Conjugacy p-separability of right-angled Artin groups and applications

Emmanuel Toinet

To cite this version:

Emmanuel Toinet. Conjugacy p-separability of right-angled Artin groups and applications. 2010. hal-00519434v2

HAL Id: hal-00519434
 https://hal.science/hal-00519434v2

Preprint submitted on 22 Sep 2010 (v2), last revised 1 Mar 2013 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Conjugacy p-separability of right-angled Artin groups and applications

Emmanuel Toinet

Abstract

We prove that every subgroup of p-power index in a rightangled Artin group is conjugacy p-separable. In particular, every rightangled Artin group is conjugacy p-separable. A consequence of this result is that the outer automorphism group of a right-angled Artin group is virtually residually p-finite. Another consequence of this result is that the outer automorphism group of a right-angled Artin group is \mathcal{K}-residual, where \mathcal{K} is the class of all outer automorphism groups of finite p-groups. We also prove that the Torelli group of a right-angled Artin group is residually torsion-free nilpotent, hence residually p-finite and bi-orderable.

1 Introduction

Let $\Gamma=(V, E)$ be a (finite) simplicial graph. The right-angled Artin group associated to Γ is the group G_{Γ} defined by the presentation:

$$
G_{\Gamma}=<V \mid v w=w v, \forall\{v, w\} \in E>.
$$

Note that, if Γ is discrete, then G_{Γ} is free, and if Γ is complete, then G_{Γ} is free abelian. The rank of G_{Γ} is by definition the number of vertices of Γ. A special subgroup of G_{Γ} is a subgroup generated by a subset W of V - it is naturally isomorphic to the right-angled Artin group $G_{\Gamma(W)}$, where $\Gamma(W)$ denotes the full subgraph of Γ generated by W. Let v be a vertex of Γ. The star of v, denoted by $\operatorname{star}(v)$, is the subset of V of all vertices which are adjacent to v plus v itself. We refer to [C for a general survey of right-angled Artin groups.

Not much is known on automorphims of right-angled Artin groups. In 1989, Servatius conjectured a generating set for $\operatorname{Aut}\left(G_{\Gamma}\right)$ (see [Ser]). He proved his conjecture in certain special cases, for example when the graph is a tree. Then Laurence proved the conjecture in the general case (see (L). Charney and Vogtmann showed that $\operatorname{Out}\left(G_{\Gamma}\right)$ is virtually torsion-free and has finite virtual cohomological dimension (see [CV]). Day found a finite presentation for $\operatorname{Aut}\left(G_{\Gamma}\right)$ (see $\left.\mathbb{\square}\right]$). Recently, Minasyan proved that $\operatorname{Out}\left(G_{\Gamma}\right)$ is residually finite (see $[\mathrm{M}]$). This result was obtained independently by Charney and Vogtmann (see [CV2]), using different technics. More recently, Day
showed that $\operatorname{Out}\left(G_{\Gamma}\right)$ is either virtually nilpotent or contains a free group (see [D3]).

Let p be a prime number. A group G is said to be residually p-finite if for every $g \in G \backslash\{1\}$, there exists a homomorphism φ from G onto a finite p group P such that $\varphi(g) \neq 1$. Note that residually p-finite implies residually finite as well as residually nilpotent. For $g, h \in G$, the notation $g \sim h$ means that g and h are conjugate. We say that G is conjugacy p-separable if for all $g, h \in G$, either $g \sim h$, or there exists a homomorphism φ from G onto a finite p-group P such that $\varphi(g) \nsim \varphi(h)$. Obviously, if a group is conjugacy p-separable, then it is residually p-finite. Following Ivanova (see [I]), we say that a subset S of a group G is finitely p-separable if for every $g \in G \backslash S$, there exists a homomorphism φ from G onto a finite p-group P such that $\varphi(g) \notin \varphi(S)$. We say that an element g of G is $C_{f p}$-separable if its conjugacy class, $g^{G}=\left\{\alpha g \alpha^{-1} \mid \alpha \in G\right\}$, is finitely p-separable. Note that G is conjugacy p-separable if and only if every element of G is $C_{f p}$-separable. Examples of groups which are known to be conjugacy p-separable include free groups (see [LS]) and fundamental groups of oriented closed surfaces (see [P]).

Let G be a group. The pro-p topology on G is defined by taking the normal subgroups of p-power index in G as a basis of neighbourhoods of 1 (see [RZ]). Equipped with the pro- p topology, G becomes a topological group. Observe that G is Hausdorff if and only if it is residually p-finite. One can easily prove that a subset S of G is closed in the pro- p topology on G if and only if it is finitely p-separable.

Definition 1.1 Let G be a group. We say that G is hereditarily conjugacy p-separable if every subgroup of p-power index in G is conjugacy p-separable.

Hereditary conjugacy p-separability is obviously stronger than conjugacy p-separability.

Our main theorem is the following:
Theorem 1.2 Every right-angled Artin group is hereditarily conjugacy pseparable.

More generally, let \mathcal{K} be a class of group (e.g., the class of all finite groups, the class of all finite p-groups, etc.). We say that a group G is \mathcal{K} residual if for all $g \in G \backslash\{1\}$, there exists a homomorphism φ from G to some group of \mathcal{K} such that $\varphi(g) \neq 1$. Note that if \mathcal{K} is the class of all finite p groups, one study residual p-finiteness. We say that a group G is conjugacy \mathcal{K}-separable if for all $g, h \in G$, either $g \sim h$, or there exists a homomorphism φ from G to some group of \mathcal{K} such that $\varphi(g) \nsim \varphi(h)$. Note that if \mathcal{K} is the class of all finite p-groups, one study conjugacy p-separability. In Section 7, we prove the following:

Theorem 1.3 Every right-angled Artin group is conjugacy \mathcal{K}-separable, where \mathcal{K} is the class of all torsion-free nilpotent groups.

Let \mathcal{P} be a group property (e.g., abelian, nilpotent, etc.). A group G is said to be virtually \mathcal{P} if there exists a finite index subgroup $H<G$ such that H has Property \mathcal{P}. In Section 7, we prove:

Theorem 1.4 The outer automorphism group of a right-angled Artin group is virtually residually p-finite.

Theorem 1.5 The outer automorphism group of a right-angled Artin group is \mathcal{K}-residual, where \mathcal{K} is the class of all outer automorphism groups of finite p-groups.

Let $G=G_{\Gamma}$ be a right-angled Artin group. Let r be the rank of G. We denote by $\mathcal{T}(G)$ the kernel of the natural homomorphism $\operatorname{Out}(G) \rightarrow$ $G L_{r}(\mathbb{Z})$. We say that $\mathcal{T}(G)$ is the Torelli group of G. In Section 7 we prove the following. After submitting the first version of this paper, the author learned that the following was obtained independently by Richard Wade, using different arguments.

Theorem 1.6 The Torelli group of a right-angled Artin group is residually torsion-free nilpotent.

This implies that the Torelli group of a right-angled Artin group is residually p-finite for every prime number p and bi-orderable.

Our proof of Theorem 1.2 is purely combinatorial. It is based on HNN extensions (see below for the definition of an HNN extension). The basic idea is that a right-angled Artin group of rank $r(r \geq 1)$ can be written as an HNN extension of any of its special subgroups of rank $r-1$. Our proof was inspired by Minasyan's paper (see [M]). In his paper, Minasyan proved that every finite index subgroup in a right-angled Artin group is conjugacy separable - that is, right-angled Artin groups are "hereditarily conjugacy separable". To this end, he introduced the centralizer condition and proved that a group is hereditarily conjugacy separable if and only if it is conjugacy separable and satisfies the centralizer condition. In Section 3, we introduce the p centralizer condition which is analog of the centralizer condition in [M], and we prove that a group is hereditarily conjugacy p-separable if and only if it is conjugacy p-separable and satisfies the p centralizer condition. In Section 4, we prove the following:

Theorem 1.7 Every extension of a free group by a finite p-group is conjugacy p-separable.

From a technical point of view, Theorem 1.7 is the main result of our paper. In Section 5, we deal with retractions that are key tools in the proof of our main theorem, which is the object of Section 6.

My gratefulness goes to my Ph.D. thesis advisor, Luis Paris, for his trust, time and advice.

2 HNN extensions

We start recalling the definition of an HNN extension (see LS]). This notion of HNN extension will be of great importance in our proof, because, as we will see, a right-angled Artin group of rank $r(r \geq 1)$ can be written as an HNN extension of any of its special subgroups of rank $r-1$.

Let H be a group. Then by the notation:

$$
<H, h, \ldots \mid r, \ldots>
$$

we mean the group defined by the presentation whose generators are the generators of H together with h, \ldots and the relators of H together with r, \ldots

Let H be a group. Let I be a set of indices. Let $\left\{K_{i}\right\}_{i \in I}$ and $\left\{L_{i}\right\}_{i \in I}$ be families of subgroups of H and let $\left\{\psi_{i}: K_{i} \rightarrow L_{i}\right\}_{i \in I}$ be a family of isomorphisms. The $H N N$ extension with base H, stable letters $t_{i}(i \in I)$, and associated subgroups K_{i} and $L_{i}(i \in I)$, is the group defined by the presentation:

$$
G=<H, t_{i}(i \in I) \mid t_{i}^{-1} k_{i} t_{i}=\psi_{i}\left(k_{i}\right), \forall k_{i} \in K_{i}(i \in I)>
$$

In particular, let H be a group, let K and L be subgroups of H and let ψ be an isomorphism from K to L. The $H N N$ extension of H relative to ψ is the group defined by the presentation:

$$
G=<H, t \mid t^{-1} k t=\psi(k), \forall k \in K>
$$

From now on, we suppose $K=L$ and $\psi=i d_{K}$. In this case, G is called the $H N N$ extension of H relative to K :

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>
$$

Every element of G can be written as a word $x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}(n \geq 0$, $x_{0}, \ldots, x_{n} \in H, a_{1}, \ldots, a_{n} \in \mathbb{Z} \backslash\{0\}$). Following Minasyan (see $[\mathbf{M}]$), we will say that the word $x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is reduced if $x_{0} \in H, x_{1}, \ldots, x_{n-1} \in H \backslash K$, and $x_{n} \in H$. Every element of G can be represented by such a reduced word. Note that our definition of a reduced word is stronger than the definition of a reduced word in LS].

Lemma 2.1 (Britton's Lemma) If a word $x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is reduced with $n \geq 1$, then $x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n} \neq 1$.

Proof: Proved in M.
Lemma 2.2 If $x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ and $y_{0} t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}$ are reduced words such that $x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}=y_{0} t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}$, then $m=n$ and $a_{i}=b_{i}$ for all $i \in$ $\{1, \ldots, n\}$.

Proof: Proved in (M).
A cyclic permutation of the word $t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is a word $t^{a_{k}} x_{k} \ldots t^{a_{n}} x_{n} t^{a_{1}} x_{1}$ $\ldots t^{a_{k-1}} x_{k-1}$ with $k \in\{1, \ldots, n\}$. A word $t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is said to be cyclically reduced if any cyclic permutation of $t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is reduced. Note that, if $t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is reduced and $n \geq 2$, then $t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is cyclically reduced if and only if $x_{n} \in H \backslash K$. Every element of G is conjugate to a cyclically reduced word.

Lemma 2.3 (Collins' Lemma) If $g=t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}(n \geq 1)$ and $h=$ $t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}(m \geq 1)$ are cyclically reduced and conjugate, then there exists a cyclic permutation h^{*} of h and an element $\alpha \in K$ such that $g=\alpha h^{*} \alpha^{-1}$.

Proof: Proved in (M).
Remark: There exists a natural homomorphism $f: G \rightarrow H$, defined by $f(h)=h$ for all $h \in H$, and $f(t)=1$.

Remark: Let P be a group and let $\varphi: H \rightarrow P$ be a homomorphism. Let Q be the HNN extension of P relative to $\varphi(K)$:

$$
Q=<P, \bar{t} \mid \bar{t}^{-1} \varphi(k) \bar{t}=\varphi(k), \forall k \in K>.
$$

Then φ induces a homomorphism $\bar{\varphi}: G \rightarrow Q$, defined by $\bar{\varphi}(h)=\varphi(h)$ for all $h \in H$, and $\bar{\varphi}(t)=\bar{t}$.

Lemma 2.4 With the notations of the previous remark, $\operatorname{ker}(\bar{\varphi})$ is the normal closure of $\operatorname{ker}(\varphi)$ in G.

Proof: Proved in M.
The following simple observation is the key in the proof of our main theorem. Let G be a right-angled Artin group of rank $r(r \geq 1)$. Let H be a special subgroup of G of rank $r-1$. In other words, there exists a partition of $V: V=W \cup\{t\}$ such that $H=\langle W\rangle$. Then G can be written as the HNN extension of H relative to the special subgroup $K=C(t)=$ $<\operatorname{star}(t)>$ of H :

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>.
$$

3 Hereditary conjugacy p-separability and p centralizer condition

We start with an observation that the reader has to keep in mind, because it will be used repeatedly in the rest of the paper: if H and K are two normal subgroups of p-power index in a group G, then $H \cap K$ is a normal subgroup of p-power index in G.

If G is a group, H is a subgroup of G, and $g \in G$, then we set $C_{H}(g)=$ $\{h \in H \mid g h=h g\}$.

Definition 3.1 We say that G satisfies the p centralizer condition ($p C C$) if, for every normal subgroup H of p-power index in G, and for all $g \in G$, there exists a normal subgroup K of p-power index in G such that $K<H$, and:

$$
C_{G / K}(\varphi(g)) \subset \varphi\left(C_{G}(g) H\right),
$$

where $\varphi: G \rightarrow G / K$ denotes the canonical projection.

We shall show that a group G is hereditarily conjugacy p-separable if and only if it is conjugacy p-separable and satisfies the p centralizer condition (see Proposition 3.6). For technical reasons, we have to introduce the following definitions:

Definition 3.2 Let G be a group, H be a subgroup of G, and $g \in G$. We say that the pair (H, g) satisfies the p centralizer condition in $G\left(p C C_{G}\right)$ if, for every normal subgroup K of p-power index in G, there exists a normal subgroup L of p-power index in G such that $L<K$, and:

$$
C_{\varphi(H)}(\varphi(g)) \subset \varphi\left(C_{H}(g) K\right),
$$

where $\varphi: G \rightarrow G / L$ denotes the canonical projection. We say that H satisfies the p centralizer condition in $G\left(p C C_{G}\right)$ if the pair (H, g) satisfies the p centralizer condition in G for all $g \in G$.

If G is a group, H is a subgroup of G, and $g \in G$, then we set: $g^{H}=$ $\left\{\alpha g \alpha^{-1} \mid \alpha \in H\right\}$. In order to prove Proposition 3.6, we need the following statements, which are analogs of some statements obtained in M (Lemma 3.4, Corollary 3.5 and Lemma 3.7, respectively):

Lemma 3.3 Let G be a group, H be a subgroup of G, and $g \in G$. Suppose that the pair (G, g) satisfies $p C C_{G}$, and that g^{G} is finitely p-separable in G. If $C_{G}(g) H$ is finitely p-separable in G, then g^{H} is also finitely p-separable in G.

Proof: Let $h \in G$ such that $h \notin g^{H}$. If $h \notin g^{G}$, then, since g^{G} is finitely p-separable in G, there exists a homomorphism φ from G onto a finite p group P such that $\varphi(h) \notin \varphi\left(g^{G}\right)$. In particular, $\varphi(h) \notin \varphi\left(g^{H}\right)$. Thus we can assume that $h \in g^{G}$. Let $\alpha \in G$ such that $h=\alpha g \alpha^{-1}$. Suppose that $C_{G}(g) \cap \alpha^{-1} H \neq \emptyset$. Let $k \in C_{G}(g) \cap \alpha^{-1} H$. We obtain: $\alpha k \in H$ and h $=\alpha g \alpha^{-1}=\alpha k g(\alpha k)^{-1} \in g^{H}-$ a contradiction. Thus $C_{G}(g) \cap \alpha^{-1} H=\emptyset$, i.e. $\quad \alpha^{-1} \notin C_{G}(g) H$. As $C_{G}(g) H$ is finitely p-separable in G, there exists a normal subgroup K of p-power index in G such that $\alpha^{-1} \notin C_{G}(g) H K$. Now the condition $p C C_{G}$ implies that there exists a normal subgroup L of p-power index in G such that $L<K$, and:

$$
C_{G / L}(\varphi(g)) \subset \varphi\left(C_{G}(g) K\right)
$$

where $\varphi: G \rightarrow G / L$ denotes the canonical projection. We have: $\varphi(h) \notin$ $\varphi\left(g^{H}\right)$. Indeed, if there exists $\beta \in H$ such that $\varphi(h)=\varphi\left(\beta g \beta^{-1}\right)$, then $\varphi(g)$ $=\varphi\left(\beta^{-1} h \beta\right)$, and $\varphi\left(\alpha^{-1} \beta\right) \varphi(g)=\varphi\left(\alpha^{-1} \beta\right) \varphi\left(\beta^{-1} h \beta\right)=\varphi\left(\alpha^{-1} h \alpha\right) \varphi\left(\alpha^{-1} \beta\right)$ $=\varphi(g) \varphi\left(\alpha^{-1} \beta\right)$ i.e. $\varphi\left(\alpha^{-1} \beta\right) \in C_{G / L}(\varphi(g))$. But then $\varphi\left(\alpha^{-1}\right) \in C_{G / L}(\varphi(g))$ $\varphi(H) \subset \varphi\left(C_{G}(g) K H\right)$. We obtain: $\alpha^{-1} \in C_{G}(g) H K L=C_{G}(g) H K$ (because $L<K$) - a contradiction.

Corollary 3.4 Let G be a conjugacy p-separable group satisfying $p C C$, and H be a subgroup of G such that $C_{G}(h) H$ is finitely p-separable in G for all $h \in H$. Then H is conjugacy p-separable. Moreover, for all $h \in H, h^{H}$ is finitely p-separable in G.

Proof: Let $h \in H$. Since G satisfies $p C C$, the pair (G, h) satisfies $p C C_{G}$. Since G is conjugacy p-separable, h^{G} is finitely p-separable in G. Lemma 3.3 now implies that h^{H} is finitely p-separable in G. Therefore h^{H} is finitely p-separable in H .

