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Abstract 

In this paper we present a method of image indexing and retrieval which takes into 

account the relative positions of the regions within the image. Indexing is based on a 

segmentation of the image into fuzzy regions ; we propose an algorithm which produces a 

fuzzy segmentation. The image retrieval is based on inexact graph matching, taking into 

account both the similarity between regions and the spatial relation between them. We 

propose, on one hand a solution to reduce the combinatorial complexity of the graph 

matching, and on the other hand, a measure of similarity between graphs allowing the result 

images ranking. A relevance feedback process based on region classifiers allows then a 

good generalization to a large variety of the regions. The method is adapted to partial 

queries, aiming for example at retrieving images containing a specific type of object. 

Applications may be of two types, firstly an on-line search from a partial query, with a 

relevance feedback aiming at interactively leading the search, and secondly an off-line 

learning of categories from a set of examples of the object. The name of the system is 

FReBIR for Fuzzy Region-Based Image Retrieval. 

Keywords : Image indexing, image retrieval, inexact graph matching, fuzzy segmentation, 

spatial relation, kernel function. 

1. Introduction 

Content-based image retrieval can be seen as a specific problem of pattern recognition, 

particularly when it concerns the retrieval of images containing a specific type of object or 

animal, or a person, etc. in a general database of photographs. In this case, the main 
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problem is that the searched object can take various shapes and scales according to the 

shooting. 

The solutions usually proposed to solve this problem of partial query are to extract 

characteristic points from the image and to represent images by features describing a 

neighbourhood of these points [23]. If this approach can be interesting to retrieve rigid 

objects, it cannot be used to retrieve animals or persons, because the shapes are too variable 

and the characteristic points not robust enough. Moreover some of the characteristic points 

are placed on the edges of the objects, and thus the features also include a description of the 

background of the object [31]. On the contrary regions obtained by segmentation better fit 

the content of the image and they carry more information than points. The aim of this paper 

is to develop a region-based method to perform partial queries. Regions can be described by 

internal features, and by their relative positions, such a representation is robust to large 

variations of shapes and scales. The issue is to match sets, of regions, that may have 

different cardinality. The matching process is based on the feature vector characterizing 

each region and the spatial relations between regions. 

 We are thus confronted with a dual problem : first to define a representation of the 

image by regions and then to match the set of regions composing the query to a set of 

regions from another image of the database in an acceptable time.  

To solve the first problem, with the second objective in mind, we must represent the 

image as a set of regions which roughly corresponds to the main colour parts of the image. 

Our objective is to simulate the human visual system which perceives coarse zones with 

their approximate colours, sizes and their spatial relative positions. Despite the fact that our 

visual system does not perform an accurate segmentation of the scene, the recognition of a 

landscape or a painting is instantaneous. Thus we propose to use a segmentation, different 

from the other systems [10,18,26,30,37,47,51], which builds fuzzy regions. The main 

advantage is to be able to segment any image, even in difficult cases, when there is no clear 

limit between some parts of the objects. The regions are modelled by fuzzy sets, their 

contours are coarse and they may overlap, however they represent the image. The 

coarseness of the representation will be compensated by the matching step.  
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Since we address the problem of partial query, the query is composed by a set of regions, 

adjacent or not. The need for retrieving more than one region arises when the semantic 

object (for instance a person) is split into two or more regions - which happens often, due to 

contrasting colours and textures (in the example face, hair and clothing) ; but also when the 

user is interested in a set of several objects possibly scattered in the image. 

The second problem is to match subsets of regions, by taking into account both the 

intrinsic features of each region and the spatial relations between regions. The subsets may 

be of different sizes. More precisely the query is composed by a set of (fuzzy) regions. 

These regions are coarse but they are characterised by a feature vector and by their spatial 

relations. The problem is then to find similar sets of regions, from other images, regarding 

their feature vectors and their spatial disposition even if they do not have the same 

cardinality than the query set. We propose an algorithm able to find a solution to this 

problem in a time compatible with an on-line use. It uses a similarity measure between sets 

of regions and it is thus able to rank sets of regions and images with regard to the query.  

Since the objects we try to retrieve can be very variable, the search cannot be efficient 

with a single example of the category. The system has to learn several examples and 

counter-examples. This will be done either interactively through a relevance feedback 

process or with an off-line learning.  

Our contributions are a new representation of the image as a set of fuzzy regions with 

their features, and a matching between sets of regions, compatible with their features, their 

composition. We have developed a Fuzzy Region-Based Image Retrieval system (FReBIR) 

compatible with real-time use and dedicated to object retrieval.  

In section 2, we will explain how we obtain a fuzzy segmentation of images, which 

constitutes a robust representation of the images. The image signature, characterising both 

the regions and their spatial relations is described in section 3. In section 4 we present our 

algorithm for region set matching, the problem being to avoid the combinatory explosion. 

Results on various cases are displayed in Section 5. An extension to learn from a set of 

examples, either through a relevance feedback or with a learning set is presented in section 
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6, with results on a database of several thousands of images. Finally section 7 concludes the 

paper and gives some perspectives.  

2. Fuzzy segmentation 

Segmentation is defined as a partition into regions which are crisp sets : each pixel of an 

image belongs to one and only one region. But this definition of the segmentation does not 

take into account the fact that a pixel in the ―centre‖ of a homogeneous region belongs 

certainly much more to this region than pixels agglomerated afterward, during a region 

growing, for example. To model this kind of knowledge, we propose to build regions which 

are no more crisp sets – as in the classical segmentation – but fuzzy sets. The advantage of 

this representation is that each pixel of the image has a membership degree to each region.  

The term ―fuzzy segmentation‖ can be found in several papers, but it is never clearly 

defined. The main ways leading to fuzzy segmentation, as mentioned by Bezdek [8] are 

fuzzy thresholding, fuzzy pixel classification, fuzzy rules, or region growing. 

Fuzzy thresholding aims at defining membership functions for regions, based on a set of 

thresholds [39][14].  

Fuzzy classification of pixels is widely used for remote sensing images, either in a 

supervised way from examples of the classes [54], or in an unsupervised way where classes 

are built from the data. In this case, most methods employ the fuzzy c-means algorithm 

(FCM) [7]. All algorithms based on pixel classification do not lead properly speaking to 

segmentation, since they only classify the pixels into one or several classes but do not create 

contiguous regions. The number of classes is often a priori fixed. FCM is also used by 

Boujemaa et at. [9] to achieve a crisp segmentation on tomographic cardiac images.  

