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CONVERGENCE RESULTS FOR SMOOTH REGULARIZATIONS OF
HYBRID NONLINEAR OPTIMAL CONTROL PROBLEMS

T. HABERKORN AND E. TRÉLAT ∗

Abstract. We consider a class of hybrid nonlinear optimal control problems having a discontin-
uous dynamics ruled by a partition of the state space. For this class of problem, some hybrid versions
of the usual Pontryagin Maximum Principle are known. We introduce general regularization pro-
cedures, parameterized by a small parameter, smoothing the previous hybrid problems to standard
smooth optimal control problems, for which we can apply the usual Pontryagin Maximum Princi-
ple. We investigate the question of the convergence of the resulting extremals as the regularization
parameter tends to zero. Under some general assumptions, we prove that smoothing regularization
procedures converge, in the sense that the solution of the regularized problem (as well as its extremal
lift) converges to the solution of the initial hybrid problem. To illustrate our convergence result, we
apply our approach to the minimal time low-thrust coplanar orbit transfer with eclipse constraint.

Key words. Optimal control, hybrid control, regularization, shooting method, orbit transfer
with eclipse.

AMS subject classifications. 49J15, 34A38, 93C65.

1. Introduction and main results.

1.1. Hybrid optimal control. Let m and n be positive integers. In what
follows, t ∈ IR denotes the time variable, and we consider a time dependent partition
of IRn,

IRn =
⋃

α∈A

Xα(t),

where A is a countable set, and the subsets Xα(t) are disjoint and open with a
piecewise C1 boundary. For every α ∈ A, let fα : IR × IRn × IRm → IRn and f0

α :
IR× IRn× IRm → IR be continuous mappings, that are C1 with respect to their second
variable. For every t ∈ IR, every x ∈ IRn and every u ∈ Ω, define f(t, x, u) = fα(t, x, u)
and f0(t, x, u) = f0

α(t, x, u) whenever x ∈ Xα(t).
Let Ω be a measurable subset of IRm. Consider the hybrid control system

ẋ(t) = f(t, x(t), u(t)), (1.1)

where the control u(·) belongs to the class of measurable functions with values in Ω.
The control system (1.1) is said to be control-affine in the case where the dynamics
f is affine with respect to the control variable; that is, for every α ∈ A there exists
m+ 1 vector fields fα,0, . . . , fα,m of class C1 on IRn such that

fα(t, x, u) = fα,0(t, x) +

m
∑

i=1

uifα,i(t, x),

where u = (u1, . . . , um). Control-affine systems are of particular interest in many
applications.

Let M0 and M1 be two compact subsets of IRn. Assume that M1 is reachable
from M0 for the control system (1.1), in the sense that there exist a time tf > 0 and
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a control u(·) ∈ L∞([0, tf ],Ω), such that the trajectory x(·), solution of (1.1) with
x(0) ∈ M0, satisfies x(tf ) ∈ M1. Consider the optimal control problem (denoted in
short (HOCP) in what follows) of steering the control system (1.1) from M0 to M1,
and minimizing the cost function

C(tf , u(·)) =

∫ tf

0

f0(t, x(t), u(t))dt. (1.2)

The final time tf may be fixed or not.
In [7] this kind of hybrid optimal control problem is called an optimal control

problem on stratified domains, and existence of optimal control and Cauchy unique-
ness results are derived using a suitable modification of usual Fillippov’s arguments so
as to handle the discontinuities of the dynamics and of the cost function. Note that,
in that reference, the definition of stratified problem requires to define the dynamics
restricted to the boundary of some domain, however we do not focus on that point
here since we make an assumption of transversal crossing throughout our article (see
Definition 1.1 further). Another slight difference with the framework of [7] is that our
decomposition of IRn is assumed to be time dependent and our time horizon is finite,
however the existence and uniqueness results of [7] are easily extended to our context.

From now on, assume that (HOCP) has a solution (x(·), u(·)) defined on [0, tf ],
with u(·) ∈ L∞([0, tf ],Ω).

For usual (smooth) optimal control problems, a well known numerical method
to compute the optimal trajectory, called shooting method, consists in combining
the necessary conditions derived from the Pontryagin Maximum Principle (PMP, see
[27]) with a Newton method (see e.g. [35]). Let us recall how this approach has been
generalized to the hybrid framework. First, the PMP has been extended to a very
general hybrid context in many references (see [6, 13, 16, 28, 32, 36] and references
therein) with different proof approaches and presentations. It is however not our
aim to consider hybrid control systems in their full generality and our (HOCP) is a
specific hybrid optimal control problem in the sense that the state and control spaces
do not vary and the change of dynamics (1.1) is ruled by the state position and is not
directly controlled. In our case, all the versions of the Hybrid Maximum Principle
(denoted in short HMP) derived in the aforementioned references are equivalent and
we recall hereafter a statement of the HMP applied to the optimal solution (x(·), u(·))
of (HOCP).

According to the HMP, there exist p0 6 0 and a piecewise absolutely continuous
mapping p(·) : [0, tf ] → IRn called adjoint vector, with (p(·), p0) 6= (0, 0), such that
the so-called extremal (x(·), p(·), p0, u(·)) is solution of

ẋ(t) =
∂H

∂p
(t, x(t), p(t), p0, u(t)), ṗ(t) = −

∂H

∂x
(t, x(t), p(t), p0, u(t)), (1.3)

for almost every t ∈ [0, tf ], where the Hamiltonian is defined by H(t, x, p, p0, u) =
〈p, f(t, x, u)〉 + p0f0(t, x, u), and the maximization condition

H(t, x(t), p(t), p0, u(t)) = max
v∈Ω

H(t, x(t), p(t), p0, v) (1.4)

holds almost everywhere on [0, tf ].
Moreover, if the final time tf is free, then maxv∈ΩH(tf , x(tf ), p(tf ), p0, v) = 0.
In addition, for every time tc such that the trajectory x(·) passes from the domain
Xα(tc) to some domain Xβ(tc), a certain jump condition holds for the adjoint vector

2



at the time tc under some appropriate transversality condition. To make it explicit,
we introduce hereafter the notion of a regular crossing time.

Definition 1.1. A regular crossing time of the trajectory x(·), solution of (1.1)
and associated with the control u(·), is a time tc satisfying the following assumptions:

1. there exist exactly two elements α and β of A such that the point x(tc) belongs
to the adherence of the domains Xα(tc) and Xβ(tc);

2. there exists η > 0 such that x(t) ∈ Xα(t) for t ∈ (tc − η, tc) and x(t) ∈ Xβ(t)
for t ∈ (tc, tc + η);

3. the boundary between the domains Xα(t) and Xβ(t) can be written as {x ∈
IRn | F (t, x) = 0} in a neighborhood of x(tc) and for t close to tc, with a
function F : IR × IRn → IR of class C1;

4. the control u(·) is left- and right-continuous at tc;
5. 〈∂xF (tc, x(tc)), fα(tc, x(tc), u(t

−
c ))〉 + ∂tF (tc, x(tc)) 6= 0;

6. 〈∂xF (tc, x(tc)), fβ(tc, x(tc), u(t
+
c ))〉 + ∂tF (tc, x(tc)) 6= 0.

The two last items of this definition represent a transversality crossing condition.
Using this definition, the following jump condition holds at every regular crossing
time:

p(t+c ) = p(t−c ) +
〈p(t−c ), fα(t−c ) − fβ(t+c )〉 + p0(f0

α(t−c ) − f0
β(t+c ))

〈∂xF (tc, x(tc)), fβ(t+c )〉 + ∂tF (tc, x(tc))
∂xF (tc, x(tc)). (1.5)

Here, the short notation fα(t−c ) stands for fα(tc, x(tc), u(t
−
c )), and fβ(t+c ) stands for

fβ(tc, x(tc), u(t
+
c )). The upperscript + (resp. −) denotes the right (resp. left) limit.

Remark 1.2. In the particular case where the partition of IRn into the domains
Xα (α ∈ A) does not depend on time, the Hamiltonian remains continuous at each
boundary crossing, that is, in short, H(t−c ) = H(t+c ).

Moreover, in that case, the two last items of Definition (1.1) mean that the left
limit ẋ(t−c ) and right limit ẋ(t+c ) are transverse to ∂Xα(tc), as illustrated on Figure
1.1. This transversality crossing assumption is crucial in our work. It discards the
situations where the trajectory x(·) crosses a boundary between three domains or more,
or hits tangentially a boundary of a domain.

fβ

fα

∂Xα = ∂Xβ

Fig. 1.1. Transversality crossing assumption

The extremal (x(·), p(·), p0, u1(·)) is said normal whenever p0 6= 0, and in that
case it is usual to normalize the adjoint vector so that p0 = −1; otherwise it is said
abnormal.

As in the smooth case, it is then possible to derive from the HMP a (multiple)
shooting method and we refer the reader e.g. to [12, 28, 32, 39] for some examples of
applications. In those references, the examples are however academic and the compu-
tations can either be made by hand or the control structure (and hence the sequence
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of dynamics) can be established beforehand. Recall that the shooting methods are
usually refered to as indirect methods, since they are based on the preliminary use of
theoretical necessary conditions (PMP or HMP). On the opposite, direct numerical
methods consist in discretizing directly the optimal control problem so as to reduce it,
after discretization, to some finite dimensional nonlinear optimization problem with
constraints, the dimension being as larger as the discretization is finer. Direct meth-
ods can be developed as well for solving (HOCP) by approximating it by a nonlinear
programming problem (see [31] for a survey), however it is well known that such
an approach cannot yield in general the degree of accuracy provided by an indirect
(shooting) method. This remark is particularly relevant for problems stemming from
aeronautics, such as the problem that we present in this article. The main flaw of the
indirect numerical approach is that shooting methods are known to be possibly hard
to initialize because they rely on a Newton like algorithm. In the hybrid context, it
will be even harder to initialize because a multiple shooting has to be used to take into
account the jump conditions (1.5) of the adjoint vector due to the crossings. More-
over, (1.5) is an implicit equation, because the computation of fβ(t+c ) in the right
hand side requires the computation of u(t+c ), itself requiring in turn the computation
of p(t+c ) obtained from (1.4).

The method that we propose in this article consists in regularizing (HOCP) into
a smooth optimal control problem, parameterized by ε > 0 and denoted (OCP)ε,
with the idea that, on the one hand (OCP)ε can be expected to be easier to solve by
a numerical shooting method than (HOCP), and on the other hand nice convergence
properties can be expected as ε tends to zero.

The article is structured as follows. General regularization procedures are defined
in Section 1.2. They are used to smooth the hybrid problem under consideration
into a family of usual smooth optimal control problems parametrized by a kind of
penalization parameter ε, and for which the PMP can be applied. Our main results,
stated in Section 1.3, assert the convergence of the solution of (OCP)ε to the solution
of (HOCP) (as well as their respective extremal lifts) as ε tends to zero, under
appropriate assumptions whose relevance is discussed in a series of remarks. Section
2 is then devoted to the proof of the main results. Finally, we illustrate in Section 3
our convergence result with a nonacademic application: the minimal time low-thrust
coplanar orbit transfer around the Earth with eclipse constraint.

1.2. Regularization procedure. We first define a concept of C1 regularization
of the extended hybrid dynamics (f, f0).

Definition 1.3. The family (fε, f0ε)ε>0 is called a C1 regularization of the
extended hybrid dynamics (f, f0) whenever the following properties are satisfied:

• for every ε > 0, the mappings fε : IR× IRn × IRm → IRn and f0ε : IR× IRn ×
IRm → IR are C1;

• for every t ∈ IR, every α ∈ A, every x ∈ Xα(t), and every u ∈ Ω, there holds

fε(t, x, u) −→
ε→0

fα(t, x, u),
∂fε

∂x
(t, x, u) −→

ε→0

∂fα

∂x
(t, x, u),

f0ε(t, x, u) −→
ε→0

f0
α(t, x, u),

∂f0ε

∂x
(t, x, u) −→

ε→0

∂f0
α

∂x
(t, x, u).

Let us provide an example of C1 regularization.
Example 1.4. Examples of a regularization inside a domain Xα(·) are classical;

for instance consider a convolution process. Let now t̄ ∈ IR and x̄ be a point belonging
to the boundary of exactly two domains Xα(t̄) and Xβ(t̄), for some α, β ∈ A. Let V
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be a neighborhood of x̄ in IRn, d(·, ·) be a distance in IRn, and bε : IR × V → [0, 1] be
a C1 function such that

bε(t, x) =

{

1 if x ∈ Xα(t) and |t− tc| + d(x,Σ) > ε,
0 if x ∈ Xβ(t) and |t− tc| + d(x,Σ) > ε.

