 2 2 × 3 as our second illustration. There are 12 2 -1 = 143 observables in the Pauli graph G 12 . There are σ(12) = 28 maximum cliques in G 12 , as expected. The sequence of degrees in the dual graph G ⋆ 12 is found as (4, 0, . . . , 24), i.e. there are four cliques of degree 0 and the remaining ψ(12) = 24 ones have degree 12 (as also seen from the spectrum given in Table 1).

Owing to the composite character of the dimension, the structure of G ⋆ 12 is more complex than in the quartit case, see Fig. 1 of [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF] for a picture. All four independent cliques intersect at the three vectors (0, 6), (6, 0), [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF][START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF], corresponding to the three observables X 6 , Z 6 , X 6 Z 6 . The remaining 24 cliques intersect at 0, 1, 2, 3 or 5 points. The automorphism group of P 1 (Z 12 ) is found to be Z 12 2 ⋊ G 144 , with G 144 = A 4 ⋊ D 6 . Remarkably, the automorphism groups of P 1 (Z 18 ) and P 1 (Z 24 ) encompass that of P 1 (Z 12 ), as shown in Table 1.

Pauli graph/geometry for multiple qudits

In this section, we specialize on multiple qudits q = p n , when the qudit is a p-dit (with p a prime number). The multiple qudit Pauli group P q is generated from the n-fold tensor product of Pauli operators X and Z [defined in [START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF] with ω = exp( 2iπ p )]. One has |P q | = p 2n+1 and the derived group P ′ q equals the center Z(P q ) so that |P ′ q | = p. Following [START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF][START_REF] Thas | The geometry of generalized Pauli operators of N -qudit Hilbert space, and an application to MUBs Europh[END_REF], the observables of P q /Z(P q ) are seen as the elements of the 2ndimensional vector space V (2n, p) defined over the field F p , and one makes use of the commutator

[., .] : V (2n, p) × V (2n, p) → P ′ q (14)
to induce a non-singular alternating bilinear form on V (2n, p), and simultaneously a symplectic form on the projective space P G(2n -1, p) over F p . Doing this, the |V (2n, q)| = p 2n observables of P q /Z(P q ) are mapped to the points of the symplectic polar space W 2n-1 (p) of cardinality

¶ |W 2n-1 (p)| = p 2n -1 p -1 ≡ σ(p 2n-1 ), (15) 
and two elements of [P q /Z(P q ), ×] commute iff the corresponding points of the polar space W 2n-1 (p) are collinear.

A subspace of V (2n, p) is called totally isotropic if the symplectic form vanishes identically on it. The polar space W 2n-1 (p) can be regarded as the space of totally isotropic subspaces of the (2n -1)-dimensional projective space P G(2n -1, p). Such totally isotropic subspaces, also called generators G, have dimension p n -1 and their number is

|Σ(W 2n-1 (p))| = n i=1 (1 + p i ).
(16) ¶ The proof of this statement is given in [START_REF] Thas | The geometry of generalized Pauli operators of N -qudit Hilbert space, and an application to MUBs Europh[END_REF]. The identification of |W 2n-1 (p)| to σ(p 2n-1 ) is new in this context. It is reminiscent of (5) and has still unoticed consequences about the structure of the polar space, as explained in the sequel of the paper. For q-level systems (single qudits), σ(q) and ψ(q) refer to the number of isotropic lines and the number of points of the projective line, respectively (as in ( 5) and ( 9)). For multiple qudits, one has q = p 2n-1 and σ(q) and ψ(q) refer to the number of points of the symplectic polar space W 2n-1 (p) and of punctured polar space W 2n-1 (p) ′ , respectively (as in [START_REF] Klimov | Graph states in phase space[END_REF] and ( 17)).

Let us call a spread S of a vector space a set of generators partitioning its points. The size of a spread of V (2n, p) is |S| = p n + 1 and one has |V (2n, p)| -1 = |S| × |G| = (p n + 1) × (p n -1) = p 2n -1, as expected.

Going back to the Pauli observables, a generator G corresponds to a maximal commuting set and a spread S corresponds to a maximum (and complete) set of disjoint maximal commuting sets. Two generators in a spread are mutually disjoint and the corresponding maximal commuting sets are mutually unbiased [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF][START_REF] Planat | A survey of finite algebraic grometric structures underlying mutually unbiased quantum measurements[END_REF].