Also in remote sensing domain, eCognition system [4] starts with a region merging 

process based on colour and shape criteria, which leads to a hierarchy of segmentations. 

After a fuzzyfication of the region features, a more accurate segmentation is obtained by 

applying fuzzy rules based on linguistic and fuzzy concepts of the remote sensing domain.  

In the region growing methods, the problem is to find the seeds of the regions, the 

function linking region homogeneity, and the membership grades. Moghaddamzadeh et at. 
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[38] have developed a complex algorithm of region growing limited by edges. The 

algorithm consists of two steps. The first step performs a coarse segmentation and seeds are 

chosen following a double criterion: most frequent colours and distance from edges. In the 

second step, which leads to a fine segmentation, the seeds are the pixels far from any of the 

regions of the first step. The membership function takes into account the colour 

homogeneity and the distance to seeds. In [51], region growing is carried out by fuzzy rules 

involving fuzzy criteria such as region homogeneity, region size or gradient sharpness. Ma 

et at. [33] perform a fuzzy region growing on a saliency map. Seeds are the most salient 

points and the growing is achieved by a fuzzy 2-partition of pixels into attended and 

unattended areas. The result is a crisp segmentation.  

Our aim was to develop an algorithm as general as possible, that is to say not dedicated 

to a particular type of image. Our algorithm is based on a region growing, the main idea is 

to link the membership degrees to a region with the distances to the seed of the region. But 

seeds are not a priori fixed nor determined in a first step like in [38]. They are obtained 

during the region growing. 

The result is a set of coarse regions (fuzzy sets) with the following properties : 

 uniformity in terms of colour; 

 contained expansion by high gradient norms; 

 uncertainty where two (or more) regions encounter. 

2.1. Definition of the fuzzy segmentation 

Let  be a finite referential (set of n pixels). A fuzzy region Rj is a fuzzy set of  defined 

by a mapping j from   to [0, 1]. 

Definition: A fuzzy segmentation of  is a set of m fuzzy regions Rj whose supports are 

included in  and defined by the two following axioms. If  j (s) is the membership degree 

of pixel s to region Rj, then: 

1. s  , j  [0, m], )(sj  [0, 1]  

2. j [0, m] nsj  
 s

)(0  .  

Membership degrees are between 0 and 1, hence they equal 1 for the pixels of the core 

and 0 for the pixels that do not belong to the fuzzy region. The second axiom means that a 
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fuzzy region must not be empty and must not be complete (equal to  ). Regions may 

overlap each other. 

This definition is based on Ruspini definition of a fuzzy partition [48], but without the 

third axiom that imposes normalisation : for each pixel, membership degrees to all regions 

should sum up to 1. This axiom is not desirable for segmentation as shown by 

Krishnapuram [26]. On one hand, in case of overlap, it would penalise a region core, just 

because it also belongs to another region. On the other hand, it would artificially increase 

the membership of pixels far away from all cores, and whose membership is low for any 

region, as soon as it belongs to only one region. 

2.2. Algorithm of fuzzy segmentation 

Our algorithm performs a cooperative contour / region approach [15]. In order to extract 

homogeneous regions, the algorithm is based on a region growing, and to constrain the 

regions by the edges, this growing is performed on the gradient norm image. Region 

growing starts in homogeneous colour areas, which are region seeds. Pixels with high 

gradient norms act like dams, which are hard to cross. They can be bypassed, which allows 

the overcoming of the impulse noise. Since we want the algorithm to be automatic, the 

regions are automatically initialised in the zones of low gradient norms. Membership 

degrees to regions are then computed by means of a ―topographic distance‖, that we defined 

in [42], and which takes into account both the spatial distance between pixels and the 

difference of gradients. 

The algorithm is composed of three steps. The first one performs the watershed 

algorithm, leading to the catchment basins. The second one merges the catchment basins, 

which are often too numerous after the first step. The merged catchment basins will 

constitute the regions. The third step performs the fuzzyfication of the regions and computes 

the membership degrees of the pixels to the fuzzy regions.  

The watershed algorithm [53] considers the image as a surface in a 3D space (x,y, g(x,y)), 

with (x,y) a pixel of  and g(x,y) its value in RR (the colour gradient norm in our case). The 

aim of the algorithm is to split this surface in so-called catchment basins. This term comes 
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from the geography : a drop of water falling on the surface will roll until one of the bottoms 

of the surface. The set of all points leading to the same bottom is called a catchment basin. 

Each catchment basin is initialized by a seed (composed by one or several pixels, located in 

the bottom of the basin). The watershed algorithm simulates the flood of the image (the 3D 

surface) from the seeds. In the classical version of the algorithm, a dam is build when two 

basins encounter, and the set of dams constitutes the watershed, the basins being the 

regions.  

In our version of the algorithm, pixels at the junction of two basins are not labelled as 

watershed, but integrated into one of the two basins. This leads to a big number of basins, 

which are merged in the second step, according to criteria of size and relative depth [3]. 

Fuzzy regions are created from these merged basins. The membership degree of a pixel to a 

region is computed using the topographic distance (distance along the 3D surface) from this 

pixel to the seed of the basins constituting the region. 

Our contributions mainly concern the third step (fuzzyfication of the regions). 

For the first two steps, we used a map of colour gradient norms obtained by Di Zenzo 

method [20], but other function can be used, such as a saliency map [33]. We have adapted 

the watershed algorithm in the following way : pixels are increasingly processed in the order 

of their values (gradient norms) and every local minimum of the gradient norm is a seed of a 

basin. 

In order to be compatible with storage on one byte, the membership degrees are 

multiplied by 255 and thus take values between 0 and 255. They are initialised to 255 for 

the seeds, and to 0 for all other pixels. Seed pixels are stored in a queue Q. 

Initialisation of membership degrees during flooding 
For each basin B   

 for each pixel s  B  

   if s  seed (B)  B(s)  255, put s into QB 

   else   B(s)  0  
 end for  
End for 

Basins are merged according to their areas and depths : a basin too small or not deep 

enough is absorbed by its neighbour. The basin which absorbs basin B is denoted 
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Absorb (B). Moreover, the difference between the bottom levels of the basins is applied as a 

penalty on membership degrees of the absorbed one. 