Lemma 3.5 Let G be a group, H be a subgroup of G, and $g \in G$. Let K be a normal subgroup of p-power index in G. If $g^{H \cap K}$ is finitely p-separable in G, then there exists a normal subgroup L of p-power index in G such that L $<K$, and:

$$
C_{\varphi(H)}(\varphi(g)) \subset \varphi\left(C_{H}(g) K\right)
$$

where $\varphi: G \rightarrow G / L$ denotes the canonical projection.
Proof: Note that $H \cap K$ is of finite index n in H. Actually, $H \cap K$ is of p-power index in H (because $\frac{H}{H \cap K} \simeq \frac{K H}{K}<\frac{G}{K}$). However, we do not need this fact. There exists $\alpha_{1}, \ldots, \alpha_{n} \in H$ such that $H=\sqcup_{i=1}^{n} \alpha_{i}(H \cap K)$. Up to renumbering, we can assume that there exists $l \in\{0, \ldots, n\}$ such that $\alpha_{i}^{-1} g \alpha_{i}$ $\in g^{H \cap K}$ for all $i \in\{1, \ldots, l\}$ and $\alpha_{i}^{-1} g \alpha_{i} \notin g^{H \cap K}$ for all $i \in\{l+1, \ldots, n\}$. By the assumptions, there exists a normal subgroup L of p-power index in G such that $\alpha_{i}^{-1} g \alpha_{i} \notin g^{H \cap K} L$ for all $i \in\{l+1, \ldots, n\}$. Up to replacing L by $L \cap K$,
we can assume that $L<K$. Let $\varphi: G \rightarrow G / L$ be the canonical projection. Let $\bar{h} \in C_{\varphi(H)}(\varphi(g))$. There exists $h \in H$ such that $\bar{h}=\varphi(h)$. There exists $i \in\{1, \ldots, n\}$ and $k \in H \cap K$ such that $h=\alpha_{i} k$. We have : $\varphi\left(h^{-1} g h\right)=$ $\varphi(h)^{-1} \varphi(g) \varphi(h)=\varphi(g)$. Thus $h^{-1} g h \in g L$. But then $\alpha_{i}^{-1} g \alpha_{i}=k h^{-1} g h k^{-1}$ $\in k g L k^{-1}=k g k^{-1} L \subset g^{H \cap K} L$. Therefore $i \leq l$. Then there exists $\beta \in$ $H \cap K$ such that: $\alpha_{i}^{-1} g \alpha_{i}=\beta g \beta^{-1}$. This is to say that $\alpha_{i} \beta \in C_{H}(g)$, and then $h=\alpha_{i} k=\left(\alpha_{i} \beta\right)\left(\beta^{-1} k\right) \in C_{H}(g)(H \cap K) \subset C_{H}(g) K$. We have shown that $C_{\varphi(H)}(\varphi(g)) \subset \varphi\left(C_{H}(g) K\right)$.

We are now ready to prove:
Proposition 3.6 A group is hereditarily conjugacy p-separable if and only if it is conjugacy p-separable and satisfies $p C C$.

Proof: Suppose that G is conjugacy p-separable and satisfies $p C C$. Let H be a subgroup of p-power index in G. Thus H is closed in the pro- p topology on G (because $G \backslash H=\cup\{g H \mid g \notin H\}$). Let $h \in H$. The set $C_{G}(h) H$ is a finite union of left cosets modulo H and thus is closed in the pro-p topology on G. Corollary 3.4 now implies that H is conjugacy p separable. Therefore G is hereditarily conjugacy p-separable. Suppose now that G is hereditarily conjugacy p-separable. In particular, G is conjugacy p-separable. We shall show that G satisfies $p C C$. Let $g \in G$. Let K be a normal subgroup of p-power index in G. We set $H=K\langle g\rangle$. We have K $<H$. Thus H is a subgroup of p-power index in G. Therefore it is conjugacy p-separable. And $g^{H \cap K}=g^{H} \subset H$. As g^{H} is closed in the pro- p topology on H, it is closed in the pro- p topology on G. The result now follows from lemma 3.5

4 Extensions of free groups by finite p-groups are conjugacy p-separable

We start with an observation that the reader has to keep in mind because it will be used repeatedly in the proof of Theorem 4.2, if $\varphi: G$ $\rightarrow H$ is a homomorphism from a group G to a group H, whose kernel is torsion-free, then the restriction of φ to any finite subgroup of G is injective.

We need the following lemma:
Lemma 4.1 Let $G=G_{1} * \ldots * G_{n}$ be a free product of n conjugacy p-separable groups G_{1}, \ldots, G_{n}. Let $g, h \in G \backslash\{1\}$ be two non-trivial elements of finite order in G such that $g \nsim h$. There exists a homomorphism φ from G onto a finite p-group P such that $\varphi(g) \nsim \varphi(h)$.

Proof: Since g is of finite order in G, there exists $i \in\{1, \ldots, n\}$ such that g is conjugate to an element of finite order in G_{i}. Thus we may assume that g belongs to G_{i}. Similarly, we may assume that there exists j in $\{1, \ldots, n\}$ such that h belongs to G_{j}. Suppose that $i \neq j$. Let $\varphi: G_{i} \rightarrow P$ be a homomorphism from G_{i} onto a finite p-group P such that $\varphi(g) \neq 1$. Let $\widetilde{\varphi}$: $G \rightarrow P$ be the natural homomorphism extending φ. Then $\widetilde{\varphi}(g) \nsim \widetilde{\varphi}(h)$. Suppose that $i=j$. Then g and h are not conjugate in G_{i} - otherwise they would be conjugate in G. Since G_{i} is conjugacy p-separable, there exists a homomorphism $\varphi: G_{i} \rightarrow P$ from G_{i} onto a finite p-group P such that $\varphi(g)$ $\nsim \varphi(h)$. Let $\widetilde{\varphi}: G \rightarrow P$ be defined as above. We have $\widetilde{\varphi}(g) \nsim \widetilde{\varphi}(h)$.

Recall that a subnormal subgroup of a group G is a subgroup H of G such that there exists a finite sequence of subgroups of G :

$$
H=H_{0}<H_{1}<\ldots<H_{n}=G,
$$

such that H_{i} is normal in H_{i+1} for all $i \in\{0, \ldots, n-1\}$.
In Section 4, by a graph, we mean a unoriented graph, possibly with loops or multiple edges.

Recall that a graph of groups is a connected graph $\Gamma=(V, E)$, together with a function \mathcal{G} which assigns:

- to each vertex $v \in V$, a group G_{v},
- and to each edge $e=\{v, w\} \in E$, a group G_{e} together with two injective homomorphisms $\alpha_{e}: G_{e} \rightarrow G_{v}$ and $\beta_{e}: G_{e} \rightarrow G_{w}$ - we are not assuming that $v \neq w-$,
(see [Se, see also Dy). The groups $G_{v}(v \in V)$ are called the vertex groups of Γ, the groups $G_{e}(e \in E)$ are called the edge groups of Γ. The monomorphisms α_{e} and $\beta_{e}(e \in E)$ are called the edge monomorphisms. The images of the edge groups under the edge monomorphisms are called the edge subgroups.

Choose disjoint presentations $G_{v}=\left\langle X_{v}\right| R_{v}>$ for the vertex groups of Γ. Choose a maximal tree T in Γ. Assign a direction to each edge of Γ. Let $\left\{t_{e} \mid e \in E\right\}$ be a set in one-to-one correspondence with the set of edges of Γ, and disjoint from the $X_{v}, v \in V$. The fundamental group of the above graph of groups Γ is the group G_{Γ} defined by the presentation whose generators are:

$$
\begin{gathered}
X_{v}(v \in V), \\
t_{e}(e \in E)
\end{gathered}
$$

(called vertex and edge generators respectively) and whose relations are:

$$
\begin{gathered}
R_{v}(v \in V), \\
t_{e}=1(e \in T), \\
t_{e} \alpha_{e}\left(g_{e}\right) t_{e}^{-1}=\beta_{e}\left(g_{e}\right), \forall g_{e} \in G_{e}(e \in E) .
\end{gathered}
$$

(called vertex, tree, and edge relations respectively). One can prove that this is well-defined - that is, independent of our choice of T, etc. Note that it suffices to write the edge relations for g_{e} in a set of generators for G_{e}.

Convention: The groups $G_{v}(v \in V)$ and $G_{e}(e \in E)$ will be regarded as subgroups of G_{Γ}.

Let $\left\{\Gamma_{i}\right\}_{i \in I}$ be a collection of connected and pairwise disjoint subgraphs of Γ. We may define a graph of groups Γ^{*} from Γ by contracting Γ_{i} to a point for all $i \in I$, as follows. The graph Γ^{*} is obtained from Γ by contracting Γ_{i} to a point p_{i} for all $i \in I$. The function \mathcal{G}^{*} is obtained from \mathcal{G} by using the fundamental group of Γ_{i} for the vertex group at p_{i}, and by composing the edge monomorphisms of Γ by the natural inclusions of the vertex groups of Γ_{i} into the fundamental group of Γ_{i}, if necessary. Clearly, G_{Γ} is isomorphic to the fundamental group $G_{\Gamma^{*}}$ of Γ^{*}.

If $\pi: G_{\Gamma} \rightarrow H$ is a homomorphism from G_{Γ} to a group H, such that the restriction of π to each edge subgroup of Γ is injective, then we may define a graph of groups Γ^{\prime} from Γ by composing with π, as follows. The vertex set of Γ^{\prime} is V, and the edge set of Γ^{\prime} is E. The vertex groups of Γ^{\prime} are the groups $G_{v}^{\prime}=\pi\left(G_{v}\right)(v \in V)$, and the edge groups of Γ^{\prime} are the groups $G_{e}^{\prime}=$ $G_{e}(e \in E)$. The edge monomorphisms are the monomorphisms $\alpha_{e}^{\prime}=\pi \circ \alpha_{e}$ and $\beta_{e}^{\prime}=\pi \circ \beta_{e}(e \in E)$. Present G_{Γ} and $G_{\Gamma^{\prime}}$ using the same symbols for edge generators and with the same choice of maximal tree. There exist two homomorphisms, $\pi_{V}: G_{\Gamma} \rightarrow G_{\Gamma^{\prime}}$ and $\pi_{E}: G_{\Gamma^{\prime}} \rightarrow H$ such that the diagram:

commutes, and that the restriction of π_{E} to each vertex group of $G_{\Gamma^{\prime}}$ is injective. The homomorphism π_{V} is given by:

$$
\begin{gathered}
\left(\pi_{V}\right)_{\left.\right|_{G_{v}}}=\pi_{\left.\right|_{G_{v}}}, \forall v \in V, \\
\pi_{V}\left(t_{e}\right)=t_{e}, \forall e \in E .
\end{gathered}
$$

And the homomorphism π_{E} is given by:

$$
\begin{gathered}
\left(\pi_{E}\right)_{\left.\right|_{G_{v}^{\prime}}}=\left(i d_{H}\right)_{\left.\right|_{G_{v}^{\prime}}}, \forall v \in V, \\
\pi_{E}\left(t_{e}\right)=\pi\left(t_{e}\right), \forall e \in E .
\end{gathered}
$$

In Dy, Dyer proved that every extension of a free group by a finite group is conjugacy separable. The following theorem is the analog of Dyer's theorem for conjugacy p-separability. From a technical point of view, it is the main result of our paper.

Theorem 4.2 Every extension of a free group by a finite p-group is conjugacy p-separable.

Proof: Our proof was inspired by Dyer's one (see Dy). Let G be an extension of a free group by a finite p-group. In other words, there exists a short exact sequence:

$$
1 \longrightarrow F \longrightarrow G \xrightarrow{\pi} P \longrightarrow 1
$$

where F is a free group, and P is a finite p-group. Let $g \in G$. Let $h \in G$ such that $g \nsim h$.

Step 1: We show that we may assume that G satisfies a short exact sequence:

$$
1 \longrightarrow F \longrightarrow G \xrightarrow{\pi} C_{p^{n}} \longrightarrow 1
$$

where F is a free group, $n \geq 1, C_{p^{n}}$ denotes the cyclic group of order p^{n}, and $\pi(g)=\pi(h)$.

Since G is an extension of a free group by a finite p-group, G is residually p-finite by [G], Lemma 1.5. Therefore, if $g=1$, then $g^{G}=\{1\}$ is finitely p-separable in G. On the other hand, if g is of infinite order in G, then g^{G} is finitely p-separable in G by [I], Proposition 5. Therefore we may assume that $g \neq 1$ and that g is of finite order in G. Similarly, we may assume that $h \neq 1$ and that h is of finite order in G. If $\pi(g)$ and $\pi(h)$ are not conjugate in P, we are done. Thus, up to replacing h by a conjugate of itself, we may assume that $\pi(g)=\pi(h)$. Since $\operatorname{ker}(\pi)=F$ is torsion-free, g and h have the same order $p^{n}\left(n \in \mathbb{N}^{*}\right)$. Let H be the subgroup of G generated by g and F. Note that H is a subgroup of p-power index in G, and that g and h belong to H. As $\frac{G}{F}=P$ is nilpotent, H is subnormal in G. Thus we may replace G by H, by [I], Proposition 41, so as to assume that G satisfies the short exact sequence:

$$
1 \longrightarrow F \longrightarrow G \xrightarrow{\pi} C_{p^{n}} \longrightarrow 1
$$

[^0]Now, G is the fundamental group of a graph of groups Γ, whose vertex groups are all finite groups, by [S]. As $\pi_{\left.\right|_{G_{v}}}$ is injective for all $v \in V, G_{v}$ is isomorphic to a subgroup of $C_{p^{n}}$ for all $v \in V$. From now on, the groups G_{v} $(v \in V)$ will be regarded as subgroups of $C_{p^{n}}$.

Step 2: We show that we may assume that all edge groups are nontrivial, that if two different vertices are connected by an edge, then the corresponding edge group is a proper subgroup of $C_{p^{n}}$, and that g and h belong to two different vertex groups.

First, we show that we may assume that all edge groups are non-trivial. Indeed, Let Γ_{0} be the subgraph of Γ whose vertices are all the vertices of Γ, and whose edges are the edges of Γ for which the edge group is non-trivial. Let $\Gamma_{1}, \ldots, \Gamma_{r}$ be the connected components of Γ_{0}. Let Γ^{*} be the graph of groups obtained from Γ by contracting Γ_{i} to a point for all $i \in\{1, \ldots, r\}$. Let T be a maximal tree of Γ^{*}. Then G is isomorphic to the fundamental group G^{*} of Γ^{*}. Observe that G^{*} is the free product of the free group on $\left\{t_{e} \mid e \in\right.$ $E \backslash T\}$ and the fundamental groups of the $\Gamma_{i}(i \in\{1, \ldots, r\})$. Thus, it suffices to consider the case where $\Gamma=\Gamma_{i}(i \in\{1, \ldots, r\})$, by Lemma 4.1. Since each $\Gamma_{i}(i \in\{1, \ldots, r\})$ is a graph of groups whose edge groups are all non-trivial, the first part of the assertion is proved.

Now, we show that we may assume that if two different vertices are connected by an edge, then the corresponding edge group is a proper subgroup of $C_{p^{n}}$. Indeed, let Γ_{0} be the subgraph of Γ whose vertices are all the vertices of Γ, and whose edges are the edges of Γ for which the edge group is isomorphic to $C_{p^{n}}$. Let $\Gamma_{1}, \ldots, \Gamma_{r}$ be the connected components of Γ_{0}. Choose a maximal tree T_{i} in Γ_{i}, for all $i \in\{1, \ldots, r\}$. Let Γ^{*} be the graph of groups obtained from Γ by contracting T_{i} to a point for all $i \in\{1, \ldots, r\}$. Then G is isomorphic to the fundamental group G^{*} of Γ^{*}. Note that a vertex group of Γ^{*} is either a vertex group of Γ, or the fundamental group of T_{i}, for some $i \in$ $\{1, \ldots, r\}$, in which case it is isomorphic to $C_{p^{n}}$ (because each $T_{i}(i \in\{1, \ldots, r\})$ is a tree of groups whose vertex and edge groups are all equal to $C_{p^{n}}$). Thus, we may replace Γ by Γ^{*}, so that the second part of the assertion is proved.

Since g is of finite order in G, there exists a vertex v of Γ, an element g_{0} of finite order in the vertex group G_{v} of v, and an element α of G such that $g=\alpha g_{0} \alpha^{-1}$. Similarly, there exists a vertex w of Γ, an element h_{0} of finite order in the vertex group G_{w} of w, and an element β of G such that $h=$ $\beta h_{0} \beta^{-1}$. As $C_{p^{n}}$ is abelian, we have: $\pi\left(g_{0}\right)=\pi\left(h_{0}\right)$. Thus, up to replacing g by g_{0} and h by h_{0}, we may assume that g belongs to G_{v}, and h belongs to G_{w}. Since $\pi_{\left.\right|_{G_{v}}}$ is injective, and $\pi(g)=\pi(h)$, we have $v \neq w$.

Step 3: We show that we may assume that Γ has exactly two vertices, and that all edges join these two vertices.

Indeed, choose a maximal tree T in Γ. There is a path P in T joining v to w. Choose an edge e on this path. Then $T \backslash\{e\}$ is the disjoint union of two trees, T_{v} and T_{w} - say $v \in T_{v}$ and $w \in T_{w}$. Let Γ_{v} be the full subgraph of Γ generated by the vertices of T_{v}, and Γ_{w} be the full subgraph of Γ generated by the vertices of T_{w}. Let Γ^{*} be the graph of groups obtained from Γ by contracting Γ_{v} to a point v^{*} and Γ_{w} to a point w^{*}. Observe that Γ^{*} has exactly two vertices and that all edges join these two vertices. The vertex groups of Γ^{*} are the fundamental groups of Γ_{v} and Γ_{w}, respectively. The edge groups of Γ^{*} are non-trivial proper subgroups of $C_{p^{n}}$. And G is isomorphic to the fundamental group G^{*} of Γ^{*}. Now, since the restriction of π to each edge subgroup of Γ^{*} is injective, we may define a graph of groups Γ^{\prime} from Γ^{*} by composing with π, as described above. Denote by G^{\prime} the fundamental group of Γ^{\prime}. There exist two homomorphisms $\pi_{V}: G \rightarrow G^{\prime}$, and $\pi_{E}: G^{\prime} \rightarrow C_{p^{n}}$ such that the diagram:

commutes, and that the restriction of π_{E} to each vertex group of Γ^{\prime} is injective. Consequently, $\operatorname{ker}\left(\pi_{E}\right)$ is free by [Se, II, 2.6., Lemma 8.

