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Abstract
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Introduction

These very short lecture notes do not want to be an exhaustive presentation of the topic, but only
a short list of results, concepts and ideas which are useful when dealing for the first time with the
theory of Optimal Transport. Several of these ideas have been used, and explained in deeper details,
during the other classes of the Summer School “Optimal transportation : Theory and applications”
which were the occasion for the redaction of these notes. The style that was chosen when preparing
them, in view of their use during the Summer School, was highly informal and this revised version
will respect the same style.

The main references for the whole topic are the two books on the subject by C. Villani ([16, 17]).
For what concerns curves in the space of probability measures, the best specifically focused reference
is [2]. Moreover, I’m also very indebted to the approach that L. Ambrosio used in a course at SNS
Pisa in 2001/02 and I want to cite as another possible reference [1].

The motivation for the whole subject is the following problem proposed by Monge in 1781 ([14]):
given two densities of mass f, g ≥ 0 on R

d, with
∫

f =
∫

g = 1, find a map T : Rd → R
d pushing

the first one onto the other, i.e. such that
∫

A
g(x)dx =

∫

T−1(A)
f(y)dy for any Borel subset A ⊂ R

d (0.1)

and minimizing the quantity
∫

Rd

|T (x)− x|f(x)dx

among all the maps satisfying this condition. This means that we have a collection of particles,
distributed with density f on R

d, that have to be moved, so that they arrange according to a new
distribution, whose density is prescribed and is g. The movement has to be chosen so as to minimize
the average displacement. The map T describes the movement (that we must choose in an optimal
way), and T (x) represents the destination of the particle originally located at x. The constraint on
T precisely accounts for the fact that we need to reconstruct the density g. In the following, we
will always define, similarly to (0.1), the image measure of a measure µ on X (measures will indeed
replace the densities f and g in the most general formulation of the problem) through a measurable
map T : X → Y : it is the measure denoted by T#µ on Y and caracterized by

T#µ(A) = µ(T−1(A)) for every measurable set A,

or

∫

Y
φ d (T#µ) =

∫

X
φ ◦ T dµ for every measurable function φ.

The problem of Monge has stayed with no solution (does a minimizer exist? how to characterize
it?. . . ) till the progress made in the 1940s. Indeed, only with the work by Kantorovich (1942) it
has been inserted into a suitable framework which gave the possibility to approach it and, later,
to find that solutions actually exist and to study them. The problem has been widely generalized,
with very general cost functions c(x, y) instead of the Euclidean distance |x − y| and more general
measures and spaces. For simplicity, here we will not try to present a very wide theory on generic
metric spaces, manifolds and so on, but we will deal only with the Euclidean case.
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1 Primal and dual problems

In what follows we will suppose Ω to be a (very often compact) domain of Rd and the cost function
c : Ω× Ω → [0,+∞[ will be supposed continuous and symmetric (i.e. c(x, y) = c(y, x)).

1.1 Kantorovich and Monge problems

The generalization that appears as natural from the work of Kantorovich ([12]) of the problem raised
by Monge is the following:

Problem 1. Given two probability measures µ and ν on Ω and a cost function c : Ω×Ω → [0,+∞]
we consider the problem

(K) min

{
∫

Ω×Ω
c dγ |γ ∈ Π(µ, ν)

}

, (1.1)

where Π(µ, ν) is the set of the so-called transport plans, i.e. Π(µ, ν) = {γ ∈ P(Ω × Ω) : (p+)#γ =
µ, (p−)#γ = ν, } where p+ and p− are the two projections of Ω × Ω onto Ω. These probability
measures over Ω × Ω are an alternative way to describe the displacement of the particles of µ:
instead of saying, for each x, which is the destination T (x) of the particle originally located at
x, we say for each pair (x, y) how many particles go from x to y. It is clear that this description
allows for more general movements, since from a single point x particles can a priori move to different
destinations y. If multiple destinations really occur, then this movement cannot be described through
a map T . Notice that the constraints on (p±)#γ exactly mean that we restrict our attention to the
movements that really take particles distributed according to the distribution µ and move them
onto the distribution ν.

The minimizers for this problem are called optimal transport plans between µ and ν. Should γ
be of the form (id × T )#µ for a measurable map T : Ω → Ω (i.e. when no splitting of the mass
occurs), the map T would be called optimal transport map from µ to ν.

