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Optimal stopping time problem with discontinuous reward

Magdalena Kobylanski∗and Marie-Claire Quenez†

September 20, 2010

Abstract

We study, for any stopping time S, the optimal stopping time problem v(S) = ess supθ≥SE[φ(θ)|FS ],

where the reward is given by a family {φ(θ), θ ∈ T0} of positive random variables indexed

by stopping times. We solve the problem under the weakest assumptions in terms of the

regularity of the reward. More precisely, the reward family {φ(θ), θ ∈ T0} is supposed to

satisfy some compatibility conditions and to be upper-semicontinuous along stopping times

in expectation. We give several properties of the value function. We show the existence

of an optimal stopping time. Also, we obtain a characterization of the minimal and the

maximal optimal stopping times.
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Introduction

The optimal stopping time problem has been wildely studied in case of reward given by a right

continuous left limited (RCLL) positive adapted process (φt) defined on [0, T ] (see for example

Shiryaev (1978), El Karoui (1981), Karatzas and Shreve (1998) or Peskir and Shiryaev (2006)).

If T > 0 is the fixed time horizon and if T0 denotes the set of stopping times θ smaller than T ,

the problem consists in computing the maximal reward given by

v(0) = sup{E[φτ ], τ ∈ T0 } ,

in finding conditions for the existence of an optimal stopping time and giving a method to

compute these optimal stopping times.

Classicaly, the value function at time S ∈ T0 is defined by v(S) = ess sup{E[φτ | FS ], τ ∈

T0 and τ ≥ S a.s. }. The value function is given by a family of random variable { v(S), S ∈ T0 }.

By using the right continuity of the reward (φt), it can be shown that there exists a RCLL

adapted process (vt) which aggregates the family of random variable { v(S), S ∈ T0 } that is

such that vS = v(S) a.s. for each S ∈ T0. This process is the Snell envelope of (φt), that

is the smallest supermartingale process that dominates φ. Moreover, when the reward (φt) is

continuous, the stopping time defined trajectorially by

θ(S) = inf{ t ≥ S, vt = φt }

∗Université Paris-Est; magdalena.kobylanski@univ-mlv.fr
†Université Paris-Diderot; quenez@math.jussieu.fr
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is optimal.

Recall that El Karoui (1981) has introduced the more general notion of a reward given by a

family {φ(θ), θ ∈ T0 } of positive random variables which satisfies some compatibility properties.

In the recent paper of Kobylanski et al. (2009), this notion appears to be the appropriate one

to study the d-multiple optimal stopping time problem. Moreover, in this work, Kobylanski et

al. (2009) show that under quite weak assumptions (right and left continuity in expectation

along stopping times of the reward), the minimal optimal stopping time for the value function

at time S

v(S) = ess sup{E[φ(θ) | FS ], θ ∈ T0 and θ ≥ S a.s. } , (0.1)

is given by

θ∗(S) := ess inf{ θ ∈ T0, θ ≥ S a.s. andu(θ) = φ(θ) a.s. }. (0.2)

Let us emphasize that the minimal optimal stopping time θ∗(S) is no longer defined as a

hitting time of processes but as an essential infimum of random variables. Also, this result

allows to deal with the optimal stopping problem only in terms of admissible families of random

variables. It presents the advantage that it does no longer require aggregation results. Indeed,

the existence of optimal stopping times as well as the characterization of the minimal one can be

done by using only the value function family and the reward family and no longer the aggregated

processes. We stress on that in the multiple case, it avoids long and heavy proofs, due to some

difficult aggregation problems. It allows to solve the problem under weaker assumptions than

before in the unified framework of families of random variables.

In the present work, we consider the case of a one optimal stopping time problem with

a discontinuous reward. More precisely, the reward is given by a family of random variables

which satisfies some compatibility conditions and which is supposed to be upper-semicontinuous

over stopping times in expectation. Note that these assumptions in terms of smoothness of the

reward are optimal in order to ensure the existence of an optimal stopping time. Indeed,

in the deterministic case, the upper-semicontinuity is the minimal assumption on a function

φ : [0, T ] → R; t 7→ φ(t) which ensures that the supremum of φ is attained on any closed subset

of [0, T ].

Under these assumptions, we show the existence of an optimal stopping time for the value

function (0.1) which is given by the essential infimum θ∗(S) defined by (0.2). We stress on that

the mathematical tools which are used in this proof are not sophisticated tools, as those of the

general theory of processes, but just the use of well chosen supermartingale systems and an

appropriate construction of penalized stopping times. We also show that θ∗(S) is the minimal

optimal stopping time. Also, the stopping time given by

θ̌(S) = ess sup{ θ ∈ T0, θ ≥ S a.s. and E[v(θ)] = E[v(S)] },

is proven to be the maximal optimal stopping time. Note that an important tool in this work is

the use of the family of random variables defined by v+(S) = ess sup{E[φ(θ) | FS ], θ ∈ T0 and

θ > S a.s. for each stopping time S. Some properties and links between v, v+ and φ are studied

in this paper.

These new results allow to solve the case of a reward process (φt) which can be much less

regular than in the previous works. For instance, this allows to solve the case of a reward process

given by φt = f(Xt), where f is upper-semicontinuous and (Xt) is a RCLL process supposed

to be left continuous along stopping times. This opens a way to a large range of applications,

for instance in finance.

The paper is organised as follows. In section 1, we give some first properties on v and v+. In

particular, we have v(S) = φ(S) ∨ v+(S) a.s. for each S ∈ T0 and the family { v+(S), S ∈ T0 }

is right continuous along stopping times. In section 2, we show the existence of an optimal
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stopping time under some minimal assumptions. We begin by constructing ε-optimal stopping

times which are appropriate to this case. Then, these ε-optimal stopping times are shown to

tend to θ∗(S) as ε tends to 0. Moreover, θ∗(S) is proven to be an optimal stopping time for v(S)

and even the minimal one. At last, the stopping time θ̌(S) is proven to be the maximal optimal

stopping time. In section 3, we give some strict supermartingale conditions on v which ensure

the equality between v and φ (locally). Secondly, we give some conditions on v and v+ which

ensure the equality between v and v+ (for some stopping times which are specified). At last,

we give a few applications of the classical Doob-Meyer decomposition in particular when the

reward is right continuous in expectation, which allows to use aggregation results. In section

4, we give some examples where the reward is given by an upper semicontinuous function of a

RCLL adapted process (Xt) which is left continuous in expectation. We stress on that, except

in the last part, all the properties established in this work do not require any result of the

general theory of processes.

Let F = (Ω,F , (Ft) 0≤t≤T , P ) be a probability space equipped with a filtration (Ft) 0≤t≤T

satisfying the usual conditions of right continuity and augmentation by the null sets F = FT .

We suppose that F0 contains only sets of probability 0 or 1. The time horizon is a fixed constant

T ∈]0,∞[. We denote by T0 the collection of stopping times of F with values in [0, T ]. More

generally, for any stopping times S, we denote by TS (resp. TS+) the class of stopping times

θ ∈ T0 with θ ≥ S a.s. (resp. θ > S a.s. on {S < T } and θ = T a.s. on {S = T }).

We also define T[S,S′ ] the set of θ ∈ T0 with S ≤ θ ≤ S
′

a.s. and T]S,S′ ] the set of θ ∈ T0 with

S < θ ≤ S
′

a.s.. Similarly, the set T]S,S′ ] on A will denote the set of θ ∈ T0 with S < θ ≤ S
′

a.s. on A.

We use the following notation: For t ∈ R and for real valued random variables X and Xn,

n ∈ N, “Xn ↑ X” stands for “the sequence (Xn) is nondecreasing and converges to X a.s.”.

1 First properties

Definition 1.1. We say that a family {φ(θ), θ ∈ T0, } is admissible if it satisfies the following

conditions
1) for all θ ∈ T0 φ(θ) is a Fθ-measurable positive random variable (r.v.),

2) for all θ, θ′ ∈ T0, φ(θ) = φ(θ′) a.s. on { θ = θ′ }.

Remark 1.1. By convention, the positivity property of a random variable means that it takes

its values in R
+
.

Also, note that it is possible to define a family associated with a given process. More precisely,

let (φt) be a progressive process. Then, the family {φ(θ), θ ∈ T0, } defined by φ(θ) = φθ is

admissible.

Let {φ(θ), θ ∈ T0} be an admissible family called reward. For S ∈ T0, the value function at

time S is given by

v(S) = ess sup θ∈TS
E[φ(θ) | FS ] . (1.1)

Let us introduce the family of random variables {v+(S), S ∈ T0} defined for each S ∈ T0 by

v+(S) = ess sup θ∈T
S+

E[φ(θ) | FS ] . (1.2)

where TS+ is the class of stopping times θ ∈ T0 with θ > S a.s. on {S < T } and θ = T a.s. on

{S = T }. Note that v+(S) = φ(T ) a.s. on {S = T }.

Proposition 1.1. (Admissibility of v and v+) The families { v(S), S ∈ T0 } and { v+(S), S ∈

T0 } defined by (1.1) and (1.2) are admissible families.
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Proof: The arguments are the same for { v(S), S ∈ T0 } and { v+(S), S ∈ T0 }. We prove the

property only for { v+(S), S ∈ T0 }. Property 1 of admissibility for { v+(S), S ∈ T0 } follows

from the existence of the essential supremum (see Appendix Theorem A.7).

Take S, S′ ∈ T0 and let A = {S = S′ }. For each θ ∈ TS+ put θA = θ1A + T1Ac . As

A ∈ FS ∩ FS′ , one has a.s. on A, E[φ(θ) | FS ] = E[φ(θA) | FS ] = E[φ(θA) | FS′ ] ≤ v+(S′),

because θA ∈ TS+ . Hence, taking the essential supremum over θ ∈ TS+ one has v+(S) ≤ v+(S′)

a.s. and by symmetry of S and S′, we have proven property 2 of admissibility. �

Proposition 1.2. (Optimizing sequences for v and v+) There exists a sequence of stopping

times (θn)n∈N with θn in TS (resp. TS+) such that the sequence (E[φ(θn) | FS ])n∈N is increasing

and such that

v(S) (resp. v+(S)) = lim
n→∞

↑ E[φ(θn) | FS ] a.s.

Proof: Again, the arguments are the same for { v(S), S ∈ T0 } and { v+(S), S ∈ T0 }. We

prove the property only for { v+(S), S ∈ T0 }. For each S ∈ T0, one can show that the set

{E[φ(θ) | FS ], θ ∈ TS } is closed under pairwise maximization. Indeed, let θ, θ′ ∈ TS+ . Put

A = {E[φ(θ′) | FS ] ≤ E[φ(θ) | FS ] }. One has A ∈ FS . Put τ = θ1A + θ′1Ac . τ ∈ TS+ . It is

easy to check that E[φ(τ) | FS ] = E[φ(θ) | FS ]∨ E[φ(θ′) | FS ]. The result follows by a classical

result (see Appendix Theorem A.7). �

Recall that for each fixed S ∈ T0, an admissible family { h(θ), θ ∈ T0 } is said to be a

supermartingale system (resp. a martingale system) if for any θ, θ
′

∈ T0 such that θ ≥ θ
′

a.s.,

E[h(θ) | Fθ
′ ] ≤ h(θ

′

) a.s., (resp. E[h(θ) | Fθ
′ ] = h(θ

′

) a.s.). (1.3)

The families v and v+ can be shown to be supermartingale systems. Also, the value function

is characterized as the Snell envelope system associated with the reward φ. More precisely:

Proposition 1.3. The two following properties hold.

• The admissible families { v(S), S ∈ T0 } and { v+(S), S ∈ T0 } are supermartingale

systems.

• The value function family { v(S), S ∈ T0 } is characterized as the Snell envelope system

associated with {φ(S), S ∈ T0 }, that is the smallest supermartingale system which is

greater (a.s.) than {φ(S), S ∈ T0 }.

Proof: Let us prove the first part. Let us prove the supermartingale property for v+. Fix

S ≥ S
′

a.s.. By Proposition 1.2, there exists an optimizing sequence (θn) for v+(S). By the

monotone convergence theorem, E[v+(S) | FS
′ ] = lim

n→∞
E[φ(θn) | FS

′ ] a.s.. Now, for each n,

since θn ∈ T(S′)+ , we have E[φ(θn) | FS′ ] ≤ v+(S′) a.s. Hence, E[v+(S) | FS
′ ] ≤ v+(S′) a.s.,

which gives the supermartingale property of v+. The supermartingale property of v can be

proved by using the same arguments.