In other words, bε is a kind of Heaviside function. For every t ∈ IR, every x ∈ V and
every u ∈ Ω, define

fε(t, x, u) = bε(t, x)fα(t, x, u) + (1 − bε(t, x))fβ(t, x, u),

f0ε(t, x, u) = bε(t, x)f0
α(t, x, u) + (1 − bε(t, x))f0

β(t, x, u).
(1.6)

This yields a local regularization on V . It is then easy to define a similar regularization
for points belonging to the boundary of three domains or more. Then, to make it global
it suffices to use for instance a partition of unit.

Let (fε, f0ε)ε>0 be a C1 regularization of the extended hybrid dynamics (f, f0).
Fix R > 0 sufficiently large. Consider the optimal control problem (denoted in short
(OCP)ε in what follows) of steering the control system

ẋε(t) = fε(t, xε(t), uε(t)) (1.7)

from M0 to M1, with controls uε(·) ∈ L∞([0, tεf ],Ω), under the additional compact
state constraint

max
t∈[0,tε

f
]
‖xε(t)‖IRn 6 R, (1.8)

and minimizing the cost function

Cε(tεf , u
ε(·)) =

∫ tε
f

0

f0ε(t, xε(t), uε(t))dt. (1.9)

If the final time tf of (HOCP) is fixed, then we set tεf = tf . If the final time tf of
(HOCP) is free, then the final time tεf of (OCP)ε is free as well; however for the
problem (OCP)ε to be well defined we have to bound tεf , and for instance we impose
that 0 6 tεf 6 tf + 10.

The additional constraint (1.8) is necessary to derive an existence result for
(OCP)ε. Adding such a constraint is a classical fact in any penalization proce-
dure. If R is chosen large enough, then, under the assumptions of our main result
below, the constraint (1.8) is actually not active and hence R plays no further role.
In particular it does not affect the numerical process resulting from our main result
(see also Remark 1.9 further).

For this regularized optimal control problem (OCP)ε, anticipating the fact that
the constraint (1.8) will (a posteriori) not be active, the usual PMP implies that
every optimal solution (xε(·), uε(·)) defined on [0, tεf ] is the projection of an extremal

(xε(·), pε(·), p0ε, uε(·)) solution of

ẋε(t) =
∂Hε

∂p
(t, xε(t), pε(t), p0ε, uε(t)), ṗε(t) = −

∂Hε

∂x
(t, xε(t), pε(t), p0ε, uε(t)),

(1.10)
for almost every t ∈ [0, tεf ], where Hε(t, x, p, p0, u) = 〈p, fε(t, x, u)〉 + p0f0ε(t, x, u) is

the Hamiltonian, p0ε is a nonpositive real number, and

Hε(t, xε(t), pε(t), p0ε, uε(t)) = max
v∈Ω

Hε(t, xε(t), pε(t), p0ε, v) (1.11)
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almost everywhere on [0, tεf ]. Moreover, if the final time is free then the maximized
Hamiltonian is equal to 0 at tεf .

Convergence properties of the solutions of (OCP)ε towards solutions of (HOCP)
can be expected under appropriate assumptions. In particular, the convergence of the
associated adjoint vectors, although quite difficult to prove, can be expected. This is
the object of the next section, containing the main results of that paper.

1.3. Main results. Let (fε, f0ε)ε>0 be a C1 regularization of the extended
hybrid dynamics (f, f0) of (HOCP). We make the following assumptions:

(H1) Ω is a compact and convex subset of IRm;
(H2) the problem (HOCP) has a unique solution (x(·), u(·)) defined on [0, tf ];
(H3) the optimal trajectory x(·) has a unique extremal lift (up to a multiplicative

scalar) on every subinterval of [0, tf ], which is moreover normal, denoted
(x(·), p(·),−1, u(·)), solution of the Hybrid Maximum Principle;

(H4) every time t such that x(t) belongs to the boundary of some domain of the
partition of the state space is a regular crossing time.

(H5) the sets

{(fα(t, x, u), f0
α(t, x, u)) | u ∈ Ω},

{(fε(t, x, u), f0ε(t, x, u)) | u ∈ Ω},
{(

∂fα

∂x
(t, x, u),

∂f0
α

∂x
(t, x, u)

)

| u ∈ Ω

}

,

{(

∂fε

∂x
(t, x, u),

∂f0ε

∂x
(t, x, u)

)

| u ∈ Ω

}

,

are convex, for every t ∈ IR, every x ∈ IRn, every α ∈ A, and every ε > 0;
(H6) the C1 regularization is such that every optimal control uε(·) of (OCP)ε is

continuous, for every ε > 0.
Theorem 1.5. Under the above the assumptions, there exists ε0 > 0 such that,

for every ε ∈ (0, ε0), the problem (OCP)ε has at least one solution (xε(·), uε(·))
defined on [0, tεf ], every extremal lift of which is normal. Let (xε(·), pε(·),−1, uε(·)) be
such a normal extremal lift. Then, as ε tends to 0,

• tεf converges to tf ;

• xε(·) converges uniformly1 to x(·);
• ẋε(·) converges to ẋ(·) in L∞ for the weak star topology2;
• pε(·) converges uniformly to p(·) on every closed subinterval of [0, tf ] that does

not contain any crossing time.
Remark 1.6. Note that we are not able to derive any convergence property

of the controls uε(·) without any further assumption. For example if we assume in
addition, firstly, that for every ε > 0, the maximization condition (1.11) can be made
explicit so that uε(t) = ϕε(t, xε(t), pε(t)) for almost every t ∈ [0, tεf ], secondly, that
the maximization condition (1.4) can be made explicit so that u(t) = ϕ(t, x(t), p(t))
for almost every t ∈ [0, tf ], and thirdly, that the (measurable) functions ϕε(·, ·, ·) and
ϕ(·, ·, ·) are such that ϕε(t, x, p) converges to ϕ(t, x, p) as ε tends to 0 for almost every
(t, x, p) ∈ IR × IRn × IRn, then it follows immediately from the theorem that uε(·)

1If tε
f

< tf , then we consider any continuous extension of xε(·) on [0, tf ]. The same remark holds

for ẋε(·), pε(·) and uε(·) in the next items.
2It means that

R tf

0
〈ẋε(t), g(t)〉dt →

R tf

0
〈ẋ(t), g(t)〉dt as ε → 0, for every g(·) ∈ L1([0, tf ], IRn),

and where ẋε(·) is extended continuously on [0, tf ] if needed.
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converges to u(·) as ε tends to 0 for the strong topology of L1. This is the case e.g.
when considering the minimal time problem or a quadratic criterion for control-affine
systems.

Theorem 1.5 applies in particular to control-affine systems; notice that, in this
case, fα(t, x, ·) and ∂fα

∂x
(t, x, ·) are convex in u. However we still make Assumption

(H5) and consider control-affine systems with a general nonlinear cost. For such
systems, we have the following additional result.

Theorem 1.7. In the case of a control-affine system, under Assumptions (H1),
(H2), (H3), (H4), (H5), and the following one (instead of (H6)):

(H ′
6) for almost every t ∈ [0, tf ], u(t) is an extremal point of Ω;

the conclusion of Theorem 1.5 holds and, in addition, uε(·) converges to u(·) for the
strong topology of L1.

Remark 1.8. As mentioned previously, if the final time tf of (HOCP) is fixed,
then tεf = tf , for every ε > 0.

Remark 1.9. As explained in the previous paragraph, we stress on the fact that
the real number R is necessary to derive an existence result for (OCP)ε, but plays
no role in the further analysis and in the numerical process. Since it is assumed
that the solution of (HOCP) is unique, it is possible to choose, for instance, R =
2 maxt∈[0,tf ] ‖x(t)‖IRn .

Remark 1.10. The assumptions (H2) and (H3) on the uniqueness of the solution
of (HOCP) and on the uniqueness of its extremal lift are related to the differentiability
properties of the value function (see for instance[3, 11], and see [9, 29, 30, 34] for
results on the size of the set where the value function is differentiable).

These assumptions can be weakened as follows. If we replace Assumptions (H2)
and (H3) with the assumption ”every extremal lift of every solution of (HOCP) is
normal”, then the conclusion of Theorems 1.5 and 1.7 still holds, except that the con-
vergence properties must be written in terms of closure points. More precisely, there
exists ε0 > 0 such that, for every ε ∈ (0, ε0), the problem (OCP)ε has at least one
solution (xε(·), uε(·)), every extremal lift of which is normal. For every ε ∈ (0, ε0),
consider a solution (xε(·), uε(·)) of (OCP)ε, and let (xε(·), pε(·),−1, uε(·)) be a (nor-
mal) extremal lift. Then, every closure point of the family (tεf , x

ε(·), ẋε(·), pε(·))0<ε<ε0

(for the topologies considered in the statement of the theorems) can be written as
(T, x̄(·), ˙̄x(·), p̄(·)), where x̄(·) is solution of (1.1) associated with a control ū(·) ∈
L∞([0, tf ],Ω), such that x̄(0) ∈ M0 and x̄(tf ) ∈ M1. Moreover, (x̄(·), ū(·)) is so-
lution of (HOCP) defined on [0, T ], having as a normal extremal lift the 4-tuple
(x̄(·), p̄(·),−1, ū(·)). The additional statement of Theorem 1.7 holds as well with an
obvious adaptation in terms of closure points (see also Remark 2.8 in the proof).

Remark 1.11. It is well known that, since the PMP is only a necessary condition
for optimality, the application of a shooting method to (OCP)ε may only lead to an
extremal solution that is not necessarily optimal. However, we have the following result
(the proof of which follows from the main lines of the proof of our main results), slightly
more general than Theorems 1.5 and 1.7. Assume that there is no abnormal extremal
solution of the Hybrid Maximum Principle applied to (HOCP). Then, every extremal
lift of every solution of (OCP)ε is normal, for ε > 0 small enough. Moreover, as in
Remark 1.10, every closure point of a family of such extremal solutions is a normal
extremal solution of (HOCP) (for the evident topologies).

Remark 1.12. Theorems 1.5 and 1.7 do not result from a sensitivity analysis.
Indeed, we do not assume any second order sufficient condition. Usual stability and
sensitivity approaches (see e.g. [14, 19, 21, 23, 25, 26] and references therein) permit
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to derive, under second order sufficient conditions assumptions, properties of Lipschitz
continuous or differentiable dependence of the optimal solution and its extremal lift
with respect to some parameters, for general optimal control problems. Our main
results cannot be derived from such results. Our assumptions are weaker, but note
that the conclusion is weaker too, since we do not prove that the solutions of (OCP)ε

depend in a differentiable way on the parameter ε. Our results are rather of topological
nature.

2. Proof of the main results. Our strategy of proof is the following. First,
we recall the main steps of a proof of the Hybrid Maximum Principle (HMP) using
needle-like variations, which are needed to derive our main result. Notice that there
exists a simple proof of the HMP due to [13], that consists in reducing the problem
to a usual optimal control problem with mixed initial and final conditions, and then
applying the usual PMP. This simple approach is unfortunately not adapted to our
problem since the regularization of the jump conditions of the HMP implies a quite
difficult asymptotic study of Dirac type effects. The proof of the HMP based on
needle-like variations is hence more adapted, however is more intricate than in the
usual case. Indeed, when crossing the boundary of a domain, variation vectors have
a jump. For the regularized problem, this turns into a difficulty of recovering, at the
limit, this jump condition. In the proof of our main results, the derivation of weak
convergence properties is easy and standard, using classical convexity arguments. The
difficulty point is to derive a strong convergence property for the adjoint vector as
well as for the control functions. To this aim, using the geometric interpretation of
optimality, we derive convergence results for the Pontryagin cones, within the hybrid
optimal control context. The general strategy of the proof is quite similar to the one
developed in [33], however the proofs of the intermediate results are far more intricate
due to the hybrid framework and the nonlinear features of the dynamics.

2.1. Preliminaries, Hybrid Maximum Principle. In this subsection, we
recall the main steps of a proof of the HMP using needle-like variations.

Consider (HOCP), and introduce the instantaneous cost function x0(·), defined
on [0, tf ] and solution of

ẋ0(t) = f0(t, x(t), u(t)), x0(0) = 0,

so that the cost C(tf , u(·)) of the initial trajectory x(·) is C(tf , u(·)) = x0(tf ). The
extended state x̃ ∈ IRn+1 is defined by x̃ = (x, x0), and the extended dynamics by
f̃(t, x̃, u) = (f(t, x, u), f0(t, x, u)). Consider the extended hybrid control system in
IRn+1,

˙̃x(t) = f̃(t, x̃(t), u(t)). (2.1)

Let x0 ∈ IRn; a control function u(·) ∈ L∞([0, tf ], IRm) is said admissible on [0, tf ] if
the trajectory x̃(·), solution of (2.1) associated to u and such that x̃(0) = x̃0 = (x0, 0),
is well defined on [0, tf ], and the extended end-point mapping Ẽ is then defined by

Ẽ(x̃0, tf , u(·)) = x̃(tf ). The set of admissible controls on [0, tf ] is denoted Ux̃0,tf ,IRm ,
and the set of admissible controls on [0, tf ] taking their values in Ω is denoted Ux̃0,tf ,Ω.
The set Ux̃0,tf ,IRm , endowed with the standard topology of L∞([0, tf ], IRm), is open3.