Let us define the punctured polar space W 2n-1 (p) ′ as the polar space W 2n-1 (p) minus a perp-set (i.e. a point u and all the totally isotropic spaces passing though it) + . Then, one gets

|W 2n-1 (p) ′ | = σ(p 2n-1 ) -σ(p 2n-3 ) = ψ(p 2n-1 ), ( 17 
)
where σ(p 2n-3 ) is the size of a perp-set and ψ(q) is the Dedekind psi function.

The Pauli graph of a multiple qudit

The symmetries carried by multiple qudit systems may also be studied with Pauli graphs. We define the Pauli graph G p n of a multiple p n -dit, as we did for the single qudit case, by taking the observables as vertices and a edge joining two commuting observables.

A dual graph G ⋆ p n is such that the vertices are the maximum cliques and a edge joins two non-interesting cliques. One denotes G ′⋆ p n the corresponding graph attached to the punctured polar space. Finally, one denotes G (k) p n the graph whose vertices are the maximum cliques of the Pauli graph G p n and whose edges join two maximum cliques intersecting at k points.

Actual calculations have been performed for two-and three-qubits, and for two-and three-qutrits. Main results are in table 2 (see details in the corresponding subsections). Denoting c the ratio between the cardinalities of aut(G * p n ) and aut(G ′ * p n ), one observes that c identifies to the size σ(p 2n-1 ) of the polar space W 2n-1 (p), except for the case of the 3 -qubit system where c is twice the number of cliques of the Pauli graph G 2 3 . Thus, the space W ′ 2n-1 (p) may be seen as a building block of Pauli systems. One may remind that W 2n-1 (p) contracts to W ′ 2n-1 (p), as the size σ(p 2n-1 ) to the size ψ(p 2n-1 ), that the ratio of cardinalities of their automorphism groups is the number c, and anticipate on the structural role of W ′ 2n-1 (p) in qudit mixtures, shown in Table 1 and Sec. 4.

The two-qubit system

As already emphasized in [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF][START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF], the two-qubit system "is" the symplectic polar space 

= p n name aut(G p n ) aut(G * p n ) aut(G ′ * p n ) c = |aut(G * p n )| |aut(G ′ * p n )| 2 qubit S 3 S 3 S 2 3 ≡ σ(2) 2 2 2-qubit S 6 S 6 G 48 = Z 2 × S 4 15 ≡ σ(2 3 ) 2 3 3-qubit Sp(6, 2) O + (8, 2) Z 6 2 ⋊ A 8 2 × 135 = 63 = σ(2 5 ) 3 qutrit Z 3 2 ⋊ G 48 S 4 S 3 4 ≡ σ(3) 3 2 2-qutrit Z 40 2 .W (E 6 ) W (E 6 ) G 648 ⋊ Z 2 40 ≡ σ(3 3 ) 3 3 3-qutrit Z 364 2 .G G (E 243 ⋊ Z 2 ).W (E 6 ) 364 ≡ σ(3 5 )
Table 2. Comparison of the automorphism group of the dual Pauli graph G * p n and that of its building block G ′ * p n , defined by removing a perp-set in the symplectic polar space. The ratio of sizes of both groups turns out to be the number of observables σ(p 2n-1 ) of the space, except for the case of the 3-qubit system where it is twice the number 135 of cliques in the Pauli graph G 

where a notation such as IX means the tensor product of I and X.

The spectrum of the (strongly regular) Pauli graph G 2 2 is {6 2 , 1 9 , -3 5 } and the automorphism group is the symmetric group Sp(4, 2) = S 6 .

Following definition [START_REF] Shaw | Finite geometries and Clifford algebras II[END_REF], ones defines the punctured polar space W 3 (2) ′ ≡ GQ(2, 2) ′ by removing a perp-set in GQ(2, 2), i.e. a point as well as the totally isotropic subspaces/maximum cliques passing through it [for the selected point u ≡ IX, the removed cliques are numbered 1 to 3 in [START_REF] Kibler | An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group[END_REF]]. The punctured Pauli graph G ′ * 2 2 is as follows

GQ(2, 2) ′ ⇒ G ′ * 2 2 : spec := {6 1 , 2 3 , 0 2 , -2 6 }, aut(G ′ * 2 2 ) := G 48 = Z 2 × S 4 . (19) 
The automorphism group of the graph G ′ * 2 2 is similar to the automorphism group obtained from the graph of the projective line P 1 (Z 4 ), associated to the quartit system, although the spectrum and the commutation structure are indeed not the same. In a next paper, it will be shown that both graphs are topologically equivalent to the hollow sphere.