The gradient norm of pixel s is denoted g(s). 

Catchment basin merging 

For any pixel s  seed (B)  

 hB  g(s) 
End for  
While it exists A such as A = Absorb(B)  

for any c  seed (A) hA  g(c)  

 s  seed(B) B(s)  255 – |hB – hA|  

B  A 
End while 

Each set of merged basins gives a fuzzy region. The membership degree of a pixel is 

conversely proportional to the topographic distance, which is defined as the length of the 

shortest path connecting the pixel with the seed, along the surface constituted by the 

gradient norm in the 3D space [42]. They are maximal (255) for pixels belonging to basin 

seeds (perhaps minus the difference of basin bottom levels). They decrease as pixels are 

going away from seeds : 1 for each spatial step (in 4-connectivity or in 8-conectivity), and a 

value proportional to the difference between gradient norms, until they reach 0. 

Membership degrees to region R   
For each catchment basin B of R 
 while QB is not empty 
  extract s of QB 
  for each pixel v neighbour of s  

    = B(s) – (  |g(v) - g(s)| + 1 ) 

   if  > B(v) then B(v)   
   put v into QB  
   end for  
 end while  
End for    

 

Thus pixels belonging to areas of a homogeneous colour, and thereby of a small gradient 

norm have large membership degrees in the corresponding fuzzy region. These degrees 

slowly decrease according to the spatial distance to the seed and strongly decrease when 

meeting an edge, zone of a large gradient norm. Impulse noise is bypassed, because a 

shorter path is found ―around‖ it.  
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An image of our general database  

 

   

Fig. 1 : Two fuzzy regions obtained from the top image 

left: region corresponding to the bear 

 right: region corresponding to a part of the water  

( the lighter, the larger the membership degree) 

Fig. 1 presents an example of fuzzy regions obtained by the algorithm. The boundary 

between water and bank, or water and bear shadow is very sharp. The corresponding fuzzy 

region sharply stops on these edges. On the contrary, the boundary of the bear sometimes 

mismatches with the grass, or with the ground. The fuzzy region spreads out more, its 

contours are less sharp. One can obtain a crisp segmentation by affecting every pixel to the 

region for which it has the largest membership degree. This "defuzzification" is only used to 

display simultaneously all the fuzzy regions. Notice that the fuzzy regions, more or less, 

overlap each other .  

aims at balancing the spatial distance with the closest region seed and the difference of 

gradients. It will influence the spreading of regions between 0.5 for a large spreading and 3 

for a small spreading. It has been set to 2 for all the tests and particularly for segmenting a 

whole database. The area threshold for basin merging induces the level of detail of the 

result. It is not beforehand set, it will increase or decrease from an initial value, until an 

expected number of regions. In the general database used in section 5, the number of 

regions must be between 10 and 30. 

Hence the parameters are not crucial. They can be tuned for a complete database, 

according to a number of regions nearly fixed by the user.  
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3. Image signature 

Each image of the database is indexed by a signature, which is composed of two parts: 

the first one is the set of features of all fuzzy regions, and the second one is a representation 

of the topology of these regions within the image. 

Rosenfeld extended the definition of geometrical attributes (area, perimeter, etc.) to 

fuzzy sets [46]. The principle is to weight the contribution of each pixel by its membership 

degree to region R. The mass centre G of region R is defined by its coordinates: 





RsRs

G ssxsx )()()(   



RsRs

G ssysy )()()(   (1) 

where x(s) and y(s) are the spatial coordinates of pixel s. 

The distribution of feature a for a fuzzy region R defined by its membership function 

was defined by Dubois and JaulentThe probability for any real r is defined by: 





RsrsaRs

a ssrP )()()(
)(,

   (2) 

Distribution are thus obtained by adding the membership degrees of the pixels belonging 

to each class ; a normalisation is then performed. Thus pixels with small membership 

degrees – belonging to transitions or outliers inside a region – have little influence on the 

distribution shape. CIE L*a*b* space is used for colour, and twelve Gabor filters in 3 

different scales and 4 orientations are used for texture analysis. Both spaces are quantified 

using an enhanced version of k-means algorithm [43].  

The number of classes (or codewords) is very variable according to systems : in 

VisualSEEk [50], the HSV colour space is divided into 166 regular bins. Tests led in [17] 

with a number of classes varying from 8 to 400 showed that 25 is a good compromise 

between compactness of the signature and efficiency. However it is important that the 

codebook is adapted to the base [24].  

Each image of the database is first quantified in 256 codewords for colour and 256 

codewords for texture. Thus the 256 colour (resp. texture) codewords for each image are 

quantified in 25 colour (resp. texture) codewords.  



 

 

CVIU 113,  693-707, 2009  11 

 

In the following tests, the regions are described only by the colour and texture 

distribution (a vector of 50 values by region) and the coordinates of the mass centre. These 

coordinates are normalised by the dimensions of the image, thus taking values between 0 

and 1.  

There are various means to represent spatial relations between regions. Regions 

themselves can be represented by a point (generally the centre of mass), a rectangle 

(rectangle hull for example), etc. Spatial relation can be Boolean, such as ―left to‖, ―above‖. 

They usually involve the centres of mass or some projections on reference axes, like the 2D-

strings [13], and their extensions 2-DC-strings, 2-D-B strings and so on [4], which more or 

less extend Allen's relations [2]. Malki et at. [34] also use Allen relations to define 

topological relations and orientation relations (such as ―overlapping‖, ―covering‖, 

―disjunction‖) between objects. Egenhofer and Franzosa [22] have defined 9 topological 

spatial relations between 2D sets which can be extended to n-dimensional spaces. All these 

descriptors are binary.  

Spatial relation can also be described by numeric values. Matsakis et at. [35] extended 

the notion of histograms of angles [27] and store in histograms of force information 

concerning the relative directional position between two objects. Fuzzy attributes of relative 

positions were proposed in [10] for crisp sets and in [27] for fuzzy sets. Berretti et at. 

defined ―weighted walkthroughs‖ from relative positions in 9 directions [6]. All these 

features aiming at describing relative positions of sets are computed from relative positions 

of pixels. Thus they have the drawback to be time-consuming, and, according to our tests, 

without considerable improvement of results. Numerous recent works address this problem 

of representing spatial relations between objects, and a comparison between the various 

methods in the framework of image retrieval would be interesting. 