3The smoothness of the end-point mapping on the open set Ux̃0,tf ,IRm is a standard fact for
usual control systems. It is easy to prove that this property extends to the hybrid framework under
the transversality assumption (H4). This fact is however not used in this article.
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For every t > 0, define the extended accessible set ÃΩ(x̃0, t) as the image of the
mapping Ẽ(x̃0, t, ·) : Ux̃0,t,Ω → IRn+1, with the agreement ÃΩ(x̃0, 0) = {x̃0}.

Let (x(·), u(·)) be a solution of (HOCP) defined on [0, tf ]. Then the point x̃(tf )

belongs to the boundary of the set ÃΩ(x̃0, tf ). This geometric property is at the basis
of the proof of the Maximum Principle.

We next recall the concepts of needle-like variations and of Pontryagin cone,
adapted to the hybrid context, which will be of crucial importance in order to prove
our main result, and which also permit to derive a proof of the HMP.

In what follows, we assume that the optimal trajectory x(·) satisfies the transver-
sality assumption (H4).

2.1.1. Needle-like variations. Let t1 ∈ [0, tf ) and u1 ∈ Ω. For η > 0 such
that t1 +η 6 tf , the needle-like variation π1 = {t1, η, u1} of the control u(·) is defined
by

uπ1
(t) =

{

u1 if t ∈ [t1, t1 + η],
u(t) otherwise.

The control uπ1
(·) takes its values in Ω. It is not difficult to prove that, if η > 0 is

small enough, then the control uπ1
(·) is admissible, i.e., the trajectory x̃π1

(·), solution
of (2.1) with the control uπ1

(·), starting from x̃π1
(0) = x̃0, is well defined on [0, tf ].

Moreover, x̃π1
(·) converges uniformly to x̃(·) on [0, tf ] whenever η tends to 0.

Recall that t1 is a Lebesgue point of the function t 7→ f̃α(t, x̃(t), u(t)) on [0, tf ]
whenever

lim
h→0

1

h

∫ t1+h

t1

f̃α(t, x̃(t), u(t))dt = f̃α(t1, x̃(t1), u(t1)),

and that almost every point of [0, tf ] is a Lebesgue point.
Let t1 be a Lebesgue point on [0, tf ), let η > 0 small enough, and uπ1

(·) be a
needle-like variation of u(·), with π1 = {t1, η, u1}. For every t > t1, as long as the
trajectory x(·) remains in Xα(·), the variation vector ṽπ1

(·) (not depending on η) is
defined as the solution of the Cauchy problem

˙̃vπ1
(t) =

∂f̃α

∂x̃
(t, x̃(t), u(t))ṽπ1

(t),

ṽπ1
(t1) = f̃α(t1, x̃(t1), u1) − f̃α(t1, x̃(t1), u(t1)).

(2.2)

Then, it is not difficult to prove that

x̃π1
(t) = x̃(t) + ηṽπ1

(t) + o(η) (2.3)

(see e.g. [27] for details). In particular, this formula means the following. For t1 and
u1 fixed, denote x̃α(t, η) = x̃π1

(t); then η 7→ x̃α(·, η) is differentiable at 0, and

∂x̃α

∂η
(t, 0) = ṽπ1

(t). (2.4)

Let us now explain how this definition of variation vector must be adapted in order
to take into account the change of dynamics whenever x(·) leaves the domain Xα(·).
For t1 and u1 fixed, let t(η) denote the first time at which xα(t(η), η) ∈ ∂Xα(t(η)).
Recall that, by Assumption (H4), tc = t(0) is a regular crossing time. Assume that
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x(·) passes from Xα(·) into Xβ(·). In a neighborhood of x(tc), the boundary ∂Xα(tc)
can be written as {x | F (tc, x) = 0}, where F is a C1 function on IRn+1. The function
(t, η) 7→ xα(t, η) can be extended for t > t(η), prolongating the trajectory xα(·) in
the domain Xβ(·) with the dynamics fα (hence, xα(·) differs from the true trajectory
for t > t(η)). With these notations, the crossing time t(η) is characterized by the
equality F (t(η), xα(t(η), η)) = 0, which holds for every η > 0 small enough. Using
the transversality crossing assumption (H4), we infer that the function η 7→ t(η) is
derivable at η = 0, and

〈

∂xF (tc, x(tc)), t
′(0)ẋ(t−c ) +

∂xα

∂η
(tc, 0)

〉

+ t′(0)∂tF (tc, x(tc)) = 0,

where the upperscript − stands for the left limit, and hence

t′(0) = −

〈(

∂xF (tc, x(tc))
0

)

, ṽπ1
(t−c )

〉

〈∂xF (tc, x(tc)), fα(t−c , x(tc), u(t
−
c ))〉 + ∂tF (tc, x(tc))

. (2.5)

Note again that the assumption (H4) implies that the denominator of the above
expression does not vanish.

We seek an extension of the definition of the variation vector, based on (2.4)
so as to keep the validity of the expansion (2.3). Let us express the jump that
is generated by the crossing. To this aim, we use the usual transport property of
differential equations for the end-point mapping. Let δ > 0. One has x̃π1

(t(η) + δ) =
Ẽ(xπ1

(t(η) − δ), 2δ, uπ1
(·) | [t(η)−δ,t(η)+δ]), and

x̃π1
(t(η) + δ) = Ẽ(Ẽ(x̃π1

(t(η) − δ), δ, uπ1
(·) | [t(η)−δ,t(η)]), δ, uπ1

(·) | [t(η),t(η)+δ]),

for every η > 0 small enough. On every piece, the end-point mapping is differentiable,
and hence, since η 7→ t(η) is derivable, we can derivate the above equality with respect
to η, and take η = 0. Since one has in mind of keeping the formula (2.3), this yields

ṽπ1
(tc + δ) + t′(0) ˙̃x(tc + δ) =

∂Ẽ

∂x
(Ẽ(x̃(tc − δ), δ, u(·) | [tc−δ,tc]), δ, u(·) | [tc,tc+δ])

◦
∂Ẽ

∂x
(x̃(tc − δ), δ, u(·) | [tc−δ,tc]).(t

′(0) ˙̃x(tc − δ) + vπ1
(tc − δ)).

Then, letting δ tend to 0 leads to ṽπ1
(t+c ) = ṽπ1

(t−c ) + t′(0)( ˙̃x(t−c ) − ˙̃x(t+c )), that is,

ṽπ1
(t+c ) − ṽπ1

(t−c ) = −t′(0)(f̃β(t+c , x̃(tc), u(t
+
c )) − f̃α(t−c , x̃(tc), u(t

−
c ))),

that we denote, in short, using (2.5),

ṽπ1
(t+c ) = ṽπ1

(t−c ) +

〈(

∂xF (tc, x(tc))
0

)

, ṽπ1
(t−c )

〉

〈∂xF (tc, x(tc)), fα(t−c )〉 + ∂tF (tc, x(tc))
(f̃β(t+c )− f̃α(t−c )). (2.6)

We conclude that variation vectors of the hybrid control system (2.1) are defined by
(2.2) as long as the trajectory remains in the domain Xα(·), and satisfy the jump
condition (2.6) whenever the trajectory crosses a boundary (with a regular transverse
crossing). With that definition, the variation formula (2.3) still holds.
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Remark 2.1. At the crossing time tc, the following remarkable identity holds:

〈(

∂xF (tc, x(tc))
0

)

, ṽπ(t−c )

〉

〈∂xF (tc, x(tc)), fα(t−c )〉 + ∂tF (tc, x(tc))
=

〈(

∂xF (tc, x(tc))
0

)

, ṽπ(t+c )

〉

〈∂xF (tc, x(tc)), fβ(t+c )〉 + ∂tF (tc, x(tc))
(2.7)

Indeed, it follows immediately from the jump formula (2.6). It can also be proved
by establishing the formula (2.5) with t−c replaced with t+c , and α replaced with β (it
suffices to consider xβ instead of xα). The formula (2.7) is a kind of Snell-Descartes
formula at the crossing time tc. It will be of technical use in our proof.

Note that, for every γ > 0, the variation {t1, γη, u1} generates the variation vector
γṽπ1

(·). It follows that the set of variation vectors at time t is a cone.
Definition 2.2. For every t ∈ (0, tf ], the first Pontryagin cone K̃(t) ⊂ IRn+1 at

x̃(t) for the extended system is defined as the smallest closed convex cone containing
all variation vectors ṽπ1

(t1) for all Lebesgue points t1 such that 0 < t1 < t. The
first Pontryagin cone K(t) ⊂ IRn at x(t) for the initial system is defined similarly,
considering the initial dynamics f instead of the extended dynamics f̃ . Obviously,
K(t) is the projection on IRn of K̃(t).

An immediate iteration leads to the following result, as in the usual case. Let
t1 < t2 < · · · < tk be Lebesgue points of the function t 7→ f̃(t, x̃(t), u(t)) on (0, tf ), and
u1, . . . , uk be points of Ω. Assume that all points x(ti) do not belong to the boundary
of any domain Xα(·) (note that, due to Assumption (H4), the set of such times is
of full Lebesgue measure). Let η1, . . . , ηp be small enough positive real numbers.
Consider the variations πi = {ti, ηi, ui}, and denote by ṽπi

(·) the associated variation
vectors, defined as above. Define the variation

π = {t1, . . . , tk, η1, . . . , ηk, u1, . . . , uk}

of the control u(·) on [0, tf ] by

uπ(t) =

{

ui if ti 6 t 6 ti + ηi, i = 1, . . . , k,
u(t) otherwise.

(2.8)

Let x̃π(·) be the solution of (2.1) associated with to the control uπ(·) on [0, tf ] and
such that x̃π(0) = x̃0. Then,

x̃π(tf ) = x̃(tf ) +

k
∑

i=1

ηiṽπi
(tf ) + o

(

k
∑

i=1

ηi

)

. (2.9)

The first Pontryagin cone serves as an estimate of the accessible set ÃΩ(x̃0, t) in a
neighborhood of x̃(t).

When dealing with a free final time problem, we have to introduce time variations,
and we rather consider the accessible set ÃΩ(x̃0) defined as the union of all ÃΩ(x̃0, s)
over all s > 0. Assume first that x̃(·) is differentiable4 at time tf . Let δ ∈ IR small
enough; then, with the above notations,

x̃π(tf + δ) = x̃(tf ) +

k
∑

i=1

ηiṽπi
(tf ) + δf̃(tf , x̃(tf ), u(tf )) + o

(

δ +

k
∑

i=1

ηi

)

. (2.10)

4This holds true e.g. whenever tf is a Lebesgue point of the function t 7→ f̃(t, x̃(t), u(t)).
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Define the cone K̃1(tf ) as the smallest closed convex cone containing K̃(tf ) and the

vectors ±f̃(tf , x̃(tf ), u(tf )). Similarly, the cone K1(tf ) is defined as the smallest
closed convex cone containing K(tf ) and the vectors ±f(tf , x(tf ), u(tf )).
If x̃(·) is not differentiable at time tf , then the above construction is slightly modified,

by replacing f̃(tf , x̃(tf ), u(tf )) with any closure point of the corresponding difference
quotient in an obvious way.

2.1.2. Conic implicit function theorem. We next provide a conic implicit
function theorem, useful to derive a proof of the maximum principle.

Lemma 2.3. Let C ⊂ IRm be a convex subset of IRm with nonempty interior, of
vertex 0, and F : C → IRn be a Lipschitzian mapping such that F (0) = 0 and F is
differentiable in the sense of Gâteaux at 0. Assume that dF (0).Cone(C) = IRn, where
Cone(C) stands for the (convex) cone generated by elements of C. Then 0 belongs to
the interior of F (V ∩ C), for every neighborhood V of 0 in IRm.

This lemma is proved in [1] under slightly weaker assumptions and used to derive
a proof of the usual Pontryagin Maximum Principle. The proof given in [1] relies
on the Brouwer fixed point theorem. In the present article, we will need a version
of that lemma with an additional continuous dependence on parameters. This new
version is provided in Appendix (Section 4). It is however not possible to derive this
parameter version from the Brouwer fixed point theorem (see Remark 4.4 for more
explanations), and the proof that we provide relies on the usual Banach fixed point
theorem. The assumptions of our lemma are however needed to be slightly stronger
than in [1].

2.1.3. Lagrange multipliers and Hybrid Maximum Principle. We next
restrict the end-point mapping to time and needle-like variations. Assume that the
final time tf is free5. Let k be a positive integer. Set

IR × IRk
+ = {(δ, η1, . . . , ηk) ∈ IRk+1 | η1 > 0, . . . , ηk > 0}.

