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Conjugacy p-separability of right-angled Artin

groups and applications

Emmanuel Toinet

ABSTRACT. We prove that every subgroup of p-power index in a right-
angled Artin group is conjugacy p-separable. In particular, every right-
angled Artin group is conjugacy p-separable. A consequence of this result is
that the outer automorphism group of a right-angled Artin group is virtually
residually p-finite. Another consequence of this result is that the outer
automorphism group of a right-angled Artin group is K-residual, where K is
the class of all outer automorphism groups of finite p-groups. We also prove
that the Torelli group of a right-angled Artin group is residually torsion-free
nilpotent, hence residually p-finite and bi-orderable.

1 Introduction

Let Γ = (V ,E) be a (finite) simplicial graph. The right-angled Artin
group associated to Γ is the group GΓ defined by the presentation:

GΓ = < V | vw = wv, ∀ {v,w} ∈ E >.

Note that, if Γ is discrete, then GΓ is free, and if Γ is complete, then
GΓ is free abelian. The rank of GΓ is by definition the number of vertices
of Γ. A special subgroup of GΓ is a subgroup generated by a subset W of
V - it is naturally isomorphic to the right-angled Artin group GΓ(W ), where
Γ(W ) denotes the full subgraph of Γ generated by W . Let v be a vertex
of Γ. The star of v, denoted by star(v), is the subset of V of all vertices
which are adjacent to v plus v itself. We refer to [C] for a general survey of
right-angled Artin groups.

Not much is known on automorphims of right-angled Artin groups. In
1989, Servatius conjectured a generating set for Aut(GΓ) (see [Ser]). He
proved his conjecture in certain special cases, for example when the graph
is a tree. Then Laurence proved the conjecture in the general case (see [L]).
Charney and Vogtmann showed that Out(GΓ) is virtually torsion-free and
has finite virtual cohomological dimension (see [CV]). Day found a finite pre-
sentation for Aut(GΓ) (see [D]). Recently, Minasyan proved that Out(GΓ) is
residually finite (see [M]). This result was obtained independently by Char-
ney and Vogtmann (see [CV2]), using different technics. More recently, Day
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showed that Out(GΓ) is either virtually nilpotent or contains a free group
(see [D3]).

Let p be a prime number. A group G is said to be residually p-finite if
for every g ∈ G\{1}, there exists a homomorphism ϕ from G onto a finite p-
group P such that ϕ(g) 6= 1. Note that residually p-finite implies residually
finite as well as residually nilpotent. For g, h ∈ G, the notation g ∼ h
means that g and h are conjugate. We say that G is conjugacy p-separable
if for all g, h ∈ G, either g ∼ h, or there exists a homomorphism ϕ from
G onto a finite p-group P such that ϕ(g) ≁ ϕ(h). Obviously, if a group is
conjugacy p-separable, then it is residually p-finite. Following Ivanova (see
[I]), we say that a subset S of a group G is finitely p-separable if for every
g ∈ G \ S, there exists a homomorphism ϕ from G onto a finite p-group P
such that ϕ(g) /∈ ϕ(S). We say that an element g of G is Cfp-separable if its
conjugacy class, gG = {αgα−1 | α ∈ G}, is finitely p-separable. Note that G
is conjugacy p-separable if and only if every element of G is Cfp-separable.
Examples of groups which are known to be conjugacy p-separable include
free groups (see [LS]) and fundamental groups of oriented closed surfaces
(see [P]).

Let G be a group. The pro-p topology on G is defined by taking the
normal subgroups of p-power index in G as a basis of neighbourhoods of
1 (see [RZ]). Equipped with the pro-p topology, G becomes a topological
group. Observe that G is Hausdorff if and only if it is residually p-finite.
One can easily prove that a subset S of G is closed in the pro-p topology on
G if and only if it is finitely p-separable.

Definition 1.1 Let G be a group. We say that G is hereditarily conjugacy
p-separable if every subgroup of p-power index in G is conjugacy p-separable.

Hereditary conjugacy p-separability is obviously stronger than conjugacy
p-separability.

Our main theorem is the following:

Theorem 1.2 Every right-angled Artin group is hereditarily conjugacy p-
separable.

More generally, let K be a class of group (e.g., the class of all finite
groups, the class of all finite p-groups, etc.). We say that a group G is K-
residual if for all g ∈ G\{1}, there exists a homomorphism ϕ from G to some
group of K such that ϕ(g) 6= 1. Note that if K is the class of all finite p-
groups, one study residual p-finiteness. We say that a group G is conjugacy
K-separable if for all g, h ∈ G, either g ∼ h, or there exists a homomorphism
ϕ from G to some group of K such that ϕ(g) ≁ ϕ(h). Note that if K is the
class of all finite p-groups, one study conjugacy p-separability. In Section 7,
we prove the following:
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Theorem 1.3 Every right-angled Artin group is conjugacy K-separable, whe-
re K is the class of all torsion-free nilpotent groups.

Let P be a group property (e.g., abelian, nilpotent, etc.). A group G is
said to be virtually P if there exists a finite index subgroup H < G such
that H has Property P. In Section 7, we prove:

Theorem 1.4 The outer automorphism group of a right-angled Artin group
is virtually residually p-finite.

Theorem 1.5 The outer automorphism group of a right-angled Artin group
is K-residual, where K is the class of all outer automorphism groups of finite
p-groups.

Let G = GΓ be a right-angled Artin group. Let r be the rank of G.
We denote by T (G) the kernel of the natural homomorphism Out(G) →
GLr(Z). We say that T (G) is the Torelli group of G. In Section 7, we
prove:

Theorem 1.6 The Torelli group of a right-angled Artin group is residually
torsion-free nilpotent.

This implies that the Torelli group of a right-angled Artin group is resid-
ually p-finite for every prime number p and bi-orderable.

Our proof of Theorem 1.2 is purely combinatorial. It is based on HNN
extensions (see below for the definition of an HNN extension). The basic
idea is that a right-angled Artin group of rank r (r ≥ 1) can be written as
an HNN extension of any of its special subgroups of rank r - 1. Our proof
was inspired by Minasyan’s paper (see [M]). In his paper, Minasyan proved
that every finite index subgroup in a right-angled Artin group is conjugacy
separable - that is, right-angled Artin groups are “hereditarily conjugacy
separable”. To this end, he introduced the centralizer condition and proved
that a group is hereditarily conjugacy separable if and only if it is conjugacy
separable and satisfies the centralizer condition. In Section 3, we introduce
the p centralizer condition which is analog of the centralizer condition in
[M], and we prove that a group is hereditarily conjugacy p-separable if and
only if it is conjugacy p-separable and satisfies the p centralizer condition.
In Section 4, we prove the following:

Theorem 1.7 Every extension of a free group by a finite p-group is conju-
gacy p-separable.

From a technical point of view, Theorem 1.7 is the main result of our
paper. In Section 5, we deal with retractions that are key tools in the proof
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of our main theorem, which is the object of Section 6.

My gratefulness goes to my Ph.D. thesis advisor, Luis Paris, for his trust,
time and advice.

2 HNN extensions

We start recalling the definition of an HNN extension (see [LS]). This
notion of HNN extension will be of great importance in our proof, because,
as we will see, a right-angled Artin group of rank r (r ≥ 1) can be written
as an HNN extension of any of its special subgroups of rank r - 1.

Let H be a group. Then by the notation:

< H, h,... | r,... >,

we mean the group defined by the presentation whose generators are the
generators of H together with h,... and the relators of H together with r,...

Let H be a group. Let I be a set of indices. Let {Ki}i∈I and {Li}i∈I
be families of subgroups of H and let {ψi : Ki → Li}i∈I be a family of
isomorphisms. The HNN extension with base H, stable letters ti (i ∈ I),
and associated subgroups Ki and Li (i ∈ I), is the group defined by the
presentation:

G = < H, ti (i ∈ I) | t−1
i kiti = ψi(ki), ∀ ki ∈ Ki (i ∈ I) >.