Remark 1. It can be easily checked that if (id× T )#µ belongs to Π(µ, ν) then T pushes µ onto ν
(i.e. ν(A) = µ(T−1(A)) for any Borel set A) and the functional takes the form

∫

c(x, T (x))µ(dx),
thus generalizing Monge’s problem.

This generalized problem by Kantorovich is much easier to handle than the original one proposed
by Monge: for instance in the Monge case we would need existence of at least a map T satisfying
the constraints. This is not verified when µ = δ0, if ν is not a single Dirac mass. On the contrary,
there always exist transport plan in Π(µ, ν) (for instance µ⊗ ν ∈ Π(µ, ν)). Moreover, one can state
that (K) is the relaxation of the original problem by Monge: if one considers the problem in the
same setting, where the competitors are transport plans, but sets the functional at +∞ on all the
plans that are not of the form (id× T )#µ, then one has a functional on Π(µ, ν) whose relaxation is
the functional in (K) (see [3]).

Anyway, it is important to notice that an easy use of the Direct Method of Calculus of Variations
(i.e. taking a minimizing sequence, saying that it is compact in some topology - here it is the weak
convergence of probability measures - finding a limit, and proving semicontinuity (or continuity) of
the functional we minimize, so that the limit is a minimizer) proves that a minimum does exist.

3



As a consequence, if one is interested in the problem of Monge, the question may become“does
this minimum come from a transport map T ?”. Actually, if the answer to this question is yes, then
it is evident that the problem of Monge has a solution, which also solves a wider problem, that of
minimizing among transport plans. In some cases proving that the optimal transport plan comes
from a transport map (or proving that there exists at least one optimal plan coming from a map)
is equivalent to proving that the problem of Monge has a solution, since very often the infimum
among transport plans and among transport maps is the same. Yet, in the presence of atoms, this
is not always the case, but we will not insist any more on this degenerate case.

1.2 Duality

Since the problem (K) is a linear optimization under linear constraints, an important tool will be
duality theory, which is typically used for convex problems. We will find a dual problem (D) for (K)
and exploit the relations between dual and primal.

The first thing we will do is finding a formal dual problem, by means of an inf-sup exchange.
First express the constraint γ ∈ Π(µ, ν) in the following way : notice that, if γ is a non-negative

measure on Ω× Ω, then we have

sup
φ, ψ

∫

φdµ+

∫

ψ dν −

∫

(φ(x) + ψ(y)) dγ =

{

0 if γ ∈ Π(µ, ν)

+∞ otherwise
.

Hence, one can remove the constraints on γ if he adds the previous sup, since if they are satisfied
nothing has been added and if they are not one gets +∞ and this will be avoided by the minimization.
Hence we may look at the problem we get and interchange the inf in γ and the sup in φ,ψ:

min
γ

∫

c dγ + sup
φ,ψ

(
∫

φdµ+

∫

ψ dν −

∫

(φ(x) + ψ(y)) dγ

)

=

sup
φ,ψ

∫

φdµ+

∫

ψ dν + inf
γ

∫

(c(x, y) − (φ(x) + ψ(y))) dγ.

Obviously it is not always possible to exchange inf and sup, and the main tool to do it is a theorem
by Rockafellar requiring concavity in one variable, convexity in the other one, and some compactness
assumption. We will not investigate anymore whether in this case these assumptions are satisfied
or not. But the result is true.

Afterwards, one can re-write the inf in γ as a constraint on φ and ψ, since one has

inf
γ≥0

∫

(c(x, y) − (φ(x) + ψ(y))) dγ =

{

0 if φ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ Ω× Ω

−∞ otherwise
.

This leads to the following dual optimization problem.
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Problem 2. Given the two probabilities µ and ν on Ω and the cost function c : Ω × Ω → [0,+∞]
we consider the problem

(D) max

{
∫

Ω
φdµ +

∫

Ω
ψ dν

∣

∣

∣

∣

φ ∈ L1(µ), ψ ∈ L1(ν) : φ(x)+ψ(y) ≤ c(x, y) for all (x, y) ∈ Ω×Ω

}

,

(1.2)

This problem does not admit a straightforward existence result, since the class of admissible
functions lacks compactness. Yet, we can better understand this problem and find existence once
we have introduced the notion of c−transform (a kind of generalization of the well-known Legendre
transform).

Definition 1. Given a function χ : Ω → R we define its c−transform (or c−conjugate function) by

χc(y) = inf
x∈Ω

c(x, y)− χ(x).

Moreover, we say that a function ψ is c−concave if there exists χ such that ψ = χc and we denote
by Ψc(Ω) the set of c−concave functions.