Let us prove the second point (which is classical). First, we clearly have that { v(S), S ∈ T0 }

is a supermartingale system and that for each S ∈ T0, v(S) ≥ φ(S) a.s. Let us prove that is

the smallest. Let {v′(S), S ∈ T0} be a supermartingale system such that for each θ ∈ T0, v
′(θ)

≥ φ(θ) a.s.. Fix S ∈ T0. By the properties of v′, for all θ ∈ TS , v
′(S) ≥ E[v′(θ) | FS ] ≥

E[φ(θ) | FS ] a.s.. Taking the supremum over θ ∈ TS , we have v′(S) ≥ v(S) a.s.. �

Recall now the following optimality criterium (see for instance El Karoui (1981)):

Proposition 1.4. (Optimality criterium) Fix S ∈ T0 and let θ∗ ∈ TS be such that E[φ(θ∗)] <

∞. The two following assertions are equivalent
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1. θ∗ is S-optimal for v(S), that is

v(S) = E[φ(θ∗) | FS ] a.s.. (1.4)

2. The following equalities hold

v(θ∗) = φ(θ∗) a.s., and E[v(S)] = E[v(θ∗)].

3. The following equality holds

E[v(S)] = E[φ(θ∗)].

Remark 1.2. Note that since the value function is a supermartingale system, equality E[v(S)] =

E[v(θ∗)] is equivalent to the fact that the family { v(θ), θ ∈ T[S,θ∗] } is a martingale system , that

is for all θ, θ
′

∈ T0 such that S ≤ θ, θ
′

≤ θ∗ a.s., v(θ) = E[v(θ
′

) | Fθ] a.s. on {θ ≤ θ
′

} (which

can also be written { v((θ ∨ S) ∧ θ∗), θ ∈ T0 } is a martingale system).

Remark 1.3. Note that by very similar arguments to those used in the previous proof, we can

even show that for a fixed S ∈ T0 and θ∗ ∈ TS such that E[φ(θ∗)|FS ] < ∞ a.s., then θ∗ is

S-optimal for v(S) if and only if v(θ∗) = φ(θ∗) a.s. and v(S) = E[v(θ∗))|FS ] a.s..

Proof: Let us show that 1) implies 2). Suppose 1) is satisfied. Since the value function v is

a supermartingale system greater that φ, we have clearly

v(S) ≥ E[v(θ∗) | FS] ≥ E[φ(θ∗) | FS ] a.s..

Since equality (1.4) holds, this implies that the previous inequalities are actually equalities.

In particular, E[v(θ∗) | FS] = E[φ(θ∗) | FS ] a.s. but as inequality v(θ∗) ≥ φ(θ∗) holds a.s., and

as E[φ(θ∗)] < ∞, we have v(θ∗) = φ(θ∗) a.s..

Moreover, v(S) = E[v(θ∗) | FS ] a.s. which gives E[v(S)] = E[v(θ∗)]. Hence, 2) is satisfied.

Clearly, 2) implies 3). It remains to show that 3) implies 1).

Suppose 3) is satisfied. Since v(S) ≥ E[φ(θ∗) | FS ] a.s., this gives v(S) = E[φ(θ∗) | FS ] a.s..

Hence, 1) is safisfied. �

Remark 1.4. It is clear that by 3) of Proposition 1.4, a stopping time θ∗ ∈ TS such that

E[φ(θ∗)] < ∞ is S-optimal for v(S) if and only if it is optimal for the optimal stopping time

problem (1.1), that is

sup
θ∈TS

E[φ(θ)] = E[φ(θ∗)].

Note that the following simple property holds.

Lemma 1.1. For each S, θ ∈ T0, we have

E[φ(θ) | FS ]1{θ>S} ≤ v+(S)1{θ>S} a.s..

Proof: Note first that the r.v. θ defined by θ := θ 1{θ>S}+T 1{θ≤S} belongs to TS+ . It follows

that E[φ(θ) | FS ] ≤ v+(S) a.s. and hence

E[φ(θ) | FS ]1{θ>S} = E[φ(θ) | FS ]1{θ>S} ≤ v+(S)1{θ>S} a.s.,

which ends the proof. �

Using this lemma, we easily derive the following property (which corresponds to Proposition

D.3 in Karatzas and Shreve (1998)):
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Proposition 1.5. For all S ∈ T0, the following equality holds:

v(S) = φ(S) ∨ v+(S) a.s..

Proof: Note first that v(S) ≥ v+(S) a.s. and that v(S) ≥ φ(S) a.s., which yields the inequality

v(S) ≥ φ(S) ∨ v+(S) a.s..

It remains to show the other inequality. Fix θ ∈ TS. We have a.s.

E[φ(θ) | FS ] = φ(S)1{θ=S} + E[φ(θ) | FS ]1{θ>S}

≤ φ(S)1{θ=S} + v+(S)1{θ>S},

where the last inequality follows from Lemma 1.1. Therefore,

E[φ(θ) | FS ] ≤ φ(S) ∨ v+(S) a.s..

By taking the essential supremum over θ ∈ TS, we derive that v(S) ≤ φ(S) ∨ v+(S) a.s. and

the proof is ended. �

Definition 1.2. An admissible family {φ(θ), θ ∈ T0 } is said to be right continuous along

stopping times in expectation (RCE) (resp. right continuous along stopping times (RC)) if

for any θ ∈ T0 and for any sequence of stopping times (θn)n∈N such that θn ↓ θ a.s. one has

E[φ(θ)] = lim
n→∞

E[φ(θn)] (resp. φ(θ) = lim
n→∞

φ(θn) a.s..)

Remark 1.5. Note that the definition makes sense even if E[φ(θ)] = ∞.

We now state that { v+(S), S ∈ T0 } is RCE (without any regularity assumption on the

reward φ).

Proposition 1.6. (RCE property for v+) Let {φ(θ), θ ∈ T0 } be an admissible family. The

following properties hold:

• The associated family { v+(θ), θ ∈ T0 } is RCE.

• Let S ∈ T0 and A ∈ FS. The family { v+(θ)1A, θ ∈ TS } is RCE.

Remark 1.6. Note that the RCE property of { v+(θ)1A, θ ∈ TS } at S gives that for each non

increasing sequence of stopping times (θn)n∈N such that θn ↓ S, we have

E[v+(S)1A] = lim
n→∞

E[v+(θn)1A].

Proof:

Step 1: Let us prove the first assertion. Since {v+(θ), θ ∈ T0} is a supermartingale system, the

function θ 7→ E[v+(θ)] is a non increasing functions of stopping times. Suppose it is not RCE

at θ ∈ T0. Suppose first that E[v+(θ)] < ∞. Then there exists a constant α > 0 and a sequence

of stopping times (θn)n∈N such that θn ↓ θ a.s. and

lim
n→∞

↑ E[v+(θn)] + α ≤ E[v+(θ)]. (1.5)

Now one can easily show, by using an optimizing sequence of stopping time for v+(θ) (Propo-

sition 1.2) that E[v+(θ)] = sup
τ∈T

S+

E[φ(τ)]. Therefore there exists θ′ ∈ Tθ+ such that

lim
n→∞

↑ E[v+(θn)] +
α

2
≤ E[φ(θ′)]. (1.6)
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Let us first consider the simpler case where θ < T a.s.. Since θ′ ∈ Tθ+ , θ′ > θ a.s.; one has

{θ′ > θ} =
⋃

n∈N

↑ {θ′ > θn}. Therefore we have E[φ(θ′)] = lim
n→∞

↑ E[1{θ′>θn}φ(θ
′)]. Hence,

there exists n0 such that

lim
n→∞

↑ E[v+(θn)] +
α

4
≤ E[1{θ′>θn0}

φ(θ′)].

Let θ be the following stopping time:

θ := θ′1{θ′>θn0}
+ T1{θ′≤θn0}

. (1.7)

One has θ > θn0 a.s.. Hence, E[1{θ′>θn0}
φ(θ′)] ≤ E[φ(θ)] ≤ E[v+(θn0)]. Finally,

E[v+(θn0)] +
α

4
≤ lim

n→∞
↑ E[v+(θn)] +

α

4
≤ E[v+(θn0)]. (1.8)

which gives the expected contradiction.

Let us now consider the general case where θ is not supposed to satisfy necessarily S < T

a.s.. Since θ′ ∈ Tθ+ , we have

E[φ(θ′)] = E[φ(θ′)1{T>θ}] + E[φ(T )1{θ=T}].

Since θ′ > θ a.s. on {T > θ}, it follows that E[φ(θ′)1{T>θ}] = lim
n→∞

↑ E[1{θ′>θn}∩{T>θ}φ(θ
′)].

This with (2.12) imply that there exists n0 such that

lim
n→∞

↑ E[v+(θn)] +
α

4
≤ E[1{θ′>θn0}∩{T>θ}φ(θ

′)] + E[φ(T )1{θ=T}].

Put θ = θ′1{θ′>θn0}∩{T>θ} + T1{θ′≤θn0}∩{T>θ} + T1{T=θ}. One has θ ∈ Tθ
+
n0
. Hence,

E[1{θ′>θn0}∩{T>θ}φ(θ
′)] + E[φ(T )1{θ=T}] ≤ E[φ(θ)] ≤ E[v+(θn0)]. Finally, we derive again

(1.8) which gives the expected contradiction.

In the case where E[v+(θ)] = ∞, by similar arguments, one can show that lim
n→∞

E[v+(θn)]

cannot be finite for θn ↓ θ a.s..

Step 2: Let us show the second assertion.

The proof is based on the same arguments as those used in step 1 with {φ(τ), τ ∈ TS } replaced

by {φ(τ)1A, τ ∈ TS } and { v+(τ), τ ∈ TS } replaced by{ v+(τ)1A, τ ∈ TS } and by noticing that

for each θ ∈ TS , E[v+(θ)1A] = sup
τ∈T

θ+

E[φ(τ)1A].

The second assertion can also be derived by applying the RCE continuity property to V + at

θ ∈ TS , where V + is the “strict value function” associated with the reward {φ(τ)1A, τ ∈ TS },

that is

V +(θ) = ess supτ∈T
+
θ
E[φ(τ)1A | Fθ],

for each θ ∈ TS . Indeed, one can show that v+(θ)1A = V +(θ) a.s. for each θ ∈ TS . �

Remark 1.7. Note that this proof is based on similar arguments to those used in the proof of

Proposition D.3 in Karatzas and Shreve (1998).

We now state a useful lemma.

Lemma 1.2. Let {φ(θ), θ ∈ T0} be an admissible family.

For each θ, τ ∈ T0, we have:

E[v(θ)|Fτ ] ≤ v+(τ) a.s. on {θ > τ}.
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Proof of Lemma 1.2 : Recall that there exists an optimizing sequence of stopping times (θn)

with θn in Tθ such that

v(θ) = lim
n→∞

↑ E[φ(θn) | Fθ] a.s..

By taking the conditional expectation, we derive that a.s. on {θ > τ},

E[v(θ)|Fτ ] = E[ lim
n→∞

↑ E[φ(θn) | Fθ]| Fτ ] = lim
n→∞

↑ E[φ(θn) | Fτ ],

where the second equality follows from the monotone convergence theorem for conditional ex-

pectation.

Now, on {θ > τ}, θn ≥ θ > τ a.s. hence, by Lemma 1.1, we have

E[φ(θn)|Fτ ] ≤ v+(τ), a.s. on {θ > τ}.

This with the previous equality gives that E[v(θ)|Fτ ] ≤ v+(τ) a.s. on {θ > τ}. �

In the particular case where {φ(θ), θ ∈ T0} is supposed to be RCE, we have:

Proposition 1.7. Let {φ(θ), θ ∈ T0 } be an admissible family which is RCE. Then, we have:

• The value function { v(S), S ∈ T0 } is RCE.

• If v(0) = sup
θ∈T0

E[φ(θ)] < ∞, then for each S ∈ T0, v(S) = v+(S) a.s..

Remark 1.8. Note that the first property is classical (see Lemma 2.13 in El Karoui (1981)).

Moreover, in the particular case of a reward given by a RCLL adapted process, the second

property corresponds to Corollary D.4 in Karatzas and Shreve (1998).