In this paper, we do not focus on the choice of the most suited representation. Methods 

aforementioned are often too precise to retrieve a set of regions having very variable shape 

from an image to the other. Furthermore they are not necessarily suited to fuzzy regions. We 

propose a solution to match sets of regions nearly located in the same spatial disposition. 

For instance, in the case of a car (viewed by its side), wheels are situated under the 
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bodywork, windows are at the top and all this is generally over a dark zone (shadow and 

tar).  

Tests in which we had allocated precise values to edges such as fuzzy relations [10] or 

more simply distances between mass centres showed us that this approach is not relevant for 

our problem, because of the high variability of the researched objects. The simplest way to 

represent the adjacency is the adjacency matrix of the regions with a value 1 if both regions 

have at least one pixel in common, otherwise 0. A more precise solution would be to store 

the degree of overlapping of regions.  

The signature of each image is thus made up of two parts, on one hand information about 

regions : area, colour and texture distributions, coordinates of the mass centre and on the 

other hand the adjacency matrix of regions. 

The relative position of regions is taken into account during the match process through 

the relative positions of their mass centres.  

4. Matching algorithm 

We are interested in a query constituted by a set of regions, adjacent or not. The problem 

is to retrieve images represented by sets of regions which matches at best this query. 

After segmenting into regions, each image of the database is represented by an attributed 

relational graph (ARG). Nodes correspond to regions and edges to adjacencies between 

regions. Each region is characterised by a set of features (colour, texture, …) and edges are 

characterised by spatial information such as ―above‖, ―on the left of‖, overlap, etc.  

The query is a sub-graph of the ARG representing the query image. It may be made up of 

one or several connected components. The search consists then in looking for the sub-graph 

which matches the best the query ARG (cf. Fig. 3), in each image of the database. 

4.1. Related works  

There are various approaches to solve the problem of image retrieval based on region 

matching. 
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Image composition is sometimes simply not taken into account as in [30] or in Blobword 

[11] and the final score for a set of regions is a simple operator such as the min, the max, or 

the mean of the scores of the one-to-one region match. Spatial information can be simply 

coded through the coordinates of the mass centre. It is used in [28] as a feature as well as a 

colour feature during the segmentation process. In [1] the image is represented by a vector 

coding on one hand blocks belonging to a given patch vocabulary and on the other hand 

their spatial relations coded on 20 possible relations (5 distances × 4 directions). In NeTra 

[32], the spatial localisation of a region is measured by two rectangles (inner and outer), 

which are used to constraint and reduce the retrieval. Explicit relation between regions, such 

as adjacency is not considered. In [44] the image is split into 9 blocks of same size, and the 

only label of the dominant region in every block is stored. The spatial structure is implicitly 

coded, and images are retrieved very quickly, by the way of a hash structure. In 

VisualSEEK [50], the query does not consist of image regions, but of a set of coloured 

patterns. For each pattern, a list of candidate regions is built, and the combinatory is further 

reduced by relative and absolute relations between regions, compared to those of the 

patterns.  

The most general systems allow the match of two sets of regions (respectively belonging 

to the query and to the target image), with a possible different number of regions. 

In Picasso system [19], the retrieval of a region set is performed by a recursive algorithm 

which matches one query region with a node of the multiresolution pyramid of segmented 

images. A region at a given resolution is the union of the regions at finer resolutions, and a 

query region can be matched to a region of any resolution, so the number of regions in the 

query and in the target can be different. The distance between two regions takes into 

account the distance between the mass centre, and the similarity between images is the sum 

of the similarities between matched regions. In SIMPLIcity [55], the query is a set of 

regions, and the distance between two sets is the sum of the distances between matched 

regions, weighted by a score of significance of the match. The distance does not take into 

account spatial information, but the method allows the matching of one region of an image 

to several regions of the other. The algorithm matches at first the pairs of regions the most 
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similar and weights the distance by a ―significance credit‖, function of the area of the 

regions. No relation between regions is taken into account. 

The graph matching was used for a long time in pattern recognition. Relaxation [47] 

reduces a labelling (discrete, fuzzy or probabilistic) by considering the labels of the 

neighbour nodes. Hong and Huang [29] built a pattern ARG from a set of sample ARGs ; it 

is well adapted to logos or generally to objects submitted only to rigid deformations. 

Robles-Kelly and Hancock [45] propose an algorithm of inexact matching which only takes 

into account the node adjacencies, the nodes themselves are not attributed. Berretti et at. [4] 

use the A*algorithm to perform ARG isomorphism.  

Medasani and Krishnapuram [36] make an inexact matching of fuzzy graphs, in which 

regions are affected with symbolic labels. The relative positions of regions are taken into 

account through Bloch [10] fuzzy relations. In order to reduce the computing time for the 

matching, graphs are prior clusterized into graph clusters represented by a prototype. Only 

the graphs belonging to the cluster the closest to the query are compared. Perching and 

Bloch [41] defined a general formalism of fuzzy morphism between graphs. Our algorithm 

belongs to this framework because it defines a mapping on the pairs of matched nodes (a 

distance between regions) and a mapping on the pairs of matched edges (binary values 

indicating whether these edges are in the same relative positions in both the query image 

and the target image).  

The matching algorithm presented in this paper is of the inexact type since node 

attributes may differ. Our algorithm is not limited to graph isomorphism, since one node of 

a graph may be matched to several nodes of the other graph. Two matched subgraphs have 

not to be identical in terms of node number, node attributes and edge number but only 

similar for node attributes (measured by an appropriate similarity measure expounded 

below) and consistent for the edges. Since we are interested in spatial relations between 

regions, the relations stored in the ARG concern the adjacency. The relative positions of 

regions are taken into account during the matching in order to reduce the combinatorial. 

The problem we address is NP-complete, but the solution has to be found in an acceptable 

time for a user making a search in the database. 
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Cordella et at. presented an algorithm of inexact matching of ARGs [18] : two graphs are 

similar if they can be made isomorphic to each other by a set of transformations. These 

transformations are the split of a node into a sub-graph, the merge of a sub-graph into a 

node and the insertion or the removal of a branch. 