In particular, let H be a group, let K and L be subgroups of H and let
ψ be an isomorphism from K to L. The HNN extension of H relative to ψ
is the group defined by the presentation:

G = < H, t | t−1kt = ψ(k), ∀ k ∈ K >.

From now on, we suppose K = L and ψ = idK . In this case, G is called
the HNN extension of H relative to K:

G = < H, t | t−1kt = k, ∀ k ∈ K >.

Every element of G can be written as a word x0t
a1x1...t

anxn (n ≥ 0,
x0,..., xn ∈ H, a1,..., an ∈ Z \ {0}). Following Minasyan (see [M]), we will
say that the word x0t

a1x1...t
anxn is reduced if x0 ∈ H, x1,..., xn−1 ∈ H \K,

and xn ∈ H. Every element of G can be represented by such a reduced word.
Note that our definition of a reduced word is stronger than the definition of
a reduced word in [LS].

Lemma 2.1 (Britton’s Lemma) If a word x0t
a1x1...t

anxn is reduced with
n ≥ 1, then x0t

a1x1...t
anxn 6= 1.

Proof : Proved in [M]. �
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Lemma 2.2 If x0t
a1x1...t

anxn and y0t
b1y1...t

bmym are reduced words such
that x0t

a1x1...t
anxn = y0t

b1y1...t
bmym, then m = n and ai = bi for all i ∈

{1,...,n}.

Proof : Proved in [M]. �

A cyclic permutation of the word ta1x1...t
anxn is a word t

akxk...t
anxnt

a1x1
...tak−1xk−1 with k ∈ {1,...,n}. A word ta1x1...t

anxn is said to be cyclically
reduced if any cyclic permutation of ta1x1...t

anxn is reduced. Note that, if
ta1x1...t

anxn is reduced and n ≥ 2, then ta1x1...t
anxn is cyclically reduced

if and only if xn ∈ H \K. Every element of G is conjugate to a cyclically
reduced word.

Lemma 2.3 (Collins’ Lemma) If g = ta1x1...t
anxn (n ≥ 1) and h =

tb1y1...t
bmym (m ≥ 1) are cyclically reduced and conjugate, then there exists

a cyclic permutation h∗ of h and an element α ∈ K such that g = αh∗α−1.

Proof : Proved in [M]. �

Remark : There exists a natural homomorphism f : G → H, defined by
f(h) = h for all h ∈ H, and f(t) = 1.

Remark : Let P be a group and let ϕ : H → P be a homomorphism. Let Q
be the HNN extension of P relative to ϕ(K):

Q = < P , t | t
−1
ϕ(k)t = ϕ(k), ∀ k ∈ K >.

Then ϕ induces a homomorphism ϕ : G → Q, defined by ϕ(h) = ϕ(h) for
all h ∈ H, and ϕ(t) = t.

Lemma 2.4 With the notations of the previous remark, ker(ϕ) is the nor-
mal closure of ker(ϕ) in G.

Proof : Proved in [M]. �

The following simple observation is the key in the proof of our main
theorem. Let G be a right-angled Artin group of rank r (r ≥ 1). Let H
be a special subgroup of G of rank r - 1. In other words, there exists a
partition of V : V = W∪{t} such that H = < W >. Then G can be written
as the HNN extension of H relative to the special subgroup K = C(t) =
< star(t) > of H:

G = < H, t | t−1kt = k, ∀ k ∈ K >.
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3 Hereditary conjugacy p-separability and p cen-

tralizer condition

We start with an observation that the reader has to keep in mind, be-
cause it will be used repeatedly in the rest of the paper: if H and K are two
normal subgroups of p-power index in a group G, then H ∩K is a normal
subgroup of p-power index in G.

If G is a group, H is a subgroup of G, and g ∈ G, then we set CH(g) =
{h ∈ H | gh = hg}.

Definition 3.1 We say that G satisfies the p centralizer condition (pCC)
if, for every normal subgroup H of p-power index in G, and for all g ∈ G,
there exists a normal subgroup K of p-power index in G such that K < H,
and:

CG/K(ϕ(g)) ⊂ ϕ(CG(g)H),

where ϕ : G → G/K denotes the canonical projection.

We shall show that a group G is hereditarily conjugacy p-separable if and
only if it is conjugacy p-separable and satisfies the p centralizer condition (see
Proposition 3.6). For technical reasons, we have to introduce the following
definitions:

Definition 3.2 Let G be a group, H be a subgroup of G, and g ∈ G. We
say that the pair (H, g) satisfies the p centralizer condition in G (pCCG) if,
for every normal subgroup K of p-power index in G, there exists a normal
subgroup L of p-power index in G such that L < K, and:

Cϕ(H)(ϕ(g)) ⊂ ϕ(CH(g)K),

where ϕ : G → G/L denotes the canonical projection. We say that H
satisfies the p centralizer condition in G (pCCG) if the pair (H, g) satisfies
the p centralizer condition in G for all g ∈ G.

If G is a group, H is a subgroup of G, and g ∈ G, then we set: gH =
{αgα−1 | α ∈ H}. In order to prove Proposition 3.6, we need the following
statements, which are analogs of some statements obtained in [M] (Lemma
3.4, Corollary 3.5 and Lemma 3.7, respectively):

Lemma 3.3 Let G be a group, H be a subgroup of G, and g ∈ G. Suppose
that the pair (G, g) satisfies pCCG, and that gG is finitely p-separable in G.
If CG(g)H is finitely p-separable in G, then gH is also finitely p-separable
in G.
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Proof : Let h ∈ G such that h /∈ gH . If h /∈ gG, then, since gG is finitely
p-separable in G, there exists a homomorphism ϕ from G onto a finite p-
group P such that ϕ(h) /∈ ϕ(gG). In particular, ϕ(h) /∈ ϕ(gH ). Thus we
can assume that h ∈ gG. Let α ∈ G such that h = αgα−1. Suppose that
CG(g)∩α

−1H 6= ∅. Let k ∈ CG(g)∩α
−1H. We obtain: αk ∈ H and h

= αgα−1 = αkg(αk)−1 ∈ gH - a contradiction. Thus CG(g)∩α−1H = ∅,
i.e. α−1 /∈ CG(g)H. As CG(g)H is finitely p-separable in G, there exists
a normal subgroup K of p-power index in G such that α−1 /∈ CG(g)HK.
Now the condition pCCG implies that there exists a normal subgroup L of
p-power index in G such that L < K, and:

CG/L(ϕ(g)) ⊂ ϕ(CG(g)K),

where ϕ : G → G/L denotes the canonical projection. We have: ϕ(h) /∈
ϕ(gH ). Indeed, if there exists β ∈ H such that ϕ(h) = ϕ(βgβ−1), then ϕ(g)
= ϕ(β−1hβ), and ϕ(α−1β)ϕ(g) = ϕ(α−1β)ϕ(β−1hβ) = ϕ(α−1hα)ϕ(α−1β)
= ϕ(g)ϕ(α−1β) i.e. ϕ(α−1β) ∈ CG/L(ϕ(g)). But then ϕ(α

−1) ∈ CG/L(ϕ(g))
ϕ(H) ⊂ ϕ(CG(g)KH). We obtain: α−1 ∈ CG(g)HKL = CG(g)HK (be-
cause L < K) - a contradiction. �

Corollary 3.4 Let G be a conjugacy p-separable group satisfying pCC, and
H be a subgroup of G such that CG(h)H is finitely p-separable in G for all
h ∈ H. Then H is conjugacy p-separable. Moreover, for all h ∈ H, hH is
finitely p-separable in G.