Set $g^{\prime}=\pi_{V}(g)$, and $h^{\prime}=\pi_{V}(h)$. As g^{\prime} and h^{\prime} have order p^{n}, the vertex groups of Γ^{\prime} are equal to $C_{p^{n}}$. The edge groups of Γ^{\prime} are non-trivial proper subgroups of $C_{p^{n}}$. Observe that g^{\prime} and h^{\prime} belong to two different vertex groups, and that g^{\prime} (resp. h^{\prime}) is not conjugate to an element of one of the edge groups. Let e be an edge of Γ^{\prime}. Then g^{\prime} and h^{\prime} are not conjugate in $G_{v}^{\prime} *_{G_{e}^{\prime}} G_{w}^{\prime}$, by MKS, Theorem 4.6. (ii). Observe that G^{\prime} is an HNN extension (in the general sense) of $G_{v}^{\prime} *_{G_{e}^{\prime}} G_{w}^{\prime}$ with stable letters $t_{a}(a \in E \backslash\{e\})$, and associated subgroups $\alpha_{a}^{\prime}\left(G_{a}^{\prime}\right), \beta_{a}^{\prime}\left(G_{a}^{\prime}\right)(a \in E \backslash\{e\})$. Therefore g^{\prime} and h^{\prime} are not conjugate in G^{\prime} (see $\overline{\mathrm{Dy} 2}$, Theorem 3). Thus, we may replace Γ by Γ^{\prime}, G by G^{\prime}, g by g^{\prime}, and h by h^{\prime}, so as to assume that Γ has two vertices and that all edges join these two vertices.

Step 4: We show that we may assume that Γ has at most two edges.
Suppose that Γ has more than two edges. Choose a maximal tree T in Γ - that is, an edge of Γ. Present $G_{v}=<g\left|g^{p^{n}}=1>, G_{w}=<h\right| h^{p^{n}}=1>$, and G as described above. Choose an edge $e \in E \backslash T$.

The edge relations corresponding to e can be reduced to the following:

$$
t_{e} \alpha_{e}\left(g_{e}\right) t_{e}^{-1}=\beta_{e}\left(g_{e}\right),
$$

where g_{e} is a generator of G_{e}. Let p^{s} be the order of $G_{e}(s \in\{1, \ldots, n-1\})$. Then $\alpha_{e}\left(g_{e}\right)$ generates a subgroup of order p^{s} of G_{v}. But there exists a unique subgroup of order p^{s} in G_{v}; it is cyclic, generated by $g^{p^{r}}$, where r $=n-s$. Thus, up to replacing g_{e} by the preimage of $g^{p^{r}}$ under α_{e}, we may assume that $\alpha_{e}\left(g_{e}\right)=g^{p^{r}}$. There exists $k \in \mathbb{N}$, such that p and k are coprime, and that $\beta_{e}\left(g_{e}\right)=h^{k p^{r}}$. Therefore the edge relation corresponding to e can be written:

$$
t_{e} g^{p^{r}} t_{e}^{-1}=h^{k p^{r}}
$$

where $r \in\{1, \ldots, n-1\}, k \in \mathbb{N}$, and p and k are coprime. Now, since $\pi: G \rightarrow$ $C_{p^{n}}$ satisfies $\pi(g)=\pi(h)$, we have: $\pi(g)^{p^{r}}=\pi(h)^{k p^{r}}=\pi(g)^{k p^{r}}$, and then $\pi(g)^{(k-1) p^{r}}=1$ (in $\left.C_{p^{n}}\right)$. As $\pi(g)$ has order p^{n} in $C_{p^{n}}$, we deduce that p^{n-r} divides $k-1$. There exists $a \in \mathbb{Z}$ such that $k=a p^{n-r}+1$. We conclude that the edge relation corresponding to e can be written:

$$
t_{e} g^{p^{r}} t_{e}^{-1}=h^{p^{r}}
$$

where $r \in\{1, \ldots, n-1\}$.
Let H be the normal subgroup of G generated by the elements:

$$
g, h, t_{a}(a \in E \backslash\{e\}), t_{e}^{p} .
$$

Then H has index p in G, and g and h belong to H. Thus we may replace G by H by 【I, Proposition 4 . Let G_{0} be the fundamental group of the graph of groups $\Gamma \backslash\{e\}$. Set $G_{0}=<X_{0}\left|R_{0}\right\rangle$, where the presentation is as fundamental group of the graph of groups $\Gamma \backslash\{e\}$. Set $G_{i}=t_{e}^{i} G_{0} t_{e}^{-i}=<X_{i}$ $\left|R_{i}\right\rangle$, for all $i \in\{1, \ldots, p-1\}$. Clearly $\left\{1, t_{e}, \ldots, t_{e}^{p-1}\right\}$ is a Schreier transversal for H in G. The Reidemeister-Schreier method yields the presentation:

$$
\begin{gathered}
H=<X_{0}, X_{1}, \ldots, X_{p-1}, u \mid R_{0}, R_{1}, \ldots, R_{p-1}, g_{1}^{p^{r}}=h_{0}^{p^{r}}, g_{2}^{p^{r}}=h_{1}^{p^{r}}, \ldots, g_{p-1}^{p^{r}} \\
=h_{p-2}^{p^{r}}, u g_{0}^{p^{r}} u^{-1}=h_{p-1}^{p^{r}}>,
\end{gathered}
$$

where $u=t_{e}^{p}, g_{i}=t_{e}^{i} g t_{e}^{-i}(i \in\{0, \ldots, p-1\})$, and $h_{j}=t_{e}^{j} h t_{e}^{-j}(j \in\{0, \ldots, p-1\})$. Replace g by g_{0}, and $\underset{\sim}{h}$ by h_{1}. Observe that H is the fundamental group of a graph of groups $\widetilde{\Gamma}$, as follows. The graph $\widetilde{\Gamma}$ has $2 p$ vertices, say v_{0}, $w_{0}, v_{1}, w_{1}, \ldots, v_{p-1}, w_{p-1}$, and $p|E|$ edges. Let $\widetilde{\Gamma}_{i}$ be the full subgraph of $\widetilde{\Gamma}$ generated by $\left\{v_{i}, w_{i}\right\}$ for all $i \in\{0, \ldots, p-1\}$. Then $\widetilde{\Gamma}_{i}$ is isomorphic to $\Gamma \backslash\{e\}$. There is one edge joining w_{0} to v_{1}, one edge joining w_{1} to v_{2}, \ldots, one edge joining w_{p-2} to v_{p-1}, and one edge joining v_{0} to w_{p-1}, and the edge groups
associated to these egdes are isomorphic to G_{e}. Note that g belongs to the vertex group of v_{0} and h belongs to the vertex group of w_{1}.

Let Γ^{*} be the graph of groups obtained from $\widetilde{\Gamma}$ by contracting $\widetilde{\Gamma}_{i}$ to a point for all $i \in\{1, \ldots, p-1\}$. Then G is isomorphic to the fundamental group of Γ^{*}. The graph Γ^{*} has p vertices, say v_{0}, \ldots, v_{p-1}. There is one edge joining v_{0} to v_{1}, one edge joining v_{1} to v_{2}, \ldots, one edge joining v_{p-2} to v_{p-1}, and one edge joining v_{0} to v_{p-1}, and the edge groups associated to these edges are all isomorphic to G_{e}. Note that g belongs to the vertex group of v_{0} and h belongs to the vertex group of v_{1}.

Let T be the maximal tree $T=v_{0} v_{1} \ldots v_{p-2} v_{p-1}$. Then $T \backslash\left\{v_{0} v_{1}\right\}$ is the disjoint union of two trees : v_{0} and $v_{1} v_{2} \ldots v_{p-2} v_{p-1}$. Set $\Gamma_{1}^{*}=v_{0}$ and $\Gamma_{2}^{*}=$ $v_{1} v_{2} \ldots v_{p-2} v_{p-1}$. Let Λ be the graph of groups obtained from Γ^{*} by contracting Γ_{i}^{*} to a point for all $i \in\{1,2\}$. Let Λ^{\prime} be the graph of groups obtained from Λ by composing with π. As in Step 3, we may replace Γ by Λ^{\prime}, so as to assume that Γ has two vertices and two edges joining these two vertices.

End of the proof: Present $G_{v}=\left\langle g \mid g^{p^{n}}=1\right\rangle, G_{w}=\langle h| h^{p^{n}}=1>$, and G as described above. There are two cases:

Case 1: Γ has one edge.
In this case, G is an amalgamated product of two finite abelian p-groups. Since G is residually p-finite, G is conjugacy p-separable by [I], Theorem 2 . Thus, there exists a homomorphism φ from G onto a finite p-group P such that $\varphi(g) \nsim \varphi(h)$.

Case 2: Γ has two edges.
We have:

$$
G=<g, h, t \mid g^{p^{n}}=1, h^{p^{n}}=1, g^{p^{r}}=h^{p^{r}}, t g^{p^{s}} t^{-1}=h^{p^{s}}>,
$$

where $r \in\{1, \ldots, n-1\}, s \in\{1, \ldots, n-1\}$. Let:

$$
A=C_{p^{n}} \times \underbrace{C_{p^{s}} \times \ldots \times C_{p^{s}}}_{p^{r}-1} \times C_{p^{r}}
$$

Set $m=p^{r}+1$. Present each factor of this product in the natural way, using generators x_{1}, \ldots, x_{m} respectively. Let α be the automorphism of A defined by:

$$
\begin{gathered}
\alpha\left(x_{1}\right)=x_{1} x_{2} x_{m} \\
\alpha\left(x_{i}\right)=x_{i+1}, \forall i \in\{2, \ldots, m-2\} \\
\alpha\left(x_{m-1}\right)=\left(x_{2} \ldots x_{m-1}\right)^{-1} \\
\alpha\left(x_{m}\right)=x_{m}
\end{gathered}
$$

It is easily seen that α has order $m-1=p^{r}$. We have:

$$
\begin{gathered}
\alpha^{0}\left(x_{1}\right)=x_{1}, \\
\alpha^{1}\left(x_{1}\right)=x_{1} x_{2} x_{m}, \\
\alpha^{2}\left(x_{1}\right)=x_{1} x_{2} x_{3} x_{m}^{2}, \\
\ldots \\
\alpha^{m-2}\left(x_{1}\right)=x_{1} x_{2} x_{3} \ldots x_{m-1} x_{m}^{m-2}
\end{gathered}
$$

Let $B=A \rtimes\langle\alpha\rangle$ be the semidirect product of A by $\langle\alpha\rangle$. Note that B is a finite p-group. Let $\varphi: G \rightarrow B$ be the homomorphism defined by:

$$
\begin{gathered}
\varphi(g)=x_{1} \\
\varphi(h)=x_{1} x_{m} \\
\varphi(t)=\alpha
\end{gathered}
$$

Observe that the conjugacy class of $\varphi(g)$ in B is $\varphi(g)^{B}=\left\{\alpha^{k}\left(x_{1}\right) \mid k \in\right.$ $\{0, \ldots, m-2\}$. Thus, $\varphi(g)$ and $\varphi(h)$ are not conjugate in B.

Corollary 4.3 Let P be a finite p-group. Let A be a subgroup of P. Let Q be the HNN extension of P relative to A :

$$
Q=<P, t \mid t^{-1} a t=a, \forall a \in A>
$$

Then Q is hereditarily conjugacy p-separable.
Proof: Let R be a subgroup of p-power index in Q. Actually, we do not need the fact that R is of p-power index. Let $f: Q \rightarrow P$ be the natural homomorphism. We have $\operatorname{ker}(f) \cap P=\{1\}$. Therefore $\operatorname{ker}(f)$ is free by [KS], Theorem 6. That is, Q is an extension of a free group by a finite p-group. Thus R is itself an extension of a free group by a finite p-group. Therefore R is conjugacy p-separable by Theorem 4.2.

5 Retractions

Definition 5.1 Let G be a group and H be a subgroup of G. We say that H is a retract of G if there exists a homomorphism $\rho_{H}: G \rightarrow G$ such that $\rho_{H}(G)=H$ and $\rho_{H}(h)=h$ for all $h \in H$. The homomorphism ρ_{H} is called a retraction of G onto H.

Remark: If G is a right-angled Artin group, and H is a special subgroup of G, then H is a retract of G. A retraction of G onto H is given by:

$$
\rho_{H}(v)= \begin{cases}v & \text { if } v \in W \\ 1 & \text { if } v \in V \backslash W\end{cases}
$$

In what follows (Lemma 5.2 to Lemma 5.12), we shall prove several results on retractions that will allow us later to control the growth of some intersections of subgroups of a right-angled Artin group in homomorphic images of it (see Lemma 6.3).

Lemma 5.2 Let G be a group and H be a subgroup of G. Suppose that H is a retract of G. Let ρ_{H} be a retraction of G onto H. Let N be a normal subgroup of G such that $\rho_{H}(N) \subset N$. Then ρ_{H} induces a retraction $\rho_{\bar{H}}$: $G / N \rightarrow G / N$ of G / N onto the canonical image \bar{H} of H in G / N, defined by: $\rho_{\bar{H}}(g N)=\rho_{H}(g) N$ for all $g N \in G / N$.

Proof: Proved in [M].

Remark: Let G be a group and let H and H^{\prime} be two subgroups of G. Suppose that H and H^{\prime} are retracts of G and that the corresponding retractions, ρ_{H} and $\rho_{H^{\prime}}$, commute. Then $\rho_{H}\left(H^{\prime}\right)=\rho_{H^{\prime}}(H)=H \cap H^{\prime}$. Moreover $H \cap H^{\prime}$ is a retract of G. A retraction of G onto $H \cap H^{\prime}$ is given by $\rho_{H \cap H^{\prime}}=$ $\rho_{H} \circ \rho_{H^{\prime}}=\rho_{H^{\prime}} \circ \rho_{H}$.

Proposition 5.3 Let G be a group and H_{1}, \ldots, H_{n} be n subgroups of G. Suppose that H_{1}, \ldots, H_{n} are retracts of G and that the corresponding retractions pairwise commute. Then, for every normal subgroup K of p-power index in G, there exists a normal subgroup N of p-power index in G such that $N<K$ and $\rho_{H_{i}}(N) \subset N$ for all $i \in\{1, \ldots, n\}$. Consequently, for every $i \in\{1, \ldots, n\}$, the retraction $\rho_{H_{i}}$ induces a retraction $\rho_{\overline{H_{i}}}$ of G / N onto the canonical image $\overline{H_{i}}$ of H_{i} in G / N.

Proof: Proved in [M] - see Remark 4.4.
Lemma 5.4 Let G be a group and let H and H^{\prime} be two subgroups of G. Suppose that H and H^{\prime} are retracts of G and that the corresponding retractions, ρ_{H} and $\rho_{H^{\prime}}$, commute. Let N be a normal subgroup of G and assume that $\rho_{H}(N) \subset N$ and $\rho_{H^{\prime}}(N) \subset N$. Then, if $\varphi: G \rightarrow G / N$ denotes the canonical projection, $\varphi\left(H \cap H^{\prime}\right)=\varphi(H) \cap \varphi\left(H^{\prime}\right)$.

Proof: Proved in (M].
The next statement is analog of Lemma 4.6 in [M]:
Corollary 5.5 Let G be a group and H_{1}, \ldots, H_{n} be n subgroups of G. Suppose that H_{1}, \ldots, H_{n} are retracts of G and that the corresponding retractions $\rho_{H_{1}}, \ldots, \rho_{H_{n}}$ pairwise commute. Then, for every normal subgroup K of p power index in G, there exists a normal subgroup N of p-power index in G such that $N<K$ and $\rho_{H_{i}}(N) \subset N$, for all $i \in\{1, \ldots, n\}$. Moreover, if $\varphi: G$ $\rightarrow G / N$ denotes the canonical projection, then $\varphi\left(\bigcap_{i=1}^{n} H_{i}\right)=\bigcap_{i=1}^{n} \varphi\left(H_{i}\right)$.

Proof: By Proposition 5.3, there exists a normal subgroup N of p-power index in G such that $N<K$ and $\rho_{H_{i}}(N) \subset N$ for all $i \in\{1, \ldots, n\}$. We denote by $\varphi: G \rightarrow G / N$ the canonical projection. We argue by induction on $k \in\{1, \ldots, n\}$ to prove that $\varphi\left(\bigcap_{i=1}^{k} H_{i}\right)=\bigcap_{i=1}^{k} \varphi\left(H_{i}\right)$. If $k=1$, then the result is trivial. Thus we can assume that $k \geq 2$ and that the result has been proved for $k-1$. We set $H^{\prime}=\bigcap_{i=1}^{k-1} H_{i}$. By the above remark, H^{\prime} is a retract of G. A retraction of G onto H^{\prime} is given by $\rho_{H^{\prime}}=\rho_{H_{1}} \circ \ldots \circ \rho_{H_{k-1}}$. We have:

$$
\begin{gathered}
\rho_{H^{\prime}}(N)=\rho_{H_{1}}\left(\ldots\left(\rho_{H_{k-2}}\left(\rho_{H_{k-1}}(N)\right)\right)\right) \\
\subset \rho_{H_{1}}\left(\ldots\left(\rho_{H_{k-2}}(N)\right)\right) \\
\subset \ldots \\
\subset \rho_{H_{1}}(N) \\
\subset N .
\end{gathered}
$$

The retractions $\rho_{H^{\prime}}$ and $\rho_{H_{k}}$ commute, so we can apply Lemma 5.4 to conclude that $\varphi\left(H^{\prime} \cap H_{k}\right)=\varphi\left(H^{\prime}\right) \cap \varphi\left(H_{k}\right)$. By the induction hypothesis, $\varphi\left(H^{\prime}\right)$ $=\bigcap_{i=1}^{k-1} \varphi\left(H_{i}\right)$. Finally $\varphi\left(\bigcap_{i=1}^{k} H_{i}\right)=\bigcap_{i=1}^{k} \varphi\left(H_{i}\right)$.

In the following lemmas, G is a group, and A and B are two subgroups of G. We assume that A and B are retracts of G and that the corresponding retractions, ρ_{A} and ρ_{B}, commute.

Lemma 5.6 Let $x, y \in G$. We set $\alpha=\rho_{A}\left(\rho_{B}(x) x^{-1}\right) x \rho_{B}\left(x^{-1}\right)(\in A x B)$ and $\beta=\rho_{A}\left(\rho_{B}(y) y^{-1}\right) y \rho_{B}\left(y^{-1}\right)(\in A y B)$. Are equivalent:

1. $y \in A x B$,
2. $\beta \in \alpha^{A \cap B}$.