It is already mentioned in Sec. 3 of [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF] that the Pauli graph G 2 2 can be regarded as L(K 6 ) (it is isomorphic to the line graph of the complete graph K 6 with six vertices).

Similarly, defining K 222 as the complete tripartite graph (alias the 3-cocktail party graph, or octahedral graph), one gets G ′ 2 2 = L(K 222 ).

The two-qutrit system

First results concerning the commutation structure of the two-qutrit system are in Sec. 5 of [START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF] and in example 5 of [START_REF] Havlicek | Factor-group-generated polar spaces and (multi-)qudits[END_REF]. The 80 observables of the central quotient P q /Z(P q ) (with q = 3 2 ) are mapped to the elements of the vector space V (4, 3) and the commutation structure is that of the polar space W 5 (3) ≡ GQ(3, 3) with σ( 33 ) = 1 + 3 + 3 2 + 3 3 = 40 elements [see [START_REF] Klimov | Graph states in phase space[END_REF]]. According to [START_REF] Shaw | Finite geometries and Clifford algebras[END_REF], this number coincides with the number of generators (1 + 3)(1 + 3 2 ). The spectrum of the (regular) Pauli graph G 3 2 is {25 1 , 5 

) ∼ = Z 2 .W ′ (E 6 ).
Using [START_REF] Shaw | Finite geometries and Clifford algebras II[END_REF], one defines the punctured polar space W 5 (3) ′ , with |W 5 (3) ′ | = ψ(3 3 ) = 36 and the corresponding graph

G ′ * 3 2 GQ(3, 3) ′ ⇒ G ′ * 3 2 : spec := {24 1 , 3 12 , 0 3 , -3 20 }, aut(G ′ * 3 2 ) := G 648 ⋊ Z 2 , ( 20 
)
where G 648 ∼ = U 25 is isomorphic to a complex reflection group (number 25 in the Shephard-Todd sequence). Since |W (E 6 )| = 51840 = 40 × 1296, then GQ(3, 3) may also be seen as 40 copies of the building block GQ(3, 3) ′ . See Sec. VI of [START_REF] Briand | The moduli space of three-qutrit states[END_REF] and Sec. 4.1 of [START_REF] Planat | Clifford groups of quantum gates, BN -pairs and smooth cubic surfaces[END_REF] for other occurences of the group G 648 in relation to the geometry of the 27 lines on a smooth cubic surface.

The three-qubit system

For three qubits, the structure of commutation relations is that of the polar space W 5 (2) with σ(2 5 ) = 63 elements and (1 + 2)(1 + 2 

(E 8 ) ∼ = Z 2 .O + (8, 2).
As shown in table 2, the three-qubit system is very peculiar among multiple qubit systems, having O + (8, 2) as the automorphism group attached to the maximum cliques, instead of the symplectic group Sp [START_REF] Havlicek | Projective line of an arbitrary single qudit[END_REF][START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF].

One defines the punctured polar space W 5 (2) ′ with |W 5 (2) ′ | = ψ(2 5 ) = 48 points and the corresponding graph G ′ * 2 3 as follows

W 5 (2) ′ ⇒ G ′ * 2 3 : spec := {56 1 , 4 70 , -4 14 , -8 35 }, aut(G ′ * 2 3 ) := Z 6 2 ⋊ A 8 , (21) 
with A 8 the eight letter alternating group.

The corresponding 1-point intersection graph of the maximum cliques has spectrum {56 1 , 14 15 , 2 35 , -4 84 }. As shown in Sec. 4, it occurs in the study of the 3-qubit/qutrit system.

Thus, the number of pieces within the automorphism group of the dual Pauli graph G ⋆ 2 3 is twice the number 135 of maximum cliques, instead of the cardinality σ(p 2n-1 ) of the symplectic polar space W 2n-1 (p), that is given in (15) * .

Later, in the study of the 2-qubit/quartit system, we need the graph G ′ (3) 2 3 attached to the 3-point intersection of the maximum cliques. The spectrum of this graph is {13 1 , 5 25 , 3 9 , -1 70 , -5 5 , -7 10 }.