Proof : Let h ∈ H. Since G satisfies pCC, the pair (G,h) satisfies pCCG.
Since G is conjugacy p-separable, hG is finitely p-separable in G. Lemma
3.3 now implies that hH is finitely p-separable in G. Therefore hH is finitely
p-separable in H. �

Lemma 3.5 Let G be a group, H be a subgroup of G, and g ∈ G. Let K be
a normal subgroup of p-power index in G. If gH∩K is finitely p-separable in
G, then there exists a normal subgroup L of p-power index in G such that L
< K, and:

Cϕ(H)(ϕ(g)) ⊂ ϕ(CH(g)K),

where ϕ : G → G/L denotes the canonical projection.

Proof : Note that H∩K is of finite index n in H. Actually, H∩K is of
p-power index in H (because H

H∩K ≃ KH
K < G

K ). However, we do not need
this fact. There exists α1,..., αn ∈ H such that H = ⊔ni=1αi(H ∩K). Up to
renumbering, we can assume that there exists l ∈ {0,...,n} such that α−1

i gαi
∈ gH∩K for all i ∈ {1,...,l} and α−1

i gαi /∈ g
H∩K for all i ∈ {l+1,...,n}. By the

assumptions, there exists a normal subgroup L of p-power index in G such
that α−1

i gαi /∈ gH∩KL for all i ∈ {l+1,...,n}. Up to replacing L by L∩K,
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we can assume that L < K. Let ϕ : G → G/L be the canonical projection.
Let h ∈ Cϕ(H)(ϕ(g)). There exists h ∈ H such that h = ϕ(h). There exists
i ∈ {1,...,n} and k ∈ H∩K such that h = αik. We have : ϕ(h−1gh) =
ϕ(h)−1ϕ(g)ϕ(h) = ϕ(g). Thus h−1gh ∈ gL. But then α−1

i gαi = kh−1ghk−1

∈ kgLk−1 = kgk−1L ⊂ gH∩KL. Therefore i ≤ l. Then there exists β ∈
H∩K such that: α−1

i gαi = βgβ−1. This is to say that αiβ ∈ CH(g), and
then h = αik = (αiβ)(β

−1k) ∈ CH(g)(H ∩K) ⊂ CH(g)K. We have shown
that Cϕ(H)(ϕ(g)) ⊂ ϕ(CH(g)K). �

We are now ready to prove:

Proposition 3.6 A group is hereditarily conjugacy p-separable if and only
if it is conjugacy p-separable and satisfies pCC.

Proof : Suppose that G is conjugacy p-separable and satisfies pCC. Let
H be a subgroup of p-power index in G. Thus H is closed in the pro-p
topology on G (because G \ H = ∪{gH | g /∈ H}). Let h ∈ H. The set
CG(h)H is a finite union of left cosets modulo H and thus is closed in the
pro-p topology on G. Corollary 3.4 now implies that H is conjugacy p-
separable. Therefore G is hereditarily conjugacy p-separable. Suppose now
that G is hereditarily conjugacy p-separable. In particular, G is conjugacy
p-separable. We shall show that G satisfies pCC. Let g ∈ G. Let K be a
normal subgroup of p-power index in G. We set H = K < g >. We have K
< H. Thus H is a subgroup of p-power index in G. Therefore it is conjugacy
p-separable. And gH∩K = gH ⊂ H. As gH is closed in the pro-p topology
on H, it is closed in the pro-p topology on G. The result now follows from
lemma 3.5. �

4 Extensions of free groups by finite p-groups are

conjugacy p-separable

We start with an observation that the reader has to keep in mind be-
cause it will be used repeatedly in the proof of Theorem 4.2: if ϕ : G
→ H is a homomorphism from a group G to a group H, whose kernel is
torsion-free, then the restriction of ϕ to any finite subgroup of G is injective.

We need the following lemma:

Lemma 4.1 Let G = G1∗...∗Gn be a free product of n conjugacy p-separable
groups G1,..., Gn. Let g, h ∈ G \ {1} be two non-trivial elements of finite
order in G such that g ≁ h. There exists a homomorphism ϕ from G onto
a finite p-group P such that ϕ(g) ≁ ϕ(h).
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Proof : Since g is of finite order in G, there exists i ∈ {1,...,n} such that
g is conjugate to an element of finite order in Gi. Thus we may assume that
g belongs to Gi. Similarly, we may assume that there exists j in {1,...,n}
such that h belongs to Gj . Suppose that i 6= j. Let ϕ : Gi → P be a
homomorphism from Gi onto a finite p-group P such that ϕ(g) 6= 1. Let ϕ̃
: G → P be the natural homomorphism extending ϕ. Then ϕ̃(g) ≁ ϕ̃(h).
Suppose that i = j. Then g and h are not conjugate in Gi - otherwise they
would be conjugate in G. Since Gi is conjugacy p-separable, there exists a
homomorphism ϕ : Gi → P from Gi onto a finite p-group P such that ϕ(g)
≁ ϕ(h). Let ϕ̃ : G → P be defined as above. We have ϕ̃(g) ≁ ϕ̃(h). �

Recall that a subnormal subgroup of a group G is a subgroup H of G
such that there exists a finite sequence of subgroups of G:

H = H0 < H1 < ... < Hn = G,

such that Hi is normal in Hi+1 for all i ∈ {0,...,n-1}.

In Section 4, by a graph, we mean a unoriented graph, possibly with
loops or multiple edges.

Recall that a graph of groups is a connected graph Γ = (V,E), together
with a function G which assigns:

• to each vertex v ∈ V , a group Gv ,

• and to each edge e = {v,w} ∈ E, a groupGe together with two injective
homomorphisms αe : Ge → Gv and βe : Ge → Gw - we are not
assuming that v 6= w -,

(see [Se], see also [Dy]). The groups Gv (v ∈ V ) are called the vertex
groups of Γ, the groups Ge (e ∈ E) are called the edge groups of Γ. The
monomorphisms αe and βe (e ∈ E) are called the edge monomorphisms.
The images of the edge groups under the edge monomorphisms are called
the edge subgroups.

Choose disjoint presentations Gv = < Xv | Rv > for the vertex groups
of Γ. Choose a maximal tree T in Γ. Assign a direction to each edge of
Γ. Let {te | e ∈ E} be a set in one-to-one correspondence with the set of
edges of Γ, and disjoint from the Xv, v ∈ V . The fundamental group of the
above graph of groups Γ is the group GΓ defined by the presentation whose
generators are:

Xv (v ∈ V ),
te (e ∈ E)

(called vertex and edge generators respectively) and whose relations are:
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Rv (v ∈ V ),
te = 1 (e ∈ T ),

teαe(ge)t
−1
e = βe(ge), ∀ ge ∈ Ge (e ∈ E).

(called vertex, tree, and edge relations respectively). One can prove that
this is well-defined - that is, independent of our choice of T , etc. Note that
it suffices to write the edge relations for ge in a set of generators for Ge.

Convention: The groups Gv (v ∈ V ) and Ge (e ∈ E) will be regarded as
subgroups of GΓ.

Let {Γi}i∈I be a collection of connected and pairwise disjoint subgraphs
of Γ. We may define a graph of groups Γ∗ from Γ by contracting Γi to a point
for all i ∈ I, as follows. The graph Γ∗ is obtained from Γ by contracting Γi
to a point pi for all i ∈ I. The function G∗ is obtained from G by using the
fundamental group of Γi for the vertex group at pi, and by composing the
edge monomorphisms of Γ by the natural inclusions of the vertex groups of
Γi into the fundamental group of Γi, if necessary. Clearly, GΓ is isomorphic
to the fundamental group GΓ∗ of Γ∗.

If π : GΓ → H is a homomorphism from GΓ to a group H, such that the
restriction of π to each edge subgroup of Γ is injective, then we may define
a graph of groups Γ′ from Γ by composing with π, as follows. The vertex
set of Γ′ is V , and the edge set of Γ′ is E. The vertex groups of Γ′ are the
groups G′

v = π(Gv) (v ∈ V ), and the edge groups of Γ′ are the groups G′
e =

Ge (e ∈ E). The edge monomorphisms are the monomorphisms α′
e = π ◦αe

and β′e = π ◦ βe (e ∈ E). Present GΓ and GΓ′ using the same symbols for
edge generators and with the same choice of maximal tree. There exist two
homomorphisms, πV : GΓ → GΓ′ and πE : GΓ′ → H such that the diagram:

GΓ

πV
��

π // H

GΓ′

πE

==
|

|
|

|
|

|
|

|

commutes, and that the restriction of πE to each vertex group of GΓ′ is
injective. The homomorphism πV is given by:

(πV )|Gv
= π|Gv

, ∀ v ∈ V ,
πV (te) = te, ∀ e ∈ E.