It is quite easy to realize that, given a pair (φ,ψ) in the maximization problem (D), one can
always replace it with (φ, φc), and then with (φcc, φc), and the constraints are preserved and the
integrals increased. Actually one could go on but it is possible to prove that φccc = φc for any
function φ. This is the same as saying that ψcc = ψ for any c−concave function ψ, and this
prefectly recalls what happens for the Legendre transform of convex funtions (which corresponds to
the particular case c(x, y) = x · y).

A consequence of these considerations is the following well-known result

Proposition 1.1. We have

min(K) = max
ψ∈Ψc(Ω)

∫

Ω
ψ dµ+

∫

Ω
ψc dν, (1.3)

where the max on the right hand side is realized. In particular the minimum value of (K) is a convex
function of (µ, ν), as it is a supremum of linear functionals.

Definition 2. The functions ψ realizing the maximum in (1.3) are called Kantorovich potentials for
the transport from µ to ν. This is in fact a small abuse, because usually this term is used only in
the case c(x, y) = |x− y|, but it is usually understood in the general case as well.

Notice that any c−concave function shares the same modulus of continuity of the cost c. This is
the reason why one can prove existence for (D) (which is the same of the right hand side problem
in the previous proposition), by applying Ascoli-Arzelà’s Theorem.

In, particular, in the case c(x, y) = |x− y|p, if Ω is bounded with diameter D, any ψ ∈ Ψc(Ω) is
pDp−1−Lipschitz continuous. Notice that the case where c is a power of the distance is actually of
particular interest and two values of the exponent p are remarkable: the cases p = 1 and p = 2. In
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these two cases we provide characterizations for the set of c−concave functions. Let us denote by
Ψ(p)(Ω) the set of c−concave functions with respect the cost c(x, y) = |x− y|p/p. It is not difficult
to check that

ψ ∈ Ψ(1)(Ω) ⇐⇒ ψ is a 1-Lipschitz function;

ψ ∈ Ψ(2)(Ω) =⇒ x 7→
x2

2
− ψ(x) is a convex function; if Ω = R

d this is an equivalence.

1.3 The case c(x, y) = |x− y|

The case c(x, y) = |x− y| shows a lot of interesting features, even if from the point of the existence
of an optimal map T it is one of the most difficult. A first interesting property is the following:

Proposition 1.2. For any 1−Lipschitz function ψ we have ψc = −ψ. In particular, Formula 1.3
may be re-written as

min(K) = max(D) = max
ψ∈Lip1

∫

Ω
ψ d(µ− ν).

The key point of the previous proposition is proving ψc = −ψ. This is easy if one considers
that ψc(y) = infx |x − y| − ψ(x) ≤ −ψ(x) (taking x = y), but also ψc(y) = infx |x − y| − ψ(x) ≥
infx |x− y| − |x− y|+ ψ(y) = ψ(y) (making use of the Lipschitz behaviour of ψ).

Another peculiar feature of this case is the following:

Proposition 1.3. Consider the problem

(B) min
{

M(λ)
∣

∣

∣
λ ∈ Md(Ω); ∇ · λ = µ− ν

}

, (1.4)

where M(λ) denotes the mass of the vector measure λ and the divergence condition is to be read
in the weak sense, with Neumann boundary conditions, i.e. −

∫

∇φ ·dλ =
∫

φd(µ − ν) for any
φ ∈ C1(Ω). If Ω is convex then it holds

min(K) = min(B).

This proposition links the Monge-Kantorovich problem to a minimal flow problem which has
been first proposed by Beckmann in [5], under the name of continuous transportation model. He
did not know this link, as Kantorovich’s theory was being developed independently almost in the
same years. In Section 2.1 we will see some details more on this model and on the possibility of
generalizing it to the case of distances c(x, y) coming from Riemannian metrics. In particular, in
the case of a nonconvex Ω, (B) would be equivalent to a Monge-Kantorovich problem where c is the
geodesic distance on Ω.

To have an idea of why these equivalences between (B) and (K) hold true, one can look at the
following considerations.

