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Résumé

On donne une réponse raisonnablement optimale à la question de savoir sous quelles

conditions supplémentaires une fonction analytique sur un espace de Hilbert de dimen-

sion infinie satisfait l’inégalité du gradient de  Lojasiewicz.

Abstract

We provide a reasonably optimal answer to the natural question of the conditions

under which an analytic function on an infinite dimensional Hilbert space satisfies the

 Lojasiewicz gradient inequality.
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1 Introduction

Let V be a real Hilbert space. It is a natural question to ask whether an analytic function
F : V → R satisfies the  Lojasiewicz gradient inequality which means that for any a ∈ V
there exists θ ∈ (0, 1/2), a neighborhood W of a in V and c > 0 for which

∀u ∈ W, ‖DF (u)‖V ′ ≥ c|F (u) − F (a)|1−θ

where V ′ is the topological dual of V . After the pioneering works of S.  Lojasiewicz, many
results of this type have been proved in the literature in various contexts with main ap-
plications to partial differential equations, the main objectives being convergence results
of bounded solutions to stationary ones or decay estimates of the difference between the
solution and its limiting equilibrium, cf. for instance [1]-[16], [20]. Usually in the PDE
framework one makes use of a compactness hypothesis of the resolvent of the linearization
of DF (u) around an arbitrary equilibrium. It is however reasonable to wander what would
be a minimal framework to extend the  Lojasiewicz theory to analytic functionals in infinite
dimensions. This paper gives rather simple answers to this question, first in the linear case
where the gradient inequality can already fail without additional assumptions, and secondly
in the semilinear case where the situation turns out to be slightly more complicated.

2 Quadratic forms and the linear case

Throughout this section we consider a real Hilbert space H and a linear operator A such
that

A ∈ L(H); A∗ = A (1)

and the associated quadratic form Φ : H −→ R defined by

∀u ∈ H, Φ(u) =
1

2
〈Au, u〉. (2)

We denote by |u| the norm of a vector u ∈ H. Our main result is the following

Theorem 2.1. The following properties are equivalent
i) 0 is not an accumulation point of sp(A)
ii) For some ρ > 0 we have

∀u ∈ ker(A)⊥, |Au| ≥ ρ|u|

iii) Φ satisfies the gradient inequality at the origin for some θ > 0
iv) Φ satisfies the gradient inequality at any point for θ = 1

2
.

Proof. We establish [ i) ⇒ ii) ⇒ iv)] and the contraposition of [iii) ⇒ i)]. Since [vi) ⇒ iii)]
is obvious, the result follows.

Step 1. Assuming that 0 is an accumulation point of sp(A) we prove that the  Lojasiewicz
gradient inequality at 0 fails. We state first an easy
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Lemma 2.2. Assume that for some η > 0 we have

∀u ∈ H, |Au − λu| ≥ η|u|.

Then λ 6∈ sp(A).

Proof. Indeed since A is bounded , A − λI has closed graph and consequently (A − λI)−1,
which is well defined on H has also closed graph and is therefore bounded.

As a consequence of this Lemma, we can find a sequence λn of positive numbers tending
to 0 and a sequence of vectors un ∈ H for which

∀n ∈ N, |Aun − λnun| <
λn

2
|un|.

In particular

∀n ∈ N, |Aun| <
3λn

2
|un|

and since

∀n ∈ N, |〈Aun, un〉 − λn|un|
2| <

λn

2
|un|

2

we find

∀n ∈ N, 〈Aun, un〉 >
λn

2
|un|

2.

By homogeneity we can change un in order to achieve |un| = ρ. Then we find

∀n ∈ N, |Aun| <
3λn

2
ρ; Φ(un) >

λn

4
ρ2.

And therefore no  Lojasiewicz gradient inequality of the form

|Au| ≥ δΦ(u)1−θ

with δ, θ > 0 can be satisfied in a neighborhood of 0.