To solve this NP-complete problem in a reasonable time, we use a tree structure inspired 

from [18]. The advantage of such a structure is that with appropriate heuristics, all 

possibilities of matches of region pairs have not to be explored. Search is concentrated on 

branches which are susceptible to lead to the solution. Heuristics concerns the order of 

examination of the region pairs, and takes into account distances between regions and 

topological consistency. Moreover it can be extended to the comparison between a graph 

and a set of graphs in a classification task. 

4.2. Graph matching applied to image retrieval: search tree  

As Cordella et at. [18], we used a search tree (Fig. 2) and we propose a solution for a fast 

construction of this tree adapted to the problem of region set matching. Our purpose is to 

obtain an optimal (or sub-optimal) solution according to a given similarity function.  

The query regions are denoted Ri , i = 1, …, n and the set of regions of a target image are 

denoted Sj , j = 1, …, m 

For each image of the database (called target image) the distance (see section 4.4) 

between all pairs of query/target regions are computed. At level i of the tree (see Fig. 2), a 

node represents a match between query region Ri and one region of the target image Sj.  

Edges between nodes represent topological consistency between pairs of regions. For 

example, the consistency between (Ri , Sj) and (Ri+1 , Sk) can take into account : 

 the adjacency of (Ri , Ri+1) and (Sj , Sk) which must be of the same type (adjacent or not); 

 the relative position of (Ri , Ri+1) and (Sj , Sk), for example if Ri is above Ri+1 , Sj must be 

above Sk .  
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Fig. 2 : Search tree: each node corresponds to a match of two regions (Ri : query region, 

Sj : candidate region), each arrow corresponds to a topology compatibility 

A match between two sub-graphs corresponds to a path from the root to a leaf. The 

dissimilarity between sub-graphs is the weighted sum of the dissimilarities for all nodes of a 

path :  

 

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where S
i
 is the target region matched with Ri, d represents the dissimilarity between region 

features (see section 3), wi is a non negative weight and m is the number of query regions. 

As dissimilarities and weights are positive or null, each new node added to a path 

increases the total dissimilarity of this path and never decreases it. 

The tree building and its pruning are performed during the search and has to be fast 

enough to be compatible with a ―real-time‖ use. The tree has at most m × n nodes if the 

target image is composed of n regions. 

A classical heuristics for this ―branch and bound‖ problem is to try the most promising 

solution at first. The tree is generated by a depth-first search procedure. For each node, the 

son which has the best chance to lead to the path of minimal dissimilarity is examined at 

first. That is to say for each node of level i, the nodes of level i+1 are examined in the order 
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of increasing dissimilarity. Thus the first path of length m is built by constructing at each 

node the branch leading to the pair of minimal dissimilarity. This path is not necessary the 

best path, but it gives a first solution for the graph matching. The depth-first procedure will 

then look for better solutions compared to this initial one.  

By this way, the optimal solution is always found, without explicitly building all the 

possible paths. However this exhaustive search can be too slow ( for too many query 

regions for example), the search can then be stopped at any time, (usually after a fixed 

amount of time) the found solution is then sub-optimal. 

The properties of this tree are :  

 there are as many levels in the tree as query regions ; 

 as soon as the global dissimilarity of a path exceeds the value of the most promising 

one, the current node is not developed ; 

 the optimal solution is always found ; 

 a sub-optimal solution can be found in a given amount of time. 

4.3. To complete the matching 

The drawback of the use of a search tree is that one region of the target image can match 

several query regions, but not the contrary. This allows us to manage an under-segmentation 

of the target image (Fig. 4a) with regard to the query image, but not an over-segmentation 

(Fig. 4b). A solution is to systematically over-segment the query image, that is what will be 

done when using a learning set for image category search (section 6.2). Another way is to 

add a second step in the following way. The neighbours of every target region are checked 

in order to retrieve regions likely to match the query region. More precisely, for each match 

(Ri, Sj), all neighbours Sk of Sj are examined. If d(Ri, Sj  Sk) is lower than d(Ri, Sj) then Ri is 

also matched to Sk . In the example of Fig. 3, R3 matches S1, S1 and S3 are adjacent, the 

match R3 with S3  S1 improves the match (R3, S1), so R3 is also matched to S3. 
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Fig. 3 : Initial matching, corresponding to one path of Fig. 2 (continuous arrows), 

completed by the second step (dot arrows) 

A match between two ARGs is then represented by a set of pairs of similar query region -

 target region whose adjacencies and relative positions are the same in both sub-graphs. 

 

   

 

 

a. Example of an under-segmented target image, corresponding to the initial match of Fig. 3 

 

 

 

 

 

b. Example of an over-segmented target image corresponding to the complete match of 
Fig. 3 (continuous arrows: first step, dot arrows: second step) 

Fig. 4 : Two examples of inexact graph matches with different region numbers 

4.4. Dissimilarity between subgraphs and between images using kernel 

functions 

We will see in the next section that in order to retrieve images containing a category of 

objects, these objects being very variable in shape and colour, we need several examples of 

the category. Thus we need a dissimilarity function not only between two regions (target 

and query) but also between one region (target) and a set of query regions.  

R
1
 

R
2
 

R
3
 

S
2
 

S
1
 

S
3
 

S
4
 



 

 

CVIU 113,  693-707, 2009  19 

 

The retrieval of a category of images is a two-class classification problem. As there is no 

linear solution in R
 k
 (if k is the dimension of the representation space), the data are mapped 

into a higher-dimensional space H, where a linear separation between classes can be found. 

Let’s note the mapping,  : R
 k 
 H. H is an Hilbert space, that is to say affected with a 

dot product denoted < >. H can be of huge dimension (and even infinite), so instead of 

working directly in H, we use the ―kernel trick‖, which consists in computing a dot product 

in H : K(x, y) = <xy >. K is a kernel function (positive and semi-definite)  

Thus the distance between two regions R and S respectively represented by the 

normalised vectors (R
c
, c =1, …, k) and (S

c
, c =1, …, k) is defined by : 

2
)S()R()S,R(d cc    with  2

1

,
2

 uuu     (4) 

A dissimilarity function f is associated to each root-leaf path of the tree, which 

corresponds to an initial match of subgraphs. This dissimilarity function is calculated during 

the tree building and used for the pruning.  

Hence an initial match M corresponds to a path in the search tree composed of m nodes, 

if m is the number of query regions. M is a set of m matched pairs query region – target 

region: 

M = { (R1, S
1
), (R2, S

2
), … , (Rm, S

m
)}, where Ri is a query region, and S

i
 the matched 

target region. 