Proof: Proved in M.
Lemma 5.7 Let $x \in G$. We set $\alpha=\rho_{A}\left(\rho_{B}(x) x^{-1}\right) x \rho_{B}\left(x^{-1}\right)(\in A x B)$ and $\gamma=\rho_{A}\left(\rho_{B}(x) x^{-1}\right)(\in A)$. Then we have:

$$
A \cap x B x^{-1}=\gamma^{-1} C_{A \cap B}(\alpha) \gamma .
$$

Proof: Proved in M].
The next five statements are analogs of some statements in M (Lemma 5.3, Corollary 5.4, Lemma 5.5, Lemma 5.6 and Lemma 5.7, respectively):

Lemma 5.8 Let $x \in G$. We set: $\alpha=\rho_{A}\left(\rho_{B}(x) x^{-1}\right) x \rho_{B}\left(x^{-1}\right)(\in A x B)$. If $\alpha^{A \cap B}$ is finitely p-separable in G, then $A x B$ is also finitely p-separable in G.

Proof: Let $y \in G$ such that $y \notin A x B$. We set $\beta=\rho_{A}\left(\rho_{B}(y) y^{-1}\right) y \rho_{B}\left(y^{-1}\right)$. By Lemma 5.6, we have $\beta \notin \alpha^{A \cap B}$. Since $\alpha^{A \cap B}$ is finitely p-separable in G, there exists a normal subgroup K of p-power index in G such that, if ψ : $G \rightarrow G / K$ denotes the canonical projection, we have: $\psi(\beta) \notin \psi\left(\alpha^{A \cap B}\right)=$ $\psi(\alpha)^{\psi(A \cap B)}$. By Corollary [5.5, there exists a normal subgroup N of p-power index in G such that $N<K, \rho_{A}(N) \subset N, \rho_{B}(N) \subset N$ and, if $\varphi: G \rightarrow$ G / N denotes the canonical projection, then: $\varphi(A \cap B)=\varphi(A) \cap \varphi(B)$. Assume that $\varphi(\beta) \in \varphi(\alpha)^{\varphi(A \cap B)}$. There exists $g \in A \cap B$ such that $\varphi(\beta)=$ $\varphi(g) \varphi(\alpha) \varphi(g)^{-1}$. Then $\beta \in g \alpha g^{-1} N$. Since $N<K$, we obtain $\beta \in g \alpha g^{-1} K$. But this contradicts the fact that $\psi(\beta) \notin \psi(\alpha)^{\psi(A \cap B)}$. Therefore we have: $\varphi(\beta) \notin \varphi(\alpha)^{\varphi(A \cap B)}$ i.e. $\varphi(\beta) \notin \varphi(\alpha)^{\varphi(A) \cap \varphi(B)}$. We set $\bar{A}=\varphi(A)$ and $\bar{B}=$ $\varphi(B)$. By Lemma 5.2, ρ_{A} induces a retraction $\rho_{\bar{A}}$ of G / N onto \bar{A} and ρ_{B} induces a retraction $\rho_{\bar{B}}$ of G / N onto \bar{B}. We set: $\bar{x}=\varphi(x)$ and $\bar{y}=\varphi(y)$. We have: $\varphi(\alpha)=\rho_{\bar{A}}\left(\rho_{\bar{B}}(\bar{x}) \bar{x}^{-1}\right) \bar{x} \rho_{\bar{B}}\left(\bar{x}^{-1}\right)$ and $\varphi(\beta)=\rho_{\bar{A}}\left(\rho_{\bar{B}}(\bar{y}) \bar{y}^{-1}\right) \bar{y} \rho_{\bar{B}}\left(\bar{y}^{-1}\right)$. By Lemma 5.6, we have $\bar{y} \notin \bar{A} \bar{x} \bar{B}$ i.e. $\varphi(y) \notin \varphi(A x B)$.

Corollary 5.9 Let G be a group and A and B be two subgroups of G. Suppose that G is residually p-finite. If A and B are retracts of G, such that the corresponding retractions commute, then $A B$ is finitely p-separable in G.

Proof: We apply Lemma 5.8 to $x=1$.
Lemma 5.10 Let G be a group and A be a subgroup of G. Suppose that G is residually p-finite and that A is a retract of G. Then if a subset S of A is closed in the pro-p topology on A, it is also closed in the pro-p topology on G.

Proof: We denote by \bar{S} the closure of S in G - equipped with the pro-p topology. We shall show that $\bar{S} \subset S$. By Corollary 5.9, A is closed in G. Therefore $\bar{S} \subset A$. Let $a \in G \backslash S$. We can assume that $a \in A$. There exists a homomorphism φ from A onto a finite p-group P such that $\varphi(a) \notin \varphi(S)$. We set: $\psi=\varphi \circ \rho_{A}$. We have: $\psi(a)=\varphi(a) \notin \varphi(S)=\psi(S)$. Then $a \notin \bar{S}$.

Lemma 5.11 Let $x \in G$. We set $\alpha=\rho_{A}\left(\rho_{B}(x) x^{-1}\right) x \rho_{B}\left(x^{-1}\right)$. Suppose that the pair $(A \cap B, \alpha)$ satisfies the p centralizer condition in G. Then, for every normal subgroup K of p-power index in G, there exists a normal
subgroup N of p-power index in G such that $N<K, \rho_{A}(N) \subset N, \rho_{B}(N) \subset$ N and, if $\varphi: G \rightarrow G / N$ denotes the canonical projection, $\varphi(A) \cap \varphi\left(x B x^{-1}\right)$ $\subset \varphi\left(A \cap x B x^{-1}\right) \varphi(K)$.

Proof: Let K be a normal subgroup of p-power index in G. We set $\gamma=$ $\rho_{A}\left(\rho_{B}(x) x^{-1}\right) \in A$. By Lemma 5.7, we have: $A \cap x B x^{-1}=\gamma^{-1} C_{A \cap B}(\alpha) \gamma$. Since the pair $(A \cap B, \alpha)$ satisfies $p C C_{G}$, there exists a normal subgroup L of p-power index in G such that $L<K$ and, if $\psi: G \rightarrow G / L$ denotes the canonical projection, $C_{\psi(A \cap B)}(\psi(\alpha)) \subset \psi\left(C_{A \cap B}(\alpha) K\right)$. This is equivalent to $\psi^{-1}\left(C_{\psi(A \cap B)}(\psi(\alpha))\right) \subset C_{A \cap B}(\alpha) K$. Indeed let $g \in \psi^{-1}\left(C_{\psi(A \cap B)}(\psi(\alpha))\right)$. We have $\psi(g) \in C_{\psi(A \cap B)}(\psi(\alpha)) \subset \psi\left(C_{A \cap B}(\alpha) K\right)$. Then $g \in C_{A \cap B}(\alpha) K L$ $\subset C_{A \cap B}(\alpha) K$ (because $\left.L<K\right)$. By corollary 5.5, there exists a normal subgroup N of p-power index in G such that $N<L, \rho_{A}(N) \subset N, \rho_{B}(N) \subset$ N and, if $\varphi: G \rightarrow G / N$ denotes the canonical projection, $\varphi(A \cap B)=\varphi(A) \cap$ $\varphi(B)$. We set $\bar{A}=\varphi(A), \bar{B}=\varphi(B)$. By Lemma 5.2, ρ_{A} induces a retraction $\rho_{\bar{A}}$ of G / N onto \bar{A} and ρ_{B} induces a retraction $\rho_{\bar{B}}$ of G / N onto \bar{B}. Obviously $\rho_{\bar{A}}$ and $\rho_{\bar{B}}$ commute. We set $\bar{x}=\varphi(x), \bar{\alpha}=\rho_{\bar{A}}\left(\rho_{\bar{B}}(\bar{x}) \bar{x}^{-1}\right) \bar{x} \rho_{\bar{B}}\left(\bar{x}^{-1}\right)(\in G / N)$ and $\bar{\gamma}=\rho_{\bar{A}}\left(\rho_{\bar{B}}(\bar{x}) \bar{x}^{-1}\right)(\in \bar{A})$. Observe that $\bar{\alpha}=\varphi(\alpha)$ and $\bar{\gamma}=\varphi(\gamma)$. Then, by Lemma5.7, we have: $\bar{A} \cap \bar{x} \bar{B} \bar{x}^{-1}=\bar{\gamma}^{-1} C_{\bar{A} \cap \bar{B}}(\bar{\alpha}) \bar{\gamma}$. But $\bar{A} \cap \bar{B}=\varphi(A \cap B)$. We have:

$$
\varphi^{-1}\left(\bar{A} \cap \bar{x} \bar{B} \bar{x}^{-1}\right)=\varphi^{-1}\left(\bar{\gamma}^{-1} C_{\varphi(A \cap B)}(\bar{\alpha}) \bar{\gamma}\right)=\gamma^{-1} \varphi^{-1}\left(C_{\varphi(A \cap B)}(\bar{\alpha})\right) \gamma
$$

We have:

$$
\varphi^{-1}\left(C_{\varphi(A \cap B)}(\bar{\alpha})\right) \subset \psi^{-1}\left(C_{\psi(A \cap B)}(\psi(\alpha))\right)
$$

Indeed let $g \in \varphi^{-1}\left(C_{\varphi(A \cap B)}(\varphi(\alpha))\right)$. We have $\varphi(g) \in \varphi(A \cap B)$ i.e. $g \in$ $(A \cap B) N$, which implies $g \in(A \cap B) L$ i.e. $\psi(g) \in \psi(A \cap B)$; and $\varphi(g) \varphi(\alpha)$ $=\varphi(\alpha) \varphi(g)$ i.e. $g \alpha g^{-1} \alpha^{-1} \in N$, which implies $g \alpha g^{-1} \alpha^{-1} \in L$ i.e. $\psi(g) \psi(\alpha)$ $=\psi(\alpha) \psi(g)$. Then:

$$
\varphi^{-1}\left(C_{\varphi(A \cap B)}(\bar{\alpha})\right) \subset C_{A \cap B}(\alpha) K
$$

Therefore:

$$
\varphi^{-1}\left(\bar{A} \cap \bar{x} \bar{B} \bar{x}^{-1}\right) \subset \gamma^{-1} C_{A \cap B}(\alpha) \gamma K=\left(A \cap x B x^{-1}\right) K
$$

We conclude that:

$$
\varphi(A) \cap \varphi\left(x B x^{-1}\right) \subset \varphi\left(A \cap x B x^{-1}\right) \varphi(K)
$$

Lemma 5.12 Let $x, y \in G$. We set $C=x B x^{-1}(<G)$ and $\alpha=$ $\rho_{A}\left(\rho_{B}(x) x^{-1}\right) x \rho_{B}\left(x^{-1}\right)$. If $\alpha^{A \cap B}$ and $y^{A \cap C}$ are finitely p-separable in G and if the pair $(A \cap B, \alpha)$ satisfies $p C C_{G}$, then $C_{A}(y) C$ is finitely p-separable in G.

Proof: Let $z \in G$ such that $z \notin C_{A}(y) C$. Suppose first that $z \notin A C$. Since $\alpha^{A \cap B}$ is finitely p-separable in $G, A x B$ is finitely p-separable in G by Lemma 5.8, Therefore $A C=A x B x^{-1}$ is also finitely p-separable in G. Consequently there exists a normal subgroup N of p-power index in G such that $z \notin A C N$. We obviously have $z \notin C_{A}(y) C N$. Thus we can assume that $z \in A C$. There exist $a \in A, c \in C$ such that $z=a c$. Since $z \notin C_{A}(y) C$, $a^{-1} y a \notin y^{A \cap C}$. Indeed, if there exist $g \in A \cap C$ such that $a^{-1} y a=g y g^{-1}$, then $(a g)^{-1} y(a g)=y$ i.e. $a g \in C_{A}(y)$. We obtain $a \in C_{A}(y) C$, and then z $\in C_{A}(y) C$ - a contradiction. Now $y^{A \cap C}$ is finitely p-separable in G. Then there exists a normal subgroup K of p-power index in G such that $a^{-1} y a$ $\notin y^{A \cap C} K$. By Lemma 5.11, there exists a normal subgroup N of p-power index in G such that $N<K$ and, if $\varphi: G \rightarrow G / N$ denotes the canonical projection, $\varphi(A) \cap \varphi(C) \subset \varphi(A \cap C) \varphi(K)$. For a subset S of G, we set $\bar{S}=$ $\varphi(S)$. For an element g of G, we set $\bar{g}=\varphi(g)$. We have: $\bar{y}^{\bar{A} \cap \bar{C}} \subset \bar{y}^{\overline{A \cap C}} \cdot \bar{K}$. Note that $\bar{K} \triangleleft G / N$. Then $\bar{y}^{\bar{A} \cap \bar{C}} \subset \bar{y}^{\overline{A n C}} \bar{K}$. Observe that $\bar{a}^{-1} \bar{y} \bar{a} \notin \bar{y}^{\overline{A \cap C}} \bar{K}$ - otherwise we would have $a^{-1} y a \in y^{A \cap C} K N$, and then $a^{-1} y a \in y^{A \cap C} K$ (because $N<K$). We deduce that $\bar{a}^{-1} \bar{y} \bar{a} \notin \bar{y}^{\bar{A} \cap \bar{C}}$. Now it suffices to show that $\varphi(z) \notin \varphi\left(C_{A}(y) C\right)$. Suppose the contrary. There exist $a^{\prime} \in C_{A}(y)$, $c^{\prime} \in C$ such that $\varphi(z)=\varphi\left(a^{\prime} c^{\prime}\right)$. Then $\varphi(a c)=\varphi\left(a^{\prime} c^{\prime}\right)$. Thus $\varphi\left(a^{\prime-1} a\right)=$ $\varphi\left(c^{\prime} c^{-1}\right)$. We set $\bar{g}=\varphi\left(a^{\prime-1} a\right)=\varphi\left(c^{\prime} c^{-1}\right)(\in \bar{A} \cap \bar{C})$. We have: $\varphi(z)=$ $\varphi\left(a^{\prime}\right) \bar{g} \varphi(c)$ and $\bar{a}=\varphi(z) \varphi(c)^{-1}=\varphi\left(a^{\prime}\right) \bar{g}$. Then $\bar{a}^{-1} \bar{y} \bar{a}=\bar{g}^{-1} \varphi\left(a^{\prime-1} y a^{\prime}\right) \bar{g}=$ $\bar{g}^{-1} \varphi(y) \bar{g}=\bar{g}^{-1} \bar{y} \bar{g} \in \bar{y}^{\bar{A} \cap \bar{C}}-$ a contradiction. We have shown that $C_{A}(y) C$ is finitely p-separable in G.

6 Proof of the main theorem

We turn now to the proof that right-angled Artin groups are hereditarily conjugacy p-separable. We need the following theorem, which is due to Duchamp and Krob (see [DK2]).

Theorem 6.1 Right-angled Artin groups are residually p-finite.
This theorem can also be proved using HNN extensions (see Lof).
Basically, Proposition 6.2 establishes the main result. Proposition 6.2. 1 and Proposition 6.2. 2 will be proved simultaneously by induction on the rank of G.

Proposition 6.2 Let G be a right-angled Artin group.

1. Every special subgroup S of G satisfies the p centralizer condition in $G\left(p C C_{G}\right)$.
2. For all $g \in G$ and for all special subgroup S of G, g^{S} is finitely p separable in G.

From now on, we assume that G is a right-angled Artin group of rank r $(r \geq 1)$, and that H is a special subgroup of G of rank $r-1$. Thus, G can be written as an HNN extension of H relative to the special subgroup $K=$ $C(t)=<\operatorname{star}(t)>$ of $H:$

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>
$$

Recall that H is a retract of G. A retraction of G onto H is given by:

$$
\rho_{H}(v)= \begin{cases}v & \text { if } v \in W \\ 1 & \text { if } v \in V \backslash W\end{cases}
$$

We also assume that:

- every special subgroup S of H satisfies the p centralizer condition in $H\left(p C C_{H}\right)$,
- for all $h \in H$ and for all special subgroup S of H, h^{S} is finitely p separable in H.

The next results (Lemma 6.3 to Lemma 6.13) are preliminaries to the proof of Proposition 6.2.

In general, if A and B are subgroups of a group G, the image of the intersection of A and B under a homomorphism $\varphi: G \rightarrow H$ do not coincide with the intersection of the images of A and B in H. However, the p centralizer condition and the above results on retractions will allow us to obtain the following lemma, which will be used to apply Minasyan's criterion for conjugacy in HNN extensions (see Lemma 6.4).

Lemma 6.3 Let be given A_{0}, a conjugate of a special subgroup of H, A_{1}, \ldots, A_{n}, n special subgroups of H and $\alpha, x_{0}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, 2(n+1)$ elements of H. Then, for every normal subgroup L of p-power index in H, there exists a normal subgroup N of p-power index in H such that $N<L$ and, if $\varphi: H$ $\rightarrow H / N$ denotes the canonical projection, then:

$$
\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}} \subset \varphi\left(\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n} x_{i} A_{i} y_{i}\right) L\right)
$$

where $\overline{A_{i}}=\varphi\left(A_{i}\right)(i \in\{0, \ldots, n\}), \bar{\alpha}=\varphi(\alpha), \overline{x_{j}}=\varphi\left(x_{j}\right)(j \in\{0, \ldots, n\}), \overline{y_{k}}$ $=\varphi\left(y_{k}\right)(k \in\{1, \ldots, n\})$.