Proof: For the sake of completeness, we give the proof of the RCE property of the value

function (which can be found in El Karoui (1981)).

Let {φ(θ), θ ∈ T0 } be an admissible family which is RCE. Note first that since the associated

value function {v(S), S ∈ T0} is a supermartingale system, the function S 7→ E[v(S)] is a

nonincreasing function of stopping times. Suppose it is not RCE at S ∈ T0. If E[v(S)] < ∞,

there exists a constant α > 0 and a sequence of stopping times (Sn)n∈N such that Sn ↓ S a.s.

and such that

lim
n→∞

↑ E[v(Sn)] + α ≤ E[v(S)]. (1.9)

Now, recall that E[v(S)] = sup
θ∈TS

E[φ(θ)]. Hence, there exists θ′ ∈ Tθ such that

sup
n∈N

sup
θ∈TSn

E[φ(θ)] +
α

2
≤ E[φ(θ′)].

It follows that for all n ∈ N, E[φ(θ′ ∨ Sn)] +
α

2
≤ E[φ(θ′)]. Since θ′ ∨ Sn ↓ θ′ a.s., by taking the

limit as n → ∞ and by using the RCE property of φ, we derive that

E[φ(θ′)] +
α

2
≤ E[φ(θ′)],

which gives the expected contradiction in the case E[v(S)] < ∞.

Otherwise, we have instead of (1.9), lim
n→∞

↑ E[v(Sn)] ≤ C for some constant C > 0 and similar

arguments to the finite case lead to a contradiction as well.

Let now show the second point of Proposition 1.7. Suppose {φ(θ), θ ∈ T0 } is RCE with

v(0) = sup
θ∈T0

E[φ(θ)] < ∞. Fix S ∈ T0.

For each n ∈ N∗, put Sn := (S + 1
n
) ∧ T . The sequence (Sn)n∈N is clearly a non increasing
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sequence of stopping times of T0 such that, for each n, Sn > S a.s. on {S < T } and which

satisfies Sn ↓ S.

Let us first consider the simpler case where S < T a.s.. By Lemma 1.2, for each n ∈ N,

E[v+(Sn)|FS ] ≤ E[v(Sn)|FS ] ≤ v+(S) a.s.. (1.10)

By taking the expectation, we have

E[v+(Sn)] ≤ E[v(Sn)] ≤ E[v+(S)]. (1.11)

Now, by the first point, {v(θ), θ ∈ T0} is RCE and by Proposition 1.6, {v+(θ), θ ∈ T0} is also

RCE. Hence, by letting n tend to ∞, it follows that E[v(S)] = E[v+(S)] which implies that

v+(S) = v(S) a.s. because v(0) < ∞.

Let us now consider the general case. In this case inequality 1.10 holds a.s. on {S < T }. By

taking the expectation, we have

E[v+(Sn)1{S<T}] ≤ E[v(Sn)1{S<T}] ≤ E[v+(S)1{S<T}]. (1.12)

Now, note that on {S = T }, we have that for each n, Sn = T a.s. as well as v+(Sn) = v(Sn) =

v+(S) = φ(T ) a.s..

Therefore, by adding the term E[φ(T )1{S=T}] in (1.12), we derive inequalities (1.11) which

leads to the desired result (as in the first case). �

2 Optimal stopping times

The main aim of this section is to prove the existence of an optimal stopping time under some

minimal assumptions. We begin by constructing ε-optimal stopping times or rather (1 − λ)-

optimal stopping times with λ ∈ ]0, 1[. They are appropriate to the case of a reward family

which is not necessarily supposed to be right-continuous in expectation. Then, the existence of

an optimal stopping time will be derived by letting ε tend to 0 or equivalently λ tend to 1.

We stress on that no aggregation result is used to prove these properties.

2.1 Existence of (1− λ)-optimal stopping times

In the sequel, we will show that if the reward is right upper-semicontinuous over stopping times

(resp. in expectation), then there exists a (1 − λ)-optimal stopping time for v(S) (resp. a

“(1− λ)-optimal” stopping time for E[v(S)]).

Let us now precise the construction of these stopping times. Fix S ∈ T0.

For λ ∈ ]0, 1[, let us introduce the following FS-measurable random variable

θλ(S) := ess inf{ θ ∈ TS , λv+(θ) ≤ φ(θ) a.s. } (2.1)

First, let us precise some properties of these random variables.

Proposition 2.8. For each S ∈ T0, θ
λ(S) is a stopping time and satisfies inequality θλ(S) ≥ S

a.s., that is θλ(S) ∈ TS.

Moreover for each S, S′ ∈ T0, if S ≤ S′ a.s., then θλ(S) ≤ θλ(S′) a.s..

Proof: The set TS = { θ ∈ TS , λv+(θ) ≤ φ(θ) a.s. } is clearly stable by pairwise minimization.

Therefore there exists a minimizing sequence (θn) in TS such that λv+(θn) ≤ φ(θn) a.s. for each

n and such that θλ(S) = lim
n→∞

↓ θn a.s.. In particular θλ(S) is a stopping time and θλ(S) ≥ S

a.s.. Note that θλ(S) = S a.s. on {v(S) = φ(S)}.
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Also, the map S 7→ θλ(S) is non decreasing. Indeed, if S
′

∈ T0 with S
′

≥ S a.s., then TS
′

⊂ TS . Hence, ess inf TS
′ ≥ ess inf TS a.s. which gives the inequality θλ(S

′

) ≥ θλ(S) a.s. . �

Let us introduce the following definition

Definition 2.3. An admissible family {φ(θ), θ ∈ T0 } is said to be right (resp. left) upper-

semicontinuous in expectation along stopping times (right (resp. left) USCE) if for all θ ∈ T0

and for all sequences of stopping times (θn) such that θn ↓ θ a.s., (resp. θn ↑ θ a.s. )

E[φ(θ)] ≥ lim sup
n→∞

E[φ(θn)]. (2.2)

An admissible family {φ(θ), θ ∈ T0 } is said to be upper-semicontinuous in expectation

along stopping times (USCE) if it is right and left-USCE.

Also, an admissible family {φ(θ), θ ∈ T0 } is said to be right upper-semicontinuous along

stopping times (right-USC) if (2.2) is satisfied without expectation.

The following Theorem holds:

Theorem 2.1. • Suppose the reward {φ(θ), θ ∈ T0 } is right-USC with

E[ess sup θ∈T0
φ(θ)] < ∞. Fix S ∈ T0.

For each λ ∈]0, 1[, θλ(S) is a (1− λ)-optimal stopping time for v(S) that is

λv(S) ≤ E[φ(θλ(S)) | FS ] a.s..

• Suppose the reward {φ(θ), θ ∈ T0 } is right-USCE with

v(0) = sup
θ∈T0

E[φ(θ)] < ∞. Fix S ∈ T0.

For each λ ∈]0, 1[, the stopping time θλ(S) is a “(1 − λ)-optimal stopping time” for

E[v(S)] = sup
θ∈TS

E[φ(θ)], that is

λE[v(S)] ≤ E[φ(θλ(S))]. (2.3)

Remark 2.9. Note that by using Fatou’s lemma, one can easily show that if {φ(θ), θ ∈ T0 } is

a right-USC admissible family with E[ess sup θ∈T0
φ(θ)] < ∞, then it is right-USCE. Of course,

the converse does not hold.

Remark 2.10. Actually, the second assertion of Theorem 2.1 will be sufficient to obtain the

existence of an optimal stopping time. Also, we stress on that the proof of this second assertion

does not require any result of the general theory of processes.

We will see later that the existence of an optimal stopping time for v(S) will be obtained by

letting λ tend to 1 in (2.3).

Let us now prove Theorem 2.1. The proof relies on two lemmas.

Lemma 2.3. • Suppose the reward {φ(θ), θ ∈ T0 } is right-USC. Then, for each λ ∈]0, 1[,

the stopping time θλ(S) satisfies

λv(θλ(S)) ≤ φ(θλ(S)) a.s.;

• Suppose the reward {φ(θ), θ ∈ T0 } is right-USCE with

v(0) = sup
θ∈T0

E[φ(θ)] < ∞. Then, for each λ ∈]0, 1[, the stopping time θλ(S) satisfies

λE[v(θλ(S))] ≤ E[φ(θλ(S))]. (2.4)
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Proof: Fix S ∈ T0. In order to simplify notation, let us denote θλ(S) by θλ.

Recall that there exists a minimizing sequence (θn) in TS such that θλ = lim
n→∞

↓ θn a.s. and

such that for each n,

λv+(θn) ≤ φ(θn) a.s.. (2.5)

Step a: Suppose first that φ is right-USC.

Note first that on {v(θλ) = φ(θλ)}, we have obviously that λv(θλ) ≤ v(θλ) ≤ φ(θλ) a.s..

Second, on {v(θλ) > φ(θλ)}, we have v(θλ) = v+(θλ) a.s..

By aggregation results (see Appendix A.4), v+ is right continuous (RC) along stopping times

and since θn ↓ θλ a.s. one has v+(θλ) = lim
n→∞

v+(θn) a.s.. Hence,

λv+(θλ) = lim
n→∞

v+(θn) ≤ lim inf
n→∞

φ(θn) a.s. (2.6)

where the last inequality follows from the fact, for each n, λv+(θn) ≤ φ(θn) a.s. (see (2.5)).

Now, since φ is USC, lim supn→∞ φ(θn) ≤ φ(θλ) a.s..

It follows that on {v(θλ) > φ(θλ)}, we have a.s.

λv(θλ) = λv+(θλ) ≤ lim sup
n→∞

φ(θn) ≤ φ(θλ).

Thus, the proof of the first assertion of the theorem is ended.

Step b: Let us now deal with the case where φ is supposed to be right-USCE. By step a (see

2.6), we clearly have

λv(θλ) = λv+(θλ)1{v(θλ)>φ(θλ)} + λφ(θλ)1{v(θλ)=φ(θλ)}

≤ lim inf
n→∞

φ(θn)1{v(θλ)>φ(θλ)} + φ(θλ)1{v(θλ)=φ(θλ)} a.s.. (2.7)

We derive that

λv(θλ) ≤ lim inf
n→∞

φ(θ
n
) a.s. , (2.8)

where for each n ∈ N,

θ
n
:= θn1{v(θλ)>φ(θλ)} + θλ1{v(θλ)=φ(θλ)}. (2.9)

Note that (θ
n
) is a non increasing sequence of stopping times such that θ

n
↓ θλ. By taking the

expectation in (2.8) and by applying Fatou’s lemma, we obtain that

λE[v(θλ)] ≤ lim inf
n→∞

E[φ(θ
n
)] ≤ lim sup

n→∞
E[φ(θ

n
)] ≤ E[φ(θλ)],

where the last inequality follows from the right-USCE property of φ. Hence, the desired in-

equality λE[v(θλ)] ≤ E[φ(θλ)] holds. This ends the proof of the second assertion.

Let us now give another proof of the second assertion which does not use any aggregation

result. Note first that

λE[v(θλ)] = λE[v+(θλ)1{v(θλ)>φ(θλ)}] + λE[φ(θλ)1{v(θλ)=φ(θλ)}] (2.10)

Let us consider the first term of the right member of this inequality.The Remark 1.6 applied to

S = θλ and A = {v(θλ) > φ(θλ)} yields the following equality

λE[v+(θλ)1{v(θλ)>φ(θλ)}] = λ lim
n→∞

E[v+(θn)1{v(θλ)>φ(θλ)}].

Now, for each n, λv+(θn) ≤ φ(θn) a.s. (see (2.5)). It follows that

λE[v+(θλ)1{v(θλ)>φ(θλ)}] ≤ lim sup
n→∞

E[φ(θn)1{v(θλ)>φ(θλ)}].
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Consequently, by equality (2.10), we have

λE[v(θλ)] ≤ lim sup
n→∞

E[φ(θn)1{v(θλ)>φ(θλ)}] + E[φ(θλ)1{v(θλ)=φ(θλ)}]

≤ lim sup
n→∞

E[φ(θ
n
)],

where for each n, θ
n
is defined by (2.9). At last, the right-USCE property of φ leads to the

desired inequality λE[v(θλ)] ≤ E[φ(θλ)]. �

We now state the second lemma:

Lemma 2.4. Let {φ(θ), θ ∈ T0 } be an admissible family with v(0) = sup
θ∈T0

E[φ(θ)] < ∞. For

each λ ∈]0, 1[ and for each S ∈ T0,

v(S) = E[v(θλ(S)) | FS ] a.s. (2.11)

Remark 2.11. Note first that the strict inequality λ < 1 is necessary to ensure equality (2.11).