Considering that all the regions have the same importance, the dissimilarity measure is a 

weighted mean of the dissimilarities of all matched regions. The weight wi aims at 

measuring the consistency of two pairs of matched regions (Ri, S
i
), (Ri-1, S

i-1
). Hence the 

dissimilarity between matched subgraphs represented by M is : 
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The second part of the algorithm adds region matches. When match (Ri, S 
j
) is added (cf. 

section 4.3) to match (Ri, S 
i
), wi d(Ri, S 

j
) is added to f(M) and all weights are renormalized 

by 1/(m+1). 

http://en.wikipedia.org/wiki/Kernel_%28mathematics%29
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Finally, the dissimilarity measure for each target image is the minimum of the 

dissimilarities over all possible matches of the target image with the sub-graph constituting 

the query. 

5. Results 

In the following tests, we only used the vertical consistency. We think that for general 

databases, composed of landscapes, persons, animals, etc., only the vertical position is of 

importance to retrieve similar images. Symmetry over a vertical axis does not change our 

perception of the image, while symmetry over a horizontal axis changes it a lot. All weights 

wi are set to 1.  

We considered several databases, all images are automatically segmented by our 

algorithm of fuzzy segmentation and signatures are computed as explained in section 3. We 

used a histogram of 25 colors and 25 textures for each image, computed from a vector 

quantization [17]. For the first two databases, we have ―ground truths‖ which give the 

category of each image.  

The first database is a general database of 1200 images of photographs, texture and so 

on. It contains 25 categories, such as bear, elephant, car, texture and so on. We built new 

ones in order to perform the evaluation, such as ―red car‖. 

The CBIR system performance measurement is based on the Precision and Recall : 

images retrieved ofnumber 

images retrievedrelevant  ofnumber 
Precision    

category in the imagesrelevant  ofnumber 

 images retrievedrelevant  ofnumber 
Recall   

Precision and Recall are considered for one category, and have as many values as images 

in the database (from one image retrieved to the maximum number of images the system can 

return). Precision and Recall are metrics to evaluate the ranking of the images returned by 

the system for one category. The Precision curve is always decreasing (or stationary), and 

the best Precision curve is the one which decreases the less, which means that whatever the 

number of images retrieved by the system, most of them are relevant. The Recall curve is 

always increasing, and the best Recall curve is the one which increases the fastest, which 
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means that the system has retrieved most of the relevant images, and few of them are lost. 

Precision and Recall are interesting for a final evaluation of one category, however for 

larger evaluation purposes, we consider the Precision/Recall curve. This curve is the set of 

all the couples (Precision, Recall) for each number of images returned by the system. The 

curve always starts from the top left (1,0) and ends in the bottom right (0,1). Between these 

two points, the curve decreases regularly. A good Precision/Recall curve is a curve which 

decreases slowly, which means that at the same time, the system returns a lot of relevant 

images and few of them are lost. This property is interesting since the size of the category is 

not playing an important role, which allows the comparison of Precision/Recall for different 

categories. The Precision/Recall curve can also be summarized by a single real value called 

Average Precision, which corresponds to the area under an ideal (non-interpolated) 

recall/precision curve.  

To evaluate a system over all the categories, the Average Precisions for each category 

are combined (averaged) across all categories to create the non-interpolated Mean Average 

Precision (MAP) for that set. Let's note that this criterion is the one used by the TRECVID 

evaluation campaign
1
.  

The Precision and Recall values are measured by simulating retrieval scenario. For each 

simulation, an image category is randomly chosen. Then 100 images are selected using 

active learning and labelled according to the chosen category. These labelled images are 

used to train a classifier, which returns a ranking of the database. The Average Precision is 

then computed using the ranking. These simulations are repeated 1000 times, and all values 

are averaged to get the Mean Average Precision. These simulations are repeated ten times 

to get the mean and the standard deviation of the MAP. 

In Fig. 5, the problem is to retrieve a brown bear near water. The query is made of two 

regions covering the bear and a part of the water (these regions are those of Fig. 1). Fig. 5 

displays the ranked retrieved images. Among the 16 first images retrieved by the system, 11 

images represent a brown bear near water. There are some mismatches with other images, 

for example between water and sky, because the region features are very simple (just the 
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colour and texture distribution), and we used no relevance feedback. In Fig. 6 are displayed 

the first two retrieved images and, beside each of them, the fuzzy regions which match at 

best the two query regions. In both images, the retrieved regions correspond to bear and 

water, even if segmentations are quite different. Matched regions have shape different from 

the query regions, their size may differ a lot from the query regions and they are not at the 

same position in both images (the only constraint is that bear regions must be lower than 

water regions). With this example, one can see the interest of the fuzzy segmentation, which 

allows bigger flexibility in the shape of regions. It overcomes the imperfection of the 

segmentation, since it allows retrieving images (or objects) even if the segmentation is quite 

different, over-segmentation or under-segmentation for one of the images. 

Another example displayed Fig. 7 shows that red cars can be retrieved from a query 

composed of a part of the bodywork and a wheel. Among the 25 closest images, 24 include 

a red car, in various positions. Fig. 8 displays the precision/recall curve for this query. 

 

 

 

Fig. 5 : Retrieval result from a query made of two regions (the bear and a part of the 

water displayed Fig. 1). 11 correct images out of 16. 

 

                                                                                                                                                    
1 http://www-nlpir.nist.gov/projects/trecvid/ 

http://www-nlpir.nist.gov/projects/trecvid/
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Fig. 6 : The first two images retrieved and for each of them, the regions which best match 

the two query regions. 

 

  

 

Fig. 7 : Search of red cars from a query made of the two regions displayed on top row. 

Among the 25 closest images, 24 include a red car. 
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Titre :

/dumbo-home2/users-image/gony/RI/working/cbirGUI/meilleur resultat pour voiture rouge.eps

Auteur :

MATLAB, The Mathworks, Inc.

Aperçu :

Cette image EPS n'a pas été enregistrée

avec un aperçu intégré.

Commentaires :

Cette image EPS peut être imprimée sur une

imprimante PostScript mais pas sur

un autre type d'imprimante.

 

Fig. 8 : Precision/recall curve for the "red car" category.  

Then we have compared these results with a global query using a SVM classifier [17]. 