And the homomorphism πE is given by:

(πE)|
G′
v

= (idH)|
G′
v

, ∀ v ∈ V ,

πE(te) = π(te), ∀ e ∈ E.
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In [Dy], Dyer proved that every extension of a free group by a finite
group is conjugacy separable. The following theorem is the analog of Dyer’s
theorem for conjugacy p-separability. From a technical point of view, it is
the main result of our paper.

Theorem 4.2 Every extension of a free group by a finite p-group is conju-
gacy p-separable.

Proof : Our proof was inspired by Dyer’s one (see [Dy]). Let G be an
extension of a free group by a finite p-group. In other words, there exists a
short exact sequence:

1 // F // G
π // P // 1 ,

where F is a free group, and P is a finite p-group. Let g ∈ G. Let h ∈ G
such that g ≁ h.

Step 1: We show that we may assume that G satisfies a short exact
sequence:

1 // F // G
π // Cpn // 1 ,

where F is a free group, n ≥ 1, Cpn denotes the cyclic group of order pn,
and π(g) = π(h).

Since G is an extension of a free group by a finite p-group, G is residually
p-finite by [G], Lemma 1.5. Therefore, if g = 1, then gG = {1} is finitely
p-separable in G. On the other hand, if g is of infinite order in G, then gG

is finitely p-separable in G by [I], Proposition 5. Therefore we may assume
that g 6= 1 and that g is of finite order in G. Similarly, we may assume that
h 6= 1 and that h is of finite order in G. If π(g) and π(h) are not conjugate
in P , we are done. Thus, up to replacing h by a conjugate of itself, we may
assume that π(g) = π(h). Since ker(π) = F is torsion-free, g and h have
the same order pn (n ∈ N∗). Let H be the subgroup of G generated by g
and F . Note that H is a subgroup of p-power index in G, and that g and h
belong to H. As G

F = P is nilpotent, H is subnormal in G. Thus we may
replace G by H, by [I], Proposition 41, so as to assume that G satisfies the
short exact sequence:

1 // F // G
π // Cpn // 1 .

1Strictly speaking, it follows from the proof of [I], Proposition 4, that, if there exists a
homomorphism ϕ : H → P from H onto a finite p-group P such that ϕ(g) ≁ ϕ(h), then
there exists a homomorphism ψ : G → Q from G onto a finite p-group Q such that ψ(g)
≁ ψ(h). The exact statement of [I], Proposition 4, is slightly different.
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Now, G is the fundamental group of a graph of groups Γ, whose vertex
groups are all finite groups, by [S]. As π|Gv

is injective for all v ∈ V , Gv is
isomorphic to a subgroup of Cpn for all v ∈ V . From now on, the groups Gv
(v ∈ V ) will be regarded as subgroups of Cpn .

Step 2: We show that we may assume that all edge groups are non-
trivial, that if two different vertices are connected by an edge, then the
corresponding edge group is a proper subgroup of Cpn , and that g and h
belong to two different vertex groups.

First, we show that we may assume that all edge groups are non-trivial.
Indeed, Let Γ0 be the subgraph of Γ whose vertices are all the vertices of Γ,
and whose edges are the edges of Γ for which the edge group is non-trivial.
Let Γ1,..., Γr be the connected components of Γ0. Let Γ∗ be the graph of
groups obtained from Γ by contracting Γi to a point for all i ∈ {1,...,r}. Let
T be a maximal tree of Γ∗. Then G is isomorphic to the fundamental group
G∗ of Γ∗. Observe that G∗ is the free product of the free group on {te | e ∈
E \T} and the fundamental groups of the Γi (i ∈ {1,...,r}). Thus, it suffices
to consider the case where Γ = Γi (i ∈ {1,...,r}), by Lemma 4.1. Since each
Γi (i ∈ {1,...,r}) is a graph of groups whose edge groups are all non-trivial,
the first part of the assertion is proved.

Now, we show that we may assume that if two different vertices are con-
nected by an edge, then the corresponding edge group is a proper subgroup
of Cpn . Indeed, let Γ0 be the subgraph of Γ whose vertices are all the vertices
of Γ, and whose edges are the edges of Γ for which the edge group is iso-
morphic to Cpn . Let Γ1,..., Γr be the connected components of Γ0. Choose
a maximal tree Ti in Γi, for all i ∈ {1,...,r}. Let Γ∗ be the graph of groups
obtained from Γ by contracting Ti to a point for all i ∈ {1,...,r}. Then G is
isomorphic to the fundamental group G∗ of Γ∗. Note that a vertex group of
Γ∗ is either a vertex group of Γ, or the fundamental group of Ti, for some i ∈
{1,...,r}, in which case it is isomorphic to Cpn (because each Ti (i ∈ {1,...,r})
is a tree of groups whose vertex and edge groups are all equal to Cpn). Thus,
we may replace Γ by Γ∗, so that the second part of the assertion is proved.

Since g is of finite order in G, there exists a vertex v of Γ, an element g0
of finite order in the vertex group Gv of v, and an element α of G such that
g = αg0α

−1. Similarly, there exists a vertex w of Γ, an element h0 of finite
order in the vertex group Gw of w, and an element β of G such that h =
βh0β

−1. As Cpn is abelian, we have: π(g0) = π(h0). Thus, up to replacing
g by g0 and h by h0, we may assume that g belongs to Gv , and h belongs
to Gw. Since π|Gv

is injective, and π(g) = π(h), we have v 6= w.

Step 3: We show that we may assume that Γ has exactly two vertices,
and that all edges join these two vertices.

12



Indeed, choose a maximal tree T in Γ. There is a path P in T joining
v to w. Choose an edge e on this path. Then T \ {e} is the disjoint union
of two trees, Tv and Tw - say v ∈ Tv and w ∈ Tw. Let Γv be the full
subgraph of Γ generated by the vertices of Tv, and Γw be the full subgraph
of Γ generated by the vertices of Tw. Let Γ

∗ be the graph of groups obtained
from Γ by contracting Γv to a point v∗ and Γw to a point w∗. Observe that
Γ∗ has exactly two vertices and that all edges join these two vertices. The
vertex groups of Γ∗ are the fundamental groups of Γv and Γw, respectively.
The edge groups of Γ∗ are non-trivial proper subgroups of Cpn . And G is
isomorphic to the fundamental group G∗ of Γ∗. Now, since the restriction of
π to each edge subgroup of Γ∗ is injective, we may define a graph of groups
Γ′ from Γ∗ by composing with π, as described above. Denote by G′ the
fundamental group of Γ′. There exist two homomorphisms πV : G → G′,
and πE : G′ → Cpn such that the diagram:

G

πV

��

π // Cpn

G′

πE

==
{

{
{

{
{

{
{

{

commutes, and that the restriction of πE to each vertex group of Γ′ is
injective. Consequently, ker(πE) is free by [Se], II, 2.6., Lemma 8.

Set g′ = πV (g), and h
′ = πV (h). As g

′ and h′ have order pn, the vertex
groups of Γ′ are equal to Cpn . The edge groups of Γ′ are non-trivial proper
subgroups of Cpn . Observe that g′ and h′ belong to two different vertex
groups, and that g′ (resp. h′) is not conjugate to an element of one of the
edge groups. Let e be an edge of Γ′. Then g′ and h′ are not conjugate in
G′
v ∗G′

e
G′
w, by [MKS], Theorem 4.6. (ii). Observe that G′ is an HNN exten-

sion (in the general sense) of G′
v ∗G′

e
G′
w with stable letters ta (a ∈ E \ {e}),

and associated subgroups α′
a(G

′
a), β

′
a(G

′
a) (a ∈ E \ {e}). Therefore g′ and

h′ are not conjugate in G′ (see [Dy2], Theorem 3). Thus, we may replace Γ
by Γ′, G by G′, g by g′, and h by h′, so as to assume that Γ has two vertices
and that all edges join these two vertices.