To conclude this subsection, let us mention that the Weyl group W (E 6 ) arises as the symmetry group of a subgeometry of the polar space W 5 [START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF], namely in the generalized quadrangle GQ(2, 4) [START_REF] Levay | Black hole entropy and finite geometry[END_REF]. Taking the 27 three-qubit observables shown in Fig. 3 of [START_REF] Levay | Black hole entropy and finite geometry[END_REF], one attaches to such a geometry a Pauli graph, that we denote G 27 . One gets 45 maximum cliques of size 3, the spectrum is {10 1 , 1 20 , -5 6 } and aut(G 27 ) ∼ = W (E 6 ). By removing a perp-set from GQ(2, 4), one gets the punctured generalized quadrangle GQ(2, 4) ′ . The corresponding dual Pauli graph G ′ * 27 has spectrum {32 1 , 2 24 , -4 20 } and automorphism group Z 2 ≀ A 5 (where ≀ means the wreath product of groups).

The one-point intersection graph G 45 of the 45 maximum cliques is that of the generalized quadrangle GQ(4, 2), the dual geometry of GQ [START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF][START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF]. The spectrum of G 45 is {12 1 , 3 20 , -3 24 } and aut(G 45 ) ∼ = W (E 6 ). The automorphism group of the punctured Pauli graph G ′ * 45 is isomorphic to the Weyl group W (F 4 ) of the 24-cell. This view fits the one proposed in our paper [START_REF] Planat | Clifford groups of quantum gates, BN -pairs and smooth cubic surfaces[END_REF].

The three-qutrit system For three qutrits [p = n = 3 in (15)], the structure of the commutation relations is that of the polar space W 5 (3) with σ(3 5 ) = 364 points, and [according to [START_REF] Shaw | Finite geometries and Clifford algebras II[END_REF]] there are (1 + 3)(1 + 3 2 )(1 + 3 3 ) = 1120 generators/maximum cliques, as checked from the Pauli graph G 3 3 . Its spectrum is found to be {241 1 , 17 195 , -1 364 , -19 168 } and aut(G 3 3 ) = Z 364 2 .G, where |G| = |Sp(6, 3)|. Two maximum cliques of G 3 3 intersect at 0, 2 or 8 points. * How to explain this anomaly? Symplectic polar spaces W 2n-1 (p) are not the only type among finite polar spaces of order p and rank n, but there are others [START_REF] Cameron | Projective and polar spaces[END_REF]. Finite classical polar spaces may be of the symplectic, unitary or orthogonal type, according to the type of the reflexive sesquilinear form carried by the vector space V (2n, p), alternating bilinear, Hermitian and quadratic, respectively. There are in fact six families according to their germ, viz., one symplectic, two unitary, and three orthogonal. The hyperbolic orthogonal polar space is a hyperbolic quadric Q + 2n-1 (p) with automorphism group O + (2n, p). For such a family, the number of points is

|Q + 2n-1 (p)| = (p n -1)(p n-1 + 1) p -1 (22) 
and the number of totally isotropic subspaces is

|Σ(Q + 2n-1 (p))| = n i=1 (1 + p i-1 ). ( 23 
) If n = 4, one has |Q + 7 (p)| = (p 4 -1)(p 3 +1) p-1 = (p + 1)(p 2 + 1)(p 3 + 1) = |Σ(W 7 (p))|, i.e.
the number of points of the hyperbolic quadric Q + 7 (p) coincides with the number of totally isotropic subspaces in the symplectic polar space W 5 (p), associated to 3-qudit systems. But, to our great surprise, this anomaly only affects the three-qubit system.

The punctured polar space

W 5 (3) ′ , of cardinality |W 5 (3) ′ | = ψ(3 5 ) = 324 is such that W 5 (3) ′ ⇒ G ′ * 3 3 : spec := {702 1 , 9 780 , -18 39 , -27 260 }, aut(G ′ * 3 3 ) := (E 243 ⋊ Z 2 ).W (E 6 ), (24) so that W 5 (3) consists of |aut(G * 3 3 )|/|aut(G ′ * 3 3 )| = σ(3 5
) = 364 copies of its building block W 5 (3) ′ . In ( 24), E 243 is the extraspecial 3-group of order 243 and exponent 3.

Pauli graph/geometry of multiple qudit mixtures

As before, G q is the Pauli graph whose vertices are the observables and whose edges join two commuting observables. A dual graph of the Pauli graph is G * q whose vertices are the maximum cliques and whose edges join two non-intersecting cliques. In this section, we also introduces G (k) q , the graph whose vertices are the maximum cliques and whose edges join two maximum cliques intersecting at k points.