Step 2. i) ⇒ ii). As a consequence of Theorem VIII.4 p. 260 from [19] , up to an isometric
isomorphism we may assume H = L2(Ω, dµ) where (Ω, dµ) is some positively measured space
and

∀u ∈ H, (Au)(x) = a(x)u(x), µ − a.e. in Ω.

We define

Ω+ = {x ∈ Ω, a(x) > 0}; Ω− = {x ∈ Ω, a(x) < 0}; Ω0 = {x ∈ Ω, a(x) = 0}.

First if 0 6∈ sp(A), then A is an isomorphism and then the result is obvious. Indeed in that
case

|Φ(u)| ≤ |Au||u| ≤ C|Au|2.
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On the other hand if 0 ∈ sp(A) and 0 is isolated in sp(A), it means that for some ρ > 0 we
have

[−ρ, ρ] ∩ sp(A) = {0}.

We claim that
µ(a−1(0, ρ) ∩ Ω+) = 0. (3)

Indeed assuming µ(a−1(0, ρ) ∩ Ω+) > 0, there is first of all η ∈ (0, ρ) for which

µ(a−1(η, ρ) ∩ Ω+) > 0.

Then we have either

µ(a−1(η,
ρ + η

2
) ∩ Ω+) > 0

or

µ(a−1(
ρ + η

2
, ρ) ∩ Ω+) > 0

and by inductive dichotomy we find a sequence of integers kn ∈ [0, 2n − 1] for which, setting

In = [η + kn

ρ − η

2n
, η + (kn + 1)

ρ − η

2n
]

the following properties hold
In ⊂ In−1... ⊂ I1

and
∀n ∈ N, µ(a−1(In) ∩ Ω+) > 0.

Let
ρ∗ :=

⋂
n≥1

In.

It is clear that
∀ε > 0, µ(a−1(B(ρ∗, ε) ∩ Ω+) > 0.

Letting
ωε = a−1(B(ρ∗, ε) ∩ Ω+; φε = 1ωε

we find
∀ε > 0, |(A − ρ∗)φε|

2 ≤ ε2|φε|
2.

Hence ρ∗ ∈ sp(A) , a contradiction. Similarly we have

µ(a−1(−ρ, 0) ∩ Ω−) = 0. (4)

Finally given u ∈ H, we have

|Au|2 =

∫
Ω

|a(x)u(x)|2dµ(x) ≥ ρ2[

∫
Ω+

u2(x)dµ(x) +

∫
Ω−

u2(x)dµ(x)]
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and the result is now obvious since

∀u ∈ ker(A)⊥,

∫
Ω+

u2(x)dµ(x) +

∫
Ω−

u2(x)dµ(x) = |u|2.

Step 3. Given u ∈ H, let v = Qu be the orthogonal projection of u on ker(A)⊥ . We
have clearly

2|Φ(u)| = 2|Φ(v)| ≤ ‖A‖|v|2 ≤
‖A‖

ρ2
|Av|2 =

‖A‖

ρ2
|Au|2

which is precisely the gradient inequality at 0 with θ = 1
2
. The gradient inequality for

any 1 ≥ θ > 0 is trivially satisfied at any point x with Ax 6= 0 and if Ax = 0 we have
|Φ(u)−Φ(x)| = |Φ(u)|, so that at such a point x the gradient inequality reduces to the same
inequality at 0.

3 What happens in the nonlinear case ?

A natural question is whether the necessary and sufficient condition of Theorem 2.1 gives
the right condition for the second derivative at a critical point a in order for an analytic
functional F : H → R to fulfill a  Lojasiewicz inequality near a. Since in the quadratic case
the  Lojasiewicz inequality is either false, or satisfied with the best possible value θ = 1

2
, it is

clear that some additional difficulties will appear. The next result shows that if the second
derivative is ”bad”, at least the functional cannot satisfy the  Lojasiewicz inequality with
θ = 1

2
.

Proposition 3.1. Let F : U → R be an analytic functional where U ⊂ H is an open
neighborhood of 0 and assume

F (0) = |DF (0)| = 0.