Let t1 < · · · < tk be Lebesgue points of the function t 7→ f̃(t, x̃(t), u(t)) on (0, tf ),

and u1, . . . , uk be points of Ω. Let V be a small neighborhood of 0 in IRk. Define the
mapping G : V ∩ (IR × IRk

+) → IRn+1 by

G(δ, η1, . . . , ηk) = x̃π(tf + δ) − x̃(tf ),

where π is the variation π = {t1, . . . , tk, η1, . . . , ηk, u1, . . . , uk} and |δ| is small enough
so that tk < tf +δ. If V is small enough, then G is well defined; moreover this mapping
is clearly Lipschitzian, and G(0) = 0. From (2.10), G is Gâteaux differentiable on the
conic neighborhood V ∩ (IR × IRk

+) of 0.

If the cone K̃1(tf ) would coincide with IRn+1, then there would exist a real number

δ, an integer k and variations πi = {ti, ηi, ui}, i = 1, . . . , k, such that G′
0(IR × IRk

+) =

IRn+1, and then Lemma 2.3 would imply that the point x̃(tf ) belongs to the interior

of the accessible set ÃΩ(x̃0), which would contradict the optimality of x(·).
Therefore the convex cone K̃1(tf ) is not equal to IRn+1. As a consequence, there

exists ψ̃ ∈ IRn+1 \ {0} called Lagrange multiplier such that 〈ψ̃, ṽ(tf )〉 6 0 for every

variation vector ṽ(tf ) ∈ K̃(tf ) and 〈ψ̃, f̃(tf , x̃(tf ), u(tf ))〉 = 0 (at least whenever x̃(·)

5The case where tf is fixed is simpler; in that case, it it not necessary to consider the real

parameter δ, and one uses the cone K̃ instead of K̃1.
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is differentiable at time tf ; otherwise replace f̃(tf , x̃(tf ), u(tf )) with any closure point
of the corresponding difference quotient).

These inequalities then permit to derive (as in the usual way, see [27]) the state-
ment of the HMP presented in the first section. The relation with the above Lagrange
multiplier ψ̃ = (ψ,ψ0) is that the adjoint vector p can be constructed so that

ψ = p(tf ) and p0 = ψ0. (2.11)

In particular, the Lagrange multiplier ψ is unique (up to a multiplicative scalar) if
and only if the trajectory x(·) admits a unique extremal lift (up to a multiplicative
scalar).

If p0 < 0 the extremal is said normal, and in this case, since the Lagrange multi-
plier is defined up to a multiplicative scalar, it is usual to normalize it so that p0 = −1.
If p0 = 0 the extremal is called abnormal.

Remark 2.4. The trajectory x(·) has an abnormal extremal lift (x(·), p(·), 0, u(·))
on [0, tf ] if and only if there exists a unit vector ψ ∈ IRn such that 〈ψ, v〉 6 0 for every
v ∈ K(tf ) (and moreover max

w∈Ω
〈ψ, f(tf , x(tf ), w)〉 = 0 whenever tf is free). In that

case, one has p(tf ) = ψ, up to a multiplicative scalar.
The following lemma easily follows from the above considerations.
Lemma 2.5. Assume that, in the optimal control problem, the final time tf is

free. For the optimal trajectory x(·), the following statements are equivalent:
• The trajectory x(·) has a unique extremal lift (x(·), p(·), p0, u(·)) (up to a

multiplicative scalar), which is moreover normal, i.e., p0 < 0;
• K̃1(tf ) is a half-space of IRn+1 and p0 < 0;

• K̃1(tf ) is a half-space of IRn+1 and K1(tf ) = IRn.

If the final time is fixed, then the above statement holds provided K̃1(tf ) is replaced

with K̃(tf ), and K1(tf ) is replaced with K(tf ).
This important lemma permits to translate the assumptions of our main result

into geometric considerations.

2.2. Proof of Theorems 1.5 an 1.7. From now on, assume that Assumptions
(H1), (H2), (H3), (H4), (H5), (H6) hold (with (H6) possibly replaced with (H ′

6)
in the case of a control-affine system). We denote the end-point mapping for the
extended regularized system by Ẽ(ε, x0, t, u

ε(·)) = x̃ε(t), where x̃ε(·) is the solution
of the extended regularized system

˙̃xε(t) = f̃ε(t, x̃ε(t), uε(t)), x̃ε(0) = x̃0 = (x0, 0), (2.12)

where f̃ε(t, x̃ε, uε) = (fε(t, xε, uε), f0ε(t, xε, uε)). By extension, the end-point map-
ping for the hybrid system corresponds to ε = 0, that is Ẽ(0, x0, t, u(·)) = x̃(t), where
x̃(·) is the solution of (2.1) associated with the control u(·) and such that x̃(0) = x̃0.
It will be also denoted Ẽ(x0, t, u(·)) = Ẽ(0, x0, t, u(·)) = x̃(t).

In the sequel, we denote by (x(·), u(·)) the (unique) solution of (HOCP). We
assume that the final time tf of (HOCP) is free (the case of a fixed final time is similar,
but simpler); as explained previously, we impose (for instance) 0 6 tεf 6 tf + 10.

The proof of Theorems 1.5 and 1.7 follows from the succession of results below.
Proposition 2.6 provides an existence result for solution (OCP)ε, as well as first con-
vergence properties. Proposition 2.10 and lemma 2.12 allow us to prove the existence
of variation vectors of (OCP)ε that converge to variation vector of (HOCP). Propo-
sition 2.14 proves the normality of the extremal lifts of (OCP)ε and the boundness of
its adjoint vectors. With all those ingredients we are then able to prove the theorems.
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Proposition 2.6. There exists ε0 > 0 such that, for every ε ∈ (0, ε0), the prob-
lem (OCP)ε admits at least one solution (xε(·), uε(·)) defined on [0, tεf ]. Moreover, tεf
converges to tf , xε(·) converges to x(·) uniformly on [0, tf ], f̃ε(·, x̃ε(·), uε(·)) converges

to f̃(·, x̃(·), u(·)) and ∂f̃ε

∂x̃
(·, x̃ε(·), uε(·)) converges to ∂f̃

∂x̃
(·, x̃(·), u(·)) for the weak star

topology of L∞, as ε tends to 0.
In the specific case of a control-affine system, under Assumption (H ′

6) instead of
(H6), the following additional convergence property holds: uε(·) converges to u(·) in
L1([0, tf ], IRm) as ε tends to 0, for the strong topology.

Remark 2.7. In particular, ẋε(·) converges to ẋ(·) in L∞ for the weak star
topology, as ε tends to 0.

Proof. Knowing that the constrained minimization problem (HOCP) has a so-
lution, let us first prove that the problem (OCP)ε has at least one solution, for
every ε > 0 small enough. We use a similar reasoning as in Section 2.1.3. Let k
be a positive integer, ε > 0 and t1 < · · · < tk be Lebesgue points of the function
t 7→ fε(t, xε(t), uε(t)). Let u1, . . . , uk be points of Ω and V be a neighborhood of 0
in IRk+2. Consider the variation π = {t1, . . . , tk, η1, . . . , ηk, u1, . . . , uk} of the control
u(·), and define the associated mapping Γ : V ∩ (IR+ × IR × IRk

+) → IRn by

Γ(ε, δ, η1, . . . , ηk) = xε
π(tf + δ) − x(tf ).

From Assumption (H3), the unique extremal lift of x(·) is normal, hence it follows from
Lemma 2.5 thatK1(tf ) = IRn. Therefore, there exist a real number δ, an integer k and
a variation π = {t1, . . . , tk, η1, . . . , ηk, u1, . . . , uk} such that the associated mapping Γ
satisfies

∂Γ

∂(δ, η1, . . . , ηk)
(0).(IR × IRk

+) = K1(tf ) = IRn.

The conic implicit function theorem with parameters, Theorem 4.1 of the Appendix
(Section 4), implies that there exist ε0 > 0, such that for every ε ∈ [0, ε0), there exist
δε ∈ IR and a variation πε = {tε1, . . . , t

ε
k, η

ε
1, . . . , η

ε
k, u

ε
1, . . . , u

ε
k} such that there holds

Γ(ε, δε, η
ε
1, . . . , η

ε
k) = 0, and moreover |δε| is small whenever ε0 is small enough. In

other words, for every ε > 0 small enough, the subset M1 is reachable from the subset
M0 for the regularized control system (1.7), within a time tεf ∈ [0, tf + 10], and with
the control uπε

(·) ∈ L∞([0, tεf ],Ω).
The existence of an optimal control steering the regularized system from M0 to

M1 is then a standard fact to derive, using the convexity assumptions (H5) on the
extended velocities, the compactness of M0 and M1, and the additional compactness
assumption (1.8) (see e.g. [10] for such existence results).

Let us now prove the convergence properties. Although the reasoning is also quite
straightforward, we include however a proof since the result does not follow directly
from standard results, due to the fact that the dynamics depends on the parameter
ε. Let (εk)k∈IN be an arbitrary sequence of positive real numbers converging to 0
as k tends to +∞. Since tεk

f ∈ [0, tf + 10], the sequence (tεk

f )k∈IN converges, up to a
subsequence, to some T ∈ [0, tf +10]. Since M0 and M1 are compact, and xεk(0) ∈M0

and xεk(tεk

f ) ∈ M1, the sequences (xεk(0))k∈IN and (xεk(tεk

f ))k∈IN converge up to a
subsequence respectively to some x̄0 ∈M0 and x̄T ∈M1.

For every integer k and almost every t ∈ [0, tεk

f ], set gk(t) = fεk(t, xεk(t), uεk(t)).
Assumption (H1) and the state constraint (1.8) imply that the sequence (gk(·))k∈IN is
bounded in L∞, hence up to a subsequence it converges to some g(·) ∈ L∞([0, T ], IRn)
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for the weak star topology. For every t ∈ [0, T ], set x̄(t) = x̄0 +
∫ t

0
g(s)ds. Since

xεk(t) = x̄0 +
∫ t

0
gk(s)ds, it follows that xεk(·) converges uniformly to x̄(·), up to a

subsequence. In particular, x̄(·) satisfies the state constraint maxt∈[0,T ] ‖x̄(t)‖IRn 6 R.
Let us prove that there exists a control ū(·) ∈ L∞([0, T ],Ω) such that x̄(·) is

solution of the control system (1.1), associated with the control ū(·). Note that, using
Assumptions (H1) and (H5), gk(t) ∈ V εk(t, xεk(t)), for every integer k and almost
every t ∈ [0, tεk

f ], where V εk(t, xεk(t)) = {fεk(t, xεk(t), u) | u ∈ Ω} is a compact and
convex subset of IRn. To prove the statement, let us first prove that g(t) ∈ V (t, x̄(t))
for almost every t ∈ [0, T ], where V (t, x̄(t)) = {f(t, x̄(t), u) | u ∈ Ω}. Note that
V (t, x̄(t)) is a compact and convex subset of IRn. It follows from the definition of
a C1 regularization (Definition 1.1) and from the convexity assumptions that the
sequence of compact convex subsets (V εk(t, xεk(t)))k∈IN converges (in the usual sense
of Hausdorff) to V (t, x̄(t)) for almost every t. For every δ > 0, set

Vδ = {h(·) ∈ L2([0, T ], IRn) | h(t) ∈ Vδ(t, x̄(t)) for almost every t ∈ [0, tf ]},

where Vδ(t, x(t)) is the compact convex set consisting of the points of IRn that are at
a distance of V (t, x(t)) less than or equal to δ. It is not difficult to see that, for every
δ > 0, Vδ is a closed convex subset of L2([0, T ], IRn) for the strong topology, and thus
as well for the weak topology. Let δ > 0 arbitrary. Note that gk(·) ∈ Vδ whenever k
is large enough. Since the sequence (gk(·))k∈IN converges up to a subsequence to g(·)
for the weak star topology of L∞, it converges as well up to a subsequence to g(·)
for the weak topology of L2. Using the closedness of Vδ for this topology, we infer
that g(·) ∈ Vδ. Since δ > 0 is arbitrary, it follows that g(·) ∈ V0, that is, for almost
every t ∈ [0, T ] there exists ū(t) ∈ Ω such that g(t) = f(t, x̄(t), ū(t)). The fact that
the function ū(·) can be chosen to be measurable on [0, T ] follows form a standard
measurable selection lemma (see e.g. [22, Lemma 3A page 161]).