Note also that equality (2.11) is equivalent to the martingale property of the family { v(θ), θ ∈

T[S,θλ(S)] }. In other words, { v((θ ∨ S) ∧ θλ(S)), θ ∈ T0 } is a martingale system.

Proof: Let us define for each S ∈ T0, the random variable Jλ(S) = E[v(θλ(S)) | FS ] . It is

sufficient to show that Jλ(S) = v(S) a.s..

Since { v(S), S ∈ T0 } is a supermartingale system and since θλ(S) ≥ S a.s., we have that

Jλ(S) = E[v(θλ(S)) | FS ] ≤ v(S) a.s.

It remains to show the reverse inequality.

Step 1: Let us show that the family

{ Jλ(S), S ∈ T0 }

is a supermartingale system.

Fix S, S′ ∈ θ ∈ T0 such that S′ ≥ S a.s.. We have θλ(S
′

) ≥ θλ(S) a.s.

Hence, E[Jλ(S
′

) | FS ] = E[v(θλ(S
′

)) | FS ] = E
[

E[v(θλ(S
′

)) | Fθλ(S)] | FS

]

a.s.. Now, since

{ v(S), S ∈ T0 } is a supermartingale system, E[v(θλ(S
′

)) | Fθλ(S)] ≤ v(θλ(S)) a.s.. Conse-

quently,

E[Jλ(S
′

) | FS ] ≤ E[v(θλ(S)) | FS ] = Jλ(S) a.s. ,

which ends the proof of step 1.

Step 2: Let us show that for each S ∈ T0, and each λ ∈]0, 1[,

λv(S) + (1− λ)Jλ(S) ≥ φ(S) a.s.

Fix S ∈ T0 and λ ∈]0, 1[. On A := {λv(S) ≤ φ(S) }, we have λv+(S) ≤ φ(S) a.s.

Let us show that this implies that θλ(S) = S a.s. on A. For this, put S = S1A + T1Ac . Note

that S ∈ TS . Therefore, θ
λ(S) = ess inf TS ≤ S a.s. which clearly gives θλ(S)1A ≤ S 1A = S 1A

a.s.. Therefore, θλ(S) = S a.s. on A. Hence, Jλ(S) = E[v(θλ(S)) | FS ] = E[v(S) | FS ] = v(S)

a.s. on A, which yields the inequality

λv(S) + (1− λ)Jλ(S) = v(S) ≥ φ(S) a.s. on A.

Furthermore, since Ac = {λv(S) > φ(S) } and since Jλ(S) is nonnegative,

λv(S) + (1− λ)Jλ(S) ≥ λv(S) ≥ φ(S) a.s. on Ac.
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The proof of step 2 is complete.

Note now that, by convex combination, the familly {λv(S) + (1 − λ)Jλ(S), S ∈ T0} is a

supermartingale system. By step 2, it dominates {φ(S), S ∈ T0 }. Consequently, by the

characterization of { v(S), S ∈ T0 } as the smallest supermartingale system which dominates

{φ(S), S ∈ T0 }, we have

λv(S) + (1− λ)Jλ(S) ≥ v(S) a.s.

Hence, Jλ(S) ≥ v(S) a.s. because v(S) < ∞ a.s. and because λ < 1 (note that the strict

inequality is necessary here). Consequently, for each S ∈ T0, Jλ(S) = v(S) a.s. The proof of

Lemma 2.4 is ended. �

Proof of Theorem 2.1: By Lemma 2.4,

v(S) = E[v(θλ(S)) | FS ] a.s.. (2.12)

Step a: Suppose first that the reward {φ(θ), θ ∈ T0 } is right-USC with E[ess sup
θ∈T0

φ(θ)] < ∞.

Then, by (2.12) and by taking the conditional expectation in inequality λv(θλ(S)) ≤ φ(θλ(S))

a.s. (see the first point of Lemma 2.3), it follows that

λv(S) = λE[v(θλ(S)) | FS ] ≤ E[φ(θλ(S)) | FS ] a.s.

In other words, θλ(S) is a (1− λ)-optimal stopping time for v(S).

Step b: Let us now consider the case where φ satisfies the weaker assumption: it is right-USCE

with v(0) = sup
θ∈T0

E[φ(θ)] < ∞. Then, taking the expectation in (2.12) and using inequality

λE[v(θλ(S))] ≤ E[φ(θλ(S))] (see the second point of Lemma 2.3), it follows that

λE[v(S)] = λE[v(θλ(S))] ≤ E[φ(θλ(S))]. (2.13)

In other words, θλ(S) is “(1− λ)-optimal” for E[v(S)]. �

Remark 2.12. Note that by using similar arguments, one can show that the first assertion of

Theorem 2.1 still holds in the case where φ is supposed to be right-USC in conditional expectation

given FS , that is satisfies (2.2) where the expectation is replaced by the conditional expectation.

In the next section, under the additional assumption of left-USCE property of the reward,

we will show that the “(1−λ)-optimal” stopping times θλ(S) tend to an optimal stopping time

for v(S) as λ ↑ 1.

2.2 Existence Theorem and minimal optimal stopping times

In this section, we will show that if the reward is both right-USCE and left-USCE, then there

exists an optimal stopping time for v(S).

2.2.1 Existence Theorem

Theorem 2.2. (Existence of optimal stopping times)

Suppose the reward {φ(θ), θ ∈ T0 } is such that v(0) < ∞ and is USCE. Fix S ∈ T0.

Then, the limit of the “(1− λ)-optimal” stopping times given by

θ̂(S) := lim
λ↑1

↑ θλ(S) (2.14)

is an optimal stopping time for v(S).
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Remark 2.13. The above theorem generalizes the classical existence result of optimal stopping

times to the case of a reward given by an admissible family of r.v. which is upper-semicontinuous

in expectation (instead of a RCLL adapted process which is left-continuous in expectation).

Proof: Fix S ∈ T0.

Clearly for all S ∈ T0, the function λ 7→ θλ(S) is non decreasing on ]0, 1[. Hence, the r.v. θ̂(S)

is well defined by (2.14) and is a stopping time. Let us now prove that it is optimal for v(S).

By Theorem 2.1, λE[v(S)] ≤ E[φ(θλ(S))] for each λ ∈]0, 1[. Letting λ ↑ 1 in this last inequality,

and using the left upper-semicontinuous property in expectation of the reward φ , we derive

that E[v(S)] ≤ E[φ(θ̂(S))]. Hence,

E[v(S)] = sup
θ∈TS

E[φ(θ)] = E[φ(θ̂(S))]

By Remark 1.4, this implies that θ̂(S) is optimal for v(S). �

In the next subsection, we will show that θ̂(S) is the minimal optimal stopping time for v(S)

and is also characterized as the essential infimum of the stopping times greater than S such that

the value function attains the reward.

2.2.2 Minimal optimal stopping times

For each S ∈ T0, let us define the following random variable θ∗(S) := ess inf{ θ ∈ TS , v(θ) =

φ(θ) a.s. }. In the following, we will show that θ∗(S) = θ̂(S) a.s. and that it is the minimal

optimal stopping time for v(S). More precisely, we state the following Theorem:

Theorem 2.3. (Characterization of the minimal optimal stopping time)

Suppose {φ(θ), θ ∈ T0 } is USCE with v(0) < ∞. Fix S ∈ T0.

Then, the stopping time θ∗(S) given by

θ∗(S) = ess inf{ θ ∈ TS , v(θ) = φ(θ) a.s. }. (2.15)

is the minimal optimal stopping time for v(S). Also, it is the limit of the “(1 − λ)-optimal”

stopping times, that is θ∗(S) = lim
λ↑1

↑ θλ(S) a.s..

Proof: First it is just routine to check that the set TS = { θ ∈ TS, v(θ) = φ(θ) a.s. } is closed

by pairwise minimization. Hence, there exists a nonincreasing sequence of stopping times (θn)

such that θn ∈ TS for all n ∈ N and θn ↓ θ∗(S) a.s.. In particular θ∗(S) is a stopping time.

Step 1: Let us show that θ̂(S) ≤ θ∗(S) a.s..

It is clear that θ∗(S) = ess inf{ θ ∈ TS , v+(θ) ≤ φ(θ) a.s. } because v(θ) = v+(θ) ∨ φ(θ) a.s..

Hence, since θλ(S) = ess inf{ θ ∈ TS , λv+(θ) ≤ φ(θ) a.s. }, it is clear that θλ(S) ≤ θ∗(S) a.s..

By letting λ tend to 1, it follows that

θ̂(S) = lim
λ↑1

↑ θλ(S) ≤ θ∗(S) a.s.,

which ends step 1.

Step 2: Let us show that θ̂(S) = θ∗(S) a.s. and that it is the minimal optimal stopping time.

By the optimality criterium (Proposition 1.4), if θ ∈ T0 is optimal for v(S), then v(θ) = φ(θ)

a.s.. Therefore we have

θ∗(S) ≤ ess inf{ θ ∈ TS , θ optimal for v(S) } a.s.. (2.16)

Now, we have already proven that θ̂(S) is optimal for v(S) (see Theorem 2.2). Therefore,

by step 1 and (2.16), we have that

θ̂(S) = θ∗(S) = ess inf{ θ ∈ TS , θ optimal for v(S) } a.s.,

which ends the proof. �
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Remark 2.14. Note that by definition (2.2.3), the map S 7→ θ∗(S) is non decreasing that is

for each S, S
′

∈ T0 s.t. S ≤ S
′

a.s., we have θ∗(S) ≤ θ∗(S
′

) a.s..

2.2.3 Regularity of the value function

Note first that, without any assumption on the reward family, the value function is right-USCE.

Indeed, from the supermartingale property of {v(θ) , θ ∈ T0}, we clearly have the following

property: for each S ∈ T0 and each sequence of stopping times (Sn) such that Sn ↓ S a.s.,

lim
n→∞

↑ E[v(Sn)] ≤ E[v(S)].

Define now the property of left continuity along stopping times and the left continuity in

expectation along stopping times (LCE property) similarly to the RCE property (see Definition

1.2) with θn ↑ θ instead of θn ↓ θ .

Using Remark 2.14, we derive the following regularity property of the value function:

Proposition 2.9. If {φ(θ), θ ∈ T0} is USCE and v(0) < ∞, then {v(θ), θ ∈ T0} is left-

continuous in expectation (LCE).

Proof: Fix S ∈ T0. Let (Sn) be a sequence of stopping times such that Sn ↑ S a.s. Let us

show that lim
n→∞

E[v(Sn)] = E[v(S)].

First, we have that for each n, E[v(Sn)] ≥ E[v(S)]. Hence, lim
n→∞

↓ E[v(Sn)] ≥ E[v(S)].

Suppose by contradiction that lim
n→∞

↓ E[v(Sn)] 6= E[v(S)]. Then, there exists α > 0 such

that for all n, one has E[v(Sn)] ≥ E[v(S)] + α. By Theorem 2.3, for each n, the stopping time

θ∗(Sn) ∈ TSn
(defined by (2.2.3)) is optimal for v(Sn). It follows that for each n, E[φ(θ∗(Sn))] ≥

E[v(S)] + α. Now, the sequence of stopping times (θ∗(Sn)) is clearly non decreasing. Put

θ := lim
n→∞

↑ θ∗(Sn). θ is clearly a stopping time. Using the USCE property of φ, we obtain

E[φ(θ)] ≥ E[v(S)] + α .

Now, for each n, θ∗(Sn) ≥ Sn a.s.. Hence, by letting n tend to ∞, it clearly follows that θ ≥ S

a.s., which provides the expected contradiction. �

Consequently, the following corollary holds.

Corollary 2.1. If {φ(θ), θ ∈ T0} is USCE and v(0) < ∞, then {v(θ), θ ∈ T0} is USCE.

Application to an optimal double stopping problem

Let us consider the following simple optimal double stopping problem. We suppose that T = ∞

and let {φ(θ), θ ∈ T0} be an admissible family. The stopping times τ1, τ2 are separated by a

fixed amount of time δ > 0 (sometimes called “refracting time”). The value function is given

by

v(S) = ess sup(τ1,τ2)∈SS
E[φ(τ1) + φ(τ2) | FS ],

where SS = {τ1, τ2 ∈ TS s.t. τ2 ∈ Tτ1+δ } .