If 0 is an accumulation point of sp(D2F (0)), then an inequality

∀u ∈ U, |∇F (u)| ≥ c|F (u)|1−θ

for some c > 0 implies θ ≤ 1
3
.

Proof. As a consequence of the hypothesis, as in the proof of Theorem 2.1 we can find a
sequence λn of positive numbers tending to 0 and a sequence of vectors un ∈ H with |un| = ρ
which can be taken arbitrarily small independently of λn , and for which

∀n ∈ N, |Aun| <
3

2
λnρ; Φ(un) >

λn

4
ρ2
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where A = D2F (0) and Φ is the quadratic part of F . Then by taking the next (second
order) approximation we find for some fixed constants C, D ≥ 0

|∇F (un)| ≤ 2λnρ + Cρ2; F (un) ≥
λn

4
ρ2 − Dρ3.

Choosing ρ = ελn with ε > 0 small enough we find for some M > 0

(ε2λn
3

8
)1−θ ≤ Mλn

2.

Therefore λn
1−3θ is bounded and by letting n go to infinity we conclude that θ ≤ 1

3
.

Remark 3.2. We have been unable to construct an example of the above situation in which
θ = 1

3
. The next example shows that θ = 1

4
can actually happen.

Proposition 3.3. Let H = L2(0, 1) and F : H → R be the analytic functional given by

F (u) :=
1

4
(

∫ 1

0

u2(x)dx)2 +
1

2

∫ 1

0

xu2(x)dx.

Then
∀u ∈ H, |(∇F )(u)| ≥ |F (u)|

3

4 .

However [0, 1] ⊂ sp(D2F (0)).

Proof. It is easily verified that F is an analytic (actually polynomial) functional with

(∇F )(u) = xu + (

∫ 1

0

u2dx)u.

In particular

|(∇F )(u)|2 =

∫ 1

0

[(x + (

∫ 1

0

u2dx)u]2dx ≥

∫ 1

0

x2u2dx + (

∫ 1

0

u2dx)3.

On the other hand

(

∫ 1

0

u2dx)2 = [(

∫ 1

0

u2dx)
3

2 ]
4

3 ≤ |(∇F )(u)|
4

3 .

In addition

(

∫ 1

0

xu2(x)dx)
3

2 ≤ (

∫ 1

0

x2u2dx)
3

4 (

∫ 1

0

u2dx)
3

4 ≤

∫ 1

0

x2u2dx + [(

∫ 1

0

u2dx)
3

4 ]4

=

∫ 1

0

x2u2dx + (

∫ 1

0

u2dx)3
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therefore

(

∫ 1

0

xu2(x)dx) ≤ [

∫ 1

0

x2u2dx + (

∫ 1

0

u2dx)3]
2

3 ≤ |(∇F )(u)|2×
2

3 = |(∇F )(u)|
4

3

and we end up with

F (u) :=
1

4
(

∫ 1

0

u2(x)dx)2 +
1

2

∫ 1

0

xu2(x)dx ≤
3

4
|(∇F )(u)|

4

3

which clearly implies the result.

Remark 3.4. In the opposite direction it is natural to wander whether the condition on the
spectrum of D2F (0) is enough to ensure the existence of a  Lojasiewicz gradient inequality.
The following example where ker D2F (0) = H shows that it is not the case.

Proposition 3.5. Let H = l2(N) and F : H → R be the analytic functional given by

F (u1, u2, ...un, ...) :=
∞∑

k=2

|uk|
2k+2

(2k + 2)!
.

Then F satisfies no  Lojasiewicz gradient inequality.

Proof. First we note that D2F (0) = 0, hence sp(D2F (0)) = {0} and in particular 0 is
isolated in sp(D2F (0)). Defining (ei)j = δij, an immediate calculation shows that

∀t > 0, F (tek) =
t2k+2

(2k + 2)!
; |∇F (tek)| =

t2k+1

(2k + 1)!
.

In particular for each θ > 0 we have

F (tek)1−θ

|∇F (tek)|
= c(θ, k)t1−(2k+2)θ.