The signature for the SVM is the colorimetric distribution in the same colour classes than 

for the regions. The classifier starts with one image of the category, in order to work in the 

same conditions as the region-based system. Curves of Fig. 9 show results of the "red car" 

category, averaged out 50 researches, with 1, 2 or 3 regions covering a red car belonging to 

different images. With this example, one can conclude that if we have only one example of 

the category, our system is able to retrieve more images than a global classifier like SVM. 

Titre :

/dumbo-home2/users-image/gony/RI/working/eval/evaluation/comparatif_Retin-Flou_(voituresRouges).eps 

Auteur :

MATLAB, The Mathworks, Inc.

Aperçu :

Cette image EPS n'a pas été enregistrée

avec un aperçu intégré.

Commentaires :

Cette image EPS peut être imprimée sur une

imprimante PostScript mais pas sur

un autre type d'imprimante.

 

Fig. 9 : Comparison partial query / global query for the "red car" category. 

Average on 50 researches  

Then we have studied the link between the number of query regions and the results. We 

have compared the retrieval of elephant images, from a query made of one, two or three 

regions and we have averaged on 50 requests of each type (on different images of elephant 

category). An example of query with two regions is displayed in Fig. 11. This comparison 



 

 

CVIU 113,  693-707, 2009  25 

 

(Fig. 10) as well as other similar tests on other categories show that it is of best interest to 

cover as much as possible the requested object. The redundancy induced by the overlap 

between regions is better than incomplete information included in a single region not 

covering the whole object.  

This pleads in favour of a fuzzy segmentation which handles the imprecision of the 

contours of the objects in an image as well as those inside the objects. The colour of all 

pixels composing the object (in this example the skin, the tusk, the eye etc.) are taken into 

account in the signature. 

Titre :

/dumbo-home2/users-image/gony/RI/working/eval/elephant/comparatif du nb de régions (elephant).eps

Auteur :

MATLAB, The Mathworks, Inc.

Aperçu :

Cette image EPS n'a pas été enregistrée

avec un aperçu intégré.

Commentaires :

Cette image EPS peut être imprimée sur une

imprimante PostScript mais pas sur

un autre type d'imprimante.

 

Fig. 10 : Comparison of queries made of one, two or three regions.   

Average on 50 researches of "elephant" category. 
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Fig. 11 : Result from a query made of two fuzzy regions covering the elephant : upper 

region is light grey, lower region is dark grey. On the right, the query image with the 

contours of the defuzzified segmented image. Edges are coloured in red and green. Below 

some of the fuzzy regions, first row the two query regions. On the left, the ranked result 

images. 

6. Learning graphs of regions 

If first retrieved results often include images of the searched category, the system is 

unable to manage the large variability of appearance of animals, persons or non rigid 

objects. Whatever the features used to represent a region, a simple system which works with 

a single query is condemned to remain in a local neighbourhood of the query. Only the user 

is able to conduct the search towards all modalities of the same semantic entity, unless a 

sufficient amount of examples are learned by the system. We have explored these two ways 

of learning an object category :  

 start from a single partial query (a set of regions belonging to a single image) and 

perform a relevance feedback through interaction with the user 

 learning from a set of examples and counter-examples 

Both ways use the same process of machine learning, based on a statistical classifier, 

working with regions. Actually the system uses one classifier for each query region ; it is 
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trained from varied examples. For instance, if the searched category is ―car‖, a classifier is 

trained with regions of ―bodywork‖, and another classifier with regions of ―wheel‖. Any 

two-class classifier can be used, one class corresponds to one of the regions (for example, 

the class ―bodywork‖), and the other class corresponds to the rest of the regions of all 

images. The matching process works with the same search tree as in section 4.2. The only 

difference lies in the dissimilarity measure which no more involves a query region and a 

target region as in Eq (3), but here involves a target region and a ―semantic‖ class of regions 

(for example ―bodywork‖ or ―wheel‖). All examples of graphs for an object category must 

also share the same relative positions for the regions (adjacency, above, left to). In the 

example of ―car‖, regions ―bodywork‖ and ―wheel‖ must be adjacent and the bodywork 

must be above the wheel.  

6.1. Interactive learning 

We built a user friendly interface in which the user can choose the query image, the type 

of spatial relationships (vertical/horizontal/both/none), the classifier and the kernel 

function..The regions of the returned images are displayed with edges of the same colour as 

the corresponding query region (cf. Fig. 11). Hence, if all returned regions (those with 

coloured edges) correspond to the query region and respect the spatial disposition, the user 

annotates the image as relevant and all returned regions are considered as positive 

examples. On the contrary if no region corresponds to a query region, the image is 

annotated as irrelevant and all its regions are negative examples for all classes.  

The feedback loop performs a two-class classification per query region, using all 

negative examples taken from all irrelevant images and the only positive examples of the 

class of the query region. The classification is updated at each iteration with the new 

annotated images, which gives new positive and negative examples. For each class, there 

are much more negative examples than positive ones, which properly models the asymmetry 

between the class representing the object (or a part) and the rest of the regions.  

After each step of annotation, the graph matching is performed, by the way of a tree for 

each image of the database. The dissimilarity computed for each node of the tree now 

equals the distance between the region and the class of the query region. 
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Any two-class classifier can be used. We tried Bayesian [52], k-nearest neighbours, 

Fisher Discriminant [35] and SVM [12], all of them with various kernels functions [16].  

At the beginning, there is only one graph query, so each classifier starts with only one 

example of the class (one region for each classifier). The classifiers work as one-class 

classifiers, and use the Euclidean distance of Eq (4) between regions. During the feedback 

step, each classifier has positive and negative examples of its class. If there are only positive 

examples (the user has only annotated relevant images), the classifier continues to work as a 

one-class classifier. But if the user has annotated both positive and negative examples 

(which is the most probable and the most efficient), each classifier works as a two-class 

classifier.  

We have compared four classifiers and various kernel functions with the general 

database. A result of precision/recall curves, computed on all categories (Fig. 12) shows 

that the best classifier is the SVM with a Gaussian kernel with 
2
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Fig. 12  : Precision/recall curves for 4 classifiers after 30 annotations  

(average on all categories) 

Then we have compared a global approach (RETIN) [25] and our partial query method 

(FReBIR = Fuzzy Region-Based Image Retrieval) with the SVM classifiers. Signatures are 

computed with the same features, but they are computed on the whole image for RETIN 

(Fig. 13). First one can see the improvement induced by the iterations of relevance feedback 
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for FReBIR. Secondly the comparison between both approaches clearly indicates that, to 

retrieve images containing a specific object or animal (here white bears), a partial query 

provides better results (which is not true when semantics is defined in the whole image). 