First, a formal computation. We take the problem (B) and re-write the constraint on λ by means
of the quantity

sup
φ

∫

−∇φ · dλ+

∫

φd(µ − ν) =

{

0 if ∇ · λ = µ− ν

+∞ otherwise
.
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Hence one can write (B) as

min
λ
M(λ) + sup

φ

∫

−∇φ · dλ+

∫

φd(µ − ν) = sup
φ

∫

φd(µ − ν) + inf
λ
M(λ)−

∫

∇φ · dλ,

where inf and sup have been exchanged formally as in the previous computations. After that one
notices that

inf
λ
M(λ)−

∫

∇φ · dλ = inf
λ

∫

d|λ|

(

1−∇φ ·
dλ

d|λ|

)

=

{

0 if |∇φ| ≤ 1

−∞ otherwise

and this leads to the dual formulation for (B) which gives

sup
φ : |∇φ|≤1

∫

Ω
φ d(µ− ν).

Since this problem is exactly the same as (D) (a consequence of the fact that Lip1 functions are
exactly those functions whose gradient is smaller than 1), this gives the equivalence between (B)
and (K).

Most of the considerations above, especially those on the problem (B) do not hold for costs other
than the distance |x − y|. The only possible generalizations I know concern either a cost c which
comes from a Riemannian distance k(x) (i.e. c(x, y) = inf{

∫ 1
0 k(σ(t))|σ

′(t)|dt : σ(0) = x, σ(1) = y},
which gives a problem (B) with

∫

k(x)d|λ| instead of M(λ)) or the fact that p−homogeneous costs
may become 1−homogeneous through the introduction of time as an extra variable (see [11]). Some
more details on the problem (B) can be found in the lectures notes on “Models and applications of
optimal transport in economics, traffic and urban planning” of this same Summer School, [15].

1.4 c(x, y) = h(x− y) with h strictly convex and the existence of an optimal T

We summarize here some useful results for the case where the cost c is of the form c(x, y) = h(x−y),
for a strictly convex function h.

The main tool is the duality result. If we have equality between the minimum of (K) and the
maximum of (D) and both extremal values are realized, one can consider an optimal transport plan
γ and a Kantorovich potential ψ and write

ψ(x) + ψc(y) ≤ c(x, y) on Ω× Ω and ψ(x) + ψc(y) = c(x, y) on spt γ.

The equality on spt γ is a consequence of the inequality which is valid everywhere and of

∫

c dγ =

∫

ψ dµ+

∫

ψc dν =

∫

(ψ(x) + ψc(y)) dγ,

which implies equality γ−a.e. These functions being continuous, the equality passes to the support
of the measure.
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Once we have that, let us fix a point (x0, y0) ∈ spt γ. One may deduce from the previous
computations that

x 7→ ψ(x) − h(x− y0) is minimal at x = x0

and, if ψ is differentiable at x0, one gets ∇ψ(x0) ∈ ∂h(x0 − y0). For a strictly convex function h one
may inverse the relation passing to ∇h∗ thus getting

x0 − y0 = ∇h∗(x0) = (∂h)−1(x0).

This solves several questions concerning the transport problem with this cost, provided ψ is differen-
tiable a.e. with respect to µ. This is usually guaranteed by requiring µ to be absolutely continuous
with respect to the Lebsgue measure, and using the fact that ψ may be proven to be Lipschitz.
Then, one may use the previous computation to deduce that, for every x0, the point y0 such that
(x0, y0) ∈ sptγ is unique (i.e. γ is of the form (id × T )#µ where T (x0) = y0). Moreover, this also
gives uniqueness of the optimal trasport plan and of the gradient of the Kantorovich potential.

We may summarize everything in the following theorem:

Theorem 1.4. Given µ and ν probability measures on a domain Ω ⊂ R
d there exists an optimal

transport plan π. It is unique and of the form (id × T )#µ, provided µ is absolutely continuous.
Moreover there exists also at least a Kantorovich potential ψ, and the gradient ∇ψ is uniquely
determined µ−a.e. (in particular ψ is unique up to additive constants, provided the density of µ
is positive a.e. on Ω). The optimal transport map T and the potential ψ are linked by T (x) =
x − (∇h∗)(∇ψ(x)). Moreover we have ψ(x) + ψc(T (x)) = c(x, T (x)) for µ−a.e. x. Conversely,
every map T which is of the form T (x) = x− (∇h∗)(∇ψ(x)) for a function ψ ∈ Ψc(Ω) is an optimal
transport plan from µ to T#µ.

Remark 2. Actually, the existence of an optimal transport map is true under weaker assumptions:
we can replace the condition of being absolutely continuous with the condition “µ(A) = 0 for any
A ⊂ R

d such thatHd−1(A) < +∞” or with any condition which ensures that the non-differentiability
set of ψ is negligible. In the theorem we used the Lipschitz behavior of ψ ∈ Ψc and applied
Rademacher Theorem, but c−concave functions are often more regular than only Lipschitz.