Choosing k large enough gives a contradiction for t small.

4 A framework adapted to unbounded operators.

In the application, in particular to PDE problems, the basic space will not be identified
with its dual since the gradient operators we are dealing with are semilinear perturbations
of an unbounded self-adjoint linear operator. Therefore the Hilbert space H will be replaced
by a space V that we shall not identify with ist topological dual V ′ . We shall denote by
J : V → V ′ the duality map, by ‖v‖ the norm of a vector v ∈ V , by ‖f‖∗ the norm of a
continuous linear form f ∈ V ′ and the duality pairing will be represented by

∀v ∈ V, ∀f ∈ V ′, f(v) =: 〈f, v〉.
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Throughout this section we consider a linear operator A ∈ L(V, V ′) which is symmetric :

∀u ∈ V, ∀v ∈ V, 〈Au, v〉 = 〈Av, u〉 (5)

and the associated quadratic form Φ : V −→ R defined by

∀u ∈ V, Φ(u) =
1

2
〈Au, u〉 (6)

so that A is the derivative of Φ at any point.

Theorem 4.1. The following properties are equivalent
i) 0 is not an accumulation point of sp(J−1A).
ii) For some ρ > 0 we have

∀v ∈ ker(A)⊥, ‖Av‖∗ ≥ ρ‖v‖.

iii) Φ satisfies the gradient inequality at the origin for some θ > 0.
iv) Φ satisfies the gradient inequality at any point for θ = 1

2
.

Proof. The result follows from Theorem 2.1 applied to Ã = J−1A ∈ L(V ).

5 A basically optimal nonlinear result.

The examples of Section 3 suggest that the following result is essentially optimal. For
the statement of this result we consider two real Hilbert spaces V, H where V ⊂ H with
continuous and dense imbedding and H ′, the topological dual of H is identified with H .
therefore

V ⊂ H = H ′ ⊂ V ′

with continuous and dense imbeddings. The duality product of φ ∈ V ′ with v ∈ V is denoted
as 〈φ, v〉.

Theorem 5.1. Let F : U → R be an analytic functional where U ⊂ V is an open neighbor-
hood of 0 and assume

F (0) = 0; DF (0) = 0.

We assume the two conditions

i) N := ker D2F (0) is finite dimensional .

ii) There is ρ > 0 for which

∀u ∈ N⊥, ‖D2F (0)u‖V ′ ≥ ρ‖u‖V .

Then there exists θ ∈ (0, 1/2), a neighborhood W of 0 and c > 0 for which

∀u ∈ W, ‖DF (u)‖V ′ ≥ c|F (u)|1−θ.

7



Proof. We set A = D2F (0) ∈ L(V, V ′) and we introduce the orthogonal projection Π in H
on N = ker(A). First we show that the linear operator L := Π + A restricted to V is one to
one and onto. Actually we shall see that for some η > 0

∀u ∈ V, ‖Lu‖V ′ ≥ η‖u‖V . (7)

Thanks to the fact that A is symmetric: V → V ′ we have R(A) ⊂ N⊥ and in particular

R(A) ∩ N = {0}.

Then (7) becomes an immediate consequence of the next Lemma

Lemma 5.2. Let W be a real Hilbert space endowed with the norm ‖.‖W and N, F two
closed subspaces with N finite dimensional. Then, assuming

F ∩ N = {0}

there is a constant σ > 0 such that

∀(n, f) ∈ N × F, ‖n + f‖W ≥ σ(‖n‖W + ‖f‖W ).

Proof. First we denote by Q the projection onto F⊥ in the sense of W . We observe that
the function

n ∈ N → p(n) = ‖Qn‖W

is a norm on N and since N is finite dimensional we find immediately the existence of ν > 0
for which

∀n ∈ N, ‖Qn‖W ≥ ν‖n‖W .