First of all, as shown in Sec. 6 of [START_REF] Havlicek | Projective line of a specific qudit[END_REF], a qudit mixture in composite dimension q = p 1 × p 2 × • • • × p r (p i a prime number), identifies to a single q-dit. Since the ring Z q is isomorphic to the direct product Z p 1 × Z p 2 × • • • Z pr the commutation relations arrange as the σ(q) ≡ ψ(q) isotropic lines of the lattice Z 2 q , that reproduce the projective line

P 1 (Z q ) = P 1 (Z p 1 ) × P 1 (Z p 2 ) × • • • × P 1 (Z pr ).

The sextit system

The simplest non-trivial case is in dimension q = 6 = 2 × 3. The projective line may be pictured by the dual Pauli graph G ⋆ 6 of spectrum {6 1 , 1 6 , -2 3 , -3 2 }. It represents the complement of a 3 × 4 grid, or in graph theoretical language the complement L(K 3,4 ) of the line graph over the complete bipartite graph K 3,4 (see Fig. 1 of [START_REF] Planat | Multi-line geometry of qubit-qutrit and higher order Pauli operators[END_REF]). One finds 24 maximum cliques of size 3 in G ⋆ 6 corresponding to the same number of non-complete sets of mutually unbiased bases. The symmetry of this new configuration is the semidirect product G 144 = A 4 ⋊ D 6 of two groups of order twelve, namely the four-letter alternating group A 4 and the dihedral group D 6 . Until now, it is not known whether sets of mutually unbiased bases of size larger than three can be built [START_REF] Planat | A survey of finite algebraic grometric structures underlying mutually unbiased quantum measurements[END_REF][START_REF] Brierley | Constructing mutually unbiased bases in dimension six[END_REF].

In the sequel of this section, we are interested in mixtures where at least one factor in the prime number decomposition of q contains a square. A summary of the main results is in Table 3 below.

The two-qubit/qutrit system

The Pauli graph of the two-qubit/qutrit system contains 143 vertices and 60 maximum cliques. The incidence graph of the maximum cliques is found to reproduce the projective line over the ring F 4 × Z 2 × Z 3 [START_REF] Planat | Qudits of composite dimension, mutually unbiased bases and projective ring geometry[END_REF] and the spectrum of the dual Pauli graph G ⋆ 2 2 ×3 is {24 1 , 6 5 , 2 27 , -2 15 , -6 9 , -8 3 }. Maximum cliques of the Pauli graph intersect each other at 0, 1, 2 or 5 points. In G ⋆ 2 2 ×3 , there are 480 maximum cliques of size 3 and 720 maximum cliques of size 4, to which one can attach the same number of non-complete sets of mutually unbiased bases. An interesting subgeometry of the two-qubit/qutrit system is found by taking the incidence graph G (5) 2 2 ×3 of maximum cliques of the Pauli graph intersecting each other at 5 points. The spectrum of this graph is {6 1 , 1 9 , -3 5 } 4 corresponding to four copies of the doily GQ(2, 2) [alias L(K 6 )]. The automorphism group of this geometry is S 4 6 ⋊ S 4 . Similarly, the spectrum of the incidence graph for maximum cliques intersecting at two points is {8 1 , 2 5 , -2 9 } 4 , that represents four copies of the triangular graph L(K 6 ). Thus, the doily is a basic constituent of the two-qubit/qutrit system and builds up its commutation structure, as one may have expected.

The two-qutrit/qubit system

The Pauli graph of the two-qutrit/qubit system contains 323 vertices and 120 maximum cliques. The incidence graph of the maximum cliques reproduces the projective line over the ring F 9 × Z 2 × Z 3 and the spectrum of the dual Pauli graph G ⋆ 2×3 2 is {54 1 , 6 15 , 3 48 , -3 30 , -6 24 , -27 2 }. It contains 19440 cliques of size three. Maximum cliques of the Pauli graph intersect each other at 0, 1, 2, 5 or 8 points.

An interesting subgeometry of the two-qutrit/qubit system is found by taking the incidence graph G The qubit/quartit and qubit/octit systems Let us start with the lowest case of a mixture where a factor is not a prime: the qubit/quartit system living in the Hilbert space dimension q = 2 × 4. As shown in Table 1, the maximum cliques studied from the dual Pauli graph G ⋆ 2×4 split into two parts, that are a set of 3 independent (non-intersecting) cliques and a connected component of 36 cliques. The single qudit in dimension q = 18 has a similar splitting since σ(18) = 39 and ψ(18) = 36.