Note that it corresponds to a swing option in the bidimensional case (for the d-dimensional

case, see Carmona and Dayanik (2008) and also section 3.6 in Kobylanski et al. (2010)). We

clearly have that

v(S) = ess supτ1∈TS
E[φ(τ1) + ess supτ2∈Tτ1+δ

E[φ(τ2) | Fτ1 ] | FS]. (2.17)

Let {u(θ), θ ∈ T0} be the value function associated with the reward φ defined for each stopping

time θ by

u(θ) = ess supτ∈Tθ+δ
E[φ(τ) | Fθ ] .
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By (2.17), we have

v(S) = ess supθ∈TS
E[φ(θ) + u(θ) | FS ]. (2.18)

Suppose now that {φ(θ), θ ∈ T0} is USCE and satisfies u(0) < ∞. By Corollary 2.1, the

associated value function {u(θ), θ ∈ T0} is USCE. Also, one can easily verify that v(0) < ∞.

By Theorems 2.2 and 2.3, the stopping time θ∗1 defined by

θ∗1 := ess inf{ θ ∈ TS , v(θ) = φ(θ) + u(θ) a.s. }.

is optimal for (2.18) and the stopping time θ∗2 given by

θ∗2 = ess inf{θ ∈ Tθ∗

1
, u(θ) = φ(θ) a.s. }.

is an optimal for u(θ∗1). It clearly follows that (θ∗1 , θ
∗
2) is the minimal double optimal stopping

time for v(S).

Of course, by backward induction, this result can be generalized to swing options in the

d-dimensional case with d ≥ 2.

2.3 Maximal optimal stopping times

2.3.1 Definition of θ̌(S), S ∈ T0

Let {φ(θ), θ ∈ T0 } be an admissible family and { v(θ), θ ∈ T0 } be the associated value function.

Fix S ∈ T0. Let us introduce the random variable θ̌(S) as follows

Definition 2.4. Fix S ∈ T0.

Let AS of stopping times θ such that {v(τ), τ ∈ T[S,θ]} is a martingale system.

We define the random variable θ̌(S) by

θ̌(S) := ess sup AS .

Note that the definition of θ̌(S) does not require any assumption on φ.

Note that if v(0) < ∞, we clearly have:

θ̌(S) = ess sup{ θ ∈ TS , E[v(θ)] = E[v(S)] },

because in this case AS = ess sup{ θ ∈ TS , E[v(θ)] = E[v(S)] }.

Lemma 2.5. Let {φ(θ), θ ∈ T0 } be an admissible family.

For each S ∈ T0, the set AS is stable by pairwise maximization.

Also, θ̌(S) is a stopping time and there exists a nondecreasing sequence of stopping times (θn)

such that θn ∈ AS for all n ∈ N and θn ↑ θ̌(S) a.s..

Proof of Lemma 2.5:

Fix S ∈ T0. Let θ1, θ2 ∈ AS . Let us show that θ1 ∨ θ2 belongs to AS . Note that this

property is intuitive since if {v(τ)}τ∈T[S,θ1]
and {v(τ)}τ∈T[S,θ2]

are martingale systems, then it

is quite clear that {v(τ)}[S,θ1∨θ2] is a martingale system. For the sake of completeness, let us

verify this property. We have clearly that a.s.

E[v(θ1 ∨ θ2) | FS ] = E[v(θ2)1θ2>θ1 | FS] + E[v(θ1)1θ1≥θ2 | FS]. (2.19)

Since θ2 ∈ AS , we have that on {θ2 > θ1}, v(θ1) = E[v(θ2)|Fθ1 ] a.s. It follows that

E[v(θ2)1θ2>θ1 | FS ] = E[v(θ1)1θ2>θ1 | FS ] a.s. This with equality (2.19) gives that E[v(θ1 ∨

θ2) | FS] = E[v(θ1) | FS ] a.s.. Now, since θ1 ∈ AS , E[v(θ1) | FS ] = v(S) a.s.. Hence, we have

shown that E[v(θ1 ∨ θ2) | FS ] = v(S) a.s. which gives that θ1 ∨ θ2 ∈ AS .
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It remains to verify the second point of the lemma. Now, by classical results, there exists a

nondecreasing sequence of stopping times (θn) such that θn ∈ AS for all n ∈ N and θn ↑ θ̌(S)

a.s.. In particular, θ̌(S) is a stopping time. �

Lemma 2.6. Suppose {φ(θ), θ ∈ T0 } is such that v(0) < ∞. Fix S ∈ T0.

If θ ∈ TS is an optimal stopping time for v(S), then θ ∈ AS .

Proof: By the optimality criterium (Proposition 1.4), E[v(θ)] = E[v(S)] which gives the

desired result. �

2.3.2 Characterization of θ̌(S) as the maximal optimal stopping time

In this subsection, {φ(θ), θ ∈ T0 } is supposed to be USCE and such that v(0) < ∞. Fix S ∈ T0.

By Theorem 2.2, we know that there exists an optimal stopping time for v(S). In the sequel,

we show that θ̌(S) is the maximal optimal stopping time. More precisely,

Theorem 2.4. (Characterization of θ̌(S) as the maximal optimal stopping time)

Suppose {φ(θ), θ ∈ T0 } is such that v(0) < ∞ and is USCE. Fix S ∈ T0.

Then, θ̌(S) is the maximal optimal stopping time for v(S).

Proof of Theorem 2.4: Fix S ∈ T0.

To simplify the notation, in the following, the stopping time θ̌(S) will be denoted by θ̌.

Step 1: Let us show that θ̌ ∈ AS .

Recall that by Lemma 2.5, there exists a nondecreasing sequence of stopping times (θn) such

that θn ∈ AS for all n ∈ N and θn ↑ θ̌ a.s..

For each n ∈ N, since θn ∈ AS , we have

E[v(θn)] = E[v(S)].

Since by Proposition 2.9, the value function { v(θ), θ ∈ T0 } is LCE, by letting n tend to ∞ in

the previous equality, we derive that E[v(θ̌)] = E[v(S)], which gives that θ̌ ∈ AS .

Step 2: Let us show now that θ̌ is optimal for v(S).

The optimality of θ∗(θ̌) for v(θ̌) gives the equality

E[φ(θ∗(θ̌))] = E[v(θ̌)].

Also, since θ̌ ∈ AS , we clearly have that

E[v(θ̌)] = E[v(S)].

The two previous equalities give that E[φ(θ∗(θ̌))] = E[v(S)]. In other words, θ∗(θ̌) is optimal

for v(S). By lemma 2.6, this implies that that θ∗(θ̌) ∈ AS .

Hence since θ̌ = ess supAS , it follows that θ∗(θ̌) ≤ θ̌ a.s. Now, θ∗(θ̌) ≥ θ̌ a.s. Hence, θ∗(θ̌) = θ̌

a.s. It clearly follows that θ̌ is optimal for v(S).

Step 3: Let us show that θ̌ is the maximal optimal stopping time for v(S).

By lemma 2.6, we have that each θ which is optimal for v(S) belongs to AS and hence is smaller

than θ̌ (since θ̌ = ess supAS). This gives step 3.

Hence, the proof of Theorem 2.4 is ended. �
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3 Links between v, v+ and φ

Recall that we have shown that for all S ∈ T0, v(S) = φ(S) ∨ v+(S) a.s. (see Proposition

1.5). One can wonder if it possible to have conditions which ensure that v(S) = φ(S) a.s. or

v(S) = v+(S). In this section, we will first give some strict supermartingale conditions on v

which ensure the equality between v and φ (locally).

Second, we will give some properties of v and v+ which ensure the equality between v and v+

(for some stopping times which will be specified).

3.1 When does the value function coincide with the reward?

We will now give some strict martingale conditions on v which ensure the equality between v(θ)

and φ(θ) for a given stopping time θ.

Let us first note that for A ∈ FS , the restriction of θ̌(S) to A can be characterized as follows:

Lemma 3.7. (localization lemma) Suppose the reward {φ(θ), θ ∈ T0 } is an admissible family.

Fix θ ∈ TS. Let A ∈ FS. Let AS(A) be the set of r.v. θ1A with θ ∈ TS such that {v(τ)}τ∈T[S,θ]

is a martingale system on A. We have

θ̌(S)1A := ess sup AS(A) a.s. (3.1)

Note that in the case where v(0) < ∞, equality (3.1) can be written as follows:

θ̌(S)1A = ess sup{θ1A, θ ∈ TS and E[v(θ)|FS ]1A = v(S)1A a.s. } a.s.

Proof : For the sake of completeness, we give the proof of this lemma. To simplify notation,

let us denote θ̌(S) by θ̌ and AS(A) by A(A). Also let us introduce the following r.v. θ̃ :=

ess supA(A).

Note first that the inequality θ̌1A ≤ θ̃ a.s. is clear.

It remains to show the other inequality.

By similar arguments to those used in the proof of Lemma 2.5, the set A(A) is stable by pairwise

maximization. Hence, there exists a nondecreasing sequence of stopping times (θn) in TS such

that θn1A ∈ A(A) for all n ∈ N and θn1A ↑ θ̃. For each n ∈ N, since θn ∈ A(A), the family

{v(τ)}τ∈T[S,θn]
is a martingale system on A. Put θ

n
= θn1A + S1Ac . Since A ∈ FS , we clearly

have that θ
n
is a stopping time and that {v(τ)}τ∈T[S,θ

n]
is a martingale system.

Hence, θ
n
≤ θ̌ a.s. (by definition of θ̌), which gives θn1A ≤ θ̌1A a.s. for each n.

By letting n tend to ∞, we derive that θ̃ ≤ θ̌1A a.s.. Since the other inequality has already be

shown, it follows that θ̃ = θ̌1A a.s. and the proof is ended.

Let us give another possible proof. Note first that θ̃ corresponds to the θ̌ associated with

the value function {V (θ), θ ∈ TS } associated with the reward {φ(θ)1A, θ ∈ TS }. Since

v(θ)1A = V (θ) a.s. for each θ ∈ TS , it follows that θ̃ = θ̌1A a.s.. �

Let X be the set of all real valued random variables. We introduce the following relation on

X :

Definition 3.5. (Relation ≺)

Fix X, X
′

∈ X and A ∈ F .

We say that X ≺ X
′

on A if X ≤ X
′

a.s. on A and if P ({X 6= X
′

} ∩ A) 6= 0.

Remark 3.15. Clearly, we define the relation X ≻ X
′

on A in the same way.

Also, to simplify notation, the relation ≤ a.s. will be denoted by � and ≥ a.s. by �.
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Define T
′

0 := {θ ∈ T0, θ < T a.s. }. Fix θ ∈ T
′

0 and A ∈ Fθ.

Definition 3.6. Let { u(θ), θ ∈ T0 } be a supermartingale system.

u is said to be a martingale system on the right at θ on A if there exists θ
′

∈ T0 with θ ≺ θ
′

on

A such that {u(τ)}τ∈T
[θ,θ

′
]
is a martingale system on A.

This notion is of course local in time (and in space because of A). Note that if u(0) < ∞,

this property is equivalent to the following one:

∃θ
′

∈ T0 s.t. θ ≺ θ
′

on A , E[u(θ
′

)1A] = E[u(θ)1A]. (3.2)

Definition 3.7. Let { u(θ), θ ∈ T0 } be a supermartingale system.

u is said to be a strict supermartingale system on the right at θ on A if it is not a martingale

system on the right at θ on A, that is if for each θ
′

∈ T0 with θ ≺ θ
′

on A, {u(τ)}τ∈T
[θ,θ

′
]
is

not a martingale system on A.

If u(0) < ∞, this property can be written as follows:

∀θ
′

∈ T0 s.t. θ ≺ θ
′

on A , E[u(θ
′

)1A] < E[u(θ)1A]. (3.3)

By using the localization lemma (Lemma 3.7), one can easily derive the following lemma:

Lemma 3.8. Let {φ(θ), θ ∈ T0} be an admissible family. Let θ ∈ T0 and A ∈ Fθ be such that

θ ≺ T on A.

• v is a martingale on the right at θ on A if and only if θ ≺ θ̌(θ) on A.

• v is a strict supermartingale on the right at θ on A if and only if θ = θ̌(θ) a.s. on A.