Now we have
n + f = Qn + (I − Q)n + f

and (I − Q)n + f ∈ F , therefore by orthogonality in W we deduce

‖n + f‖W ≥ ‖Qn‖W ≥ ν‖n‖W .

Then it suffices to observe that

‖f‖W = ‖n + f − n‖W ≤ ‖n + f‖W + ‖n‖W ≤ (1 + ν−1)‖n + f‖W

and the result follows with
σ =

ν

ν + 2
.
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In order to prove (7) it suffices to apply Lemma 5.2 with W = V ′, F = R(A), N =
ker A ⊂ V ⊂ V ′, n = Πu, f = Au, n + f = Lu. Indeed we have

∀u ∈ V, ‖u‖V ≤ ‖u − Πu‖V + ‖Πu‖V ≤ ρ−1‖A(u − Πu)‖V ′ + K‖Πu‖V ′

by using ii) and the equivalence of the norms in V and V ′ in the finite dimensional space N .
Then

∀u ∈ V, ‖u‖V ≤ max{ρ−1, K})(‖Au‖V ′ + ‖Πu‖V ′)

and the Lemma gives

∀u ∈ V, ‖u‖V ≤ σ−1 max{ρ−1, K}‖Lu‖V ′

that is (7) with η = σ min{ρ, K−1}. Now we observe that (7) implies the one to one character
of L. In addition since L is symmetric we have R(L) = [kerL]⊥ = V ′ . Then from (7) it
follows that L is onto . Indeed given any ϕ ∈ V ′, there exists a sequence ϕn = Lun with
‖ϕn −ϕ‖V ′ → 0. In particular ϕn is a Cauchy sequence in V ′, and by(7) un is Cauchy in V .
Setting u = limV un we clearly conclude that ϕ = Lu ∈ R(L) . Finally, by Banach’s theorem
we have also

L−1 ∈ L(V ′, V ).

Let now

N : V −→ V ′

u 7−→ Πu + DF (u).

By using the hypotheses, we deduce that N is analytic in the neighborhood of 0 and DN (0) =
L. Applying the local inversion theorem (analytic version cf [21] corollary 4.37 p. 172), we
can find a neighborhood of 0, W1(0) in V , a neighborhood of 0, W2(0) in V ′ and an analytic
map

Ψ : W2(0) −→ W1(0) which satisfies

N (Ψ(f)) = f ∀f ∈ W2(0)

Ψ(N (u)) = u ∀u ∈ W1(0)

‖Ψ(f) − Ψ(g)‖V ≤ C1‖f − g‖V ′ ∀f, g ∈ W2(0) C1 > 0. (8)

Since F is C1, we also have

‖DF (u) − DF (v)‖V ′ ≤ C2‖u − v‖V ∀(u, v) ∈ W1(0). (9)

For ξ ∈ R
m small enough to achieve

m∑
j=1

ξjϕj ∈ W2(0), we define the map Γ by

Γ(ξ) = F (Ψ(
m∑

j=1

ξjϕj)).
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By using the chain rule, since F : U−→ R is analytic, the function Γ is real analytic in some
neighborhood of 0 in R

m.

Let u ∈ W1(0) such that Π(u) =
m∑

j=1

ξjϕj ∈ W2(0). For any k ∈ {1, · · ·m} we have the

formula

∂Γ

∂ξk

=
d

ds
E(Ψ[

∑
j 6=k

ξjϕj + (ξk + s)ϕk])|s=0 = 〈DF (Ψ(
m∑

j=1

ξjϕj)), Ψ′(
m∑

j=1

ξjϕj)ϕk〉.