Repeating all previous arguments for the extended systems (replacing x with
x̃ and xε with x̃ε) permits to show as well that Cεk(tεk

f , u
εk) converges to C(T, ū)

as k tends to +∞. Since (xεk(·), uεk(·)) is the optimal solution of (OCP)ε, there
holds Cεk(tεk

f , u
εk) 6 Cεk(τ, v) for every τ > 0 and every control v ∈ L∞([0, τ ],Ω)

steering the regularized system (1.7) from M0 to M1. It then follows in particular that
C(T, ū) 6 C(tf , u), and from the uniqueness assumption (H2), we infer that T = tf ,
ū(·) = u(·) almost everywhere and x̄(·) = x(·) on [0, tf ].

Similarly, using the convexity assumption (H5), the previous argumentation can

be developed to derive convergence properties for the sequence ∂f̃εk

∂x̃
(·, x̃εk(·), uεk(·)).

Hence, at this step, we have proved that, up to a subsequence, (tεk

f )k∈IN converges

to tf , (xεk(·))k∈IN converges to x(·) uniformly on [0, tf ], (f̃εk(·, xεk(·), uεk(·)))k∈IN

converges to f̃(·, x(·), u(·)) and (∂f̃εk

∂x̃
(·, xεk(·), uεk(·)))k∈IN converges to ∂f̃

∂x̃
(·, x(·), u(·))

in L∞ for the weak star topology, as k tends to +∞.
Let us now investigate the convergence of the sequence (uεk(·))k∈IN in the spe-

cific case of a control-affine system and under Assumption (H ′
6) instead of (H6). For

a control-affine system, we infer from the above convergence properties that the se-
quence (uεk(·))k∈IN converges up to a subsequence to u(·) for the weak star topology
of L∞, and thus as well for the weak topology of L2. Besides, from Assumption (H ′

6),
u(t) is an extremal point of Ω, for almost every t ∈ [0, tf ]. It then follows from [38,
Corollary 1] that uεk(·) converges strongly (up to a subsequence) to u(·) in L1.

To conclude, we have shown that (tf , x(·), ẋ(·)) (resp. (tf , x(·), u(·)) for the
specific case of a control-affine system under Assumption (H ′

6)) is the unique clo-
sure point (for the topologies used above) of the sequence (tεk

f , x
εk(·), ẋεk(·))k∈IN
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(resp. (tεk

f , x
εk(·), uεk(·))k∈IN), where (εk)k∈IN is any sequence of positive real num-

bers converging to 0, and therefore the convergence holds as well for the whole family
(tεf , x

ε(·), ẋε(·))0<ε<ε0
(resp. (tεf , x

ε(·), uε(·))0<ε<ε0
).

Remark 2.8. If one does not assume the uniqueness of the optimal solution
of (HOCP), then the previous proof implies that the following statement still holds:
every closure point of the family (tεf , x

ε(·), ẋε(·), pε(·))0<ε<ε0
(for the topologies con-

sidered above) can be written as (T, x̄(·), ˙̄x(·), p̄(·)), where x̄(·) is solution of (1.1)
associated with a control ū(·) ∈ L∞([0, tf ],Ω), such that x̄(0) ∈ M0 and x̄(tf ) ∈ M1.
Moreover, (x̄(·), ū(·)) is another possible solution of (HOCP) defined on [0, T ], having
as a normal extremal lift the 4-tuple (x̄(·), p̄(·),−1, ū(·)). Furthermore, for a control-
affine system under Assumption (H ′

6), the family (uε(·))0<ε<ε0
has the closure point

ū(·) ∈ L1([0, T ],Ω) for the strong topology.

In other words, every closure point of a family of solutions of (OCP)ε is a solu-
tion of (HOCP).

Remark 2.9. The solution of (OCP)ε is not necessarily unique. However all
results that follow do not depend on the specific choice of a solution.

In the sequel, let (xε(·), uε(·)) be a solution of (OCP)ε defined on [0, tεf ], for
every ε ∈ (0, ε0). Since xε(·) converges uniformly to x(·), if we choose R > 0 large
enough (see Remark 1.9) then the state constraint (1.8) is not active in (OCP)ε,
as announced in Section 1.2. It then follows from the usual Pontryagin Maximum
Principle applied to that xε(·) is the projection of an extremal (xε(·), pε(·), p0ε, uε(·))
satisfying (1.10) and (1.11).

In order to derive convergence properties for the adjoint vector, we come back to
the geometric interpretation of the proof of the PMP or HMP in terms of Pontryagin
cones, as explained formerly. In what follows, we use the Pontryagin cones K(t),
K1(t), K̃(t), K̃1(t) along the trajectory x(·) solution of (HOCP), introduced in the
previous subsection. Similarly, for every ε > 0, we denote by Kε(t), Kε

1(t), K̃ε(t),
K̃ε

1(t) the Pontryagin cones along the trajectory xε(·). The following result states
nice convergence properties for the Pontryagin cones.

Proposition 2.10. For every ṽ ∈ K̃(tf ), for every ε > 0, there exists ṽε ∈

K̃ε(tεf ) such that ṽε converges to ṽ as ε tends to 0.

Proof. By construction of K̃(tf ), it suffices to prove the lemma for a single needle-
like variation. Assume that ṽ = ṽπ(tf ), where the variation vector ṽπ(·) is the solution
on [t1, tf ] of the Cauchy problem

˙̃vπ(t) =
∂f̃α

∂x̃
(t, x̃(t), u(t)).ṽπ(t),

ṽπ(t1) = f̃(t1, x̃(t1), u1) − f̃(t1, x̃(t1), u(t1)),

(2.13)

as long as x(t) ∈ Xα(t), where t1 is a Lebesgue point of [0, tf ), u1 ∈ Ω, and the
needle-like variation π = {t1, η, u1} of the control u(·) is defined by

uπ(t) =

{

u1 if t ∈ [t1, t1 + η],
u(t) otherwise.

When x(·) crosses (transversally) the boundary of Xα(·), the variation vector ṽπ(·)
satisfies the jump condition (2.6).

In order to define a needle-like variation of the regularized control uε(·), we first
need the following technical lemma.
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Lemma 2.11. For almost every t ∈ (0, tf ), there exists a family (tε)ε>0 of points

of [t, tf ) such that tε → t and f̃ε(tε, x̃ε(tε), uε(tε)) → f̃(t, x̃(t), u(t)) as ε → 0, and

such that tε is a Lebesgue point of the function t 7→ f̃ε(t, x̃ε(t), uε(t)).
Proof. [Proof of Lemma 2.11] Set hε(t) = f̃ε(t, x̃ε(t), uε(t)) and h(t) = f̃(t, x̃(t), u(t),

and denote hε(t) = (hε
1(t), . . . , h

ε
k+1(t)) and h(t) = (h1(t), . . . , hk+1(t)) their coordi-

nates in IRn+1. Let us prove that, for almost every t ∈ (0, tf ), for every β > 0 and
every α > 0 (small enough so that t+α < tf ), there exists γ > 0 such that, for every
ε ∈ (0, γ), there exists tε ∈ [t, t+ α] such that ‖hε(tε)− h(t)‖ 6 β (here, ‖ · ‖ denotes
a norm in IRn+1).

The proof goes by contradiction. Assume that there exists a measurable subset A
of (0, tf ) of positive measure such that, for every t ∈ A, there exist β > 0 and α > 0
such that, for every integer k, there exist εk ∈ (0, 1/k) and i ∈ {1, . . . , n + 1} such
that, for every s ∈ [t, t+ α], there holds

|hεk

i (s) − hi(t)| > β. (2.14)

We distinguish between two cases, depending on whether Assumption (H6) or As-
sumption (H ′

6) holds.
We first assume that Assumption (H6) holds, that is, uε(·) is continuous for every

ε > 0. This implies that hε(·) is continuous as well, for every ε > 0. It follows from
the proof of the previous proposition that the family (hε(·))0<ε<ε0

converges to h(·)
in L∞ for the weak star topology, and hence its restriction to interval converges as
well to the corresponding restriction of h(·). Since hεk

i (·) is continuous, we infer from
(2.14) that either hεk

i (s) > hi(t) + β for every s ∈ [t, t+ α], or hεk

i (s) 6 hi(t) − β for
every s ∈ [t, t+α]. This inequality contradicts the weak convergence of the restriction
to [t, t+ α] of hεk

i (·) towards the restriction to [t, t+ α] of hi(·).
In the second case, under Assumption (H ′

6) instead of (H6) (and for a control-
affine system), we have proved previously that the family (uε(·))0<ε<ε0

converges
to u(·) for the strong topology of L1. Therefore, up to a subsequence the sequence
(uεk(·))k∈IN converges almost everywhere to u(·). We infer that the sequence (hεk

i (·))k∈IN

converges almost everywhere, up to a subsequence, to hi(·) This raises a contradiction
with (2.14).

From Lemma 2.11, for every ε > 0 small enough, there exists tε1 > t1 such that
tε1 → t1 and f̃ε(tε1, x̃

ε(tε1), u
ε(tε1)) → f̃(t1, x̃(t1), u(t1)) as ε → 0. Consider then the

needle-like variation πε = {tε1, η, u1} of the control uε(·) defined by6

uε
πε(t) =

{

u1 if t ∈ [tε1, t
ε
1 + η],

uε(t) otherwise,

and define the variation vector ṽπε(·) as the solution on [tε1, t
ε
f ] of the Cauchy problem

˙̃vπε(t) =
∂f̃ε

∂x̃
(t, x̃ε(t), uε(t)).ṽπε(t)

ṽπε(tε1) = f̃ε(tε1, x̃
ε(tε1), u1) − f̃ε(tε1, x̃

ε(tε1), u
ε(tε1)).

(2.15)

Since f̃ε(tε1, x̃
ε(tε1), u

ε(tε1)) converges to f̃(t1, x̃(t1), u(t1)), it follows that ṽπε(tε1) con-
verges to ṽπ(t1). From Proposition 2.6, tεf converges to tf , xε(·) converges uniformly

to x(·), and ∂f̃ε

∂x̃
(·, x̃ε(·), uε(·)) converges to ∂f̃

∂x̃
(·, x̃(·), u(·)) for the weak star topology

6Note that tε
1

is a Lebesgue point of the function t 7→ f̃ε(t, xε(t), uε(t)).
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of L∞, as ε tends to 0. Therefore, ṽε
πε(·) converges uniformly to ṽπ(·) as long as

x(t) ∈ Xα(t) (see e.g. [37] for this kind of standard argument).
Note that Lemma 2.11 was used here to initialize the needle-like variation uε

πε(·)
of the regularized control uε(·). The difficulty was that uε

πε(·) cannot be initialized
at the time t1 in general, since we do not know whether the simple convergence of
f̃ε(t1, x̃

ε(t1), u
ε(t1)) to f̃(t1, x̃(t1), u(t1)) holds or not, as ε tends to 0. This was

the first main difficulty of the proof of Proposition 2.10 (already present in [33] but
however easier to overcome in that reference).

The second main difficulty occurs when x(·) crosses ∂Xα(·), since the variation
vector ṽπ(·) has a jump (2.6) at the crossing time tc. Our aim is to prove that, at
the limit, we recover this jump for ṽπε(·). Let us first prove the following technical
lemma.

Lemma 2.12. The function q(·) defined by

q(s) =

〈(

∂xF (s, x(s))
0

)

, ṽπ(s)

〉

〈∂xF (x, x(s)), f(s, x(s), u(s))〉 + ∂tF (x, x(s))

is continuous in a neighborhood of the crossing time tc. For every ε ∈ (0, ε0), define

qε(s) =

〈(

∂xF (s, xε(s))
0

)

, ṽε
π(s)

〉

〈∂xF (s, xε(s)), fε(s, xε(s), uε(s))〉 + ∂tF (s, xε(s))
.

For every s close to tc, q
ε(s) converges to q(s) as ε tends to 0.

Proof. [Proof of Lemma 2.12] The first part of the lemma follows from the Snell-
Descartes like formula (2.7) established in Remark 2.1. For the second part, we
proceed similarly as we did in Section 2.1 to derive the jump formula for the variation
vector. Denote x̃ε(t, η) = x̃ε

πε(t); one has x̃ε(t, η) = (xε(t, η), x0ε(t, η)). For every real
number γ such that |γ| is small enough, denote by tε(η, γ) (also denoted tεη,γ) the first
time at which F (tεη,γ , x

ε(tεη,γ , η)) = γ, and denote by t(η, γ) (also denoted tη,γ) the
first time at which F (tη,γ , x(tη,γ , η)) = γ. Using the implicit function theorem, the
transversality crossing assumption (H4) implies that, for |γ| and ε small enough, the
function η 7→ tεη,γ is derivable at 0, and

〈

∂xF (tε0,γ , x
ε(tε0,γ)), fε(tε0,γ , x

ε(tε0,γ), uε(tε0,γ))
∂tε

∂η
(0, γ) + vε

πε(tε0,γ)

〉

+∂tF (tε0,γ , x
ε(tε0,γ)) ·

∂tε

∂η
(0, γ) = 0,

and moreover the function γ 7→ tε(0, γ) converges to the function γ 7→ t(0, γ) in C1

topology. Using again Assumption (H4), it is clear that the function γ 7→ t(0, γ),
restricted to a neighborhood of 0, is a diffeomorphism. The result follows, using the
change of variable s = t(0, γ).