Let us denote G ⋆(c)

2×4 the connected subgraph of the dual Pauli graph. Its spectrum is again that {16 1 , 0 27 , -8 4 , 4 4 } of a regular graph. Maximum cliques of the Pauli graph intersect each other at 0, 1 or 3 points and there is a subgeometry of the qubit/quartit system found by taking the incidence graph of maximum cliques interesting at 3 points. The spectrum of this latter graph G [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF] 2×4 is {5 1 , 1 6 , -1 2 , -3 3 } 3 corresponding to three copies of the punctured Pauli graph associated to GQ(2, 2) ′ [see [START_REF] Tolar | Feyman's path integral and mutually unbiased bases[END_REF]♯]. The automorphism group of this 3-point incidence graph is G 3 48 ⋊ S 3 , where G 48 is the automorphism group of GQ(2, 2) ′ .

Similarly, one considers the qubit/octit system living in the Hilbert space dimension q = 2 × 8. As shown in Table 1, the maximum cliques studied from the Pauli graph G ⋆ 2×8 split into two parts, that are a set of 15 independent (non-intersecting) cliques and a connected component of 72 cliques. Here, there exists no single qudit with such a splitting. Let us denote G ⋆(c) 2×8 the connected subgraph of the dual Pauli graph. Its spectrum is {32 1 , 8 4 , 0 63 , -16 4 }. Maximum cliques of the Pauli graph intersect each other at 0, 1, 3 or 7 points and there is a subgeometry of the qubit/octit system found by taking the incidence graph G [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF] 2×8 of maximum cliques interesting at 7 points. The spectrum of this latter graph corresponds to six copies of of GQ(2, 2) ′ . The automorphism group of this latter configuration is found to be the semidirect product of groups G 6 48 ⋊ S 6 .

The two-qubit/quartit system

The two-qubit/quartit system corresponds to the decomposition q = 2 2 ×4 of the Hilbert space dimension. We find 375 maximum cliques in the Pauli graph, that split as 360+15.

The 360 maximum cliques of the Pauli graph arrange each other in 7-tuples. The graph spectrum of this latter graph G

2 2 ×4 is {13 1 , 5 25 , 3 9 , -1 70 , -5 5 , -7 10 } 3 . Thus, this is the geometry is related to three copies of the punctured polar space W 5 (2) ′ .

The two-quartit system

The two-quartit system corresponds to the decomposition q = 4 × 4 of the Hilbert space dimension. The Pauli graph G 4×4 contains 151 maximum cliques. The connected subgraph G ⋆(c) 4×4 of the dual graph G ⋆ 4×4 corresponds to 120 maximum cliques of the Pauli graph that intersect each other at 0, 1, 3 or 7 points. The graph G [START_REF] Albouy | The isotropic lines of Z 2 d[END_REF] 4×4 featuring the intersection of the 120 maximum cliques at 7 points has spectrum {-3 1 , 3 1 , -1 3 , 1 3 } 15 , ♯ The spectrum {5 1 , 1 6 , -1 2 , -3 3 } is that of the complement of the graph G ′⋆ 2 2 , displayed in [START_REF] Tolar | Feyman's path integral and mutually unbiased bases[END_REF].

that corresponds to 15 copies of the cube graph. The automorphism group G 48 of the cube graph is similar to that of the punctured generalized quadrangle GQ(2, 2) ′ . The automorphism group of the selected geometry G

4×4 is found to be G 15 48 ⋊ S 15 . The remaining 31 cliques intersect each other at 3 or 7 points. The 3-clique intersection graph still splits into a isolated clique and a connected component of 30 maximum cliques. The connected component, of spectrum {28 1 , 0 15 , -2 14 }, is the 15cocktail party graph, i.e. the dual graph of the 15-hypercube graph.

Pauli systems in dimension 24

A few results for dimension 24 are collected at the bottom of table 1. Here, a transition towards a more complex behavior occurs. In smaller dimensional cases, all maximum cliques of the Pauli graph G q have size q -1, while in dimension 24, in all the three cases explored (24-dit, qubit/qutrit/quartit and 3-qubit/qutrit), they may also have dimension 24 -1 and 24 + 1.

The 24-dit system follows the rules established in Sec. 2, as expected. The automorphism group of the projective line P 1 (Z 24 ) is found to be G 2 24 3 12 ⋊ (Z 12 2 ⋊ G 144 ), where G 2 24 3 12 is the product of two non elementary abelian groups of order 2 24 and 3 12 .