We now state the following Theorem which gives a sufficient condition which ensures locally

the equality between v and φ.

Theorem 3.5. Suppose {φ(θ), θ ∈ T0} is USCE and such that v(0) < ∞. Let θ ∈ T0 and A ∈

Fθ be such that θ ≺ T on A.

If the value function {v(θ), θ ∈ T0} is a strict supermartingale on the right at θ on A, then

v(θ) = φ(θ) a.s. on A.

Proof : The second point of Lemma 3.8 with the optimality criterium and the fact that θ̌(θ)

is an optimal stopping time give the desired result. �

Remark 3.16. Note that if the reward is given by a continuous adapted process (φt), this

theorem leads to a well known result stated for example in Appendix D of Karatzas and Shreve

((1998) (see also Proposition 3.16 for a slight generalization).

3.2 Martingale properties of v and v+ and when do v and v+ coincide?

We will now study some links between v and v+.

We introduce the following definition:

Definition 3.8. (Localization) Let { h(θ), θ ∈ T0 } be an admissible family.

Let S, S
′

be two stopping times and let A ∈ FS. Suppose S < S
′

a.s. on A.

An admissible family h restricted to [S, S
′

[ , that is {h(θ)}θ∈T
[S,S

′
[
, is said to be a martingale

system on A if for each θ, θ
′

∈ T0 such that S ≤ θ, θ
′

< S
′

a.s. on A,

E[h(θ
′

) | Fθ] = h(θ) a.s. on A ∩ {θ ≤ θ
′

}. (3.4)
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We can define similarly the notion of martingale system {h(τ)}τ∈T
[S,S

′
]
on A (resp. for

T]S,S′ ]). Note that T[S,S′ [ on A can be empty.

Note now the following property: if {v(τ) , τ ∈ T[0,θ]} is a martingale, then by Lemma 1.2,

for each τ ∈ T0,

v(τ) = E[v(θ)|Fτ ] ≤ v+(τ) a.s. on {θ > τ},

and hence v(τ) = v+(τ) a.s. on {θ > τ}. A generalization of this property is given in the

following proposition.

Proposition 3.10. Let {φ(θ), θ ∈ T0 } be an admissible family.

Fix S, S
′

∈ T0 such that S ≤ S
′

a.s.. Suppose {v(τ)}τ∈T
[S,S

′
]
is a martingale system. Then,

for each τ ∈ T0, v(τ) = v+(τ) a.s. on {S ≤ τ < S
′

}.

Also, {v+(τ)}τ∈T
[S,S

′
[
is a martingale system on {S < S

′

}.

Proof : Fix τ ∈ T0.

Since {v(τ)}τ∈T
[S,S

′
]
is a martingale system, we have a.s.

v(τ)1{S≤τ<S
′} = E[v(S

′

)|Fτ ]1{S≤τ<S
′} ≤ v+(τ)1{S≤τ<S

′},

where the inequality follows from Lemma 1.2. Hence, v(τ) = v+(τ) a.s. on {S ≤ τ < S
′

},

which gives the first assertion.

It follows that for each τ ∈ T0 such that S ≤ τ < S
′

a.s. on {S < S
′

},

E[v+(τ) | FS ] = E[v(τ) | FS ] = v(S) = v+(S) a.s. on {S < S
′

}. (3.5)

since {S < S
′

} belongs to FS and v(τ) = v+(τ) a.s. on {S < S
′

}. Note that here, the assump-

tion that S ≤ τ < S
′

a.s. on {S < S
′

} is important because the set {S ≤ τ < S
′

} does not

necessarily belong to FS . Hence, {v
+(τ)}τ∈T

[S,S
′
[
is a martingale system on {S < S

′

}. �

From this proposition, we derive the following corollary:

Corollary 3.2. Let {φ(θ), θ ∈ T0 } be an admissible family.

For each τ ∈ T0, we have v(τ) = v+(τ) a.s.on {S ≤ τ < θ̌(S)}.

Also, the family {v+(τ)}τ∈T[S,θ̌(S)[
is a martingale system (on {S < θ̌(S)}).

Proof : Fix τ ∈ T0.

Recall that there exists a nondecreasing sequence of stopping times (θn) ∈ TS such that for all

n ∈ N, {v(τ)}τ∈T[S,θn]
is a martingale system and θn ↑ θ̌(S) a.s..

Note now that 1{S≤τ<θ̌(S)} = lim
n→∞

↑ 1{S≤τ<θn} a.s.. For each n, {v(τ)}τ∈T[S,θn]
is a martingale

system. Hence, by Proposition 3.10, the equality

v(τ)1{S≤τ<θn} = v+(τ)1{S≤τ<θn}

holds a.s.. By letting n tend to ∞, we derive that v(τ)1{S≤τ<θ̌(S)} = v+(τ)1{S≤τ<θ̌(S)} a.s.

which gives the first assertion.

The second assertion follows. �

Note now that for each S
′

∈ T0, if v(0) < ∞, if v(0) = v+(0) and if {v+(τ)}τ∈T
[0,S

′
]
is a

martingale system, then v(τ) = v+(τ) a.s. for each τ ∈ T[0,S′ ]. Indeed, the supermartingale

property of v and the martingale property of v+ give that E[v(τ) − v+(τ)] ≤ v(0)− v+(0) = 0

and since v(τ)− v+(τ) ≥ 0 a.s., we derive that v(τ) = v+(τ) a.s. More generally, the following

property holds.
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Proposition 3.11. Let {φ(θ), θ ∈ T0 } be an admissible family such that v(0) < ∞.

Fix S, S
′

∈ T0 such that S ≤ S
′

a.s. Suppose {v+(τ)}τ∈T
[S,S

′
]
is a martingale system. Then,

the two following properties hold:

• If τ ∈ T0 is such that S < τ ≤ S
′

a.s. on {S < S
′

}, then v(τ) = v+(τ) a.s. on {S < S
′

}.

Also, {v(τ)}τ∈T
]S,S

′
]
is a martingale system on {S < S

′

}.

• Put A := {v+(S) = v(S)}.

If τ ∈ T0 is such that S ≤ τ ≤ S
′

a.s. on A, then v(τ) = v+(τ) a.s. on A. Also, the

family {v(τ)}τ∈T
[S,S

′
]
is a martingale system on A.

Proof :

Let us prove the first property. Let τ ∈ T0 be such that {S < τ ≤ S
′

} a.s. on {S < S
′

}. We

have:

v+(S) = E[v+(τ)|FS ] ≤ E[v(τ)|FS ] ≤ v+(S) a.s. on {S < S
′

}.

where the last inequality follows from Lemma 1.2. Hence, all the inequalities are equalities.

Since v(0) < ∞, we derive that v(τ) = v+(τ) a.s. on {S < S
′

} and the first point follows.

Let us prove the second point. We have a.s.

v+(τ)1{S≤τ≤S
′}∩A = v+(S)1{S=τ}∩A + v+(τ)1{S<τ≤S

′}∩A.

By the first point, it follows that a.s.

v+(τ)1{S≤τ≤S
′}∩A = v(S)1{S=τ}∩A + v(τ)1{S<τ≤S

′}∩A = v(τ)1{S≤τ≤S
′}∩A.

By noticing that A ∈ FS , one can easily derive the martingale property of {v(τ)}τ∈T
[S,S

′
]
on A,

which gives the second point. �

3.3 Definition of θ̌+(S) and comparison between θ̌(S) and θ̌+(S)

Fix S ∈ T0. Recall that we have defined the stopping time θ̌(S) associated with the value

function v (Definition 2.4). Let us now define similarly the random variable θ̌+(S) associated

with v+ as follows

Definition 3.9. Let A+
S be the set of stopping times θ such that {v+(τ)}τ∈[S,θ] is a martingale

system. We define the random variable θ̌+(S) by

θ̌+(S) := ess sup A+
S .

By similar arguments to those of the proof of Lemma 2.5, the set A+
S is stable by pair-

wise maximization. Hence, there exists an optimizing nondecreasing sequence of stopping times

(θn) in TS which are in A+
S such that θ̌+(S) = lim

n→∞
↑ θn a.s. and hence θ̌+(S) is a stopping time.

Note that θ̌+(S) clearly satisfies the same localization property as θ̌(S) (see Lemma 3.7).

More precisely,

Lemma 3.9. Suppose the reward {φ(θ), θ ∈ T0 } is an admissible family. Fix θ ∈ TS. Let A

∈ FS. Let A+
S (A) be the set of r.v. θ1A with θ ∈ TS such that {v+(τ)}τ∈T[S,θ]

is a martingale

system on A. We have

θ̌+(S)1A := ess sup A+
S (A) a.s..

We state the following theorem:

Theorem 3.6. Suppose the reward {φ(θ), θ ∈ T0 } is an admissible family such that v(0) < ∞.

Then, for each S ∈ T0, we have:
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•

θ̌+(S) ≤ θ̌(S) a.s. on {v(S) = v+(S)}.

• Suppose θ̌(S) is “accessible” on a set A ∈ FS , that is there exists a nondecreasing sequence

of stopping times (θn)n∈N such that θn < θ a.s. on A for each n ∈ N and such that θn ↑ θ

on A.

Then,

θ̌+(S) ≥ θ̌(S) a.s. on A.

• θ̌(S) = S ≤ θ̌+(S) a.s. on {v+(S) < v(S)}.

Proof:

Step 1: Let us prove the first point. Put A := {v(S) = v+(S)}. Let θ ∈ A+
S (A). Hence,

{v+(τ)}τ∈T[S,θ]
is a martingale system onA. By the second point of Proposition 3.11, {v(τ)}τ∈T[S,θ]

is a martingale system on A. It follows that A+
S (A) ⊂ AS(A). By taking the essential supremum

and by using localization properties of θ̌+(S) and θ̌(S) (see Lemma 3.9 and Lemma 3.7), this

clearly implies that θ̌+(S)1A ≤ θ̌(S)1A a.s.

Step 2: Let us now prove the second point.

The proof of this property is clearly based on Corollary 3.2 and the following lemma:

Lemma 3.10. Let θ ∈ TS be a stopping time supposed to be “accessible” on A, where A ∈ FS.

We have

ess supT[S,θ[ = θ, a.s. on A ∩ {S < θ}. (3.6)

In particular, if θ is predictable, then the previous equality is satisfied a.s. on {S < θ}.

Suppose this lemma has been already proven. Recall that {v+(τ)}τ∈T[S,θ̌(S)[
is a martingale

system ( a.s. on {S < θ̌(S)}) (by Corollary 3.2). It follows that, a.s. on {S < θ̌(S)},

A+
S ⊃ T[S,θ̌(S)[,

which gives that θ̌+(S) = ess supA+
S ≥ ess sup T[S,θ̌(S)[ a.s..

Now, by Lemma 3.10, ess sup T[S,θ̌(S)[ = θ̌(S) a.s. on A ∩ {S < θ̌(S)}.

This clearly gives that θ̌+(S) ≥ θ̌(S) a.s. on A, which ends step 2.

The third point of the Theorem is clear. �

Proof of Lemma 3.10:

We clearly have ess supT[0,θ[ ≤ θ a.s..

Suppose θ is accessible on A, where A ∈ FS . By definition, there exists a nondecreasing se-

quence of stopping times (θn)n∈N with θn < θ a.s. on A for each n ∈ N and such that θn ↑ θ

on A. Hence, ess supT[S,θ[ ≥ θn a.s. on A ∩ {S < θ}. By letting n tend to ∞, it gives that

ess supT[S,θ[ ≥ θ a.s. on A ∩ {S < θ} and the desired result follows.

The second point follows clearly since a predictable stopping time is by definition an accessible

stopping time on Ω. �

Corollary 3.3. Suppose θ̌(S) is predictable, then θ̌+(S) = θ̌(S) a.s. on {v(S) = v+(S)}.

Note that if θ̌(S) is not predictable, it is possible that P ({θ̌+(S) < θ̌(S)}∩{v(S) = v+(S)}) >

0 as in the following example.

Example:

Let ν be a random variable on a probability space which takes its values in [0, T ] and such that
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P (ν > t) < 1 for each t ∈]0, T ]. Let us consider the (completed) filtration (Ft)0≤t≤T defined

by Ft := F0
t+

where F0
t = σ(ν ∧ t). Note that the stopping times relative to this filtration are

given by ν ∧ t for 0 ≤ t ≤ T . Let us consider the reward associated with the adapted process

φt := 1[0,ν](t) for t ∈ [0, T ].