To recover the jump formula as ε tends to 0, we next proceed again similarly as in
Section 2.1. Denote as in the previous lemma x̃ε(t, η) = x̃ε

πε(t). Let tε(η) (also denoted
tεη) denote the first time at which xε(tεη, η) ∈ ∂Xα(tεη), that is, F (tεη, x

ε(tεη, η)) = 0
(this corresponds to γ = 0 in the previous proof). Using the transversality crossing
assumption (H4) and the convergence of xε(·) to x(·), we get that the function η 7→
tε(η) is derivable at η = 0 for ε > 0 small enough, and

〈

∂xF (tε0, x
ε(tε0)), t

ε′(0)ẋε(tε0) +
∂xε

∂η
(tε0, 0)

〉

+ tε′(0)∂tF (tε0, x
ε(tε0)) = 0,
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where tε0 = tε(0), and hence, using Lemma 2.12,

tε′(0) = −qε(t). (2.16)

Let δ > 0. One has x̃ε
πε(tεη + δ) = Ẽ(ε, xε

πε(tεη − δ), 2δ, uε
πε(·) | [tε

η−δ,tε
η+δ]), and

x̃ε
πε(tεη + δ) = Ẽ(ε, Ẽ(ε, x̃ε

πε(tεη − δ), δ, uε
πε(·) | [tε

η−δ,tε
η ]), δ, u

ε
πε(·) | [tε

η,tε
η+δ]),

for every η > 0 small enough. On every piece, the end-point mapping is differentiable,
and hence, since η 7→ tε(η) is derivable at 0, we can derivate the above equality with
respect to η, and take η = 0. This yields

ṽε
πε(tε0 + δ) + tε′(0) ˙̃xε(tε0 + δ)

=
∂Ẽ

∂x
(ε, Ẽ(ε, x̃ε(tε0 − δ), δ, uε(·) | [tε

0
−δ,tε

0
]), δ, u

ε(·) | [tε
0
,tε

0
+δ])

◦
∂Ẽ

∂x
(ε, x̃ε(tε0 − δ), δ, uε(·) | [tε

0
−δ,tε

0
]) · (t

ε′(0) ˙̃xε(tε0 − δ) + ṽε
πε(tε0 − δ)).

We first let ε tends to 0, and then, let δ tends to 0. Using (2.16) and Lemma 2.12,
we infer that

lim
δ→0

lim
ε→0

(ṽε
πε(tε0 + δ) − ṽε

πε(tε0 − δ)) = q(t)(f̃β(t+) − f̃α(t−)),

which is corresponds exactly to the formula (2.6). Hence, we have proved that

lim
δ→0

lim
ε→0

(ṽε
πε(tε(0) + δ) − ṽε

πε(tε(0) − δ)) = ṽπ(t+c ) − ṽπ(t−c ). (2.17)

This formula shows that, when x(·) crosses ∂Xα(·) and the variation vector ṽπ(·) has a
jump (2.6) at the crossing time tc, we recover this jump at the limit for ṽπε(·). Notice
that, of course, ṽπε(·) is continuous, and the order of the limits in (2.17) cannot be
switched.

We can end the proof of the proposition. Indeed, before the first crossing time,
ṽπε(·) converges uniformly to ṽπ(·) on every compact interval not containing this
crossing time. At the crossing time, ṽπε(·) has a jump, and the formula (2.17) shows
that we recover this jump, at the limit, for ṽπε(·). Then, beyond the first crossing
time and before the second crossing time, one has uniform convergence as well, and
the argument goes by iteration.

Remark 2.13. The same convergence result holds for the pontryagin cone K1.
We will also need the following statement, resulting obviously from the above proof:
for every t ∈ [0, tf ], for every ṽ ∈ K̃1(t), for every ε > 0 there exists ṽε ∈ K̃ε

1(t) such
that ṽε converges to ṽ as ε tends to 0.

Proposition 2.14. There exists ε0 > 0 such that, for every ε ∈ (0, ε0), every
extremal lift (xε(·), pε(·), p0ε, uε(·)) of any solution xε(·) of (OCP)ε is normal.
Furthermore, setting p0ε = −1, the set {pε(t) | t ∈ [0, tεf ], 0 < ε < ε0} is bounded.

Proof. We argue by contradiction. Assume that, for every integer k, there exist
εk ∈ (0, 1/n) and a solution xεk(·) of (OCP)εk

having an abnormal extremal lift
(xεk(·), pεk(·), 0, uεk(·)). Set ψεk = pεk(tεk

f ), for every integer k. Then, from Remark
2.4, one has 〈ψεk , vεk〉 6 0, for every vεk ∈ Kεk(tεk

f ), and, since the final time is free,

M(εk) = maxw∈Ω

〈

ψεk , fε(tεk

f , x
εk(tεk

f ), w)
〉

= 0, for every integer k. Since the final

adjoint vector (pεk(tεk

f ), p0εk) (here, p0εk = 0) is defined up to a multiplicative scalar,
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we assume that ψεk is a unit vector for every integer k. Then, up to a subsequence,
the sequence (ψεk)k∈IN converges to some unit vector ψ ∈ IRn.

In order to pass to the limit, we need the following easy lemma.
Lemma 2.15. Let m be a positive integer, g be a continuous function on IR×IRm,

and C be a compact subset of IRm. For every ε > 0, set M(ε) = max
u∈C

g(ε, u), and

M = max
u∈C

g(0, u). Then, M(ε) tends to M as ε tends to 0.

Proof. For every ε > 0, let uε ∈ C such that M(ε) = g(ε, uε), and let u ∈ C
such that M = g(0, u). Note that uε does not necessarily converge to u, however
we will prove that M(ε) tends to M , as ε tends to 0. Let u0 ∈ C be a closure
point of the family (uε)ε>0. Then, by definition of M , one has g(0, u0) 6 M. On the
other hand, since g is continuous, g(ε, u) tends to g(0, u) = M as ε tends to 0. By
definition, g(ε, u) 6 M(ε) = g(ε, uε) for every ε > 0. Therefore, passing to the limit,
one gets M 6 g(0, u0). It follows that M = g(0, u0). We have thus proved that the
(bounded) family (M(ε))ε>0 of real numbers has a unique closure point, which is M .
The conclusion follows.

Using Proposition 2.6, Lemma 2.15, and Proposition 2.10, passing to the limit we
infer that 〈ψ, v〉 6 0 for every v ∈ K(tf ) and that M = maxw∈Ω〈ψ, f(tf , x(tf ), w)〉 =
0. It then follows from Remark 2.4 that the trajectory x(·) has an abnormal extremal
lift. This contradicts Assumption (H3).

To derive the second part of the statement of the proposition, let us first prove
the following lemma.

Lemma 2.16. Setting p0ε = −1, the set of all possible pε(tεf ), with ε ∈ (0, ε0), is
bounded.

Proof. [Proof of Lemma 2.16] We proceed again by contradiction. Assume that
there exists a sequence (εk)k∈IN of positive real numbers converging to 0 such that

‖pεk(tεk

f )‖ tends to +∞. Since the sequence

(

pεk (t
εk
f

)

‖pεk (t
εk
f

)‖

)

k∈IN

is bounded in IRn, up

to a subsequence it converges to some unit vector ψ. Using the Lagrange multipliers
property and (2.11), there holds 〈pεk(tεk

f ), vεk〉 6 0 for every vεk ∈ Kεk(tεk

f ), and

max
w∈Ω

(〈

pεk(tεk

f ), fεk(tεk

f , x
εk(tεk

f ), w)
〉

− f0εk(tεk

f , x
εk(tεk

f ), w)
)

= 0, (2.18)

for every integer k. Dividing by ‖pεk(tεk

f )‖, and passing to the limit, using Proposition
2.6, Lemma 2.15, Proposition 2.10 and Remark 2.4, the same reasoning as above yields
that the trajectory x(·) has an abnormal extremal lift, which is a contradiction.

We now use the fact that, for every ε ∈ (0, ε0), the function t 7→ 〈p̃ε(t), ṽε
πε(t)〉 is

constant7, for every variation vector ṽπε(·) along xε(·), where p̃ε(t) = (pε(t),−1). In
particular, denoting ṽε

πε(t) = (vε
πε(t), v0ε

πε(t)), this yields

〈pε(t), vε
πε(t)〉 − v0ε

πε(t) = 〈pε(tεf ), vε
πε(tεf )〉 − v0ε

πε(tεf ), (2.19)

for every t ∈ [0, tεf ]. Since K̃ε
1(tεf ) is a cone, we assume that the variation vectors

under consideration here are such that ṽε
πε(tεf ) is a unit vector of IRn+1. In particular,

using such variation vectors, Lemma 2.16 implies that the right-hand side of (2.19)
remains uniformly bounded with respect to ε. Since the component v0ε

πε(·) satisfies

v̇0ε
πε(t) =

∂f0ε

∂x
(t, xε(t), uε(t))vε

πε(t),

7Indeed, it is continuous and its derivative is everywhere equal to zero.
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for almost every t ∈ [0, tεf ], and since, from Proposition 2.6, ∂f0ε

∂x
(·, xε(·), uε(·)) con-

verges to ∂f0

∂x
(·, x(·), u(·)) for the weak star topology of L∞ as ε tends to 0, it follows

easily that the set of all v0ε
πε(t) under consideration, for t ∈ [0, tεf ] and 0 < ε < ε0, is

bounded. Therefore, we infer from (2.19) that the set of all 〈pε(t), vε
πε(t)〉, over all

possible variation vectors such that ṽε
πε(tεf ) is a unit vector, is uniformly bounded with

respect to ε. From Assumption (H3) and Lemma 2.5, there holds K1(tf ) = IRn, and
therefore, from Proposition 2.10, there holds Kε

1(tεf ) = IRn for ε > 0 small enough;
hence the previous arguments imply that the set of all pε(t) for t ∈ [0, tεf ] is uniformly
bounded with respect to ε.

Remark 2.17. If we remove the assumption that the optimal trajectory x(·) has
a unique extremal lift, which is moreover normal, then Proposition 2.14 still holds
provided that every extremal lift of x(·) is normal.

We are now in a position to end the proof of the theorems and to derive the
convergence properties for the adjoint vector.

Recall that (x(·), p(·),−1, u(·)) is the unique (normal) extremal lift of x(·), the
solution of (HOCP), and that, for every ε ∈ (0, ε0), (xε(·), pε(·),−1, uε(·)) is a (nor-
mal) extremal lift of a solution xε(·) of (OCP)ε. Let us prove that pε(·) converges
uniformly to p(·) on every closed subinterval of [0, tf ] that does not contain any cross-
ing time, as ε tends to 0. For every ε ∈ (0, ε0), set ψε = pε(tεf ). Recall that pε(·) is
solution of the Cauchy problem

ṗε(t) = −

〈

pε(t),
∂fε

∂x
(t, xε(t), uε(t))

〉

−
∂f0ε

∂x
(t, xε(t), uε(t)), pε(tεf ) = ψε,

for almost every t ∈ [0, tεf ], and moreover, 〈ψε, vε〉 6 0 for every vε ∈ Kε(tεf ), and

maxw∈Ω

(〈

ψε, fε(tεf , x
ε(tεf ), w)

〉

− f0ε(tεf , x
ε(tεf ), w)

)

= 0, for every ε ∈ (0, ε0). From

Proposition 2.14, the family (ψε)0<ε<ε0
is bounded; let ψ be a closure point of that

family and (εk)k∈IN a sequence of positive real numbers converging to 0 such that ψεk

tends to ψ. Using Proposition 2.6, and as in the proof of this result, we infer that the
sequence (pεk(·))k∈IN converges uniformly to the solution z(·) of the Cauchy problem

ż(t) = −

〈

z(t),
∂fβ

∂x
(t, x(t), u(t))

〉

−
∂f0

β

∂x
(t, x(t), u(t)), z(tf ) = ψ, (2.20)

for almost every t belonging to some interval [τ, tf ], provided that the interval [τ, tf ]
does not contain any crossing time (and assuming that x(t) ∈ Xβ(t) for every t ∈
[τ, tf ]). Moreover, passing to the limit as in the previous proof, one gets 〈ψ, v〉 6 0 for

every v ∈ K(tf ), and maxw∈Ω

(

〈ψ, fβ(tf , x(tf ), w)〉 − f0
β(tf , x(tf ), w)

)

= 0. It follows

that (x(·), z(·),−1, u(·)) is an extremal lift of x(·) on the interval [τ, tf ], and from
Assumption (H3) we infer that z(·) and p(·) coincide on the subinterval [τ, tf ].