Remark 3. In Theorem 1.4 only the part concerning the optimal map T is not symmetric in µ and
ν: hence the uniqueness of the Kantorovich potential is true even if it ν (and not µ) has positive
density a.e. (since one can retrieve ψ from ψc and viceversa).

Remark 4. Theorem 1.4 may be particularized to the quadratic case c(x, y) = |x − y|2/2, thus
getting the existence of an optimal transport map

T (x) = x−∇ψ(x) = ∇

(

x2

2
− ψ(x)

)

= ∇φ(x)

for a convex function φ. By using the converse implication (sufficient optimality conditions), this
also proves the existence and the uniqueness of a gradient of a convex function transporting µ onto ν.
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This well known fact has been investigated first by Brenier (see [6]) and is often known as Brenier’s
Theorem.

Let us moreover notice that a specific approach for the case |x − y|2, based on the fact that
we can withdraw the parts of the cost depending on x or y only and maximize

∫

x·y dγ, gives the
same result in a easier way: we actually get φ(x0) + φ∗(y0) = x0 · y0 for a convex function φ and its
Legendre transform φ∗ and we deduce y0 ∈ ∂φ(x0).

All the costs of the form c(x, y) = |x− y|p with p > 1 fall under Theorem 1.4.
We finish the part dedicated to positive results by noticing that the same method may not be

used if h is only convex, or at least does not give results as strong as what it does if h is strictly
convex. Yet, there is anyway something which is known for the case c(x, y) = |x − y|. The results
are a bit weaker (and much harder) and are summarized below (this is the classical Monge case and
we refer to [3], even if several different proofs have been provided by different methods). Notice that
a lot of literature is currently being dedicated to the case of other norms than the Euclidean one
and other distance functions.

Theorem 1.5. Given µ and ν probability measures on a domain Ω ⊂ R
d there exists at least an

optimal transport plan π for the cost c(x, y) = |x − y|. Moreover, one of such plans is of the form
(id × T )#µ provided µ is absolutely continuous. There exists a Kantorovich potential ψ, and its
gradient is unique µ−a.e.and we have ψ(x)− ψ(T (x)) = |x− T (x)| for µ−a.e. x, for any choice of
optimal T and ψ.

Here the absolute continuity assumption is essential to have existence of an optimal transport
map, in the sense that in general it cannot be replaced by weaker assumptions as in the strictly
convex case.

Morevoer, we can provide a counter-exemple showing that in general it is necessary that µ does
not give mass to “small” sets.

Example 1. Set

µ = H1 A and ν =
H1 B +H1 C

2

where A, B and C are three vertical parallel segments in R
2 whose vertexes lie on the two line y = 0

and y = 1 and the abscissas are 0, 1 and −1, respectively, and H1 is the 1−dimensional Haudorff
measure. It is clear that no transport plan may realize a cost better than 1 since, horizontally, every
point needs to be displaced of a distance 1. Moreover, one can get a sequence of maps Tn : A→ B∪C
by dividing A into 2n equal segments (Ai)i=1,...,2n and B and C into n segments each, (Bi)i=1,...,n and
(Ci)i=1,...,n (all ordered downwards). Then define Tn as a piecewise affine map which sends A2i−1

onto Bi and A2i onto Ci. In this way the cost of the map Tn is less than 1 + 1/n, which implies
that the infimum of the Kantorovich problem is 1, as well as the infimum on transport maps only.
Yet, no map T may obtain a cost 1, as this would imply that all points are sent horizontally,but
this cannot respect the push-forward constraint. On the other hand, the transport plan associated
to Tn weakly converge to the transport plan 1

2T
+
#µ + 1

2T
−
#µ, where T

±(x) = x ± e and e = (1, 0).
This transport plan turns out to be the only optimal transport plan and its cost is 1.
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Notice that the same construction provides also an example of the relaxation procedure leading
from Monge to Kantorovich.

A BC

BiCi
A2i−1

A2i

2 Wasserstein distances and spaces

Starting from the values of the problem (K) in (1.1) we can define a set of distances over P(Ω). For
any p ≥ 1 we can define

Wp(µ, ν) =
(

min(K) with c(x, y) = |x− y|p
)1/p

.