Note that the associated value function is given by vt = 1[0,ν](t) for t ∈ [0, T ].

Also, v+ is given by v+t = 1[0,ν[(t) for t ∈ [0, T ].

Fix the initial time S = 0. The maximal optimal stopping time is clearly given by θ̌(0) = ν.

However, θ̌+(0) = 0. Indeed, for each t ∈]0, T ],

E[v+ν∧t] = P (ν ∧ t < ν) = P (t < ν) < 1 = v+0 .

It follows that for each t > 0, (v+s∧ν)0≤s≤t is not a martingale which implies that θ̌+(0) = 0.

Note also that T[0,θ̌(0)[ = T[0,ν[ = {0}.

3.4 Some applications of the Doob-Meyer decomposition

Suppose that the reward {φ(θ), θ ∈ T0} is such that the associated family { v+(S), S ∈ T0 } is of

class D (which is satisfied if for example E[ess supθ∈T0
φ(θ)] < ∞ or if {φ(θ), θ ∈ T0} is uniformly

integrable). Note that since the reward {φ(θ), θ ∈ T0} is not supposed to be RCE, the associated

value function {v(θ), θ ∈ T0} is not necessarily RCE. However, the family { v+(S), S ∈ T0 }

is RCE (see Proposition 1.6). Since it is a supermartingale, by classical results (see Appendix

A2 Proposition A.20), there exists a RCLL supermartingale process denote by (v+t ) such that

for each θ ∈ T0, v
+
θ = v+(θ) a.s.. Since it is a supermartingale of class D, by the Doob-Meyer

decomposition, there exists a uniformly integrable RCLL martingale (Mt) and a predictable RC

nonincreasing process (At) with A0 = 0 and E[AT ] < ∞ such that for each t ∈ [0, T ],

v+t = Mt −At a.s.. (3.7)

We have the following characterization of θ̌+(S) which is rather intuitive:

Proposition 3.12. Suppose that {φ(θ), θ ∈ T0} is an admissible family such that

E[ess supθ∈T0
φ(θ)] < ∞. For almost every ω, we have:

θ̌+(S)(ω) = inf{t ≥ S(ω) , At(ω) > AS(ω)} ∧ T,

where (At) is the non decreasing predictable RCLL process which appears in the Doob-Meyer

decomposition of (v+t ).

Proof : To simplify notation, θ̌+(S) will be denoted θ̌+.

Let us introduce the following stopping time defined for each ω by

θ(ω) = inf{t ≥ S(ω) , At(ω) > AS(ω)} ∧ T.

Step 1: Let us show that θ̌+ ≤ θ a.s.

Recall that there exists a nondecreasing sequence of stopping times (θn) in TS which are such

that {v+(τ)}τ∈[S,θn] is a martingale system and such that θ̌+ = lim
n→∞

↑ θn a.s. Hence, we have

that for each n ∈ N, Aθn = AS a.s.. By definition of θ, this gives that for each n ∈ N, θn ≤ θ

a.s.. By letting n tend to ∞, it follows that θ̌+ ≤ θ a.s. which ends step 1.

Step 2: Let us show the other inequality that is θ̌+ ≥ θ a.s.

Let T1 be the time of the first jump of the process (At). By convention, for each ω, if there is

no jump between S(ω) and T , T1(ω) is taken to be equal to T . Since (At) is predictable, T1 is

a predictable stopping time.
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Recall that (At) is a RCLL non decreasing process. Without loss of generality, we can sup-

pose that for each ω ∈ Ω, the map t 7→ At(ω) is RCLL. Hence, we have that

- either the map t 7→ At(ω) is constant on [S(ω), T1(ω)[ and hence, in this case, θ(ω) = T1(ω),

- otherwise, θ(ω) < T1(ω) and the map t 7→ At(ω) is continuous at θ(ω), constant on [S(ω), θ(ω)]

and starts to increase at θ(ω).

Now, since T1 is a predictable stopping time, there exists a non decreasing sequence of

stopping times (τn)n∈N such that S ≤ τn < T1 a.s. for each n ∈ N and such that τn ↑ T1 a.s.

For each n, define the stopping time

θn := θ ∧ τn.

Note that θ = lim
n→∞

↑ θn. It is clear that for each n, Aθn
= AS a.s., which yields the equality

v+
θn

= Mθn
−AS a.s. In other terms, {v+(τ)}τ∈[S,θ

n
] is a martingale system. Hence, for each n,

θ
n
≤ θ̌+ a.s.

By letting n tend to ∞, we derive that θ = lim
n→∞

θ
n
≤ θ̌+ a.s., which makes step 2 ended. At

last, step 1 with step 2 give the desired result. �

Remark 3.17. Fix S ∈ T0. Suppose that θ̌(S) is predictable. By Corollary 3.3, θ̌+(S) = θ̌(S)

a.s. on {v(S) = v+(S)}. This with Proposition 3.12 gives

θ̌(S) = inf{t ≥ S , At > AS} ∧ T a.s.. (3.8)

In other words, without any regularity assumption on the reward family, we have a characteri-

zation of an “upper bound”of optimal stopping times as a hitting time.

Also, in the case where the reward family is supposed to be USCE, this gives a characteriza-

tion of the maximal optimal stopping time.

Note also that in the case of Brownian filtration, since all the stopping times are predictable,

equality (3.8) holds for any S ∈ T0.

Case of a RCE reward

We will now consider the particular case where the reward family {φ(θ), θ ∈ T0} is supposed to

be RCE and such that E[ess supθ∈T0
φ(θ)] < ∞.

In this case, v(S) = v+(S) a.s. for each S ∈ T0. Let (vt) be the RCLL adapted process which

aggregates the value function. Note that (vt) = (v+t ). With this notation, the Doob-Meyer

decomposition (3.7) can be written

vt = Mt −At a.s..

In the following, we give a few properties concerning the non decreasing process (At) of the

Doob-Meyer decomposition of (vt).

Since for each S ∈ T0, θ̌(S) = θ̌+(S) a.s., by Proposition 3.12, we have:

Proposition 3.13. Suppose {φ(θ), θ ∈ T0} is a RCE admissible family such that

E[ess supθ∈T0
φ(θ)] < ∞. Fix S ∈ T0. For almost every ω, we have:

θ̌(S)(ω) = inf{t ≥ S(ω) , At(ω) > AS(ω)} ∧ T,

where (At) is the non decreasing predictable RCLL process which appears in the Doob-Meyer

decomposition of (vt).

Furthermore, if {φ(θ), θ ∈ T0} is supposed to be left-USCE, then θ̌(S) is the maximal optimal

stopping time.
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Remark 3.18. Note that the second assertion of this proposition is well known in the discrete

time case (see Neveu (1975)) and in the case of a continuous reward (φt) (see equality (D.35)

in Karatzas and Shreve (1998).

Also, Theorem 3.5 leads to the following property:

Proposition 3.14. Suppose {φ(θ), θ ∈ T0} is a RCE and left-USCE admissible family and that

E[ess sup
θ∈T0

φ(θ)] < ∞. Let θ ∈ T0. For almost every ω s.t. θ(ω) < T , we have:

if for each t
′

> θ(ω), At
′ (ω) > Aθ(ω), then v(θ)(ω) = φ(θ)(ω).

Remark 3.19. This property can also be written as follows. For almost every ω such that

θ(ω) < T , we have: if v(θ)(ω) 6= φ(θ)(ω), then the nondecreasing function s 7→ As(ω) is locally

constant on the right of θ(ω) , that is there exists t
′

(ω) > θ(ω), such that At
′ (ω)(ω) = Aθ(ω).

Proof of Proposition 3.14: Let us introduce the following set:

A =
{

ω ∈ Ω s.t. θ(ω) < T and
(

∀t
′

∈]θ(ω), T ], At
′ (ω) > Aθ(ω) and v(θ)(ω) > φ(θ)(ω)

)}

.

Without loss of generality, we can Suppose for each ω, the function t 7→ At(ω) is RC. Then, one

can easily see that for each p ∈ N∗,

A =
⋂

n≥p

{

A(θ+ 1
n
)∧T > Aθ and v(θ) > φ(θ)

}

∩ {θ < T },

which implies that A ∈ Fθ+ 1
p
. Hence,

A ∈
⋂

p≥1

F(θ+ 1
p
)∧T = Fθ,

by the right-continuity of the filtration (Ft). Suppose now that P (A) > 0.

The definition of A gives clearly that for each θ
′

∈ T0 with 1Aθ ≺ 1Aθ
′

, we have 1AAθ
′ ≻ 1AAθ.

Now, one can easily show this inequality is equivalent to

E[v(θ
′

)|Fθ] ≺ v(θ) a.s. on A.

Hence, v is a strict supermartingale on the right at θ on A, which gives v(θ) = φ(θ) a.s. on A

by Theorem 3.5. This provides the expected contradiction. Therefore, P (A) = 0. �

In the following, we state the continuity property of the non decreasing process (At) (well

known in the case of a continuous reward process).

Proposition 3.15. Suppose {φ(θ), θ ∈ T0} is a RCE and left-USCE admissible family and that

E[ess sup
θ∈T0

φ(θ)] < ∞. Then, the nondecreasing process (At) is continuous.

Proof: Recall that the value function (vt) is a RCLL supermartingale which is uniformly

integrable and LCE (see Proposition 2.9). Then, the result follows from a result of the general

theory of processes (see Proposition A.21 in the Appendix). �

Furthermore, in case of a RCLL adapted reward process (φt), we have

Proposition 3.16. Suppose now that the reward φ is given by a RCLL adapted process (φt)

which is left-USCE and such that E[ess supt∈[0,T ]φt] < ∞.

Then, for almost every ω, the nondecreasing continuous function t 7→ At(ω) is “flat” away from

the set H(ω) := {t ∈ [0, T ] , vt(ω) = φt(ω)} i.e.
∫ T

0 1vt>φt
dAt = 0 a.s.
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Remark 3.20. In the case of a continuous reward (φt), this proposition corresponds to Theorem

D13 in Karatzas and Shreve ((1998)).

Proof: The proof is based on Proposition 3.14 and on classical analytic arguments. Note that

these analytic arguments are the same as those used in the proof of Theorem D13 in Karatzas

and Shreve ((1998)).

Without loss of generality, we can Suppose for each ω, the maps t 7→ vt(ω), t 7→ φt(ω) are

right-continuous and t 7→ At(ω) is continuous.

Let us denote by J (ω) the set on which the nondecreasing function t 7→ At(ω) is “flat”:

J (ω) := {t ∈]0, T [ , ∃ε > 0 with At−ε(ω) = At+ε(ω)}

The set J (ω) is clearly open and hence can be written as a countable union of disjoint intervals:

J (ω) = ∪i]αi(ω), βi(ω)[. We consider

Ĵ (ω) = ∪i[αi(ω), βi(ω)[= {t ∈ [0, T [ , ∃ε > 0 with At(ω) = At+ε(ω)}.

The nondecreasing function t 7→ At(ω) is “flat” on Ĵ (ω) in the sense that
∫ T

0 1Ĵ (ω)dAt(ω) =
∑

i(Aβi(ω) −Aαi(ω)) = 0. We will show that for almost every ω,

Hc(ω) ⊂ Ĵ (ω),

which will clearly give the desired result.

Let us denote by Q the set of rationals. By Proposition 3.14 (or Remark 3.19) applied to

constant stopping times θ := t, where t ∈ Q ∩ [0, T [, it follows that for a.e. ω,

{t ∈ Q ∩ [0, T [ s.t. vt(ω) > φt(ω)} ⊂ Ĵ (ω). (3.9)

Let us now show that the desired inclusion

Hc(ω) = {t ∈ [0, T [ s.t. vt(ω) > φt(ω)} ⊂ Ĵ (ω)

holds for a.e. ω. Fix ω such that (3.9) holds and fix t ∈ Hc(ω). Since vt(ω) > φt(ω) and

since the maps t 7→ vt(ω) and t 7→ φt(ω) are right-continuous, there exists a non increasing

sequence of rationals tn(ω) ∈ Q ∩ [0, T [ such that t = lim
n→∞

↓ tn(ω) with vtn(ω)(ω) > φtn(ω)(ω)

for each n. Using the above inclusion (3.9), the equality Ĵ (ω) = ∪i[αi(ω), βi(ω)[ and the fact

that t = lim
n→∞

↓ tn(ω), we derive that there exist i and n0 (which both depend on ω) such that

for each n ≥ n0, tn(ω) ∈ [αi(ω), βi(ω)[. It follows that the limit t ∈ [αi(ω), βi(ω)[, which gives

that t ∈ Ĵ (ω). Hence, the inclusion Hc(ω) ⊂ Ĵ (ω) is proven, which ends the proof. �

Remark 3.21. Note that in the paper on multiple stopping time problem (see Kobylanski et al.