The maximum cliques of the qubit/qutrit/quartit Pauli graph G 2×3×4 split as 144 + 12 (as for a single q-dit with q = 99, since σ(99) = 156 and ψ(99) = 144). The maximum cliques of the Pauli graph G 2×3×4 intersect each other at 0, 1, 2, 3, 5, 7 and 11 points. The graph G corresponding to the same number of incomplete sets of mutually unbiased bases. The maximum cliques of the Pauli graph intersect each other at 0, 1, 2, 3, 5 or 11 points and the 5-tuples form a graph of spectrum {56 1 , 14 15 , 2 35 , -4 84 } 4 , related to three copies of the polar space W 5 [START_REF] Planat | On the geometry and invariants of qubits, quartits and octits Preprint 1005[END_REF]. The automorphism group of this geometry is found to be aut(G 

Conclusion

It has been shown for the first time that number theoretical functions σ(q) and ψ(q) enter into the structure of commutation relations of Pauli graphs and geometries. For single q-dits (in section 2), σ(q) and ψ(q) refer to the number of maximal commuting sets and the cardinality of the projective line P 1 (Z q ), respectively. For multiple qudits, with dimension p n , p a prime number, (in section 3) the parameter q = p 2n-1 enters in the function σ(q) to count the size of the symplectic polar space W 2n-1 (p) (that carries the multiple qudit system), and enters in the function ψ(q) to count the size of the basic constituent: the punctured polar space W ′ 2n-1 (p). For multiple qudit mixtures, spaces W 2n-1 (p) and W ′ 2n-1 (p) are also found to arise as constituents of the commutation structure.

The structural role of symplectic groups Sp(2n, p) has been found, as expected. Other important symmetry groups are G 48 = Z 2 × S 4 , G 144 = A 4 × D 6 and W (E 6 ). The group G 48 is first of all the automorphism group of the single qudit Pauli group P 1 and is important in understanding the CPT symmetry [START_REF] Planat | Three-qubit entangled embeddings of CP T and Dirac groups within E 8 Weyl group[END_REF]. In this paper, it arises as the symmetry group of the quartit, of the punctured generalized quadrangle GQ(2, 2) ′ (see [START_REF] Tolar | Feyman's path integral and mutually unbiased bases[END_REF]) and as a normal subgroup of many systems of qudits (as shown in Table 1). The torus group G 144 occurs in the symmetries of the 6-dit, 12-dit, 18-dit and 24-dit systems. The Weyl group W (E 6 ) happens to be central in the symmetries of three-qubit and multiple qutrit systems. The understanding of symmetries in the Hilbert space is important for the applications in quantum information processing.
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 32 [i.e. p = n = 2 in (15)], alias the generalized quadrangle GQ(2, 2), also called doily, with 15 points and, dually, 15 lines (see Fig. 6 in [3]). One denotes the corresponding Pauli graph as G 2 2 . The maximum cliques are as follows cl := {{IX, XI, XX}, {IX, Y I, Y X}, {IX, ZI, ZX}, + In the graph context the symbol ' means a puncture in the graph. It is not the same symbol as in the derived subgroup G ′ of the group G.

  q
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 3 {IY, XI, XY }, {IY, Y I, Y Y }, {IY, ZI, ZY }, {IZ, XI, XZ}, {IZ, Y I, Y Z}, {IZ, ZI, ZZ}, {XY, Y X, ZZ}, {XY, Y Z, ZX}, {XZ, Y X, ZY }, {XZ, Y Y, ZX}, {XX, Y Y, ZZ}, {XX, Y Z, ZY }},
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 2 of maximum cliques of the Pauli graph intersecting each other at 5 points. The spectrum of this graph is {12 1 , 224 , -4 25 } 3 corresponding to three copies of the dual graph G ⋆ 3 2 of the generalized quadrangle GQ(3, 3).

( 7 )

 7 2×3×4 of intersection at 7-tuples has the spectrum {3, -1 3 } 36 . Similarly, one gets spec(G (3) 2×3×4 ) = {15 1 , 3 15 , 1 6 , -1 18 , -3 2 , -9 3 , -5 3 } 3 and spec(G (2) 2×3×4 ) = {16 1 , 0 27 , -8 4 , 4 4 } 3 . The Pauli graph G 2 3 ×3 of the 3-qubit/qutrit system contains 540 maximum cliques. There are |Sp(6, 2)| = 2903040 maximum cliques of size 4 in the dual graph G * 2 3 ×3

3

 3 ×3 ) = Sp(6, 2)4 .S 4 , a straightforward generalization of what occurs for the 2qubit/qutrit system.