Step 4: We show that we may assume that Γ has at most two edges.

Suppose that Γ has more than two edges. Choose a maximal tree T in Γ
- that is, an edge of Γ. Present Gv = < g | gp

n

= 1 >, Gw = < h | hp
n

= 1 >,
and G as described above. Choose an edge e ∈ E \ T .

•v •w

T

e
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The edge relations corresponding to e can be reduced to the following:

teαe(ge)t
−1
e = βe(ge),

where ge is a generator of Ge. Let ps be the order of Ge (s ∈ {1,...,n-1}).
Then αe(ge) generates a subgroup of order ps of Gv . But there exists a
unique subgroup of order ps in Gv; it is cyclic, generated by gp

r

, where r
= n - s. Thus, up to replacing ge by the preimage of gp

r

under αe, we
may assume that αe(ge) = gp

r

. There exists k ∈ N, such that p and k are
coprime, and that βe(ge) = hkp

r

. Therefore the edge relation corresponding
to e can be written:

teg
pr t−1

e = hkp
r

,

where r ∈ {1,...,n-1}, k ∈ N, and p and k are coprime. Now, since π : G →
Cpn satisfies π(g) = π(h), we have: π(g)p

r

= π(h)kp
r

= π(g)kp
r

, and then
π(g)(k−1)pr = 1 (in Cpn). As π(g) has order p

n in Cpn , we deduce that pn−r

divides k - 1. There exists a ∈ Z such that k = apn−r + 1. We conclude
that the edge relation corresponding to e can be written:

teg
pr t−1

e = hp
r

,

where r ∈ {1,...,n-1}.

Let H be the normal subgroup of G generated by the elements:

g, h, ta (a ∈ E \ {e}), tpe.

Then H has index p in G, and g and h belong to H. Thus we may replace G
by H by [I], Proposition 4. Let G0 be the fundamental group of the graph
of groups Γ \ {e}. Set G0 = < X0 | R0 >, where the presentation is as
fundamental group of the graph of groups Γ\{e}. Set Gi = tieG0t

−i
e = < Xi

| Ri >, for all i ∈ {1,...,p-1}. Clearly {1,te,...,t
p−1
e } is a Schreier transversal

for H in G. The Reidemeister-Schreier method yields the presentation:

H = < X0, X1,..., Xp−1, u | R0, R1,..., Rp−1, g
pr

1 = hp
r

0 , gp
r

2 = hp
r

1 ,..., gp
r

p−1

= hp
r

p−2, ug
pr

0 u
−1 = hp

r

p−1 >,

where u = tpe, gi = tiegt
−i
e (i ∈ {0,...,p-1}), and hj = tjeht

−j
e (j ∈ {0,...,p-1}).

Replace g by g0, and h by h1. Observe that H is the fundamental group
of a graph of groups Γ̃, as follows. The graph Γ̃ has 2p vertices, say v0,
w0, v1, w1,..., vp−1, wp−1, and p|E| edges. Let Γ̃i be the full subgraph of Γ̃

generated by {vi, wi} for all i ∈ {0,...,p-1}. Then Γ̃i is isomorphic to Γ\{e}.
There is one edge joining w0 to v1, one edge joining w1 to v2,..., one edge
joining wp−2 to vp−1, and one edge joining v0 to wp−1, and the edge groups
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associated to these egdes are isomorphic to Ge. Note that g belongs to the
vertex group of v0 and h belongs to the vertex group of w1.

•v0

•w0

•v1

•w1

•v2

•w2

•v3

•w3

•v4

•w4

T T T T T

Let Γ∗ be the graph of groups obtained from Γ̃ by contracting Γ̃i to a point
for all i ∈ {1,...,p-1}. Then G is isomorphic to the fundamental group of Γ∗.
The graph Γ∗ has p vertices, say v0,..., vp−1. There is one edge joining v0
to v1, one edge joining v1 to v2,..., one edge joining vp−2 to vp−1, and one
edge joining v0 to vp−1, and the edge groups associated to these edges are
all isomorphic to Ge. Note that g belongs to the vertex group of v0 and h
belongs to the vertex group of v1.

•v0 •v1 •v2 •v3 •v4

Let T be the maximal tree T = v0v1...vp−2vp−1. Then T \ {v0v1} is the
disjoint union of two trees : v0 and v1v2...vp−2vp−1. Set Γ∗

1 = v0 and Γ∗
2 =

v1v2...vp−2vp−1. Let Λ be the graph of groups obtained from Γ∗ by contract-
ing Γ∗

i to a point for all i ∈ {1,2}. Let Λ′ be the graph of groups obtained
from Λ by composing with π. As in Step 3, we may replace Γ by Λ′, so as
to assume that Γ has two vertices and two edges joining these two vertices.

End of the proof: Present Gv = < g | gp
n

= 1 >, Gw = < h | hp
n

= 1 >,
and G as described above. There are two cases:

Case 1: Γ has one edge.

In this case, G is an amalgamated product of two finite abelian p-groups.
Since G is residually p-finite, G is conjugacy p-separable by [I], Theorem 2.
Thus, there exists a homomorphism ϕ from G onto a finite p-group P such
that ϕ(g) ≁ ϕ(h).

Case 2: Γ has two edges.

We have:

G = < g, h, t | gp
n

= 1, hp
n

= 1, gp
r

= hp
r

, tgp
s

t−1 = hp
s

>,

where r ∈ {1,...,n-1}, s ∈ {1,...,n-1}. Let:
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A = Cpn × Cps × ...× Cps︸ ︷︷ ︸
pr-1

×Cpr

Set m = pr+1. Present each factor of this product in the natural way, using
generators x1,..., xm respectively. Let α be the automorphism of A defined
by:

α(x1) = x1x2xm
α(xi) = xi+1, ∀ i ∈ {2,...,m-2}
α(xm−1) = (x2...xm−1)

−1

α(xm) = xm

It is easily seen that α has order m - 1 = pr. We have:

α0(x1) = x1,
α1(x1) = x1x2xm,
α2(x1) = x1x2x3x

2
m,

...
αm−2(x1) = x1x2x3...xm−1x

m−2
m .

Let B = A⋊ < α > be the semidirect product of A by < α >. Note that B
is a finite p-group. Let ϕ : G → B be the homomorphism defined by:

ϕ(g) = x1,
ϕ(h) = x1xm,
ϕ(t) = α.

Observe that the conjugacy class of ϕ(g) in B is ϕ(g)B = {αk(x1) | k ∈
{0,...,m-2}}. Thus, ϕ(g) and ϕ(h) are not conjugate in B. �

Corollary 4.3 Let P be a finite p-group. Let A be a subgroup of P . Let Q
be the HNN extension of P relative to A:

Q = < P , t | t−1at = a, ∀ a ∈ A >.

Then Q is hereditarily conjugacy p-separable.

Proof : Let R be a subgroup of p-power index in Q. Actually, we do not
need the fact that R is of p-power index. Let f : Q → P be the natural
homomorphism. We have ker(f)∩P = {1}. Therefore ker(f) is free by [KS],
Theorem 6. That is, Q is an extension of a free group by a finite p-group.
Thus R is itself an extension of a free group by a finite p-group. Therefore
R is conjugacy p-separable by Theorem 4.2. �
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5 Retractions

Definition 5.1 Let G be a group and H be a subgroup of G. We say that
H is a retract of G if there exists a homomorphism ρH : G → G such that
ρH(G) = H and ρH(h) = h for all h ∈ H. The homomorphism ρH is called
a retraction of G onto H.