(2010) and Kobylanski et al. (2010)), the value function can be written as the value function of

a one stopping time problem with a “new reward” family {φ(θ), θ ∈ T0} which is RCE but which

a priori cannot be aggregated by a RCLL adapted process. Hence, Proposition 3.16 cannot be

applied. However, Propositions 3.13, 3.14 and 3.15 do hold true.

4 The particular case of a reward process

In this section, we give an application of the previous results to a particular case where the re-

ward is given by a progressive process (φt, 0 ≤ t ≤ T ) which satisfies some regularity properties

precised below. In this case, the value function can be aggregated. Also, the (1 − λ)-optimal

stopping times as well as the minimal optimal stopping time can be written as hitting times of

processes.
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4.1 Case of a reward process (φt)

Let (φt, 0 ≤ t ≤ T ) be a progressive process. Note that the family {φ(θ), θ ∈ T0} defined by

φ(θ) = φθ is admissible. Suppose that v(0) < ∞.

Recall first that since {v+(θ), θ ∈ T0} is a supermartingale system which is RCE, there

exists a RCLL process (v+t , 0 ≤ t ≤ T ) that aggregates the family {v+(θ), θ ∈ T0} that is such

that

v+(θ) = v+θ a.s. for all θ ∈ T0 . (4.1)

Define the process (vt) by

vt := φt ∨ v+t . (4.2)

By Proposition 1.5, we clearly have

Proposition 4.17. Suppose that the reward is given by a a progressive process (φt) such that

the associated value function statisfies v(0) < ∞. Then, the adapted process (vt) defined by (4.2)

aggregates the value function family {v(S) , S ∈ T0}, that is for all S ∈ T0, v(S) = vS a.s..

Moreover, if the family {φθ, θ ∈ T0} is right-USC (resp. right-USCE), then the first (resp.

second) point of Theorem 2.1 can be applied, that is for each λ ∈]0, 1[, θλ(S) is (1−λ)-optimal

for vS (resp. for E[vS ]).

We now state that under some additional assumptions, for each λ ∈]0, 1[, θλ(S) can be

written as a hitting time of processes.

Definition 4.10. A process (φt, 0 ≤ t ≤ T ) is said to be right upper-semicontinuous (right-

USC) if for almost every ω, the function t 7→ φt(ω) is right upper-semicontinuous, that is for

each t ∈ [0, T ],

φt(ω) ≥ lim sup
s→t+

φs(ω).

For each λ ∈]0, 1[ let us define the following stopping time for each ω by:

τλ(S)(ω) := inf{t ≥ S(ω) , λv+t (ω) ≤ φt(ω)}.

Proposition 4.18. Suppose that (φt, 0 ≤ t ≤ T ) is a right-USC progressive process with v(0) <

∞. Fix S ∈ T0. Then, for each λ ∈]0, 1[,

τλ(S) = θλ(S) a.s..

In particular, τλ(S) is a (1 − λ)-optimal stopping time for vS , that is λvS ≤ E[φτλ(S)) | FS]

a.s.

Remark 4.22. Note that the condition v(0) < ∞ is satisfied for example if

E[ess sup 0≤t≤Tφt] < ∞.

Proof: To simplify the notation, let us denote θλ(S) by θλ and τλ(S) by τλ.

By the first point of Lemma 2.3, for almost every ω ∈ Ω,

λvθλ(ω)(ω) ≤ φθλ(ω)(ω) a.s. ,

which implies that τλ(ω) ≤ θλ(ω) by definition of τλ(ω).

Let us show the other inequality. Suppose first we have shown that for each λ ∈]0, 1[, the

stopping time τλ satisfies

λvτλ ≤ φτλ a.s.. (4.3)

Hence, τλ ∈ TS = { θ ∈ TS , λv+(θ) ≤ φ(θ) a.s. } which implies that θλ = ess inf TS ≤ τλ a.s..

Consequently, the desired equality τλ = θλ a.s. follows.

27



It remains to show inequality (4.3). The proof is done by fixing ω ∈ Ω such that the function

t 7→ φt(ω) is right upper-semicontinuous and the function t 7→ v+t (ω) is right continuous. Then,

the same arguments of analysis as those in the proof of Lemma 2.3 (case a) hold except that

the minimizing sequence (θn) in TS for θλ is replaced by a non increasing sequence of reals

(tn) (which depend of ω) in [S(ω), T ] such that τλ(ω) = lim
n→∞

↓ tn and such that for each n,

λv+tn(ω) ≤ φtn(ω). �

Suppose that {φθ, θ ∈ T0} is right and left-USCE. Then, Theorems 2.2 and 2.3 can be

applied. Moreover, we have:

Proposition 4.19. Suppose that (φt, 0 ≤ t ≤ T ) is a right-USC progressive process with v(0) <

∞ and that it is left-USCE. Then, for all S ∈ T0, the stopping time τ∗(S) defined by

τ∗(S) = inf{ t ≥ S , vt = φt } = inf{t ≥ S , v+t ≤ φt }

is the minimal optimal stopping time for vS . In other words, τ∗(S) = θ∗(S) a.s.

Proof: Again, let us denote θ∗(S) by θ∗, τ∗(S) by τ∗, θ
λ(S) by θλ and τλ(S) by τλ.

First, we clearly have that lim
λ↑1

↑ τλ ≤ τ∗ a.s.. Also,

lim
λ↑1

↑ τλ = lim
λ↑1

↑ θλ = θ∗ a.s.,,

and hence, θ∗ ≤ τ∗ a.s..

Furthermore, for almost every ω, since vθ∗(ω)(ω) = φθ∗(ω)(ω), it follows that τ∗(ω) ≤ θ∗(ω)

by definition of τ∗(ω).

Thus, we have proven that θ∗ = τ∗ a.s.. �

Remark 4.23. Note that in the paper on multiple stopping time problem of Kobylanski et al.

(2010), the value function can be written as the value function of a one stopping time problem

with a “new reward” family {φ(θ), θ ∈ T0} which is RCE and LCE. In that paper, under some

specific assumptions, the reward family is shown to be aggregated by a progressive process which

is right-USC because it is the limit of a non increasing sequence of RC processes (see Theorem

4.1 and Corollary 4.1). The results of Propositions 4.18 and 4.19 applied to that case exactly

correspond to Theorem 4.2 and Proposition 4.3 in Kobylanski et al. (2010).

4.2 Some examples

We are given a RCLL adapted process (Xt)0≤t≤T valued in Rd which is supposed to be LC that

is left continuous along stopping times.

Let f : Rd → R+ be an upper-semicontinuous function such that

E[ess supt∈[0,T ]f(Xt)] < ∞. (4.4)

For instance, the function f = 1F , where F is a closed subset of Rd, satisfies these conditions.

Then, the process (φt) given by

φt = f(Xt) , 0 ≤ t ≤ T,

is USCE.

Also, note that, since the sum and the product of positive upper-semicontinuous functions

are upper-semicontinuous, one can easily build number of USCE rewards.
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For example, let us consider the process (φ1
t ) defined by

φ1
t = f1(Xt)1{Xt∈F 1} + f2(Xt)1{Xt∈F 2} , 0 ≤ t ≤ T,

where f1, f2 are upper-semicontinuous positive functions satisfying (4.4) and where F 1 and F 2

are closed subsets of Rd and let us consider for d = 1 the process (φ2
t ) defined by

φ2
t = f

(
∫ t

0

Xs ds

)

1{X∗

t ∈[a,b]}, 0 ≤ t ≤ T,

where X∗
t := sup

0≤s≤t

Xs and f is an upper-semicontinuous positive function satisfying (4.4).

Note that (φ1
t ) and (φ2

t ) are USCE by the above remarks and the fact that the processes (X∗
t )

and (
∫ t

0
Xs ds) are RCLL and LC.

This opens a way to a large range of applications to all kinds of exotic American options.

A

A.1 Essential supremum

We recall the following theorem on the essential supremum of a family of random variables (see

for example Neveu (1975)).

Theorem A.7. (Essential supremum) Let F be a non empty family of measurable real valued

functions f : Ω → R defined on a probability space (Ω,F , P ). Then there exists a measurable

function g : Ω → R such that

1. for all f ∈ F , f ≤ g a.s.,

2. if h is a measurable function satisfying f ≤ h a.s. for all f ∈ F , then g ≤ h a.s..

Moreover there exists a countable subset G∗ of F such that g = supf∈G f .

This function g, which is unique a.s., is called the essential supremum of F and is denoted

ess sup F .

A.2 Two results of the general theory of processes

Recall the following classical aggregation result.

Proposition A.20. Let { h(S), S ∈ T0 } be a supermartingale admissible system which is RCE

with h(0) < ∞. Then, there exists a RCLL adapted process (ht) which aggregates the family

{ h(S), S ∈ T0 }, that is hS = h(S) a.s. for each S ∈ T0.

In particular, the family {h(θ), θ ∈ T0} is RC (that is right continuous along stopping times).

Proof: For completeness, we give the short proof based on a well known result of the general

theory of processes. Let us consider the process (h(t))0≤t≤T . It is a supermartingale and the

function t 7→ E(h(t)) is right continuous. By a classical result (see Theorem 3.13 in Karatzas

and Shreve (1994)), there exists a RCLL supermartingale (ht)0≤t≤T which is a modification of

the process (h(t))0≤t≤T , that is such that for each t ∈ [0, T ], the equality ht = h(t) holds a.s.

Then, it is clear that for each dyadic stopping time S ∈ T0, hS = h(S) a.s.. This implies that

E[hS ] = E[h(S)]. Since the process (ht)0≤t≤T is RCLL and since the family {h(S), S ∈ T0} is

right continuous in expectation, this equality still holds for any stopping time S ∈ T0. Then,

it remains to show this implies that hS = h(S) a.s. This is classical. Let A ∈ FS and define

SA = S1A + T1Ac . Since SA is a stopping time, E[hSA
] = E[h(SA)]. Since hT = h(T ) a.s.,
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it gives that E[hS1A] = E[h(S)1A], which gives the desired result. The RC property clearly

follows. �

This Proposition with the supermartingale and RCE properties of v+ gives the following

property:

Corollary A.4. Let {φ(θ), θ ∈ T0 } be an admissible family such that v(0) < ∞. Then, there

exists a RCLL adapted process (v+t ) which aggregates the family { v+(S), S ∈ T0 }, that is

v+S = v+(S) a.s. for each S ∈ T0.

In particular, the family { v+(S), S ∈ T0 } is RC.

Recall now a result of the general theory of processes (Dellacherie and Meyer (1980) Th 10.

Chap VII).

Proposition A.21. Let (ut) be a RCLL supermartingale of class D and LCE. Then, the non

decreasing predictable process (At) of the Doob-Meyer decomposition of (ut) is continuous.

Proof: For the sake of completeness, we give here the proof which is based on a classical result

of the general theory of processes. Note first that since (ut) is LCE, it follows that (At) is also

LCE.

Let θ be a predictable stopping time of T0. There exists a sequence of stopping times (θn)

announcing θ that is a nondecreasing sequence of stopping times (θn) in T0 such that θn < θ

a.s. on θ > 0 and θn = 0 otherwise and such that θ = lim
n→∞

↑ θn.

Since (At) is LCE, E[Aθ] = lim
n→∞

E[Aθn ] = E[Aθ− ], which gives that Aθ = Aθ− a.s.

Hence, the predictable processes (At) and (At−) satisfy that for each predictable stopping time

θ ∈ T0, Aθ = Aθ− a.s.

By a classical result of the general theory of processes based on a section theorem (see Dellacherie

and Meyer (1977) Th 86. Chap IV), it follows that the predictable processes (At) and (At−)

are indistinguishable. Hence, the process (At) is continuous. �
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velle édition. Hermann. MR0566768

[4] El Karoui, N. (1981). Les aspects probabilistes du contrôle stochastique. École d’été de
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