We can proceed in reverse time in such a way as long as we do not encounter
any crossing time. In order to take into account possible crossing times, we must
use an additional argument. Let t be an element of [0, tf ] that is not a crossing
time. From Proposition 2.14, the family (pε(t))0<ε<ε0

is bounded and hence has a
closure point p̄(t). To end the proof, it suffices to prove that p̄(t) = p(t) (indeed, one
this fact is proved, the uniform convergence argument is similar to the one above).
From Remark 2.13, for every variation vector ṽπ(t) ∈ K̃1(t), for every ε > 0 there
exists ṽε

πε(t) ∈ K̃1(t) such that ṽε
πε(t) converges to ṽπ(t) as ε tends to 0. Setting

p̃ε = (pε,−1), as in the proof of Lemma 2.16 we use the fact that the function
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t 7→ 〈p̃ε(t), ṽε
πε(t)〉 is constant and this yields Equation (2.19) at the time t. Passing

to the limit, we get

〈p̄(t), vπ(t)〉 − v0
π(t) = 〈p(tf ), vπ(tf )〉 − v0

π(tf ). (2.21)

In order to prove that p̄(t) = p(t), we first need to derive the following lemma, which
is an extension to the hybrid context of the well known result that we used formerly.

Lemma 2.18. Denoting p̃(t) = (p(t),−1), the function t 7→ 〈p̃(t), ṽπ(t)〉 is con-
stant on [0, tf ], for every variation vector ṽπ(·).

Proof. [Proof of Lemma 2.18] It is easy to see that the derivative of the function
t 7→ 〈p̃(t), ṽπ(t)〉 is equal to 0 everywhere, using the differential equations satisfied by
p̃(·) and ṽπ(·). Besides, this function is clearly continuous outside the crossing times.
Hence, to prove the statement it suffices to see that the function remains continuous
at crossing times. But this follows straightforwardly from a simple computation using
the jump conditions (1.5) and (2.6).

It follows from this lemma that 〈p(t), vπ(t)〉−v0
π(t) = 〈p(tf ), vπ(tf )〉−v0

π(tf ), and
hence, we infer from 2.21 that 〈p̄(t), vπ(t)〉 = 〈p(t), vπ(t)〉. Since this equality holds
for every variation vector, and since K1(t) = IRn (this follows from Assumption (H3)
and Lemma 2.5), it follows that p̄(t) = p(t). This ends the proof of the theorems.

Remark 2.19. In the proof above, it is possible to replace Assumptions (H2)
and (H3) with the weaker assumption that every extremal lift of every solution of
(HOCP) is normal. In that case, using the same arguments, we prove that every
closure point of the family (tεf , x

ε(·), ẋε(·), pε(·))0<ε<ε0
(for the evident topologies)

can be written as (T, x̄(·), ˙̄x(·), p̄(·)), where x̄(·) is solution of (1.1) associated with
a control ū(·) ∈ L∞([0, tf ],Ω), such that x̄(0) ∈ M0 and x̄(tf ) ∈ M1. Moreover,
(x̄(·), ū(·)) is solution of (HOCP) defined on [0, T ], having as a normal extremal lift
the 4-tuple (x̄(·), p̄(·),−1, ū(·)).

3. Application to the minimal time low-thrust coplanar orbit transfer
with eclipse constraint.

3.1. Problem statement. We focus on the coplanar orbit transfer of a satellite
around the Earth. The satellite is modeled as a mass point and is assumed to evolve
in a central gravitational field. We neglect the gravitational perturbations such as the
Earth oblateness. The satellite follows the two-dimensional controlled Kepler equation

q̈(t) = −
µ

r(t)3
q(t) +

T (t)

m(t)
, ṁ(t) = −β‖T (t)‖,

where q(t) ∈ IR2 denotes the cartesian coordinates of the satellite in an inertial geo-
centric reference frame, r(t) = ‖q(t)‖ is the distance to the Earth’s center, T (t) ∈
B̄(0, Tmax) ⊂ IR2 is the thrust, Tmax is the maximal allowed thrust and m(t) is the
mass, µ stands for the Earth gravitational constant and β is a coefficient depending
on the thruster characteristics.

The objective is to realize a minimal time orbit transfer, for instance from a low
or/and highly eccentric initial orbit to a geostationary final one. The controllability
aspects of that problem were studied in [4, 5, 8, 18].

We are interested in low-thrust engines, that is with maximum thrust Tmax small
when compared with the mass of the satellite. Thus, the orbit transfer will require
a lot of revolutions and the cartesian coordinates are not well suited. Indeed, the
evolution of those coordinates is large when compared to the small evolution of the
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orbit shape. We use the set x = (P, ex, ey, L) of Gauss coordinates defined by

ex = e cos(ω), ey = sin(ω), L = ω + ν,

where P is the semi-latus rectum of the osculating ellipsis, e the eccentricity, ν the
true anomaly and ω the argument of perigee. The osculating ellipsis is the ellipsis the
satellite would follow if it were subject to no other forces than the central gravitational
field. In those coordinates, the cartesian position q and velocity q̇ are given by

q =
P

W

(

cosL
sinL

)

, q̇ =
µ

P

(

−ey − sinL
ex + cosL

)

,

where W = 1+ex cosL+ey sinL. In addition to this change of coordinates, we express
the thrust T in the moving reference frame (q/‖q‖, s), where s is the unit projection
of q̇ on the orthogonal of q. We also rewrite the control as T (·) = Tmaxu(·), where
u(·) takes its values in the closed unit ball B̄(0, 1) of IR2. The equations of motion
can then be rewritten as

ẋ(t) = f0(x(t)) +
Tmax

m(t)
(u1(t)f1(x(t)) + u2(t)f2(x(t))) , ṁ(t) = −βTmax‖u(t)‖,

where the vector fields f0, f1 and f2 are defined by

f0(x) =

√

µ

P









0
0
0

W 2

P









, f1(x) =

√

P

µ









0
sinL
cosL

0









, f2(x) =

√

P

µ









2P/W
cosL+ ex+cos L

W

sinL+
ey+sin L

W

0









.

We denote by y = (x,m) the full state, and its dynamic will be written as ẏ(t) =
f(y(t), u(t)).

With no additional constraints, this optimal control problem has already been
widely studied (see for instance [4, 5, 8]). We propose here to add a constraint and use
the constrained problem to illustrate the convergence properties of our regularization
approach.

The low-thrust orbit transfer is achieved thanks to electro-ionic thrusters that in
practice cannot operate without any source of power. If this source of power is simply
the sun, then the satellite is not actuated while standing in the shadow cone of the
Earth. Considering the distance Sun-Earth and Earth-satellite, we can assume the
shadow cone of the Earth to be a half cylinder (see Figure 3.1).

)t(qSun Earth

Fig. 3.1. Eclipse phenomenon and shadow cone
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This problem has already been studied in [15] with a regularization approach
but without the present theoretical background regarding convergence and hybrid
necessary conditions.

Denote by Ωc(t) the inclination of the shadow cone in the geocentric inertial
reference frame. The frontier between light and shadow is given by the zeros of the
function FrE

defined by

FrE
(t, x) = sin2(L− Ωc) −

(

rEW

P

)2

if cos(L−Ωc) > 0, where rE is the Earth radius. Note that we only need to consider
this function in the neighborhood of the frontier. If we further assume the Earth orbit
to be circular, then:

Ωc(t) = Ωc0 +
2π

one year
t,

where Ωc0 is the inclination of the shadow cone at the initial time t0 = 0.

3.2. Hybridization of the problem. The optimal control problem settled
above is naturally a (HOCP). Instead of considering the control u(·) to be equal
to zero in the shadow cone, we rather use a model with discontinuous vector fields
f1 and f2, deciding that they are equal to zero in the shadow cone. With such a
model, (HOCP) is written as follows. Let f̄0 be the vector field on IR5 defined by
f̄0(y) = (f0(x), 0). For every time t, denote by X0(t) the shadow cone and by X1(t)
its complement. Then, we seek a trajectory y(·) = (x(·),m(·)) solution on [0, tf ] of
the hybrid control system

ẏ(t) =

{

f(y(t), u(t)) if x(t) ∈ X1(t) ⊂ IR4,
f̄0(y(t)) if x(t) ∈ X0(t) ⊂ IR4,

(3.1)

associated with a control u(·) satisfying the constraint ‖u(·)‖ 6 1, starting from the
initial conditions P (0) = P0, ex(0) = ex0, ey(0) = ey0, L(0) = L0, and joining in
minimal time tf the final conditions P (tf ) = Pf , ex(tf ) = exf , ey(tf ) = eyf . Note
that L(tf ) and m(tf ) are free.

Remark 3.1. Note that the partition of the state space only depends on the
position variable q. This implies that the control vector fields f1 and f2 are orthogonal
to the boundary at a crossing point.

From the HMP recalled in Section 1, every minimizing trajectory y(·) is the
projection of an extremal (y(·), p(·), p0, u(·)) satisfying (1.3) and (1.4), and the max-
imized Hamiltonian vanishes at the final time tf . The adjoint vector has a jump
(1.5) every time the trajectory crosses (transversally) a boundary. Denoting p =
(pP , pex

, pey
, pL, pm), notice that the component pm(·) is continuous since the bound-

ary only depends on x. Besides, one has the transversality conditions pL(tf ) = 0,
pm(tf ) = 0.

Remark 3.2. Due to a large number of revolutions, and hence of crossing times,
it can be expected that the application of a shooting method to this problem, using the
above necessary conditions, is difficult to carry out successfully. Indeed, we observe
on our numerical simulations that the domain of convergence of the method is very
small. This motivates the use of our regularization procedure, as explained next.
Observe however that the usual orbit transfer problem in the absence of a shadow
cone constraint has been solved by shooting methods (see e.g. [4, 8, 17, 18, 24]).
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3.3. Regularization of the hybrid optimal control problem. Our aim is to
solve this problem using a shooting method but, as explained formerly, directly trying
to find a zero of the shooting function associated with (HOCP) fails in general. The
idea is then to define a regularization (OCP)ε of (HOCP) such that the solving of
(OCP)ε using a single shooting method is easier than for (HOCP). Then, using a
finite decreasing sequence of positive εi, we use the solution of (OCP)εi

to initialize
the solving of (OCP)εi+1

. This iteration is performed until εi is small enough and

the last solution is used to initialize the solving of (HOCP). This process is justified
by the convergence properties stated in our main results.

We define a regularization of the original (HOCP) by thickening the light /
shadow frontier as in [15]. The procedure is the following. Define an imaginary planet,
with the same center than the Earth and with radius rε = (1−ε)rE , ε ∈ [0, 1). Figure
3.2 shows the two planets and their shadows. The plane IR2 consists of three domains

Sun
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�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

(1 − ǫ)rE

Xǫ
1
(t)

Xǫ
2
(t)

rEXǫ
0
(t)

Fig. 3.2. The two planets and their shadow cones.

Xε
1(t), Xε

0(t) and Xε
2(t), where Xε

1(t) denotes the domain completely exposed to the
sun, Xε

0(t) the imaginary shadow cone and Xε
2(t) is the part of IR2 that is in the

shadow cone of the Earth but not in the imaginary shadow cone.
The regularized system is defined as

ẋε(t) = fε
0 (xε(t)) +

Tmax

m(t)
b(ε, t, xε(t)) (uε

1(t)f1(x
ε(t)) + uε

2(t)f2(x
ε(t))) ,

ṁε(t) = −βTmaxb(ε, t, x
ε(t))‖uε(t)‖,

where the function b(·, ·, ·), defined hereafter, is such that b(ε, t, ·) is equal to 1 in
Xε

1(t) and is equal to 0 in Xε
0(t). We define b(ε, t, ·) as a fifth-order polynomial based

on the Euclidean distance from x(t) to one of the frontiers of the shadow cones, equal
to 1 on the boundary between Xε

1(t) and Xε
2(t), equal to 0 on the boundary between

Xε
0(t) and Xε

1(t), and such that its first and second derivatives with respect to x
vanish on both boundaries. Simple geometric arguments and computations lead to

b(ε, t, x) = 6δ̄5r − 15δ̄4r + 10δ̄3r , δ̄r =
δr
εrE

, δr = rE −
P

W
sin(L− Ωc).

Note that εrE is the distance between the two closest shadow cone frontiers, δr is
the distance between x(t) and the imaginary shadow cone, and δ̄r is a normalized
distance.
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According to the PMP, every minimizing trajectory yε(·) defined on [0, tεf ], solu-

tion of the resulting (OCP)ε, is the projection of an extremal (yε(·), pε(·), p0ε, uε(·))
solution of (1.10) and (1.11), with the same transversality conditions as (HOCP).