Remark: If G is a right-angled Artin group, and H is a special subgroup of
G, then H is a retract of G. A retraction of G onto H is given by:

ρH(v) =

{
v if v ∈W
1 if v ∈ V \W

In what follows (Lemma 5.2 to Lemma 5.12), we shall prove several
results on retractions that will allow us later to control the growth of some
intersections of subgroups of a right-angled Artin group in homomorphic
images of it (see Lemma 6.3).

Lemma 5.2 Let G be a group and H be a subgroup of G. Suppose that H
is a retract of G. Let ρH be a retraction of G onto H. Let N be a normal
subgroup of G such that ρH(N) ⊂ N . Then ρH induces a retraction ρH :
G/N → G/N of G/N onto the canonical image H of H in G/N , defined
by: ρH(gN) = ρH(g)N for all gN ∈ G/N .

Proof : Proved in [M]. �

Remark : Let G be a group and let H and H ′ be two subgroups of G.
Suppose that H and H ′ are retracts of G and that the corresponding retrac-
tions, ρH and ρH′ , commute. Then ρH(H

′) = ρH′(H) = H∩H ′. Moreover
H∩H ′ is a retract of G. A retraction of G onto H∩H ′ is given by ρH∩H′ =
ρH ◦ ρH′ = ρH′ ◦ ρH .

Proposition 5.3 Let G be a group and H1,..., Hn be n subgroups of G.
Suppose that H1,..., Hn are retracts of G and that the corresponding retrac-
tions pairwise commute. Then, for every normal subgroup K of p-power
index in G, there exists a normal subgroup N of p-power index in G such
that N < K and ρHi

(N) ⊂ N for all i ∈ {1,...,n}. Consequently, for every
i ∈ {1,...,n}, the retraction ρHi

induces a retraction ρHi
of G/N onto the

canonical image Hi of Hi in G/N .

Proof : Proved in [M] - see Remark 4.4. �

Lemma 5.4 Let G be a group and let H and H ′ be two subgroups of G.
Suppose that H and H ′ are retracts of G and that the corresponding retrac-
tions, ρH and ρH′ , commute. Let N be a normal subgroup of G and assume
that ρH(N) ⊂ N and ρH′(N) ⊂ N . Then, if ϕ : G → G/N denotes the
canonical projection, ϕ(H∩H ′) = ϕ(H) ∩ ϕ(H ′).
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Proof : Proved in [M]. �

The next statement is analog of Lemma 4.6 in [M]:

Corollary 5.5 Let G be a group and H1,..., Hn be n subgroups of G. Sup-
pose that H1,..., Hn are retracts of G and that the corresponding retractions
ρH1

,..., ρHn
pairwise commute. Then, for every normal subgroup K of p-

power index in G, there exists a normal subgroup N of p-power index in G
such that N < K and ρHi

(N) ⊂ N , for all i ∈ {1,...,n}. Moreover, if ϕ : G
→ G/N denotes the canonical projection, then ϕ(

⋂n
i=1Hi) =

⋂n
i=1 ϕ(Hi).

Proof : By Proposition 5.3, there exists a normal subgroup N of p-power
index in G such that N < K and ρHi

(N) ⊂ N for all i ∈ {1,...,n}. We
denote by ϕ : G → G/N the canonical projection. We argue by induction
on k ∈ {1,...,n} to prove that ϕ(

⋂k
i=1Hi) =

⋂k
i=1 ϕ(Hi). If k = 1, then the

result is trivial. Thus we can assume that k ≥ 2 and that the result has
been proved for k - 1. We set H ′ =

⋂k−1
i=1 Hi. By the above remark, H ′ is a

retract of G. A retraction of G onto H ′ is given by ρH′ = ρH1
◦ ... ◦ ρHk−1

.
We have:

ρH′(N) = ρH1
(...(ρHk−2

(ρHk−1
(N))))

⊂ ρH1
(...(ρHk−2

(N)))
⊂ ...

⊂ ρH1
(N)

⊂ N .

The retractions ρH′ and ρHk
commute, so we can apply Lemma 5.4 to con-

clude that ϕ(H ′∩Hk) = ϕ(H ′)∩ϕ(Hk). By the induction hypothesis, ϕ(H ′)
=

⋂k−1
i=1 ϕ(Hi). Finally ϕ(

⋂k
i=1Hi) =

⋂k
i=1 ϕ(Hi). �

In the following lemmas, G is a group, and A and B are two subgroups
of G. We assume that A and B are retracts of G and that the corresponding
retractions, ρA and ρB, commute.

Lemma 5.6 Let x, y ∈ G. We set α = ρA(ρB(x)x
−1)xρB(x

−1) (∈ AxB)
and β = ρA(ρB(y)y

−1)yρB(y
−1) (∈ AyB). Are equivalent:

1. y ∈ AxB,

2. β ∈ αA∩B.

Proof : Proved in [M]. �

Lemma 5.7 Let x ∈ G. We set α = ρA(ρB(x)x
−1)xρB(x

−1) (∈ AxB) and
γ = ρA(ρB(x)x

−1) (∈ A). Then we have:

A∩xBx−1 = γ−1CA∩B(α)γ.
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Proof : Proved in [M]. �

The next five statements are analogs of some statements in [M] (Lemma
5.3, Corollary 5.4, Lemma 5.5, Lemma 5.6 and Lemma 5.7, respectively):

Lemma 5.8 Let x ∈ G. We set: α = ρA(ρB(x)x
−1)xρB(x

−1) (∈ AxB).
If αA∩B is finitely p-separable in G, then AxB is also finitely p-separable in
G.

Proof : Let y ∈G such that y /∈AxB. We set β = ρA(ρB(y)y
−1)yρB(y

−1).
By Lemma 5.6, we have β /∈ αA∩B . Since αA∩B is finitely p-separable in G,
there exists a normal subgroup K of p-power index in G such that, if ψ :
G → G/K denotes the canonical projection, we have: ψ(β) /∈ ψ(αA∩B) =
ψ(α)ψ(A∩B) . By Corollary 5.5, there exists a normal subgroup N of p-power
index in G such that N < K, ρA(N) ⊂ N , ρB(N) ⊂ N and, if ϕ : G →
G/N denotes the canonical projection, then: ϕ(A∩B) = ϕ(A)∩ϕ(B). As-
sume that ϕ(β) ∈ ϕ(α)ϕ(A∩B). There exists g ∈ A ∩ B such that ϕ(β) =
ϕ(g)ϕ(α)ϕ(g)−1 . Then β ∈ gαg−1N . Since N < K, we obtain β ∈ gαg−1K.
But this contradicts the fact that ψ(β) /∈ ψ(α)ψ(A∩B). Therefore we have:
ϕ(β) /∈ ϕ(α)ϕ(A∩B) i.e. ϕ(β) /∈ ϕ(α)ϕ(A)∩ϕ(B) . We set A = ϕ(A) and B =
ϕ(B). By Lemma 5.2, ρA induces a retraction ρA of G/N onto A and ρB
induces a retraction ρB of G/N onto B. We set: x = ϕ(x) and y = ϕ(y). We
have: ϕ(α) = ρA(ρB(x)x

−1)xρB(x
−1) and ϕ(β) = ρA(ρB(y)y

−1)yρB(y
−1).

By Lemma 5.6, we have y /∈ AxB i.e. ϕ(y) /∈ ϕ(AxB). �

Corollary 5.9 Let G be a group and A and B be two subgroups of G. Sup-
pose that G is residually p-finite. If A and B are retracts of G, such that the
corresponding retractions commute, then AB is finitely p-separable in G.

Proof : We apply Lemma 5.8 to x = 1. �

Lemma 5.10 Let G be a group and A be a subgroup of G. Suppose that G
is residually p-finite and that A is a retract of G. Then if a subset S of A is
closed in the pro-p topology on A, it is also closed in the pro-p topology on
G.