Proof: Let L be a subgroup of p-power index in H. We argue by induction on n. Strictly speaking, the basis of our induction is $\mathrm{n}=0$ but we will need the case $\mathrm{n}=1$. By the assumptions, there exist a special subgroup A of H and an element β of H such that $A_{0}=\beta A \beta^{-1}$.
$\underline{\mathrm{n}=0}$: We set $x=\beta^{-1} x_{0} \beta$. The pair (A, x) satisfies $p C C_{H}$ by the assumptions. There exists a normal subgroup N of p-power index in H such
that $N<L$ and, if $\varphi: H \rightarrow H / N$ denotes the canonical projection, then $C_{\varphi(A)}(\varphi(x)) \subset \varphi\left(C_{A}(x) L\right)$. But $C_{A_{0}}\left(x_{0}\right)=\beta C_{A}(x) \beta^{-1}$. We deduce that: $\varphi(\alpha) C_{\varphi\left(A_{0}\right)}\left(\varphi\left(x_{0}\right)\right) \subset \varphi\left(\left(\alpha C_{A_{0}}\left(x_{0}\right)\right) L\right)$.
$\underline{\mathrm{n}=1}$: There are two cases:
Case 1: $\alpha C_{A_{0}}\left(x_{0}\right) \cap x_{1} A_{1} y_{1}=\emptyset$.
This is equivalent to say that: $x_{1} \notin \alpha C_{A_{0}}\left(x_{0}\right) y_{1}^{-1} A_{1}$. We set $B=\left(y_{1} \beta\right)^{-1} A_{1}$ $y_{1} \beta$, so that we have: $x_{1} \notin \alpha \beta\left(C_{A}(x) B\right) \beta^{-1} y_{1}^{-1}$. Now the intersection of conjugates of two special subgroups of H is a conjugate of a special subgroup of H (see [M], Lemma 6.5). Then $A \cap A_{1}$ is a conjugate of a special subgroup C of H. There exists $\gamma \in H$ such that $A \cap A_{1}=\gamma C \gamma^{-1}$. Therefore if $h \in H, h^{A \cap A_{1}}=\gamma\left(\gamma^{-1} h \gamma\right)^{C} \gamma^{-1}$. Now $\left(\gamma^{-1} h \gamma\right)^{C}$ is finitely p-separable in H by the assumptions. We deduce that $h^{A \cap A_{1}}$ is finitely p-separable in H. With the same argument, $h^{A \cap B}$ is finitely p-separable in H. Now the pair $\left(A \cap A_{1}, h\right)$ satisfies $p C C_{H}$ by the assumptions. We deduce that $C_{A}(x) B$ is finitely p-separable in H by Lemma 5.12. This implies that $\alpha C_{A_{0}}\left(x_{0}\right) y_{1}^{-1} A_{1}$ is finitely p-separable in H. There exists a normal subgroup M of p-power index in H such that $x_{1} \notin \alpha C_{A_{0}}\left(x_{0}\right) y_{1}^{-1} A_{1} M$. Up to replacing M by $M \cap L$, we can assume that $M<L$. Now the pair $\left(A_{0}, x_{0}\right)$ satisfies $p C C_{H}$ by the assumptions. There exists a normal subgroup N of p-power index in H such that $N<M$ and, if $\varphi: H \rightarrow H / N$ denotes the canonical projection, then $C_{\varphi\left(A_{0}\right)}\left(\varphi\left(x_{0}\right)\right) \subset \varphi\left(C_{A_{0}}\left(x_{0}\right) M\right)$, or, equivalently, $\varphi^{-1}\left(C_{\varphi\left(A_{0}\right)}\left(\varphi\left(x_{0}\right)\right)\right) \subset C_{A_{0}}\left(x_{0}\right) M$. Then $\varphi^{-1}\left(\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \overline{y_{1}}{ }^{-1} \overline{A_{1}}\right) \subset$ $\alpha \varphi^{-1}\left(C_{\overline{A_{0}}}\left(\overline{x_{0}}\right)\right) y_{1}^{-1} A_{1} \subset \alpha C_{A_{0}}\left(x_{0}\right) y_{1}^{-1} A_{1} M$. Therefore: $x_{1} \notin \varphi^{-1}\left(\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right)\right.$ $\left.\overline{y_{1}}-1 \overline{A_{1}}\right)$. Finally: $\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \overline{x_{1}} \overline{A_{1}} \overline{y_{1}}=\emptyset$.
Case 2: $\alpha C_{A_{0}}\left(x_{0}\right) \cap x_{1} A_{1} y_{1} \neq \emptyset$.
Remark: If G is a group and H, K are two subgroups of G such that $a H \cap b K c \neq \emptyset$ - where $a, b, c \in G$-, then for all $g \in a H \cap b K c$, we have $a H \cap b K c=g\left(H \cap c^{-1} K c\right)$.
Choose $g \in \alpha C_{A_{0}}\left(x_{0}\right) \cap x_{1} A_{1} y_{1}$. Then we have: $\alpha C_{A_{0}}\left(x_{0}\right) \cap x_{1} A_{1} y_{1}=$ $g\left(C_{A_{0}}\left(x_{0}\right) \cap y_{1}^{-1} A_{1} y_{1}\right)$. We set $D=A_{0} \cap y_{1}^{-1} A_{1} y_{1}$. Then $\alpha C_{A_{0}}\left(x_{0}\right) \cap x_{1} A_{1} y_{1}$ $=g C_{D}\left(x_{0}\right)$. Now, D is a conjugate of a special subgroup E of H by M], lemma 6.5. There exists $\delta \in H$ such that $D=\delta E \delta^{-1}$. As above, the pair $\left(D, x_{0}\right)$ satisfies $p C C_{H}$. There exists a normal subgroup M of p-power index in H such that $M<L$ and, if $\psi: H \rightarrow H / M$ denotes the canonical projection, we have: $C_{\psi(D)}\left(\psi\left(x_{0}\right)\right) \subset \psi\left(C_{D}\left(x_{0}\right) L\right)$. Now by Lemma 5.11, there exists a normal subgroup N of p-power index in H such that $N<M$ and, if φ $: H \rightarrow H / N$ denotes the canonical projection, then $\varphi(A) \cap \varphi\left(\left(y_{1} \beta\right)^{-1} A_{1} y_{1} \beta\right)$ $\subset \varphi\left(A \cap\left(y_{1} \beta\right)^{-1} A_{1} y_{1} \beta\right) \varphi(M)$. Therefore:

$$
\begin{gathered}
\overline{A_{0}} \cap \overline{y_{1}-1} \overline{A_{1}} \overline{y_{1}}=\varphi\left(\beta A \beta^{-1}\right) \cap \varphi\left(y_{1}^{-1} A_{1} y_{1}\right)= \\
\varphi(\beta)\left(\varphi(A) \cap \varphi\left(\left(y_{1} \beta\right)^{-1} A_{1} y_{1} \beta\right)\right) \varphi\left(\beta^{-1}\right) \subset \\
\varphi(\beta)\left(\varphi\left(A \cap\left(y_{1} \beta\right)^{-1} A_{1} y_{1} \beta\right) \varphi(M)\right) \varphi\left(\beta^{-1}\right)=\varphi\left(A_{0} \cap y_{1}^{-1} A_{1} y_{1}\right) \varphi(M)= \\
\varphi(D) \varphi(M)(*) .
\end{gathered}
$$

For $S \subset H$, we set $\bar{S}=\varphi(S)$ and for $h \in H$, we set $\bar{h}=\varphi(h)$. We have $\bar{g} \in$ $\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \overline{x_{1}} \overline{A_{1}} \overline{y_{1}}$. Therefore $\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \overline{x_{1}} \overline{A_{1}} \overline{y_{1}}=\bar{g}\left(C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \overline{y_{1}}-1 \overline{A_{1}} \overline{y_{1}}\right)$. Considering ($*$), we obtain:

$$
\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \overline{x_{1}} \overline{A_{1}} \overline{y_{1}}=\bar{g} C_{\overline{A_{0} \cap \overline{y_{1}}}-1 \overline{A_{1}} \overline{y_{1}}}\left(\overline{x_{0}}\right) \subset \bar{g} C_{\varphi(D) \varphi(M)}\left(\overline{x_{0}}\right)
$$

Recall that $N<M$. Then $\psi: H \rightarrow H / M$ induces a homomorphism $\widetilde{\sim} \tilde{\sim}$: $H / N \rightarrow H / M$ such that $\psi=\widetilde{\psi} \circ \varphi$. Note that $\widetilde{\psi}(\varphi(D) \varphi(M))=\psi(D)$. Let $z \in C_{\varphi(D) \varphi(M)}\left(\overline{x_{0}}\right)$. Then:

$$
\widetilde{\psi}(z) \in C_{\psi(D)}\left(\psi\left(x_{0}\right)\right) \subset \psi\left(C_{D}\left(x_{0}\right) L\right)=\widetilde{\psi}\left(\varphi\left(C_{D}\left(x_{0}\right) L\right)\right)
$$

Therefore $z \in \varphi\left(C_{D}\left(x_{0}\right) L\right) \operatorname{ker}(\widetilde{\psi})=\varphi\left(C_{D}\left(x_{0}\right) L\right)$ because $\operatorname{ker}(\widetilde{\psi})=\varphi(M)$ $<\varphi(L)$. We deduce that $C_{\varphi(D) \varphi(M)}\left(\overline{x_{0}}\right) \subset \varphi\left(C_{D}\left(x_{0}\right) L\right)$. We conclude that

$$
\begin{gathered}
\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \overline{x_{1}} \overline{A_{1}} \overline{y_{1}} \subset \bar{g} \varphi\left(C_{D}\left(x_{0}\right) L\right)=\varphi\left(g C_{D}\left(x_{0}\right) L\right)= \\
\varphi\left(\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap x_{1} A_{1} y_{1}\right) L\right)
\end{gathered}
$$

Inductive step: Suppose that $n \geq 1$ and that the result has been proved for $n-1$.
Note that if $\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}=\emptyset$, then by the induction hypothesis, there exists a normal subgroup N of p-power index in H such that, if $\varphi: H$ $\rightarrow H / N$ denotes the canonical projection, then

$$
\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n-1} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}} \subset \varphi\left(\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}\right) L\right)=\emptyset
$$

Obviously:

$$
\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}}=\emptyset \subset \varphi\left(\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n} x_{i} A_{i} y_{i}\right) L\right)
$$

Thus we can assume that $\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i} \neq \emptyset$. Therefore there exists $g \in H$ such that $\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}=g\left(C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} y_{i}^{-1} A_{i} y_{i}\right)$. We set $F=A_{0} \cap \bigcap_{i=1}^{n-1} y_{i}^{-1} A_{i} y_{i}-F$ is a conjugate of a special subgroup of H by [M], Lemma 6.5. We have: $\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}=g C_{F}\left(x_{0}\right)$. Now, by the case $\mathrm{n}=1$, there exists a normal subgroup M of p-power index of H such that $M<L$ and, if $\psi: H \rightarrow H / M$ denotes the canonical projection, then:

$$
\psi(g) C_{\psi(F)}\left(\psi\left(x_{0}\right)\right) \cap \psi\left(x_{n} A_{n} y_{n}\right) \subset \psi\left(\left(g C_{F}\left(x_{0}\right) \cap x_{n} A_{n} y_{n}\right) L\right)
$$

This is equivalent to:

$$
\psi^{-1}\left(\psi(g) C_{\psi(F)}\left(\psi\left(x_{0}\right)\right) \cap \psi\left(x_{n} A_{n} y_{n}\right)\right) \subset\left(g C_{F}\left(x_{0}\right) \cap x_{n} A_{n} y_{n}\right) L
$$

On the other hand, by the induction hypothesis, there exists a normal subgroup N of p-power index in H such that $N<M$ and, if $\varphi: H \rightarrow H / N$ denotes the canonical projection, then:

$$
\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n-1} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}} \subset \varphi\left(\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}\right) M\right)
$$

or, equivalently:

$$
\varphi^{-1}\left(\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n-1} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}}\right) \subset\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}\right) M
$$

Thus we have:

$$
\begin{gathered}
\varphi^{-1}\left(\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}}\right)= \\
\varphi^{-1}\left(\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n-1} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}}\right) \cap \varphi^{-1}\left(\overline{x_{n}} \overline{A_{n}} \overline{y_{n}}\right) \subset \\
\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n-1} x_{i} A_{i} y_{i}\right) M \cap x_{n} A_{n} y_{n} N=g C_{F}\left(x_{0}\right) M \cap x_{n} A_{n} y_{n} N .
\end{gathered}
$$

Recall that $N<M$. Thus we have:

$$
\begin{gathered}
\varphi^{-1}\left(\bar{\alpha} C_{\overline{A_{0}}}\left(\overline{x_{0}}\right) \cap \bigcap_{i=1}^{n} \overline{x_{i}} \overline{A_{i}} \overline{y_{i}}\right) \subset g C_{F}\left(x_{0}\right) M \cap x_{n} A_{n} y_{n} M \subset \\
\psi^{-1}\left(\psi(g) C_{\psi(F)}\left(\psi\left(x_{0}\right)\right)\right) \cap \psi^{-1}\left(\psi\left(x_{n} A_{n} y_{n}\right)\right)= \\
\psi^{-1}\left(\psi(g) C_{\psi(F)}\left(\psi\left(x_{0}\right)\right) \cap \psi\left(x_{n} A_{n} y_{n}\right)\right) \subset\left(g C_{F}\left(x_{0}\right) \cap x_{n} A_{n} y_{n}\right) L= \\
\left(\alpha C_{A_{0}}\left(x_{0}\right) \cap \bigcap_{i=1}^{n} x_{i} A_{i} y_{i}\right) L .
\end{gathered}
$$

We need the following criterion for conjugacy in HNN extensions:
Lemma 6.4 Let $G=<H, t \mid t^{-1} k t=k, \forall k \in K>$ be an HNN extension. Let S be a subgroup of H. Let $g=x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}(n \geq 1)$ and $h=$ $y_{0} t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}$ be elements of G in reduced form. Then $h \in g^{S}$ if and only if all of the following conditions hold:

1. $m=n$ and $a_{i}=b_{i}$, for all $i \in\{1, \ldots, n\}$,
2. $y_{0} \ldots y_{n} \in\left(x_{0} \ldots x_{n}\right)^{S}$,
3. if $\alpha \in S$ satisfies $y_{0} \ldots y_{n}=\alpha x_{0} \ldots x_{n} \alpha^{-1}$, then:

$$
\begin{gathered}
\alpha C_{S}\left(x_{0} \ldots x_{n}\right) \cap y_{0} K x_{0}^{-1} \cap\left(y_{0} y_{1}\right) K\left(x_{0} x_{1}\right)^{-1} \cap \ldots \cap \\
\left(y_{0} \ldots y_{n-1}\right) K\left(y_{0} \ldots y_{n-1}\right)^{-1} \neq \emptyset .
\end{gathered}
$$

Proof: Proved in M.
Lemma 6.5 Let S be a special subgroup of H. Let $g \in G \backslash H$. Let h $\in G \backslash g^{S}$. There exists a normal subgroup L of p-power index in H such that, if $\varphi: H \rightarrow P=H / L$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\varphi(K)$ and if $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, we have $\bar{\varphi}(h) \notin \bar{\varphi}(g)^{\bar{\varphi}(S)}$.

Proof: Write $g=x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ and $h=y_{0} t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}$ in reduced forms. We have $n \geq 1$ - as $g \notin H$.

Step 1: We assume that the first condition in Minasyan's criterion (see Lemma (6.4) is not satisfied by g and h.

The special subgroup K is closed in the pro- p topology on H (see (Lo). Thus there exists a normal subgroup L of p-power index in H such that:

$$
\begin{gathered}
\forall i \in\{1, \ldots, n-1\}, x_{i} \notin K L(*), \\
\forall j \in\{1, \ldots, m-1\}, y_{j} \notin K L(* *) .
\end{gathered}
$$

We denote by $\varphi: H \rightarrow P=H / L$ the canonical projection. If Q denotes the HNN extension of P relative to $\varphi(K)$:

$$
Q=<P, \bar{t} \mid \bar{t}^{-1} \varphi(k) \bar{t}=\varphi(k), \forall k \in K>,
$$

and if $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ - with $\bar{\varphi}_{\left.\right|_{H}}=$ φ and $\bar{\varphi}(t)=\bar{t}-$, then $\bar{\varphi}(g)=\overline{x_{0}} \bar{t}^{a_{1}} \overline{x_{1}} \ldots . \bar{t}^{a_{n}} \overline{x_{n}}$ and $\bar{\varphi}(h)={\overline{y_{0}}}^{\bar{t}_{1}} \overline{y_{1}} \ldots . \bar{t}^{b_{m}} \overline{y_{m}}$ are reduced products in Q by ($*$) and ($* *$) - where $\overline{x_{i}}=\bar{\varphi}\left(x_{i}\right)(i \in\{0, \ldots, n\})$ and $\overline{y_{j}}=\bar{\varphi}\left(y_{j}\right)(j \in\{0, \ldots, m\})$. But then the first condition in Minasyan's criterion will not hold for $\bar{\varphi}(g)$ and $\bar{\varphi}(h)$.

Conclusion of Step 1: We can assume that $m=n$ and $a_{i}=b_{i}$ for all i $\in\{\overline{1, \ldots, n\}}$.

Step 2: We assume that the second condition in Minasyan's criterion is not satisfied by g and h. We set $x=x_{0} \ldots x_{n}$ and $y=y_{0} \ldots y_{n}$. Thus $y \notin x^{S}$.

By the assumptions, x^{S} is finitely p-separable in H. Therefore there exists a homomorphism φ from H onto a finite p-group P such that $\varphi(y) \notin$ $\varphi(x)^{\varphi(S)}$. Denote by Q the HNN extension of P relative to $\varphi(K)$, and by $\bar{\varphi}: G \rightarrow Q$ the homomorphism induced by φ. Now let $f: Q \rightarrow P$ be the natural homomorphism. We have:

$$
\begin{aligned}
f(\bar{\varphi}(g))=f\left(\overline{x_{0}} \bar{t}_{1}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}\right) & =\overline{x_{0}} \ldots \overline{x_{n}}=\varphi(x), \\
f(\bar{\varphi}(h))= & =f\left(\overline{y_{0}} \bar{t}^{a_{1}} \overline{y_{1}} \ldots \bar{t}^{a_{n}} \overline{y_{n}}\right)=\overline{y_{0}} \ldots \overline{y_{n}}=\varphi(y) .
\end{aligned}
$$

Since $\varphi(y) \notin \varphi(x)^{\varphi(S)}$, we see that $\bar{\varphi}(h) \notin \bar{\varphi}(g)^{\bar{\varphi}(S)}$.
Conclusion of Step 2: We can assume that $y \in x^{S}$. There exists $\alpha \in S$ such that $y=\alpha x \alpha^{-1}$.