We recall that, by Duality Formula, we have

1

p
W p
p (µ, ν) = sup

ψ∈Ψ(p)(Ω)

∫

Ω
ψ dν +

∫

Ω
ψc dµ. (2.1)

Theorem 2.1. If Ω is compact, for any p ≥ 1 the function Wp is in fact a distance over P(Ω)
and the convergence with respect to this distance is equivalent to the weak convergence of probability
measures. In particular any functional µ 7→ Wp(µ, ν) is continuous with respect to weak topology.

To prove that the convergence according to Wp is equivalent to weak convergence one first
establish this result for p = 1, through the use of the duality with the functions in Lip1. Then it
is possible to use the inequalities between the distances Wp (see below) to extend the result to a
general p.

The case of a noncompact Ω is a little more difficult. First, the distance must be defined only on
a subset of the whole space of probability measures, to avoid infinite values. We will use the space
of probabilities with finite p−th momentum:

Wp(Ω) = {µ ∈ P(Ω) : mp(µ) :=

∫

Ω
|x|pµ(dx) < +∞}.

Theorem 2.2. For any p ≥ 1 the function Wp is a distance over Wp(Ω) and, given a measure µ
and a sequence (µn)n in Wp(Ω), the following are equivalent:

• µn → µ according to Wp;
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• µn ⇀ µ and mp(µn) → mp(µ);

•
∫

Ω φ dµn →
∫

Ω φ dµ for any φ ∈ C0(Ω) whose growth is at most of order p (i.e. there exist
constants A and B depending on φ such that |φ(x)| ≤ A+B|x|p for any x).

Notice that, as a consequence of Hölder (or Jensen) inequalities, the Wasserstein distances are
always ordered, i.e. Wp1 ≤ Wp2 if p1 ≤ p2. Reversed inequalities are possible only if Ω is bounded,
and in this case we have, if set D = diam(Ω), for p1 ≤ p2,

Wp1 ≤Wp2 ≤ D1−p1/p2W p1/p2
p1 .

From the monotone behavior of Wasserstein distances with respect to p it is natural to introduce
the distance W∞: set W∞(Ω) = {µ ∈ P(Ω) : spt(µ) is bounded } (obviously if Ω itself is bounded
one has W∞(Ω) = P(Ω)) and then

W∞(µ, ν) = inf
{

γ − esssupx,y∈Ω×Ω|x− y| : γ ∈ Π(µ, ν)
}

.

Here γ− esssup denotes the essential sup with respect to γ, i.e. the norm in the space L∞(Ω×Ω; γ),
which is the same, for continuous functions such as |x − y|, as the maximal value on the support
of γ. It is easy to check that Wp ր W∞ and it is interesting to study the metric space W∞(Ω).
Curiously enough, this supremal problem in optimal transport theory, even if quite natural, has not
deserved much attention, up to the very recent paper [10].

TheW∞ convergence is stronger than any Wp convergence and hence also than the weak conver-
gence of probability measures. The converse is not true and the convergence in W∞ turns out to be
actually rare: consequently there is a great lack of compactness in W∞. For instance it is not difficult
to check that, if we set µt = tδx0 + (1 − t)δx1 , where x0 6= x1 ∈ Ω, we have W∞(µt, µs) = |x0 − x1|
if t 6= s. This implies that the balls B(µt, |x0 − x1|/2) are infinitely many disjoint balls in W∞ and
prevents compactness.

The following statement summarizes the compactness properties of the spaces Wp for 1 ≤ p ≤ ∞
and its proof is a direct application of the considerations above and of Theorem 2.2.

Proposition 2.3. For 1 ≤ p < ∞ the space Wp(Ω) is compact if and only if Ω itself is compact.
Moreover, for an unbounded Ω the space Wp(Ω) is not even locally compact. The space W∞(Ω) is
neither compact nor locally compact for any choice of Ω with #Ω > 1.

3 Geodesics, continuity equation and displacement convexity

3.1 Metric derivatives in Wasserstein spaces

We are concerned in this sections with several properties linked to the curves in the Wasserstein
space Wp. For this subject the main reference is [2]. Before giving the main result we are interested
in, we recall the definition of metric derivative, which is a concept that may be useful when studying
curves which are valued in generic metric spaces.
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Definition 3. Given a metric space (X, d) and a curve γ : [0, 1] → X we define metric derivative
of the curve γ at time t the quantity

|γ′|(t) = lim
s→t

d(γ(s), γ(t))

|s− t|
, (3.1)

provided the limit exists.

As a consequence of Rademacher Theorem it can be seen (see [4]) that for any Lipschitz curve
the metric derivative exists at almost every point t ∈ [0, 1]. We will be concerned quite often with
metric derivatives of curves which are valued in the space Wp(Ω).