Proof : We denote by S the closure of S in G - equipped with the pro-p
topology. We shall show that S ⊂ S. By Corollary 5.9, A is closed in G.
Therefore S ⊂ A. Let a ∈ G\S. We can assume that a ∈ A. There exists
a homomorphism ϕ from A onto a finite p-group P such that ϕ(a) /∈ ϕ(S).
We set: ψ = ϕ ◦ ρA. We have: ψ(a) = ϕ(a) /∈ ϕ(S) = ψ(S). Then a /∈ S.�

Lemma 5.11 Let x ∈ G. We set α = ρA(ρB(x)x
−1)xρB(x

−1). Suppose
that the pair (A∩B,α) satisfies the p centralizer condition in G. Then,
for every normal subgroup K of p-power index in G, there exists a normal
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subgroup N of p-power index in G such that N < K, ρA(N) ⊂ N , ρB(N) ⊂
N and, if ϕ : G → G/N denotes the canonical projection, ϕ(A)∩ϕ(xBx−1)
⊂ ϕ(A ∩ xBx−1)ϕ(K).

Proof : Let K be a normal subgroup of p-power index in G. We set γ =
ρA(ρB(x)x

−1) ∈ A. By Lemma 5.7, we have: A∩xBx−1 = γ−1CA∩B(α)γ.
Since the pair (A ∩ B,α) satisfies pCCG, there exists a normal subgroup L
of p-power index in G such that L < K and, if ψ : G → G/L denotes the
canonical projection, Cψ(A∩B)(ψ(α)) ⊂ ψ(CA∩B(α)K). This is equivalent
to ψ−1(Cψ(A∩B)(ψ(α))) ⊂ CA∩B(α)K. Indeed let g ∈ ψ−1(Cψ(A∩B)(ψ(α))).
We have ψ(g) ∈ Cψ(A∩B)(ψ(α)) ⊂ ψ(CA∩B(α)K). Then g ∈ CA∩B(α)KL
⊂ CA∩B(α)K (because L < K). By corollary 5.5, there exists a normal
subgroup N of p-power index in G such that N < L, ρA(N) ⊂ N , ρB(N) ⊂
N and, if ϕ : G→ G/N denotes the canonical projection, ϕ(A∩B) = ϕ(A)∩
ϕ(B). We set A = ϕ(A), B = ϕ(B). By Lemma 5.2, ρA induces a retraction
ρA of G/N onto A and ρB induces a retraction ρB of G/N onto B. Obviously
ρA and ρB commute. We set x = ϕ(x), α= ρA(ρB(x)x

−1)xρB(x
−1) (∈ G/N)

and γ = ρA(ρB(x)x
−1) (∈ A). Observe that α = ϕ(α) and γ = ϕ(γ). Then,

by Lemma 5.7, we have: A∩xBx−1 = γ−1CA∩B(α)γ. But A∩B = ϕ(A∩B).
We have:

ϕ−1(A ∩ xBx−1) = ϕ−1(γ−1Cϕ(A∩B)(α)γ) = γ−1ϕ−1(Cϕ(A∩B)(α))γ.

We have:

ϕ−1(Cϕ(A∩B)(α)) ⊂ ψ−1(Cψ(A∩B)(ψ(α))).

Indeed let g ∈ ϕ−1(Cϕ(A∩B)(ϕ(α))). We have ϕ(g) ∈ ϕ(A ∩ B) i.e. g ∈
(A∩B)N , which implies g ∈ (A∩B)L i.e. ψ(g) ∈ ψ(A∩B); and ϕ(g)ϕ(α)
= ϕ(α)ϕ(g) i.e. gαg−1α−1 ∈ N , which implies gαg−1α−1 ∈ L i.e. ψ(g)ψ(α)
= ψ(α)ψ(g). Then:

ϕ−1(Cϕ(A∩B)(α)) ⊂ CA∩B(α)K.

Therefore:

ϕ−1(A ∩ xBx−1) ⊂ γ−1CA∩B(α)γK = (A∩xBx−1)K.

We conclude that:

ϕ(A) ∩ ϕ(xBx−1) ⊂ ϕ(A ∩ xBx−1)ϕ(K).

�

Lemma 5.12 Let x, y ∈ G. We set C = xBx−1 (< G) and α =
ρA(ρB(x)x

−1)xρB(x
−1). If αA∩B and yA∩C are finitely p-separable in G and

if the pair (A∩B, α) satisfies pCCG, then CA(y)C is finitely p-separable in
G.
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Proof : Let z ∈ G such that z /∈ CA(y)C. Suppose first that z /∈ AC.
Since αA∩B is finitely p-separable in G, AxB is finitely p-separable in G
by Lemma 5.8. Therefore AC = AxBx−1 is also finitely p-separable in G.
Consequently there exists a normal subgroup N of p-power index in G such
that z /∈ ACN . We obviously have z /∈ CA(y)CN . Thus we can assume
that z ∈ AC. There exist a ∈ A, c ∈ C such that z = ac. Since z /∈ CA(y)C,
a−1ya /∈ yA∩C . Indeed, if there exist g ∈ A ∩ C such that a−1ya = gyg−1,
then (ag)−1y(ag) = y i.e. ag ∈ CA(y). We obtain a ∈ CA(y)C, and then z
∈ CA(y)C - a contradiction. Now yA∩C is finitely p-separable in G. Then
there exists a normal subgroup K of p-power index in G such that a−1ya
/∈ yA∩CK. By Lemma 5.11, there exists a normal subgroup N of p-power
index in G such that N < K and, if ϕ : G → G/N denotes the canonical
projection, ϕ(A) ∩ϕ(C) ⊂ ϕ(A∩C)ϕ(K). For a subset S of G, we set S =

ϕ(S). For an element g of G, we set g = ϕ(g). We have: yA∩C ⊂ yA∩C.K .

Note that K ⊳ G/N . Then yA∩C ⊂ yA∩CK. Observe that a−1y a /∈ yA∩CK
- otherwise we would have a−1ya ∈ yA∩CKN , and then a−1ya ∈ yA∩CK
(because N < K). We deduce that a−1y a /∈ yA∩C . Now it suffices to show
that ϕ(z) /∈ ϕ(CA(y)C). Suppose the contrary. There exist a′ ∈ CA(y),
c′ ∈ C such that ϕ(z) = ϕ(a′c′). Then ϕ(ac) = ϕ(a′c′). Thus ϕ(a′−1a) =
ϕ(c′c−1). We set g = ϕ(a′−1a) = ϕ(c′c−1) (∈ A ∩ C). We have: ϕ(z) =
ϕ(a′)gϕ(c) and a = ϕ(z)ϕ(c)−1 = ϕ(a′)g. Then a−1y a = g−1ϕ(a′−1ya′)g =

g−1ϕ(y)g = g−1y g ∈ yA∩C - a contradiction. We have shown that CA(y)C
is finitely p-separable in G. �

6 Proof of the main theorem

We turn now to the proof that right-angled Artin groups are hereditarily
conjugacy p-separable. We need the following theorem, which is due to
Duchamp and Krob (see [DK2]).

Theorem 6.1 Right-angled Artin groups are residually p-finite.

This theorem can also be proved using HNN extensions (see [Lo]).

Basically, Proposition 6.2 establishes the main result. Proposition 6.2.1
and Proposition 6.2.2 will be proved simultaneously by induction on the
rank of G.

Proposition 6.2 Let G be a right-angled Artin group.

1. Every special subgroup S of G satisfies the p centralizer condition in
G (pCCG).

2. For all g ∈ G and for all special subgroup S of G, gS is finitely p-
separable in G.
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From now on, we assume that G is a right-angled Artin group of rank r
(r ≥ 1), and that H is a special subgroup of G of rank r - 1. Thus, G can
be written as an HNN extension of H relative to the special subgroup K =
C(t) = < star(t) > of H:

G = < H, t | t−1kt = k, ∀ k ∈ K >.