End of the proof: Considering Minasyan's criterion, since $h \notin g^{S}$, we must have:

$$
\begin{gathered}
\alpha C_{S}\left(x_{0} \ldots x_{n}\right) \cap y_{0} K x_{0}^{-1} \cap\left(y_{0} y_{1}\right) K\left(x_{0} x_{1}\right)^{-1} \cap \ldots \cap\left(y_{0} \ldots y_{n-1}\right) K\left(x_{0} \ldots x_{n-1}\right)^{-1} \\
=\emptyset .
\end{gathered}
$$

Since K is closed in the pro- p topology on H (see (Lo), there exists a normal subgroup L of p-power index in H such that:

$$
\begin{gathered}
\forall i \in\{1, \ldots, n-1\}, x_{i} \notin K L(*), \\
\forall j \in\{1, \ldots, m-1\}, y_{j} \notin K L(* *) .
\end{gathered}
$$

Now by Lemma 6.3, there exists a normal subgroup N of p-power index in H such that $N<L$ and, if $\varphi: H \rightarrow P=H / N$ denotes the canonical projection, then:

$$
\begin{gathered}
\bar{\alpha} C_{\bar{S}}(\bar{x}) \cap \overline{y_{0}} \bar{K} \bar{x}_{0}{ }^{-1} \cap \overline{y_{0}} \overline{y_{1}} \bar{K}\left(\overline{x_{0}} \overline{x_{1}}\right)^{-1} \cap \ldots \cap \overline{y_{0}} \ldots \overline{y_{n-1}} \bar{K}\left(\overline{x_{0}} \ldots \overline{x_{n-1}}\right)^{-1} \subset \\
\varphi\left(\left(\alpha C_{S}(x) \cap y_{0} K x_{0}^{-1} \cap y_{0} y_{1} K\left(x_{0} x_{1}\right)^{-1} \cap \ldots \cap y_{0} \ldots y_{n-1} K\left(x_{0} \ldots x_{n-1}\right)^{-1}\right) L\right)= \\
\emptyset(* * *) .
\end{gathered}
$$

where $\bar{S}=\varphi(S), \bar{\alpha}=\varphi(\alpha), \bar{x}=\varphi(x), \overline{x_{i}}=\varphi\left(x_{i}\right)(i \in\{0, \ldots, n\}), \overline{y_{j}}=\varphi\left(y_{j}\right)$ $(j \in\{0, \ldots, n\})$. Let Q be the HNN extension of P relative to $\varphi(K)$ and let $\bar{\varphi}: G \rightarrow Q$ be the homomorphism induced by φ. Then, by ($*$) and ($* *$), $\bar{\varphi}(g)=\overline{x_{0}} \bar{t}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}$ and $\bar{\varphi}(h)={\overline{y_{0}}}^{t_{1}} \overline{y_{1}} \ldots \bar{t}^{a_{n}} \overline{y_{n}}$ are reduced elements of Q. So, in view of $(* * *)$, we have $\bar{\varphi}(h) \notin \bar{\varphi}(g)^{\bar{\varphi}(S)}$.

Lemma 6.6 Let $g_{0}=t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}(n \geq 1)$ and $h_{0}=t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}$ be cyclically reduced elements of G. Let h_{1}, \ldots, h_{k} be elements of G. If $h_{i} \notin g_{0}^{K}$ for all $i \in\{1, \ldots, k\}$, then there exists a normal subgroup L of p-power index in H such that, if $\varphi: H \rightarrow P=H / L$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\varphi(K)$ and $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, we have:

1. $\bar{\varphi}\left(g_{0}\right)=\bar{t}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}$ and $\bar{\varphi}\left(h_{0}\right)=\bar{t}^{b_{1}} \overline{y_{1}} \ldots \bar{t}^{b_{m}} \overline{y_{m}}$ are cyclically reduced in Q - where $\overline{x_{i}}=\bar{\varphi}\left(x_{i}\right)(i \in\{1, \ldots, n\})$ and $\overline{y_{j}}=\bar{\varphi}\left(y_{j}\right)(j \in\{1, \ldots n\})$.
2. $\bar{\varphi}\left(h_{i}\right) \notin \bar{\varphi}\left(g_{0}\right)^{\bar{\varphi}(K)}$ for all $i \in\{1, \ldots, k\}$.

Proof: Since K is closed in the pro- p topology on H (see [LO), there exists a normal subgroup L_{0} of p-power index in H such that:

$$
\begin{gathered}
\forall i \in\{1, \ldots, n-1\}, x_{i} \notin K L_{0}(*) \\
\forall j \in\{1, \ldots, m-1\}, y_{j} \notin K L_{0}(* *) .
\end{gathered}
$$

Let $i \in\{1, \ldots, k\}$. Since $h_{i} \notin g_{0}^{K}$, there exists a normal subgroup L_{i} of p power index in H such that, if $\varphi_{i}: H \rightarrow P_{i}=H / L_{i}$ denotes the canonical projection, if Q_{i} denotes the HNN extension of P_{i} relative to $\varphi_{i}(K)$ and if $\overline{\varphi_{i}}: G \rightarrow Q_{i}$ denotes the homomorphism induced by φ_{i}, we have $\overline{\varphi_{i}}\left(h_{i}\right) \notin$ $\overline{\varphi_{i}}\left(g_{0}\right)^{\overline{\varphi_{i}}}(K)$ - by Lemma 6.5. We set $L=L_{0} \cap L_{1} \ldots \cap L_{k}$. We note that L is a normal subgroup of p-power index in H. Let $\varphi: H \rightarrow P=H / L$ be the canonical projection, let Q be the HNN extension of P relative to $\varphi(K)$ and let $\bar{\varphi}: G \rightarrow Q$ be the homomorphism induced by φ. Then since $L<$ $L_{0}, \bar{\varphi}\left(g_{0}\right)=\bar{t}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}$ and $\bar{\varphi}\left(h_{0}\right)=\bar{t}^{b_{1}} \overline{y_{1}} \ldots \bar{t}^{b_{m}} \overline{y_{m}}$ are cyclically reduced in Q by $(*)$ and $(* *)$ - where $\overline{x_{i}}=\bar{\varphi}\left(x_{i}\right)(i \in\{1, \ldots, n\})$ and $\overline{y_{j}}=\bar{\varphi}\left(y_{j}\right)(j$ $\in\{1, \ldots, m\}$). Moreover since $L<L_{i}$ for all $i \in\{1, \ldots, k\}$, we have $\bar{\varphi}\left(h_{i}\right) \notin$ $\bar{\varphi}\left(g_{0}\right)^{\bar{\varphi}(K)}$ for all $i \in\{1, \ldots, k\}$.

Lemma 6.7 Let $G=<H, t \mid t^{-1} k t=k, \forall k \in K>$ be an HNN extension. Let S be a subgroup of H. Let $g=x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ be an element of G in reduced form $(n \geq 1)$. Then:

$$
\begin{gathered}
C_{S}(g)= \\
C_{S}\left(x_{0} \ldots x_{n}\right) \cap x_{0} K x_{0}^{-1} \cap\left(x_{0} x_{1}\right) K\left(x_{0} x_{1}\right)^{-1} \cap \ldots \cap\left(x_{0} \ldots x_{n-1}\right) K\left(x_{0} \ldots x_{n-1}\right)^{-1} .
\end{gathered}
$$

Proof: Proved in M.
Lemma 6.8 Let S be a special subgroup of H. Let L be a normal subgroup of p-power index in G and let $g=x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ be an element of G in reduced form and not contained in H. Then there exists a normal subgroup N of p-power index of H such that if $\varphi: H \rightarrow P=H / N$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\varphi(K)$ and if $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, then:

1. $C_{\bar{\varphi}(S)}(\bar{\varphi}(g)) \subset \bar{\varphi}\left(C_{S}(g) L\right)$,
2. $\operatorname{ker}(\varphi)=N<H \cap L$,
3. $\operatorname{ker}(\bar{\varphi})<L$.

Proof: We have $n \geq 1$ - as $g \notin H$.
As above, K is closed in the pro- p topology on H (see [LO]). Therefore there exists a normal subgroup M of p-power index in H such that:

$$
\forall i \in\{1, \ldots, n-1\}, x_{i} \notin M K(*)
$$

We set $L^{\prime}=H \cap L$. Note that L^{\prime} is a normal subgroup of p-power index in H. Thus, up to replacing M by $M \cap L^{\prime}$, we can assume that $M<L^{\prime}$. We set $x=x_{0} \ldots x_{n}$. We have:

$$
\begin{gathered}
C_{S}(g)= \\
C_{S}(x) \cap x_{0} K x_{0}^{-1} \cap\left(x_{0} x_{1}\right) K\left(x_{0} x_{1}\right)^{-1} \cap \ldots \cap\left(x_{0} \ldots x_{n-1}\right) K\left(x_{0} \ldots x_{n-1}\right)^{-1}
\end{gathered}
$$

by Lemma 6.7. We denote by I the intersection in the right-hand side. By Lemma 6.3, there exists a normal subgroup N of p-power index in H such that $N<M$ and if $\varphi: H \rightarrow P=H / N$ denotes the canonical projection, we have:

$$
\begin{gathered}
C_{\bar{S}}(\bar{x}) \cap \overline{x_{0}} \bar{K} \bar{x}_{0}-1 \cap \overline{x_{0}} \overline{x_{1}} \bar{K}\left(\overline{x_{0}} \overline{x_{1}}\right)^{-1} \cap \ldots \cap \overline{x_{0}} \ldots \overline{x_{n-1}} \bar{K}\left(\overline{x_{0}} \ldots \overline{x_{n-1}}\right)^{-1} \subset \\
\varphi(I M)
\end{gathered}
$$

where $\bar{S}=\varphi(S), \bar{x}=\varphi(x), \overline{x_{i}}=\varphi\left(x_{i}\right)(i \in\{0, \ldots, n\})$. We denote by J the intersection in the left-hand side. Let Q be the HNN extension of P relative to $\varphi(K)$, let $\bar{\varphi}: G \rightarrow Q$ be the homomorphism induced by φ. Then $\overline{x_{0}} \bar{t}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}$ is a reduced form of $\bar{\varphi}(g)$ in Q by $(*)$. But then $C_{\bar{\varphi}(S)}(\bar{\varphi}(g))$ $=J$ - by Lemma 6.7. Now $\varphi(M)<\varphi\left(L^{\prime}\right)=\bar{\varphi}\left(L^{\prime}\right)<\bar{\varphi}(L)$. Therefore:

$$
\begin{gathered}
C_{\bar{\varphi}(S)}(\bar{\varphi}(g))=J \subset \varphi(I M)=\underset{(I) \varphi(M) \subset \bar{\varphi}(I) \bar{\varphi}(L)=\bar{\varphi}\left(C_{S}(g)\right) \bar{\varphi}(L)=}{ } \begin{array}{c}
\bar{\varphi}\left(C_{S}(g) L\right)
\end{array}
\end{gathered}
$$

Finally we remark that $\operatorname{ker}(\varphi)=N<M<L^{\prime}=H \cap L<L$. Since $\operatorname{ker}(\bar{\varphi})$ is the normal closure of $\operatorname{ker}(\varphi)$ in G, we conclude that $\operatorname{ker}(\bar{\varphi})<L$ (because L is normal in G).

A prefix of $t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ is an element of G of the form $t^{a_{1}} x_{1} \ldots t^{a_{k}} x_{k}$ for some $k \in\{0, \ldots, \mathrm{n}\}$. We need the following result:

Proposition 6.9 Let $G=<H, t \mid t^{-1} k t=k, \forall k \in K>$ be an HNN extension. Let $g=t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ be a cyclically reduced element of $G(n \geq$ 1). Let $\left\{p_{1}, \ldots, p_{n+1}\right\}$ be the set of all prefixes of g - we are not assuming that p_{1}, \ldots, p_{n+1} are ordered. There are two cases:

1. if $x_{n} \in K$, then $n=1$ and $C_{G}(g)=<t>C_{K}(g)$.
2. if $x_{n} \in H \backslash K$, let $\left\{p_{1}, \ldots, p_{m}\right\}$ be the set of prefixes of g satisfying $p_{i}^{-1} g p_{i} \in g^{K}(m \in\{0, \ldots, n+1\})$. For each $i \in\{1, \ldots, m\}$, we choose α_{i} $\in K$ such that $p_{i}^{-1} g p_{i}=\alpha_{i}^{-1} g \alpha_{i}$. We set $S=\left\{\alpha_{i} p_{i}^{-1} \mid i \in\{1, \ldots, m\}\right\}$. Then $C_{G}(g)=C_{K}(g)<g>S$.

Proof: Proved in M.
Lemma 6.10 Let L be a normal subgroup of p-power index in G. Let g_{0} $=t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}(n \geq 1)$ be a cyclically reduced element of G. There exists a normal subgroup N of p-power index in H such that, if $\varphi: H \rightarrow P=$ H / N denotes the canonical projection, if Q denotes the $H N N$ extension of P relative to $\varphi(K)$ and if $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, we have:

1. $C_{Q}\left(\bar{\varphi}\left(g_{0}\right)\right) \subset \bar{\varphi}\left(C_{G}\left(g_{0}\right) L\right)$,
2. $\operatorname{ker}(\varphi)=N<H \cap L$,
3. $\operatorname{ker}(\bar{\varphi})<L$.

Proof: Let $\left\{p_{1}, \ldots, p_{n+1}\right\}$ be the set of all prefixes of g_{0}. Renumbering p_{1}, \ldots, p_{n+1}, if necessary, we can assume that there exists $m \in\{0, \ldots, n\}$ such that $p_{i}^{-1} g_{0} p_{i} \in g_{0}^{K}$ for all $i \in\{1, \ldots, m\}$ and $p_{i}^{-1} g_{0} p_{i} \notin g_{0}^{K}$ for all $i \in$ $\{m+1, \ldots, n+1\}$. For each $i \in\{1, \ldots, m\}$, we choose $\alpha_{i} \in K$ such that $p_{i}^{-1} g_{0} p_{i}$ $=\alpha_{i}^{-1} g_{0} \alpha_{i}$. We set $S=\left\{\alpha_{i} p_{i}^{-1} \mid i \in\{1, \ldots, m\}\right\}$. We set $h_{i}=p_{i}^{-1} g_{0} p_{i}$ for all $i \in\{m+1, \ldots, n+1\}$. By Lemma 6.6, there exists a normal subgroup N_{1} of p-power index in H such that, if $\varphi_{1}: H \rightarrow P_{1}=H / N_{1}$ denotes the canonical projection, if Q_{1} denotes the HNN extension of P_{1} relative to $\varphi_{1}(K)$, and if $\overline{\varphi_{1}}: G \rightarrow Q_{1}$ denotes the homomorphism induced by φ_{1}, then $\varphi_{1}\left(g_{0}\right)$ is cyclically reduced in Q_{1}, and $\overline{\varphi_{1}}\left(h_{i}\right) \notin \overline{\varphi_{1}}\left(g_{0}\right)^{\overline{\varphi_{1}}(K)}$ for
all $i \in\{m+1, \ldots, n+1\}$. On the other hand, by Lemma 6.8, there exists a normal subgroup N_{2} of p-power index in H such that, if $\varphi_{2}: H \rightarrow P_{2}=$ H / N_{2} denotes the canonical projection, if Q_{2} denotes the HNN extension of P_{2} relative to $\varphi_{2}(K)$ and if $\overline{\varphi_{2}}: G \rightarrow Q_{2}$ denotes the homomorphism induced by φ_{2}, we have: $C_{\overline{\varphi_{2}}(K)}\left(\overline{\varphi_{2}}\left(g_{0}\right)\right) \subset \overline{\varphi_{2}}\left(C_{K}\left(g_{0}\right) L\right), \operatorname{ker}\left(\varphi_{2}\right)<H \cap L$ and $\operatorname{ker}\left(\overline{\varphi_{2}}\right)<L$. We set $N=N_{1} \cap N_{2}$. Note that N is a normal subgroup of p-power index in H. Let $\varphi: H \rightarrow P=H / N$ be the canonical projection, let Q be the HNN extension of P relative to $\varphi(K)$ and let $\bar{\varphi}: G \rightarrow Q$ be the homomorphism induced by φ. Since $N<N_{1}, \bar{\varphi}\left(g_{0}\right)$ is cyclically reduced in Q and $\bar{\varphi}\left(h_{i}\right) \notin \bar{\varphi}\left(g_{0}\right)^{\bar{\varphi}(K)}$ for all $i \in\{m+1, \ldots, n+1\}$. On the other hand, since $N<N_{2}$, we have:

$$
\bar{\varphi}^{-1}\left(C_{\bar{\varphi}(K)}\left(\bar{\varphi}\left(g_{0}\right)\right)\right) \subset{\overline{\varphi_{2}}}^{-1}\left(C_{\overline{\varphi_{2}}(K)}\left(\overline{\varphi_{2}}\left(g_{0}\right)\right)\right) \subset C_{K}\left(g_{0}\right) L(*)
$$

There are two cases:
$\underline{\text { Case 1: }}: x_{n} \in K$. Then $n=1, C_{G}\left(g_{0}\right)=<t>C_{K}\left(g_{0}\right)$ and $C_{Q}\left(\bar{\varphi}\left(g_{0}\right)\right)=$ $<\bar{t}>C_{\varphi(K)}\left(\bar{\varphi}\left(g_{0}\right)\right)$ - by Proposition 6.9. Now (*) implies:

$$
C_{Q}\left(\bar{\varphi}\left(g_{0}\right)\right) \subset<\bar{\varphi}(t)>\bar{\varphi}\left(C_{K}\left(g_{0}\right) L\right)=\bar{\varphi}\left(<t>C_{K}\left(g_{0}\right) L\right)=\bar{\varphi}\left(C_{G}\left(g_{0}\right) L\right)
$$

Case 2: $x_{n} \in H \backslash K$. If $i \in\{1, \ldots, m\}, \bar{\varphi}\left(p_{i}\right)^{-1} \bar{\varphi}\left(g_{0}\right) \bar{\varphi}\left(p_{i}\right)=\bar{\varphi}\left(p_{i}^{-1} g_{0} p_{i}\right) \in$ $\overline{\bar{\varphi}}\left(g_{0}\right)^{\varphi}(K)$ - because $p_{i}^{-1} g_{0} p_{i} \in g_{0}^{K}$, whereas if $i \in\{m+1, \ldots, n+1\}, \bar{\varphi}\left(p_{i}\right)^{-1}$ $\bar{\varphi}\left(g_{0}\right) \bar{\varphi}\left(p_{i}\right)=\bar{\varphi}\left(h_{i}\right) \notin \bar{\varphi}\left(g_{0}\right)^{\varphi(K)}$. Therefore $\left\{\bar{\varphi}\left(p_{1}\right), \ldots, \bar{\varphi}\left(p_{m}\right)\right\}$ is the set of all prefixes of $\bar{\varphi}\left(g_{0}\right)$ satisfying $\bar{\varphi}\left(p_{i}\right)^{-1} \bar{\varphi}\left(g_{0}\right) \bar{\varphi}\left(p_{i}\right) \in \bar{\varphi}\left(g_{0}\right)^{\varphi(K)}$. Now $C_{G}\left(g_{0}\right)$ $=C_{K}\left(g_{0}\right)<g_{0}>S$ and $C_{Q}\left(\bar{\varphi}\left(g_{0}\right)\right)=C_{\varphi(K)}\left(\bar{\varphi}\left(g_{0}\right)\right)<\bar{\varphi}\left(g_{0}\right)>\bar{S}$ where \bar{S} $=\bar{\varphi}(S)=\left\{\bar{\varphi}\left(\alpha_{i}\right) \bar{\varphi}\left(p_{i}\right)^{-1} \mid i \in\{1, \ldots, m\}\right\}$ - by Proposition 6.9. We deduce that:

$$
\begin{aligned}
C_{Q}\left(\bar{\varphi}\left(g_{0}\right)\right) \subset \bar{\varphi}\left(C_{K}\left(g_{0}\right) L\right)< & \bar{\varphi}\left(\left(g_{0}\right)>\bar{\varphi}(S)=\bar{\varphi}\left(C_{K}\left(g_{0}\right) L<g_{0}>S\right)=\right. \\
& \bar{\varphi}\left(C_{G}\left(g_{0}\right) L\right) .
\end{aligned}
$$

Proposition 6.11 Let G be a right-angled Artin group of rank $r(r \geq 1)$. Let $g \in G$. If $g \neq 1$, then there exists a special subgroup H of rank $r-1$ of G such that $g \notin H^{G}$.