Definition 4. If we are given a Lipschitz curve µ : [0, 1] → Wp(Ω), we define velocity field of the
curve any vector field v : [0, 1] × Ω → R

d such that for a.e. t ∈ [0, 1] the vector field vt = v(t, ·)
belongs to [Lp(µt)]

d and the continuity equation

d

dt
µt +∇ · (v · µt) = 0

is satisfied in the sense of distributions: this means that for all φ ∈ C1
c (Ω) and any t1 < t2 ∈ [0, 1]

it holds
∫

Ω
φ dµt2 −

∫

Ω
φ dµt1 =

∫ t2

t1

ds

∫

Ω
∇φ · vs dµs,

or, equivalently, in differential form:

d

dt

∫

Ω
φ dµt =

∫

Ω
∇φ · vt dµt for a.e. t ∈ [0, 1].

We say that v is the tangent field to the curve µt if, for a.e. t, vt has minimal [Lp(µt)]
d norm for

any t among all the velocity fields (actually this is not the true definition of a tangent vector field,
since this would involve the definition of a tangent space for the “manifold” Wp, but it is in this
case the same).

The following proposition is concerned with the existence of tangent fields and comes from
Theorem 8.3.1 and Proposition 8.4.5 in [2].

Theorem 3.1. If p > 1 and µ = (µt)t is a curve in Lip([0, 1];Wp(Ω)) then there exists a unique
vector field v characterized by

∂

∂t
µ+∇ · (v · µ) = 0, (3.2)

||vt||Lp(µt) ≤ |µ′|(t) for a.e. t, (3.3)

where the continuity equation is satisfied in the sense of distributions as previously explained. More-
over, if (3.2) holds for a family of vector fields (vt)t with ||vt||Lp(µt) ≤ C then µ ∈ Lip([0, 1];Wp(Ω))
and |µ′|(t) ≤ ||vt||Lp(µt) for a.e. t.

12



To have an idea of the meaning of the previous theorem and of the relationship between curves
of measures and the continuity equation some considerations could be useful.

Actually, at least when the vector fields vt are regular enough, the solution of the continuity
equation ∂µ/∂t+∇· (v ·µ) = 0, are obtained by taking the images of the initial measure µ0 through
the maps σ(t, ·) obtained by taking the solution of

{

σ′(t, x) = vt(σ(t, x)),

σ(0, x) = x.

This explains why the vector field vt is called “velocity field” of the curve µt: if every particle follows
at each time t the velocity field vt, then the position of all the particles at time t reconstructs exactly
the measure µt that appears in the continuity equation together with vt !

Think for a while to the case of two time steps only: there are two measures µt and µt+h and
there are several ways for moving the particles so as to reconstruct the latter from the former. It
is exactly as when we look for a transport. One of these trasnports is optimal in the sense that it
minimizes

∫

|T (x) − x|pµt(dx) and the value of this integral equals W p
p (µt, µt+h). If we call vt(x)

the “discrete velocity of the particle located at x at time t, i.e. vt(x) = (T (x) − x)/h, one has
||vt||Lp(µt) =

1
hWp(µt, µt+h). The result of the previous theorem may be easily guessed as obtainable

as a limit as h→ 0.

3.2 Geodesics and geodesic convexity

Once we know about curves in their generality, it is interesting to think about geodesics. The
following result is a characterization of geodesics in Wp(Ω) when Ω is a convex domain in R

d. This
procedure is also known as McCann’s linear interpolation.

Theorem 3.2. All the spaces Wp(Ω) are length spaces and if µ and ν belong to Wp(Ω), and γ is
an optimal transport plan from µ to ν for the cost cp(x, y) = |x− y|p, then the curve

µγ(s) = (ps)#γ

where ps : Ω× Ω → Ω is given by ps(x, y) = x+ s(y − x), is a constant-speed geodesic from µ to ν.
In the case p > 1 all the constant-speed geodesics are of this form, and if µ is absolutely continuous,
then there is only one geodesic and it has the form

µ(s) = [(1− s)id+ sT ]#µ,

where T is the optimal transport map from µ to ν.

By means of this characterization of geodesics we can also define the useful concept of displace-
ment convexity introduced by McCann in [13].