 

Fig. 13  : Precision/recall curves with 8 iterations of relevance feedback, for white bear 

retrieval ; in red RETIN, in green FReBIR 

6.2. Learning with a learning set 

The results presented in this section are part of a challenge ran in 2006 (ImagEVAL
1
). 

The database used for this task is composed of 3 000 images of photographs of any types, 

colour and monochromatic.  

One of the competition tasks is a task of object retrieval; more precisely it consists on 

retrieving images containing a given object. Ten different objects have to be found in a first 

challenge, such as ―car‖, ―cow, ―US flag‖, ―Eiffel tower‖. The training sets are composed of 

20 images (for Eiffel tower) until 100 images (for car). The images of the training set 

contain one object of the category, with a background (see Fig. 14, Fig. 16, Fig. 18, and 

Fig. 20).  

The images of the training set have dimensions included between 300 and 800, whereas 

images of the test set are larger, with dimensions between 600 and 1024. The fuzzy 

segmentation is performed in order to have between 8 and 14 regions for the images of the 

training set and between 15 and 20 regions for the images of the test set. The aim is to have 

                                                           
1 http://www.imageval.org/ 
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a light under-segmentation of the training set compared to the test set in order to avoid the 

second step of the matching. 

The regions used for the training of each graph are manually chosen through the interface 

described in section 5 (cf. Fig. 7). The region number and the type of spatial relation are 

chosen according to the category. For ―car‖ category, the graph is made of 3 adjacent 

regions, with a vertical consistency : bodywork with window on the top, bodywork in the 

middle and wheel with shadow at the bottom. For ―cow‖ category, the graph is made of 2 

adjacent regions, with no spatial consistency. For ―US flag‖ and ―Eiffel tower‖ categories, 

the graph is made of 2 adjacent regions, with a vertical consistency. 

No image of the test set belongs to the training test. Although the great variability of the 

database (colour and grey levels images, old car and race ones, night and day photographs 

of Eiffel tower, …), the images returned as the most likely to belong to the category (see 

Figs. 15, 17, 19, 21) are for the majority of them images of the search category. These 

objects have very various shapes (cf. US flag) and sizes (cf. cows). 

 

 

Fig. 14 : An example for the category ―car‖ : 2 query regions surrounded 

with blue ( bodywork) and red ( wheels and shadow) edges  
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Fig. 15 : the 20 most relevant images retrieved for category ―car‖ (15 correct) 
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Fig. 16 : An example for the category ―cow‖ : 2 query regions 

surrounded with red (head) and green (black spot on the shoulder)  

 

 

Fig. 17 : the 20 most relevant images retrieved for category ―cow‖ (20 correct) 
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Fig. 18 : An example for the category ―US flag‖ : 2 adjacent regions : stars (surrounded 

with red) and white and red strings(surrounded with green)  

 

Fig. 19 : the 20 most relevant images retrieved for category ―US flag‖ (12 correct) 
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Fig. 20 : An example for the category ―Eiffel tower‖ : 2 adjacent regions, one over the 

other, surrounded with green and red  

 

Fig. 21 : the 20 most relevant images retrieved for category ―Eiffel tower‖ (15 correct) 

We also tried our system on the Trecvid2006 data set. It contains 74523 keyframes, but 

as they represent videos, many of them are almost identical. Any system is able to retrieve 

these very similar images. Thus we used only a tenth of the dataset, and we tried to retrieve 

women portrait from the database. The query graph was composed of two regions. Figs. 22 

and 23 display the results obtained after 30 annotations (16 positive and 14 negative) .  
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Fig. 22 : The 40 first retrieved images of woman portrait after 30 annotations (16 positive 

and 14 negative) of one tenth of the Trecvid keyframe database. On the left part, two 

images with some of their fuzzy regions. On the top, one query image, with the two query 

regions marked with blue and yellow squares, on bottom, one retrieved image, with the 

matched regions also marked with blue and yellow squares. 
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7. Conclusion and perspectives 

We have proposed an algorithm of fuzzy segmentation, the first of its kind as far as we 

know. It performs a region growing on the image of gradient norms and builds a 

membership function equal to the length of the shortest path along the gradient image to the 

core of the region. It integrates the advantages of both approaches of image segmentation 

(region and edges) : it provides closed regions and performs a complete segmentation of the 

image, constrained by the large gradient values. 

The interest of this method is not the segmentation itself, since it does not lead to an 

accurate partition of the image, but on the fuzzy, imprecise regions. They are useful for 

pattern recognition as well as for image indexing, because in these two domains it is more 

important to have region features, than an accurate segmentation with precise boundaries. 

This algorithm can be applied to colour or grey level images. It can be used for the 

automatic segmentation of a whole database, since it requires no parameter, except an 

approximate number of expected regions, which will determine the degree of the 

segmentation. The user only indicates an interval for the expected number of regions 

We have also developed an algorithm of inexact matching, adapted to image retrieval 

from partial query, made of several regions of an image. We have proposed solutions to 

reduce the combinatorial complexity of graph matching. This algorithm can be used with 

any segmented set of images, as soon as images are represented by attributed relational 

graphs. Inexact matching overcomes the problem of over or under segmentation, since one 

query region can match several target regions and vice-versa. The algorithm takes into 

account the similarity between regions, as well as their relative positions. We have showed 

on examples that our system is able to retrieve images containing a type of object or animal 

with a great variability of position (from the front, in profile, etc.) and of scale.  

We showed results with a simple set of features (colour and texture distributions and 

mass centre position), and a simple distance. Spatial relations between regions are 

composed of the adjacency and the relative position of region mass centres. Other features 

and a more sophisticated characterisation of the relative positions of regions within the 
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image will certainly improve the results. For example a weighting related to the region size 

or to more accurate topological features can be added.  

Applications may be of two types : An on-line search from a partial query, with a 

relevance feedback process aiming at interactively leading the search, and an off-line 

learning of categories from a set of examples of the object. 
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