By (8), it is clear that for each k ∈ {1, · · ·m}, Ψ′(
m∑

j=1

ξjϕj)ϕk is bounded in V . Then by

using (8) and (9) we obtain

‖∇Γ(ξ)‖Rm ≤ C3‖DF (Ψ(
m∑

j=1

ξjϕj))‖V ′

= C3‖DF (Ψ(Π(u)))‖V ′

= C3‖DF (Ψ(Π(u))) − DF (u) + DF (u)‖V ′

≤ C3‖DF (u)‖V ′ + C4‖Ψ(Π(u)) − u‖V

= C3‖DF (u)‖V ′ + C5‖Ψ(Π(u)) − Ψ(Πu + DF (u))‖V

≤ C3‖DF (u)‖V ′ + C5‖DF (u)‖V ′

hence
‖∇Γ(ξ)‖Rm ≤ C6‖DF (u)‖V ′ . (10)

On the other hand

|E(u) − Γ(ξ)| = |E(u) − E(Ψ(Π(u)))|

= |

∫ 1

0

d

dt
[E(u + t(Ψ(Π(u)) − u)] dt |

= |

∫ 1

0

(DF (u + t(Ψ(Π(u)) − u)), Ψ(Π(u)) − u) dt |

≤ ‖Ψ(Π(u)) − u‖V

∫ 1

0

‖DF (u + t(Ψ(Π(u)) − u)‖V ′ dt

≤ [

∫ 1

0

(‖DF (u)‖V ′ + t C7‖Ψ(Π(u)) − u‖V ) dt ] ‖Ψ(Π(u)) − u‖V

≤ C8‖DF (u)‖V ′‖Ψ(Π(u)) − Ψ(Π(u) + DF (u))‖V

hence
|E(u) − Γ(ξ)| ≤ C9‖DF (u)‖2

V ′ . (11)

Applying the classical  Lojasiewicz inequality to Γ, we now obtain:

|E(u)|1−θ ≤ |Γ(ξ)|1−θ + |Γ(ξ) − E(u)|1−θ ≤ ‖∇Γ(ξ)‖Rm + |Γ(ξ) − E(u)|1−θ. (12)

10



By combining (10), (11), (12) we obtain

|E(u)|1−θ ≤ C6‖DF (u)‖V ′ + C1−θ
9 ‖DF (u)‖2(1−θ)

V ′ .

Then since 2(1 − θ) ≥ 1, there exist σ > 0, c > 0 such that

‖DF (u)‖V ′ ≥ c|E(u)|1−θ for all u ∈ V such that ‖u‖V < σ.

Theorem 5.1 is completely proved.

6 Remarks and application.

Theorem 5.1 suggests a few observations

Remark 6.1. Theorem 5.1 is of course applicable near any equilibrium point

a ∈ E = {v ∈ V, DF (v) = 0}

and gives, assuming that A = D2F (a) satisfies the relevant hypothesis, the existence of a
neighbourhood W of a in V such that

∀u ∈ W, ‖DF (u)‖V ′ ≥ c|F (u) − F (a)|1−θ.

Remark 6.2. Theorem 4.1 shows that Theorem 5.1 is essentially optimal, since in order for
such a general result to be true we at least need it to apply to quadratic forms. The finite
dimensionality hypothesis on N is motivated by the example of Proposition 3.5.

Remark 6.3. If the imbedding V → H is compact and for some m0 ∈ R the operator
D2F (0) + m0I is invertible, then Lemma 6.1 from [12] shows that the condition is automat-
ically fulfilled. Actually we have the following more general result

Proposition 6.4. Let V, W be two reflexive Banach spaces spaces and L ∈ L(V, W ) be such
that for some compact operator K ∈ L(V, W ), L + K is invertible. Let X be a closed linear
subspace of V such that

X ∩ ker L = {0}.

Then there exists c > 0 such that

∀v ∈ X, ‖Lv‖W ≥ c‖v‖V .

Proof. If X = {0} there is nothing to prove. Otherwise, assuming that the result is not
true, for each integer n ≥ 1, let wn ∈ X be such that

wn ∈ X, ‖wn‖V = 1, ‖Lwn‖W ≤
1

n
.

11



Then we can replace wn by a subsequence (still denoted wn ) such that

wn → w weakly in V and Lwn → 0 strongly in W.