Definition 5. Given a functional F : Wp(Ω)∩L
1 → [0,+∞], we say that it is displacement convex

if all the maps t 7→ F (µγ(t)) are convex on [0, 1] for every choice of µ and ν in Wp(Ω) and γ optimal
transport plan from µ to ν with respect to c(x, y) = |x− y|p.
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The following well-known result provides a wide set of displacement convex functionals. In the
case p = 2 this result is due to McCann ([13]), while the generalization to any p can be found in [2].

Theorem 3.3. Consider the following functionals on the space Wp(Ω), where Ω is any convex subset
of RN :

J1(µ) =

{

∫

Ω f(u(x)) dx if µ = u · Ld

+∞ if µ is not absolutely continuous;

J2(µ) =

∫

Ω
V (x)µ(dx);

J3(µ) =

∫

Ω

∫

Ω
w(x− y)µ(dx)µ(dy).

Suppose that f : [0,+∞] → [0,+∞] is a convex and superlinear lower semicontinuous function
with f(0) = 0, and that V : Ω → [0,+∞] and w : R

d → [0,+∞] are convex functions. Then
the functionals J2 and J3 are displacement convex in Wp(Ω) and the functional J1 is displacement
convex provided the map

r 7→ rdf(r−d)

is convex and non-increasing on ]0,+∞[.

4 Monge-Ampère equation and regularity

The final issue that we’ll approach in these lecture notes will be concerned with some regularity
properties of T and ψ (the optimal transport map and the Kantorovich potential, respectively) and
their relations with the densities of µ and ν. We will consider only the quadratic case c(x, y) =
|x−y|2/2, because it is the one where more results have been proven. Very recent results for generic
costs have been developed by Ma, Trudinger, Wang, Loeper, Figalli. . . They require some very rigid
assumptions on the costs, so that, surprinsingly enough, the quadratic cost is one of the few power
that satisfies the suitable hypotheses.

It is easy – just by a change-of-variables formula – to transform the equality ν = T#µ into
the PDE v(T (x)) = u(x)/|JT |(x), where u and v are the densities of µ and ν (which have to be
supposed regular enough) and J denotes the determinant of the Jacobian matrix. Recalling that we
may write T = ∇φ with φ convex (Remark 4), we get the Monge-Ampère equation

Mφ =
u

v(∇φ)
, (4.1)

where M denotes the determinant of the Hessian

Mφ = detHφ = det

[

∂2φ

∂xi ∂xj

]

i,j

.

This equation up to now is satisfied by φ = x2

2 − ψ in a formal way only. We define various notions
of solutions for (4.1):
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• we say that φ satisfies (4.1) in the Brenier sense if (∇φ)#u · Ld = v · Ld (and this is actually
the sense to be given to this equation);

• we say that φ satisfies (4.1) in the Alexandroff sense if Hφ, which is always a positive measure
for φ convex, is absolutely continuous and its density satisfies (4.1) a.e.;

• we say that φ satisfies (4.1) in the viscosity sense if it satisfies the usual comparison properties
required by viscosity theory but restricting the comparisons to regular convex test functions
(since M is in fact monotone just when restricted to positively definite matrices);

• we say that φ satisfies (4.1) in the classical sense if it is of class C2 and the equation holds
pointwise.

Notice that any notion except the first may be also applied to the more general equation Mφ = f ,
while the first one just applies to this specific transportation case. The results we want to use are
well summarized in Theorem 50 of [16]:

Theorem 4.1. If u and v are C0,α(Ω) and are both bounded from above and from below on the
whole Ω by positive constants and Ω is a convex open set, then the unique Brenier solution φ of
(4.1) belongs to C2,α(Ω) ∩ C1,α(Ω) and φ satisfies the equation in the classical sense (hence also in
the Alexandroff and viscosity senses).

Even if this precise statement is taken from [16], we just detail a possible bibliographical path to
arrive at this result. It is not easy to deal with Brenier solutions, so the idea is to consider viscosity
solutions, for which it is in general easy to prove existence by Perron’s method. Then prove some
regularity result on viscosity solutions, up to getting a classical solution. After that, once we have
a classical convex solution to Monge-Ampère equation, this will be a Brenier solution too. Since
this is unique (up to additive constants) we have got a regularity statement for Brenier solutions.
We can find results on viscosity solutions in [7], [9] and [8]. In [7] some conditions to ensure strict
convexity of the solution of Mφ = f when f is bounded from above and below are given. In [9]
for the same equation it is proved C1,α regularity provided we have strict convexity. In this way
the term u/v(∇φ) becomes a C0,α function and in [8] it is proved C2,α regularity for solutions of
Mφ = f with f ∈ C0,α.
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