  24 , -1 40 , -7 15 }

						Z 40 2 .W (E 6 )
	12	12-dit [6]	24 + 4	P 1 (Z 12 ) †	{12 1 , 2 6 , 0 12+4 , -4 3 , -6 2 }	Z 12 2 ⋊ G 144
	3 ×	qutrit/quartit	24 + 4	as above	as above	as above
	2 2 ×	2-qubit/qutrit	60 4 × GQ(2, 2)	{6 1 , 1 9 , -3 5 } 4	S 4 6 ⋊ S 4
	16	16-dit [6]	24 + 7	P 1 (Z 16		

  Table

					7 135 , -9 119 }	Sp(8, 2)
	18	18-dit [6]	36 + 3	P 1 (Z 18 ) †	{18 1 , 3 6 , 0 24+3 , -6 3 , -9 2 }	Z 12 3 ⋊ (Z 12 2 ⋊ G 144 )
	2 ×	qubit/9-dit	36 + 3	as above	as above	as above
	2 ×	2-qutrit/qubit [9]	120 3 × GQ(3, 3)	{12 1 , 2 24 , -4 15 } 3	W ′ (E 6 ) 3 .G 48
	24	24-dit [6]	48 + 12	P 1 (Z 24 ) †	{24 1 , 4 6 , 0 36+12 , -8 3 , -12 2 } G 2 24 3 12 ⋊ (Z 12 2 ⋊ G 144 )
	2.3.4 qubit/qutrit/quartit	144 + 12	see Sec. 4	see Sec. 4	
	2 3 ×	3-qubit/qutrit	540	4 × W 5 (2)	{56 1 , 14 15 , 2 35 , -4 84 } 4	Sp(6, 2) 4 .S 4

  24 , -1 40 , -715 } and the automorphism group is isomorphic to Z 40 2 .W (E 6 ), where W (E 6 ) is the Weyl group of the Lie algebra E 6 . Two maximum cliques intersect at 0 or 2 points. The dual graph G ⋆ 3 2 has spectrum {27 1 , 315 , -34 24 } and its automorphism group is W (E 6 ). Note that Sp[START_REF] Saniga | Multiple qubits as symplectic polar spaces of order two[END_REF][START_REF] Planat | On the Pauli graphs of N-qudits Quant[END_REF]

Table 3 .

 3 Geometry of qudit mixtures: an excerpt from table 1 which emphasizes the role played by symplectic polar spaces W 2n-1 (p) and their punctured part W ′ 2n-1 (p).

	q	name	# cliques	geometry	aut. group
	2 2	2-qubit	15	GQ(2, 2)	S 6
	2 × 2 2 2 3	qubit/quartit 3-qubit	36 + 3 3 × GQ(2, 2) ′ 135 W 5 (2)	G 3 48 ⋊ S 3 Sp(6, 2)
	3 2	2-qutrit	40	GQ(3, 3)	Z 40 2 .W (E 6 )
	3 × 4	qutrit/quartit	24 + 4	as a 12-dit	as a 12-dit
	2 2 × 3 2 × 8 4 × 4 2 2 × 4 2 4	2-qubit/qutrit qubit/octit 2-quartit 120 + 30 + 1 60 4 × GQ(2, 2) 72 + 15 6 × GQ(2, 2) ′ 15-cube 2-qubit/quartit 360 + 15 3 × W 5 (2) ′ (Z 5 2 ⋊ S 6 ) 3 ⋊ S 3 S 4 6 ⋊ S 4 G 6 48 ⋊ S 6 G 15 48 ⋊ S 15 4-qubit 2295 W 7 (2) Sp(8, 2)
	2 × 9	qubit/9-dit	36 + 3	as a 18-dit	as a 18-dit
	2 × 3 2	2-qutrit/qubit	120 3 × GQ(3, 3)	W ′ (E 6 ) 3 .G 48
	2 × 3 × 4 qubit/qutrit/quartit	144 + 12	see Sec. 4	see Sec. 4
	2 3 × 3	3-qubit/qutrit	540	4 × W 5 (2)	Sp(6, 2) 4 .S 4
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