Proof: Proved in M.
Lemma 6.12 Every special subgroup S of G satisfies the p centralizer condition in $G, p C C_{G}$.

Proof: Let $g \in G$. Let L be a normal subgroup of p-power index in G. There are two cases:
Case 1: $S \neq G$.
Let H be a special subgroup of rank $r-1$ of G such that $S<H$. Then G can be written as an HNN extension of H, relative to a special subgroup K of H :

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>.
$$

We set $L^{\prime}=H \cap L$. We note that L^{\prime} is a normal subgroup of p-power index in H. There are two cases:
Subcase 1: $g \in H$.
By the assumptions, the pair (S, g) satisfies the p centralizer condition in H $\left(p C C_{H}\right)$. There exists a normal subgroup M of p-power index in H such that $M<L^{\prime}$ and, if $\psi: H \rightarrow P=H / M$ denotes the canonical projection, we have:

$$
C_{\psi(S)}(\psi(g)) \subset \psi\left(C_{S}(g) L^{\prime}\right)(*) .
$$

We denote by $f: G \rightarrow H$ the natural homomorphism. We note that $f^{-1}(M)$ is a normal subgroup of p-power index in G (because $f^{-1}(M)$ is the kernel of the homomorphism $\psi \circ f)$. Therefore, $N=L \cap f^{-1}(M)$ is a normal subgroup of p-power index in G. Moreover $N<L$ and $f(N)<M$. We denote by $\varphi: G \rightarrow Q=G / N$ the canonical projection. We observe that $\operatorname{ker}(\psi)=$ $M, \operatorname{ker}(\varphi)=N, M<f^{-1}(M) \cap L \cap H=N \cap H$ and $N \cap H \subset f(N)<$ M. Therefore $M=N \cap H$. Thus we can assume that $P<Q$ and $\varphi_{\left.\right|_{H}}=$ ψ. But then $\psi\left(L^{\prime}\right)=\varphi\left(L^{\prime}\right) \subset \varphi(L)$. Recall that $g \in H$ and $S<H$. Thus considering ($*$), we obtain:

$$
\begin{gathered}
C_{\varphi(S)}(\varphi(g))=C_{\psi(S)}(\psi(g)) \subset \psi\left(C_{S}(g)\right) \psi\left(L^{\prime}\right) \subset \varphi\left(C_{S}(g)\right) \varphi(L)= \\
\varphi\left(C_{S}(g) L\right) .
\end{gathered}
$$

Subcase 2: $g \in G \backslash H$.
Write $g=x_{0} t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ in a reduced form ($n \geq 1$). Then, by Lemma 6.8, there exists a normal subgroup M of p-power index in H such that, if ψ : $H \rightarrow P=H / M$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\psi(K)$ and if $\bar{\psi}: G \rightarrow Q$ denotes the homomorphism induced by ψ, then: $\underline{C}_{\bar{\psi}(S)}(\bar{\psi}(g)) \subset \bar{\psi}\left(C_{S}(g) L\right), \operatorname{ker}(\psi)<H \cap L$, and $\operatorname{ker}(\bar{\psi})$ $<L$. We note that $\bar{\psi}(S) \cap \bar{\psi}(L)=\psi(S) \cap \bar{\psi}(L) \leq P$ is finite. Since Q is residually p-finite (see LO, Lemma 2.8), $\bar{\psi}(g)^{\bar{\psi}(S) \cap \bar{\psi}(L)}$ is finitely p-separable in Q. Therefore, by Lemma 3.5, there exists a normal subgroup N of p power index in Q such that $N<\bar{\psi}(L)$ and, if $\chi: Q \rightarrow R=Q / N$ denotes the canonical projection, then:

$$
C_{\chi(\bar{\psi}(S))}(\chi(\bar{\psi}(g))) \subset \chi\left(C_{\bar{\psi}(S)}(\bar{\psi}(g)) \bar{\psi}(L)\right) .
$$

We set $\varphi=\chi \circ \bar{\psi}: G \rightarrow R$. We have: $\operatorname{ker}(\varphi)=\bar{\psi}^{-1}(\operatorname{ker}(\chi))=\bar{\psi}^{-1}(N) \subset$ $\bar{\psi}^{-1}(\bar{\psi}(L))=\operatorname{Lker}(\bar{\psi})$. Now $\operatorname{ker}(\bar{\psi})<L$. Then $\operatorname{ker}(\varphi)<L$. And:

$$
\begin{aligned}
C_{\varphi(S)}(\varphi(g)) & \left.=C_{\chi(\bar{\psi}(S))}(\chi(\bar{\psi}(g))) \subset \chi\left(C_{\bar{\psi}(S)} \bar{\psi}(g)\right) \bar{\psi}(L)\right) \subset \\
& \chi\left(\bar{\psi}\left(C_{S}(g) L\right) \bar{\psi}(L)\right)=\varphi\left(C_{S}(g) L\right) .
\end{aligned}
$$

Case 2: $S=G$.
If $g=1$, then the result is trivial. Thus we can assume that $g \neq 1$. Then, by Proposition 6.11, there exists a special subgroup of rank $r-1 H$ of G such that $g \notin H^{G}$. As usual, G can be written as an HNN extension of H relative to a special subgroup K of H :

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>
$$

Let $g_{0}=t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ be a cyclically reduced element in G conjugate to g. Choose $\alpha \in G$ such that $g=\alpha g_{0} \alpha^{-1}$. Note that $g \notin H^{G}$ implies that $n \geq$ 1. By Lemma 6.10, there exists a normal subgroup M of p-power index in H such that, if $\psi: H \rightarrow P=H / M$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\psi(K)$ and if $\bar{\psi}: G \rightarrow Q$ denotes the homomorphism induced by ψ, then: $C_{Q}\left(\bar{\psi}\left(g_{0}\right)\right) \subset \bar{\psi}\left(C_{G}\left(g_{0}\right) L\right), \operatorname{ker}(\psi)$ $<H \cap L$ and $\operatorname{ker}(\bar{\psi})<L$. Now Q is hereditarily conjugacy p-separable by Corollary 4.3. Then Q satisfies the p centralizer condition by Proposition 3.6. There exists a normal subgroup N of p-power index in Q such that N $<\bar{\psi}(L)$ and if $\chi: Q \rightarrow R=Q / N$ denotes the canonical projection, we have:

$$
C_{R}\left(\chi\left(\bar{\psi}\left(g_{0}\right)\right)\right) \subset \chi\left(C_{Q}\left(\bar{\psi}\left(g_{0}\right)\right) \bar{\psi}(L)\right)
$$

We set $\varphi=\chi \circ \bar{\psi}: G \rightarrow R$. As above, we have $\operatorname{ker}(\varphi)=\bar{\psi}^{-1}(\operatorname{ker}(\chi))=$ $\bar{\psi}^{-1}(N) \subset \bar{\psi}^{-1}(\bar{\psi}(L))=\operatorname{Lker}(\bar{\psi})$. Now $\operatorname{ker}(\bar{\psi})<L$. Then $\operatorname{ker}(\varphi)<L$. And:

$$
\begin{gathered}
C_{R}\left(\varphi\left(g_{0}\right)\right)=C_{\varphi(G)}\left(\varphi\left(g_{0}\right)\right)=C_{\chi(\bar{\psi}(G))}\left(\chi\left(\bar{\psi}\left(g_{0}\right)\right)\right) \subset \chi\left(C_{\bar{\psi}(G)}\left(\bar{\psi}\left(g_{0}\right)\right) \bar{\psi}(L)\right) \subset \\
\chi\left(\bar{\psi}\left(C_{G}\left(g_{0}\right) L\right) \bar{\psi}(L)\right)=\varphi\left(C_{G}\left(g_{0}\right) L\right) .
\end{gathered}
$$

Finally:

$$
\varphi(\alpha) C_{R}\left(\varphi\left(g_{0}\right)\right) \varphi(\alpha)^{-1} \subset \varphi(\alpha) \varphi\left(C_{G}\left(g_{0}\right) L\right) \varphi(\alpha)^{-1}
$$

That is,

$$
C_{R}(\varphi(g)) \subset \varphi\left(C_{G}(g) L\right)
$$

Lemma 6.13 For every $g \in G$ and for every special subgroup S of G, g^{S} is finitely p-separable in G.

Proof: There are two cases:
Case 1: $S \neq G$.
Let H be a special subgroup of rank $r-1$ of G such that $S<H$. As usual, G can be written as an HNN extension of H relative to a special subgroup K of H :

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>
$$

Let $g \in G$. There are two cases:
Subcase 1: $g \in H$.
Then g^{S} is finitely p-separable in H by the assumptions. Since G is residually p-finite by Theorem 6.1, g^{S} is finitely p-separable in G by Lemma 5.10. Subcase 2: $g \in G \backslash H$.
Let $h \in G \backslash g^{S}$. By Lemma 6.5, there exists a normal subgroup L of p-power index in H such that, if $\varphi: H \rightarrow P=H / L$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\varphi(K)$ and if $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, we have $\bar{\varphi}(h) \notin \bar{\varphi}(g)^{\bar{\varphi}(S)}$. Now $\bar{\varphi}(S)=\varphi(S)<P$ is finite and Q is residually p-finite (see LO, Lemma 2.8). Then there exists a homomorphism $\chi: Q \rightarrow R$ from Q onto a finite p-group R such that $\chi(\bar{\varphi}(h)) \notin \chi\left(\bar{\varphi}(g)^{\bar{\varphi}(S)}\right)$. We set $\psi=\chi \circ \bar{\varphi}: G \rightarrow R$. It is clear that ψ suits.
Case 2: $S=G$.
Let $g \in G$.
If $g=1$, then, since G is residually p-finite by Theorem 6.1, $g^{G}=\{1\}$ is finitely p-separable in G. Thus we can assume that $g \neq 1$. Then, by Proposition 6.11, there exits a special subgroup of rank $r-1 H$ of G such that $g \notin H^{G}$. As usual, G can be written as an HNN extension of H relative to a special subgroup K of H :

$$
G=<H, t \mid t^{-1} k t=k, \forall k \in K>
$$

Let $h \in G \backslash g^{G}$. Let $g_{0}=t^{a_{1}} x_{1} \ldots t^{a_{n}} x_{n}$ and $h_{0}=t^{b_{1}} y_{1} \ldots t^{b_{m}} y_{m}$ be cyclically reduced elements of G conjugate to g and h respectively. Note that $g \notin H^{G}$ implies that $n \geq 1$. There are two cases:
Subcase 1: $h_{0} \in H$. Then, by Lemma 6.6, there exists a normal subgroup L of p-power index in H such that, if $\varphi: H \rightarrow P=H / L$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\varphi(K)$ and $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, we have: $\bar{\varphi}\left(g_{0}\right)$ $=\bar{t}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}$ is cyclically reduced in Q - where $\overline{x_{i}}=\bar{\varphi}\left(x_{i}\right)(i \in\{1, \ldots, n\})$. Since $n \geq 1$, we have: $\bar{\varphi}\left(g_{0}\right) \notin P^{Q}=\bar{\varphi}\left(H^{G}\right)$. Therefore $\bar{\varphi}\left(g_{0}\right) \notin \bar{\varphi}\left(h_{0}\right)^{Q}=$ $\bar{\varphi}\left(h_{0}^{G}\right) \subset \bar{\varphi}\left(H^{G}\right)$. Now Q is conjugacy p-separable by Corollary 4.3, Thus there exists a homomorphism χ from Q onto a finite p-group R such that $\chi\left(\bar{\varphi}\left(g_{0}\right)\right) \notin \chi\left(\bar{\varphi}\left(h_{0}\right)\right)^{R}$. We set $\psi=\chi \circ \bar{\varphi}: G \rightarrow R$. It is clear that ψ suits. Subcase 2: $h_{0} \in G \backslash H$. Let $\left\{h_{1}, \ldots, h_{m}\right\}$ be the set of all cyclic permutations of h_{0}. Then, since $h \notin g^{G}$, we have: $h_{i} \notin g_{0}^{G}$ for all $i \in\{1, \ldots, m\}$. Therefore, by Lemma6.6.6, there exists a normal subgroup L of p-power index in H such that, if $\varphi: H \rightarrow P=H / L$ denotes the canonical projection, if Q denotes the HNN extension of P relative to $\varphi(K)$ and $\bar{\varphi}: G \rightarrow Q$ denotes the homomorphism induced by φ, then: $\bar{\varphi}\left(g_{0}\right)=\bar{t}^{a_{1}} \overline{x_{1}} \ldots \bar{t}^{a_{n}} \overline{x_{n}}$ and $\bar{\varphi}\left(h_{0}\right)=\bar{t}^{b_{1}} \overline{y_{1}} \ldots \bar{t}^{b_{m}} \overline{y_{m}}$ are cyclically reduced in Q - where $\overline{x_{i}}=\bar{\varphi}\left(x_{i}\right)(i \in\{1, \ldots, n\})$ and $\overline{y_{j}}=\bar{\varphi}\left(y_{j}\right)$ $(j \in\{1, \ldots n\})$ - and $\bar{\varphi}\left(h_{i}\right) \notin \bar{\varphi}\left(g_{0}\right)^{\bar{\varphi}(K)}$ for all $i \in\{1, \ldots, m\}$. Consequently, by Lemma 2.3, $\bar{\varphi}\left(g_{0}\right) \notin \bar{\varphi}\left(h_{0}\right)^{Q}$. Now Q is conjugacy p-separable by Corollary 4.3. Then there exists a homomorphism χ from Q onto a finite p-group R
such that: $\chi\left(\bar{\varphi}\left(g_{0}\right)\right) \notin \chi\left(\bar{\varphi}\left(h_{0}\right)\right)^{R}$. Therefore $\chi(\bar{\varphi}(g)) \notin \chi(\bar{\varphi}(h))^{R}$. We set ψ $=\chi \circ \bar{\varphi}: G \rightarrow R$. It is clear that ψ suits.

Proof of Proposition 6.2. We argue by induction on the rank r of G. If $r=0$, then the result is trivial. Thus we can assume that $r \geq 1$ and that the result has been proved for $1, \ldots, r-1$. Now, Proposition 6.2, 1 follows from Lemma 6.12, and Proposition 6.2, 2 follows from Lemma 6.13,

We are now ready to prove:

Theorem 6.14 Every right-angled Artin group is hereditarily conjugacy pseparable.

Proof: Let G be a right-angled Artin group. Let $g \in G$. Then g^{G} is finitely p-separable in G by Proposition 6.2.1. We deduce that G is conjugacy p-separable. On the other hand, G satisfies the p centralizer condition by Proposition 6.2.2. We conclude that G is hereditarily conjugacy p-separable by Proposition 3.6.

7 Applications

The first application that we mention is an application of our main result to separability properties of right-angled Artin groups.

Recall that a group is said to be conjugacy \mathcal{K}-separable, where \mathcal{K} is a class of groups, if for all $g, h \in G$, either $g \sim h$, or there exists a homomorphism φ from G to some group of \mathcal{K} such that $\varphi(g) \nsim \varphi(h)$.

For a group G, we denote by $\left(C^{n}(G)\right)_{n \geq 1}$ the lower central series of G. Recall that $\left(C^{n}(G)\right)_{n \geq 1}$ is defined inductively by $C^{1}(G)=G$, and $C^{n+1}(G)$ $=\left[G, C^{n}(G)\right]$ for all $n \geq 1$.

Theorem 7.1 Every right-angled Artin group is conjugacy \mathcal{K}-separable, where \mathcal{K} is the class of all torsion-free nilpotent groups.

Proof: Let G be a right-angled Artin group. Let $g, h \in G$ such that $g \nsim$ h. Let p be a prime number. Then G is conjugacy p-separable by Theorem 6.14. Thus, there exists a homomorphism φ from G onto a finite p-group P such that $\varphi(g) \nsim \varphi(h)$. Now, P is nilpotent. Therefore, there exists $n \geq 1$ such that $C^{n}(P)=\{1\}$. Let $\pi: G \rightarrow \frac{G}{C^{n}(G)}$ be the canonical projection. It follows from DK2] that $\frac{G}{C^{n}(G)}$ is a torsion-free nilpotent group. Since $\varphi\left(C^{n}(G)\right)<C^{n}(P)=\{1\}, \varphi$ induces a homomorphism $\widetilde{\varphi}: \frac{G}{C^{n}(G)} \rightarrow P$ such that $\varphi=\widetilde{\varphi} \circ \pi$. As $\varphi(g) \nsim \varphi(h)$, we have $\pi(g) \nsim \pi(h)$.

We turn now to applications of our main result to residual properties of outer automorphism groups of right-angled Artin groups.

Let G be a group. An automorphism φ of G is said to be conjugating if for every $g \in G, \varphi(g) \sim g$. We say that G has Property A if every conjugating automorphism of G is inner. Minasyan proved (see [M]):

Proposition 7.2 Right-angled Artin groups have Property A.
Let G be a group. We denote by $\mathcal{I}_{p}(G)$ the kernel of the natural homomorphism $\operatorname{Out}(G) \rightarrow G L\left(H_{1}\left(G, \mathbb{F}_{p}\right)\right)$ (where \mathbb{F}_{p} denotes the finite field with p elements). Paris proved (see [⿴囗):

Theorem 7.3 Let G be a finitely generated group. If G is conjugacy p separable and has Property A, then $\mathcal{I}_{p}(G)$ is residually p-finite.

Recall that a group G is said to be virtually \mathcal{P}, where \mathcal{P} is a group property, if there exists a finite index subgroup $H<G$ such that H has Property \mathcal{P}. We are now ready to prove:

Theorem 7.4 The outer automorphism group of a right-angled Artin group is virtually residually p-finite.