Since L is continuous from (V, weak) to (W, weak) we have Lw = 0. Since X is closed, hence
weakly sequentially closed in V , we also have w ∈ X, hence w = 0. In particular, we have

(L + K)wn = Lwn + Kwn → 0 strongly in W

therefore
wn → 0 strongly in V,

which contradicts
‖wn‖V = 1.

Corollary 6.5. Let V, H be as in the statement of Theorem 5.1, let F : U → R be an
analytic functional where U ⊂ V is an open neighborhood of a and assume DF (a) = 0. We
assume the two conditions

i) N := ker D2F (0) is finite dimensional .

ii) For some compact operator K ∈ L(V, V ′), L + K is invertible.
Then there exists θ ∈ (0, 1/2), a neighborhood W of a and c > 0 for which

∀u ∈ W, ‖DF (u)‖V ′ ≥ c|F (u) − F (a)|1−θ.

Proof. This result is an immediate consequence of Theorem 5.1 and Proposition 6.4

Corollary 6.6. Let Ω be a bounded open interval of R, let G be an analytic function and
g = G′. The functional Φ defined by

∀u ∈ H1
0 (Ω), Φ(u) =

∫
Ω

[
1

2
u2

x + G(u)]dx

is such that for any solution ϕ of

ϕ ∈ H1
0 (Ω), −∆ϕ + g(ϕ) = 0

there is θ ∈ (0, 1
2
) and ε > 0, C > 0 for which

∀u ∈ H1
0 (Ω), ‖u − ϕ‖H1

0
(Ω) ≤ ε ⇒ |Φ(u) − Φ(ϕ)|1−θ ≤ C‖ − ∆u + g(u)‖H−1(Ω).
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Proof. We have for any ϕ as above

∀u ∈ H1
0 (Ω), D2Φ(ϕ)(u) = −∆u + g′(ϕ)(u).

In particular for m > 0 large enough, the operator

Λ = D2Φ(ϕ) + mI

where I stands for the identity operator is coercive, thus invertible as an operator from
H1

0 (Ω) to H−1(Ω). In addition the kernel of D2Φ(ϕ) is clearly finite dimensional. Since I :
H1

0 (Ω) → H−1(Ω) is compact, the result follows from Corollary 6.5 applied with V = H1
0 (Ω),

H = L2(Ω).

Corollary 6.7. Let Ω be a bounded open interval of R
N with N ≤ 3, let G be an analytic

function and g = G′. The functional Φ defined by

∀u ∈ H2
0 (Ω), Φ(u) =

∫
Ω

[
1

2
|∆u|2 + G(u)]dx

is such that for any solution ϕ of

ϕ ∈ H2
0 (Ω), ∆2ϕ + g(ϕ) = 0

there is θ ∈ (0, 1
2
) and ε > 0, C > 0 for which

∀u ∈ H2
0 (Ω), ‖u − ϕ‖H2

0
(Ω) ≤ ε → |Φ(u) − Φ(ϕ)|1−θ ≤ C‖∆2u + g(u)‖H−2(Ω).

Proof. We have for any ϕ as above

∀u ∈ H2
0 (Ω), D2Φ(ϕ)(u) = ∆2u + g′(ϕ)(u)

In particular for m > 0 large enough, the operator

Λ = D2Φ(ϕ) + mI

is coercive, thus invertible as an operator from H2
0 (Ω) to H−2(Ω). In addition the kernel

of D2Φ(ϕ) is clearly finite dimensional. Since I : H2
0 (Ω) → H−2(Ω) is compact, the result

follows from Corollary 6.5 applied with V = H2
0 (Ω), H = L2(Ω).

Remark 6.8. In higher dimensions, Theorem 5.1 cannot be applied directly since the non-
linear perturbation is no longer analytic in the topology of V = H1

0 (Ω) for the first example
when N > 1, and the topology of V = H2

0 (Ω) when N > 3 in the second example. In higher
dimensions one makes use of the fact that the equilibria are smoother and the analyticity
of the functional is used on a smaller Banach space in order to be able to treat the finite
dimensional term at the end, cf. [20, 16, 10, 8] for precise statements.
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