Note that the control domain b(ε, ·, ·)Ω of (OCP)ε contains the control domain
of (HOCP). It follows that any feasible control strategy of (HOCP) is also feasible
for (OCP)ε, and therefore tεf 6 tf , for every ε > 0.

3.4. Numerical simulations. We consider the following boundary conditions:

x(0) = (P0, ex0, ey0, L0) = (11.625 Mm, 0.75, 0, π), m(0) = 1500 kg,

x(tf ) = (Pf , exf , eyf , Lf ) = (42.165 Mm, 0, 0, free), m(tf ) free,

corresponding to a low highly eccentric initial orbit and to the geostationary fi-
nal orbit. The various numerical parameters are µ = 5165.86248 Mm3/h2, β ≈
0.028325 h/Mm, rE = 6.378 Mm, and Ωc0 = 0 rad. The value of the maximal thrust
is chosen between 0.1 and 60 Newton in the next numerical simulations.

A single shooting method is used to solve the regularized and hybrid problems.
The extremal flow is integrated using the adaptative step integrator DOPRI (see
[20]). This integrator is particularly useful to take into account the jump conditions
since its dense output allows us to accurately locate the crossing times. The Newton
like method underlying our shooting method is the routine HYBRD of the minpack
library.

We combine the shooting method with a continuation on the values of Tmax. The
unconstrained problem is easily solved for a large value of Tmax and the obtained
solution is used to successfully initialize the solving of the regularized problem for a
large value of ε, say ε = 0.9. This solution enables us to solve the regularized problem
for any desired (low) value of Tmax, by a decreasing continuation on the parameter
Tmax. Then, another decreasing continuation on the regularization parameter ε leads
to the solution of the regularized problem with a small value of ε. If ε > 0 is small
enough then the latter solution falls into the domain of convergence of the shoot-
ing method associated with (HOCP) and is thus used to successfully initialize the
shooting method on the hybrid problem. This illustrates the convergence properties
derived in our main results.

We report on Table 3.1 the values of tεf for several values of ε and of Tmax. As

ε \ Tmax 60 N 10 N 1 N 0.1 N
No cone 14.281 80.782 806.831 7985.138

0.9 14.337 81.307 810.273 8209.665
0.5 14.359 81.521 812.607 8298.558
0.1 14.383 81.750 815.143 8382.722

0 14.389 81.810 815.813 8406.773
Table 3.1

expected, the minimal time tεf of (OCP)ε converges to tf as ε tends to 0. We report
on Table 3.2 several numerical results illustrating the convergence of the state, adjoint
vector, and control. It is important to notice on this table that it is not the magnitude
of the differences but rather their decrease that illustrates the convergence. Graphic
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·\ε 0.9 0.5 0.1 0.05
‖P ε(·) − P (·)|[0,tε

f
]‖∞ 0.3799 0.1969 0.1529 0.0840

‖eε
x(·) − ex(·)|[0,tε

f
]‖∞ 0.0270 0.0148 0.0034 0.0017

‖eε
y(·) − ey(·)|[0,tε

f
]‖∞ 0.0080 0.0047 0.0011 0.0005

‖Lε(·) − L(·)|[0,tε
f
]‖∞ 28.2347 28.5897 2.7437 1.2967

‖mε(·) −m(·)|[0,tε
f
]‖∞ 7.8880 4.4118 0.9477 0.4971

|pε
P (0) − pP (0)| 95.3 78.6 8.19 4.97

|pε
ex

(0) − pex
(0)| 2886 2394 236.9 144.7

|pε
ey

(0) − pey
(0)| 59.3 40.4 6.84 3.55

|pε
L(0) − pL(0)| 1 0.9 0.088 0.055

|pε
m(0) − pm(0)| 0.6 0.5 0.05 0.029

‖uε(·) − u(·)|[0,tε
f
]‖L1/tεf 0.8857 0.9435 0.8762 0.4272

Table 3.2

Component-wise ‖·‖∞-difference between xε(·) and x(·) (restricted to [0, tε
f
]), difference between

initial adjoint vectors, and averaged L1-difference of controls for Tmax = 0.1 N .

evidence of the convergence properties of pε(·) and uε(·) is illustrated on Figure 3.3
for Tmax = 60 N . The reason for choosing such a large value of Tmax is that the
orbit transfer exhibits only one passage in the Earth’s shadow cone, and the result is
therefore more visible on the figure. Furthermore, we use the large value ε = 0.9 so as
to observe clearly the continuity of pε(·). On this figure, we observe that pε(·) already
mimics the behavior of p(·). Moreover, the adjoint vector of the hybrid problem has
the expected jump.

Fig. 3.3. Control and zoom on the adjoint vector px(·) for the unconstrained (dashed), regu-
larized (ε = 0.9, dotted) and hydrid (plain) problem, Tmax = 60 N .
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Finally, Figure 3.4 shows the evolution of the zero of the shooting function with
respect to ε. The starred point represents the zero of the shooting function associated
with (HOCP). The regularity of the zero path is another hint of the nice convergence
properties.

Fig. 3.4. Zero Path w.r.t. ε for Tmax = 60 N .

4. Appendix: conic implicit function theorem with parameters. Recall
that a mapping f : C → F , where F is a Banach space and C is a subset of a normed
vector space E, is said strictly differentiable at some point x0 ∈ C whenever there
exists a linear continuous mapping from E into F , denoted df(x0) or ∂f

∂x
(x0) (and

called differential of f at x0), such that

f(y) − f(x) = df(x0).(y − x) + ‖y − x‖ε(x, y),

for all x, y ∈ C, where ε(x, y) tends to 0 as ‖x− x0‖ + ‖y − x0‖ tends to 0.
Note that, if f is C1 then it is strictly differentiable at every point, for every

subset C.
The notion of strict differentiability permits to derive a conic version of the im-

plicit function theorem, useful in this paper. Hereafter we add moreover a dependence
to some parameter.

Theorem 4.1. Consider a mapping

F : IR+ × IRm
+ → IRn

(ε, x) 7→ F (ε, x)

satisfying the following assumptions:
• F (0, 0) = 0;
• F is continuous;
• for every ε > 0, F is strictly differentiable with respect to x at 0, and ∂F

∂x
is

continuous with respect to ε;

•
∂F

∂x
(0, 0).IRm

+ = IRn.

Then, there exist ε0 > 0, a neighborhood V of 0 in IRn, and a function g : [0, ε0]×V →
IRm with values in IRm

+ , such that

F (ε, g(ε, y)) = y,
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for every ε ∈ [0, ε0] and every y ∈ V .

Proof. We start the proof with the following general fact.

Lemma 4.2. Let ℓ : IRm → IRn be a linear mapping such that ℓ(IRm
+ ) = IRn.

Then,

(i) the intersection (0,+∞)m ∩ ker ℓ is nontrivial;
(ii) m > n+ 1;
(iii) there exists a n-dimensional subspace W of IRm such that ℓ|W : W → IRn is

an isomorphism.

Proof. Let (e1, . . . , en) be a basis of IRn. Since ℓ(IRm
+ ) = IRn, for every i ∈

{1, . . . , n} there exists vi ∈ IRm
+ such that ei = ℓ(vi), and since ℓ is continuous, up to

modifying slightly the vectors ei one can assume that vi ∈ (0,+∞)m. Obviously, the
vectors v1, . . . , vn are linearly independent. Set e0 = −

∑n
i=1 ei. Since ℓ(IRm

+ ) = IRn,
there exists v0 ∈ IRm

+ such that e0 = ℓ(v0), and as previously one can assume that
v0 ∈ (0,+∞)m. Note that, necessarily, v0 6= −

∑n
i=1 vi. Now, set v = 1

n+1

∑n
i=0 vi.

Then, the vector v is nontrivial, belongs to (0,+∞)m, and satisfies clearly ℓ(v) = 0.
The point (i) follows. In particular, the kernel of ℓ is nontrivial, and this yields the
point (ii). Consider the subspace of IRm

W = Span{vi − v | i = 0, . . . , n}.

Clearly, W is of dimension n, and, since ℓ(vi − v) = ei for every i ∈ {1, . . . , n}, the
point (iii) follows.

Applying this lemma to ℓ = ∂F
∂x

(0, 0) yields the existence of a nontrivial vector
v ∈ (0,+∞)m such that ℓ(v) = 0, and the existence of a n-dimensional subspace W
of IRm such that ℓ|W : W → IRn is an isomorphism.

For δ > 0, denote by B̄IRn(0, δ) the closed ball of IRm centered at 0 and with radius
δ. Let δ > 0 small enough such that v+Bδ ⊂ (0,+∞)m, where Bδ = W ∩ B̄IRn(0, δ).
The set Uδ = ℓ(Bδ) is then a closed neighborhood of 0 in IRn.

For every ε > 0 and all y, u ∈ IRn, set

Φ(ε, y, u) = u− F (ε, ℓ−1
|W (u)) + y.

There holds Φ(0, 0, 0) = 0, and, for every ε > 0 and all y, u1, u2 ∈ IRn, one has

Φ(ε, y, u1) − Φ(ε, y, u2) = u1 − u2 + F (ε, ℓ−1
|W (u2)) − F (ε, ℓ−1

|W (u1))

= u1 − u2 +
∂F

∂x
(ε, 0).ℓ−1

|W (u2 − u1) + ‖u2 − u1‖ε(u1, u2),

where ε(u1, u2) tends to 0 as ‖u1‖ + ‖u2‖ tends to 0. Since ∂F
∂x

is continuous with

respect to ε, it follows that the mapping ∂F
∂x

(ε, 0).ℓ−1
|W is close to the identity whenever

ε is small enough. Therefore, there exist k ∈ (0, 1) and ε0 > 0 such that, for every
ε ∈ [0, ε0], for every y ∈ IRn, the mapping u 7→ Φ(ε, y, u) is a k-Lipschitzian on IRn

(since k < 1 it is a contraction).

Lemma 4.3. If δ, ε and ‖y‖ are small enough, then the mapping u 7→ Φ(ε, y, u)
maps Uδ into itself.

Proof. First of all, we claim that

BIRn

(

0,
δ

‖ℓ−1
|W ‖

)

⊂ Uδ. (4.1)
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Here, BIRn(0, δ

‖ℓ−1

|W
‖
) is the open ball of IRn centered at 0, with radius δ

‖ℓ−1

|W
‖
, and

‖ℓ−1
|W ‖ is the norm of the linear continuous mapping ℓ−1

|W . Indeed, for every element u

of this ball, one has u = ℓ ◦ ℓ−1
|W (u), and by construction, ‖ℓ−1

|W (u)‖ 6 δ.

Secondly, proceeding as previously, there holds

u− F (ε, ℓ−1
|W (u)) = u+ F (ε, 0) − F (ε, ℓ−1

|W (u)) − F (ε, 0)

= u−
∂F

∂x
(ε, 0).ℓ−1

|W (u) + ‖u‖ε(u) − F (ε, 0),

and hence there exists η > 0 such that, for every u ∈ IRn satisfying ‖u‖ 6 η,

‖u− F (ε, ℓ−1
|W (u))‖ 6

1

3‖ℓ‖‖ℓ−1
|W ‖

‖u‖ + ‖F (ε, 0)‖. (4.2)

Now, choose δ small enough so that ‖ℓ‖ 6 η. Then, for every u ∈ Uδ, one has
‖u‖ 6 ‖ℓ‖δ 6 η, and thus the inequality (4.2) holds for every u ∈ Uδ.

Choose y small enough so that ‖y‖ 6
δ

3‖ℓ−1

|W
‖
. Then, for every u ∈ Uδ, using (4.2),

‖Φ(ε, y, u)‖ 6 ‖u− F (ε, ℓ−1
|W (u))‖ + ‖y‖

6
1

3‖ℓ‖‖ℓ−1
|W ‖

‖ℓ‖δ 6 η + ‖F (ε, 0)‖ +
δ

3‖ℓ−1
|W ‖

,

and hence, since F (0, 0) = 0, if ε is small enough so that ‖F (ε, 0)‖ 6
δ

3‖ℓ−1

|W
‖
, then

‖Φ(ε, y, u)‖ 6
δ

‖ℓ−1
|W ‖

.

Using (4.1), it follows that Φ(ε, y, u) ∈ Uδ. The lemma is proved.
Using Lemma 4.3, the theorem then follows from the application of the usual Ba-

nach fixed point theorem to the contraction mapping u 7→ Φ(ε, y, u) with parameters
(ε, y).

Remark 4.4. We stress on that the notion of strict differentiability is crucial
here to derive such a conic version of the implicit function theorem with parameters.
It permits to derive a proof using the standard Banach fixed point theorem, which is
well adapted to the case of parameters, contrarily to (e.g.) the Brouwer fixed point
theorem that would not permit to derive a continuous section as in the statement of
Theorem 4.1. In our article, getting such a continuous section is important in our
proofs; topological arguments would not suffice.
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