Proof: This follows immediately from Theorem 6.14, Proposition 7.2 and Theorem 7.3 .

Recall that a group G is \mathcal{K}-residual, where \mathcal{K} is a class of groups, if for all $g \in G \backslash\{1\}$, there exists a homomorphism φ from G to some group of \mathcal{K} such that $\varphi(g) \neq 1$. Myasnikov proved (see My):

Theorem 7.5 Let G be a finitely generated group. If G is conjugacy p separable and has property A, then $\operatorname{Out}(G)$ is \mathcal{K}-residual, where \mathcal{K} is the class of all outer automorphism groups of finite p-groups.

We are now ready to prove:
Theorem 7.6 The outer automorphism group of a right-angled Artin group is \mathcal{K}-residual, where \mathcal{K} is the class of all outer automorphism groups of finite p-groups.

Proof: This follows immediately from Theorem 6.14, Proposition 7.2 and Theorem 7.5.

The next application was suggested to the author by Ruth Charney and Luis Paris.

Let $G=G_{\Gamma}$ be a right-angled Artin group. Let r be the rank of G. We denote by $T(G)$ the kernel of the natural homomorphism $\operatorname{Aut}(G) \rightarrow G L_{r}(\mathbb{Z})$ and by $\mathcal{T}(G)$ the kernel of the natural homomorphism $\operatorname{Out}(G) \rightarrow G L_{r}(\mathbb{Z})$. We call $\mathcal{T}(G)$ the Torelli group of G. Note that $\mathcal{T}(G)=T(G) / \operatorname{Inn}(G)$. In [D2], Day proved that $T(G)$ is finitely generated. Therefore $\mathcal{T}(G)$ is finitely generated. Now, we prove the following:

Theorem 7.7 The Torelli group of a right-angled Artin group is residually torsion-free nilpotent.

In order to prove Theorem 7.7, we have to introduce the notion of separating \mathbb{Z}-linear central filtration.

Recall that a central filtration on a group G is a sequence $\left(G_{n}\right)_{n \geq 1}$ of subgroups of G satisfying the conditions:

$$
\begin{gathered}
G_{1}=G \\
G_{n}>G_{n+1}, \\
{\left[G_{m}, G_{n}\right]<G_{m+n} \text { for all } m, n \geq 1 .}
\end{gathered}
$$

Let $\mathcal{F}=\left(G_{n}\right)_{n \geq 1}$ be a central filtration. Then the mapping $G \times G \rightarrow$ $G,(x, y) \mapsto x y x^{-1} y^{-1}$ induces on:

$$
\mathcal{L}_{\mathcal{F}}(G)=\bigoplus_{n \geq 1} \frac{G_{n}}{G_{n}+1}
$$

a Lie bracket which makes $\mathcal{L}_{\mathcal{F}}(G)$ into a graded Lie \mathbb{Z}-algebra.
We say that $\left(G_{n}\right)_{n \geq 1}$ is a separating filtration if $\cap_{n \geq 1} G_{n}=\{1\}$. We say that $\left(G_{n}\right)_{n \geq 1}$ is \mathbb{Z}-linear if for all $n \geq 1$, the \mathbb{Z}-module $\frac{G_{n}}{G_{n+1}}$ is free of finite rank.

For a group G, we denote by $\left(C_{\mathbb{Z}}^{n}(G)\right)_{n \geq 1}$ the sequence of subgroups of G defined inductively by $C_{\mathbb{Z}}^{1}(G)=G$, and $\left[G, C_{\mathbb{Z}}^{n}(G)\right]<C_{\mathbb{Z}}^{n+1}(G)$ and $\frac{C_{\mathbb{Z}}^{n+1}(G)}{\left[G, C_{\mathbb{Z}}^{n}(G)\right]}$ is the torsion subgroup of $\frac{C_{Z}^{n}(G)}{\left[G, C_{\mathbb{Z}}^{n}(G)\right]}$ for all $n \geq 1$.
Proposition 7.8 For all $m, n \geq 1,\left[C_{\mathbb{Z}}^{m}(G), C_{\mathbb{Z}}^{n}(G)\right]<C_{\mathbb{Z}}^{m+n}(G)$.
Proof: Proved in BL (see Proposition 7.2).
Thus, $\left(C_{\mathbb{Z}}^{n}(G)\right)_{n \geq 1}$ is a central filtration on G. We denote by $\mathcal{L}_{\mathbb{Z}}(G)$ the corresponding graded Lie \mathbb{Z}-algebra.

For a group G, we denote by $\mathcal{A} b(G)$ the abelianization $\frac{G}{[G, G]}$ of G, and by $Z(G)$ the center of G. For a Lie algebra \mathfrak{g}, we denote by $Z(\mathfrak{g})$ the center of \mathfrak{g}.

Let G be a group. For $n \geq 1$, we denote by A_{n} the kernel of the natural homomorphism $\operatorname{Aut}(G) \rightarrow \operatorname{Aut}\left(\frac{G}{C_{\mathbb{Z}}^{n+1}(G)}\right)$. Let $\pi: \operatorname{Aut}(G) \rightarrow \operatorname{Out}(G)$ be the canonical projection. For $n \geq 1$, we set $B_{n}=\pi\left(G_{n}\right)$.

Theorem 7.9 If $\mathcal{A} b(G)$ is finitely generated, and $Z\left(\mathbb{F}_{p} \otimes \mathcal{L}_{\mathbb{Z}}(G)\right)=\{0\}$ for every prime number p, then $\left(B_{n}\right)_{n \geq 1}$ is a \mathbb{Z}-linear central filtration on B_{1}. Furthermore, $\left(B_{n}\right)_{n \geq 1}$ is separating if and only if G satisfies the condition:
$(I N(G)):$ For every $\varphi \in \operatorname{Aut}(G)$, if φ induces an inner automorphism of $\frac{G}{C_{\mathbb{Z}}^{n}(G)}$ for all $n \geq 1$, then φ is inner.

Proof: Proved in BL (see Corollary 9.9).

From now on, we assume that $G=G_{\Gamma}$ is a right-angled Artin group of rank $r(r \geq 1)$. We shall show that G satisfies the conditions of Theorem 7.9. Since B_{1} is precisely the Torelli group of G, Theorem 7.7 will then result from the following:

Theorem 7.10 Let B be a group. Suppose that B admits a separating \mathbb{Z} linear central filtration, $\left(B_{n}\right)_{n \geq 1}$. Then B is residually torsion-free nilpotent.

Proof: Proved in BL (see Theorem 6.1).
We need to introduce the following notations. Let K be a commutative ring. We denote by M_{Γ} the monoid defined by the presentation:

$$
M_{\Gamma}=<V \mid v w=w v, \forall\{v, w\} \in E>
$$

by A_{Γ} the associative K-algebra of the monoid M_{Γ}, and by L_{Γ} the Lie K-algebra defined by the presentation:

$$
L_{\Gamma}=<V \mid[v ; w]=0, \forall\{v, w\} \in E>
$$

The following theorem is due to Duchamp and Krob (see [DK]):
Theorem 7.11 The K-module L_{Γ} is free.
Thus, by the Poincaré-Birkhoff-Witt theorem, L_{Γ} can be regarded as a Lie subalgebra of its enveloping algebra, for which Duchamp and Krob established the following (see [DK]):

Theorem 7.12 The enveloping algebra of L_{Γ} is isomorphic to A_{Γ}.

Furthermore, in DK2], Duchamp and Krob proved the following theorem, which generalizes a well-known theorem of Magnus (see MKS):

Theorem 7.13 Suppose that $K=\mathbb{Z}$. The graded Lie \mathbb{Z}-algebra associated to the lower central series of G is isomorphic to L_{Γ}.

Let $Z=\cap_{v \in V} \operatorname{star}(v)$. Then $Z(G)$ is the special subgroup of G generated by Z. Let H be the special subgroup of G generated by $V \backslash Z$. We have: G $=H \times Z$. The proof of Theorem 7.7 will use the following:

Lemma 7.14 Suppose that $Z\left(G_{\Gamma}\right)=\{1\}$. Then $Z\left(L_{\Gamma}\right)=\{0\}$.
Proof: Let $g \in Z\left(L_{\Gamma}\right)$. Suppose that $g \neq 0$. Let $v \in V$. We have $[g ; v]$ $=0$ (in L_{Γ}). Now, L_{Γ} can be regarded as a Lie subalgebra of A_{Γ} by Theorem 7.11 and Theorem 7.12. Thus, we have $g v=v g$ (in A_{Γ}). Therefore g belongs to the subalgebra of A_{Γ} generated by $\operatorname{star}(v)$ (see [KR]). Since v is arbitrary, this leads to a contradiction with our assumption.

Remark: In the above lemma, K is arbitrary.

From now on, we assume that $K=\mathbb{Z}$. Recall that $\left(C^{n}(G)\right)_{n \geq 1}$ denotes the lower central series of G. We are now ready to prove:

Theorem 7.15 The Torelli group of a right-angled Artin group is residually torsion-free nilpotent.

Proof: Let $Z=\cap_{v \in V} \operatorname{star}(v)$. Then $Z(G)$ is the special subgroup of G generated by Z. Let H be the special subgroup of G generated by $V \backslash Z$. We have: $G=H \times Z(G)$. Note that $Z(H)=\{1\}$. First, we show that $\mathcal{T}(G)$ $=\mathcal{T}(H)$. Let $\varphi: T(G) \rightarrow T(H)$ be the homomorphism defined by:

$$
\varphi(\alpha)(h, k)=(\alpha(h), k),
$$

for all $\alpha \in \mathcal{T}(G), h \in H, k \in Z(G)$. Clearly, φ is well-defined and injective. We shall show that φ is surjective. Let $\beta \in \mathcal{T}(G)$. For $g \in G$, we set $\beta(g)=$ $\left(\beta_{1}(g), \beta_{2}(g)\right)$, where $\beta_{1}(g) \in H$ and $\beta_{2}(g) \in Z(G)$. Let $h \in H$. We denote by \bar{h} the canonical image of h in $\mathcal{A} b(H)$. Note that the canonical image of h in $\mathcal{A} b(G)=\mathcal{A} b(H) \times Z(G)$ is $(\bar{h}, 1)$. Since $\beta \in T(G)$, we have: $(\bar{h}, 1)=$ $\left(\overline{\beta_{1}(h)}, \beta_{2}(h)\right)$, and then $\beta_{2}(h)=1$. Let $k \in Z(G)$. Since $\beta(k)$ lies in the center of G, we have $\beta_{1}(k)=1$. Note that the canonical image of k in $\mathcal{A} b(G)$ is $(1, k)$. As $\beta \in T(G)$, we have $\beta_{2}(k)=k$. Finally, we have:

$$
\beta(h, k)=\left(\beta_{1}(h), k\right),
$$

for all $h \in H$ and $k \in Z(G)$. Applying the same argument to β^{-1}, we obtain that the restriction α of β_{1} to H is an automorphism of H. Therefore $\beta=$ $\varphi(\alpha)$. We have shown that $T(G)=T(H)$. It is easily seen that this implies that $\mathcal{T}(G)=\mathcal{T}(H)$. Thus, up to replacing G by H, we can assume that $Z(G)=\{1\}$. On the other hand, it follows from DK2 that for all $n \geq 1$, there exists $d_{n} \in \mathbb{N}$ such that:

$$
\frac{C^{n}(G)}{C^{n+1}(G)} \simeq \mathbb{Z}^{d_{n}}
$$

Now, for all $n \geq 1, C^{n}(G)<C_{\mathbb{Z}}^{n}(G)$, and $\frac{C_{\mathbb{Z}}^{n}(G)}{C^{n}(G)}$ is the torsion subgroup of $\frac{G}{C^{n}(G)}$ by [BL], Proposition 7.2. It follows that $C_{\mathbb{Z}}^{n}(G)=C^{n}(G)$ for all n ≥ 1, and that $\mathcal{L}_{\mathbb{Z}}(G)=L_{\Gamma}$ by Theorem 7.13, Since $Z(G)=\{1\}$, we have $Z\left(\mathbb{F}_{p} \otimes L_{\Gamma}\right)=\{0\}$ for every prime number p - by Lemma 7.14. We deduce that $\left(B_{n}\right)_{n \geq 1}$ is a \mathbb{Z}-linear central filtration on $\mathcal{T}(G)$ by Theorem 7.9 . Now, let $\varphi \in \operatorname{Aut}(G)$ such that φ induces an inner automorphism on $\frac{G}{C^{n}(G)}$ for all $n \geq 1$. Let $g \in G$. Suppose that $\varphi(g)$ and g are not conjugate in G. Then it follows from the proof of Theorem 7.1 that there exists $n \geq 1$ such that the canonical images of $\varphi(g)$ and g in $\frac{G}{C^{n}(G)}$ are not conjugate in $\frac{G}{C^{n}(G)}$ contradicting our assumption. Thus φ is conjugating. Therefore φ is inner by Proposition 7.2, We deduce that $\left(B_{n}\right)_{n \geq 1}$ is separating by Theorem 7.9, We conclude that $\mathcal{T}(G)$ is residually torsion-free nilpotent by Theorem 7.10,

Corollary 7.16 The Torelli group of a right-angled Artin group is residually p-finite for every prime number p.

Proof: This follows immediately from Theorem 7.15and Theorem 2.1.(i) in (G].

Corollary 7.17 The Torelli group of a right-angled Artin group is bi-orderable.

Proof: This follows immediately from Theorem 7.15 and R (see also (MR], Theorem 2.4.8.).

References

[BL] H. Bass, A. Lubotzky. Linear-central filtrations on groups. The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992), 45-98, Contemp. Math., 169, Amer. Math. Soc., Providence, RI, 1994.
[C] R. Charney. An introduction to right-angled Artin groups. Geom. Dedicata 125 (2007), 141-158.
[CV] R. Charney, K. Vogtmann. Finiteness properties of automorphism groups of right-angled Artin groups. Bull. Lond. Math. Soc. 41 (2009), no. 1, 94-102.
[CV2] R. Charney, K. Vogtmann. Subgroups and quotients of automorphism group of RAAGS. arXiv:0909.2444v1.
[D] M.B. Day. Peak reduction and finite presentations for automorphism groups of right-angled Artin groups. Geom. Topol. 13 (2009), no. 2, 817855.
[D2] M.B. Day. Symplectic structures on right-angled Artin groups: between the mapping class group and the symplectic group. Geom. Topol. 13 (2009), no. 2, 857-899.
[D3] M.B. Day. On solvable subgroups of automorphism groups of rightangled Artin groups. arXiv:0910.4789.
[Dy] J.L. Dyer. Separating conjugates in free-by-finite groups. J. London Math. Soc. (2) 20 (1979), no. 2, 215-221.
[Dy2] J.L. Dyer. Separating conjugates in amalgamated free products and HNN extensions. J. Austral. Math. Soc. Ser. A 29 (1980), no. 1, 35-51.
[DK] G. Duchamp, D. Krob. The free partially commutative Lie algebra: bases and ranks. Adv. Math. 95 (1992), no. 1, 92-126.
[DK2] G. Duchamp, D. Krob. The lower central series of the free partially commutative group. Semigroup Forum 45 (1992), no. 3, 385-394.
[G] K.W. Gruenberg. Residual properties of infinite soluble groups. Proc. London Math. Soc. (3) 7 (1957), 29-62.
[I] E.A. Ivanova. On conjugacy p-separability of free products of two groups with amalgamation. Math. Notes 76 (2004), no. 3-4, 465-471.
[KR] K.H Kim, F.W. Roush. Homology of certain algebras defined by graphs. J. Pure Appl. Algebra 17 (1980), no. 2, 179-186.
[KS] A. Karrass, D. Solitar. Subgroups of HNN groups and groups with one defining relation. Canad. J. Math. 23 (1971), 627-643.
[L] M.R. Laurence. A generating set for the automorphism group of a graph group. J. London Math. Soc. (2) 52 (1995), no. 2, 318-334.
[Lo] K. Lorensen. Groups with the same cohomology as their profinite completions. J. Algebra 320 (2008), no. 4, 1704-1722.
[LS] R.C. Lyndon, P.E. Schupp. Combinatorial group theory. Reprint of the 1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[M] A. Minasyan. Hereditary conjugacy separability of right angled Artin groups and its applications. arXiv:0905.1282.
[My] A.G. Myasnikov. Approximability of outer automorphism groups of free groups of finite rank. Algebra i Logika 20 (1981), no. 3, 291-299.
[MR] R. Botto Mura, A.H. Rhemtulla. Orderable groups. Lecture Notes in Pure and Applied Mathematics, Vol. 27. Marcel Dekker, Inc., New York-Basel, 1977. iv+169 pp.
[MKS] W. Magnus, A. Karrass, D. Solitar. Combinatorial group theory. Presentations of groups in terms of generators and relations. Reprint of the 1976 second edition. Dover Publications, Inc., Mineola, NY, 2004.
[P] L. Paris. Residual p properties of mapping class groups and surface groups. Trans. Amer. Math. Soc. 361 (2009), no. 5, 2487-2507.
[R] A.H. Rhemtulla. Residually Fp-groups, for many primes p, are orderable. Proc. Amer. Math. Soc. 41, 31-33 (1973).
[RZ] L. Ribes, P. Zalesskii. Profinite groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 40. Springer-Verlag, Berlin, 2000.
[S] G.P. Scott. An embedding theorem for groups with a free subgroup of finite index. Bull. London Math. Soc. 6 (1974), 304-306.
[Se] J.P. Serre. Arbres, amalgames, SL_{2}. Astérisque, No. 46. Société Mathématique de France, Paris, 1977.
[Ser] H. Servatius. Automorphisms of graph groups. J. Algebra 126 (1989), no. 1, 34-60.

Emmanuel Toinet,
Institut de Mathématiques de Bourgogne, UMR 5584 du CNRS, Université de Bourgogne, B.P. 47870, 21078 Dijon cedex, France
E-mail: Emmanuel.Toinet@u-bourgogne.fr

[^0]: ${ }^{1}$ Strictly speaking, it follows from the proof of [I], Proposition 4, that, if there exists a homomorphism $\varphi: H \rightarrow P$ from H onto a finite p-group P such that $\varphi(g) \nsim \varphi(h)$, then there exists a homomorphism $\psi: G \rightarrow Q$ from G onto a finite p-group Q such that $\psi(g)$ $\nsim \psi(h)$. The exact statement of [I], Proposition 4, is slightly different.