Recall that H is a retract of G. A retraction of G onto H is given by:

ρH(v) =

{
v if v ∈W
1 if v ∈ V \W

We also assume that:

• every special subgroup S of H satisfies the p centralizer condition in
H (pCCH),

• for all h ∈ H and for all special subgroup S of H, hS is finitely p-
separable in H.

The next results (Lemma 6.3 to Lemma 6.13) are preliminaries to the
proof of Proposition 6.2.

In general, if A and B are subgroups of a group G, the image of the
intersection of A and B under a homomorphism ϕ : G→ H do not coincide
with the intersection of the images of A and B in H. However, the p cen-
tralizer condition and the above results on retractions will allow us to obtain
the following lemma, which will be used to apply Minasyan’s criterion for
conjugacy in HNN extensions (see Lemma 6.4).

Lemma 6.3 Let be given A0, a conjugate of a special subgroup of H, A1,...,
An, n special subgroups of H and α, x0,..., xn, y1,..., yn, 2(n+1) elements of
H. Then, for every normal subgroup L of p-power index in H, there exists
a normal subgroup N of p-power index in H such that N < L and, if ϕ : H
→ H/N denotes the canonical projection, then:

αCA0
(x0) ∩

⋂n
i=1 xiAiyi ⊂ ϕ((αCA0

(x0) ∩
⋂n
i=1 xiAiyi)L)

where Ai = ϕ(Ai) (i ∈ {0,...,n}), α = ϕ(α), xj = ϕ(xj) (j ∈ {0,...,n}), yk
= ϕ(yk) (k ∈ {1,...,n}).

Proof : Let L be a subgroup of p-power index in H. We argue by induc-
tion on n. Strictly speaking, the basis of our induction is n = 0 but we will
need the case n = 1. By the assumptions, there exist a special subgroup A
of H and an element β of H such that A0 = βAβ−1.
n = 0: We set x = β−1x0β. The pair (A,x) satisfies pCCH by the as-
sumptions. There exists a normal subgroup N of p-power index in H such
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that N < L and, if ϕ : H → H/N denotes the canonical projection, then
Cϕ(A)(ϕ(x)) ⊂ ϕ(CA(x)L). But CA0

(x0) = βCA(x)β
−1. We deduce that:

ϕ(α)Cϕ(A0)(ϕ(x0)) ⊂ ϕ((αCA0
(x0))L).

n = 1: There are two cases:
Case 1: αCA0

(x0) ∩ x1A1y1 = ∅.
This is equivalent to say that: x1 /∈ αCA0

(x0)y
−1
1 A1. We set B = (y1β)

−1A1

y1β, so that we have: x1 /∈ αβ(CA(x)B)β−1y−1
1 . Now the intersection of

conjugates of two special subgroups of H is a conjugate of a special subgroup
of H (see [M], Lemma 6.5). Then A ∩ A1 is a conjugate of a special sub-
group C of H. There exists γ ∈ H such that A ∩ A1 = γCγ−1. Therefore
if h ∈ H, hA∩A1 = γ(γ−1hγ)Cγ−1. Now (γ−1hγ)C is finitely p-separable
in H by the assumptions. We deduce that hA∩A1 is finitely p-separable
in H. With the same argument, hA∩B is finitely p-separable in H. Now
the pair (A ∩ A1,h) satisfies pCCH by the assumptions. We deduce that
CA(x)B is finitely p-separable in H by Lemma 5.12. This implies that
αCA0

(x0)y
−1
1 A1 is finitely p-separable in H. There exists a normal sub-

group M of p-power index in H such that x1 /∈ αCA0
(x0)y

−1
1 A1M . Up to

replacing M by M ∩ L, we can assume that M < L. Now the pair (A0,x0)
satisfies pCCH by the assumptions. There exists a normal subgroup N of
p-power index in H such that N < M and, if ϕ : H → H/N denotes
the canonical projection, then Cϕ(A0)(ϕ(x0)) ⊂ ϕ(CA0

(x0)M), or, equiv-

alently, ϕ−1(Cϕ(A0)(ϕ(x0))) ⊂ CA0
(x0)M . Then ϕ−1(αCA0

(x0)y1
−1A1) ⊂

αϕ−1(CA0
(x0))y

−1
1 A1 ⊂ αCA0

(x0)y
−1
1 A1M . Therefore: x1 /∈ ϕ−1(αCA0

(x0)

y1
−1A1). Finally: αCA0

(x0) ∩ x1A1y1 = ∅.
Case 2: αCA0

(x0) ∩ x1A1y1 6= ∅.
Remark : If G is a group and H, K are two subgroups of G such that
aH ∩ bKc 6= ∅ - where a, b, c ∈ G -, then for all g ∈ aH ∩ bKc, we have
aH ∩ bKc = g(H ∩ c−1Kc).
Choose g ∈ αCA0

(x0) ∩ x1A1y1. Then we have: αCA0
(x0) ∩ x1A1y1 =

g(CA0
(x0)∩ y

−1
1 A1y1). We set D = A0∩ y

−1
1 A1y1. Then αCA0

(x0)∩x1A1y1
= gCD(x0). Now, D is a conjugate of a special subgroup E of H by [M],
lemma 6.5. There exists δ ∈ H such that D = δEδ−1. As above, the pair
(D,x0) satisfies pCCH . There exists a normal subgroupM of p-power index
in H such that M < L and, if ψ : H → H/M denotes the canonical pro-
jection, we have: Cψ(D)(ψ(x0)) ⊂ ψ(CD(x0)L). Now by Lemma 5.11, there
exists a normal subgroupN of p-power index inH such thatN <M and, if ϕ
: H → H/N denotes the canonical projection, then ϕ(A)∩ϕ((y1β)

−1A1y1β)
⊂ ϕ(A ∩ (y1β)

−1A1y1β)ϕ(M). Therefore:

A0 ∩ y1
−1A1y1 = ϕ(βAβ−1) ∩ ϕ(y−1

1 A1y1) =
ϕ(β)(ϕ(A) ∩ ϕ((y1β)

−1A1y1β))ϕ(β
−1) ⊂

ϕ(β)(ϕ(A ∩ (y1β)
−1A1y1β)ϕ(M))ϕ(β−1) = ϕ(A0 ∩ y

−1
1 A1y1)ϕ(M) =

ϕ(D)ϕ(M) (∗).
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For S ⊂ H, we set S = ϕ(S) and for h ∈ H, we set h = ϕ(h). We have g ∈
αCA0

(x0)∩x1A1y1. Therefore αCA0
(x0)∩x1A1y1 = g(CA0

(x0)∩y1
−1A1y1).

Considering (∗), we obtain:

αCA0
(x0) ∩ x1A1y1 = gCA0∩y1−1A1y1

(x0) ⊂ gCϕ(D)ϕ(M)(x0).

Recall that N < M . Then ψ : H → H/M induces a homomorphism ψ̃ :
H/N → H/M such that ψ = ψ̃ ◦ ϕ. Note that ψ̃(ϕ(D)ϕ(M)) = ψ(D). Let
z ∈ Cϕ(D)ϕ(M)(x0). Then:

ψ̃(z) ∈ Cψ(D)(ψ(x0)) ⊂ ψ(CD(x0)L) = ψ̃(ϕ(CD(x0)L)).

Therefore z ∈ ϕ(CD(x0)L)ker(ψ̃) = ϕ(CD(x0)L) because ker(ψ̃) = ϕ(M)
< ϕ(L). We deduce that Cϕ(D)ϕ(M)(x0) ⊂ ϕ(CD(x0)L). We conclude that

αCA0
(x0) ∩ x1A1y1 ⊂ gϕ(CD(x0)L) = ϕ(gCD(x0)L) =

ϕ((αCA0
(x0) ∩ x1A1y1)L).

Inductive step: Suppose that n ≥ 1 and that the result has been proved for
n - 1.
Note that if αCA0

(x0)∩
⋂n−1
i=1 xiAiyi = ∅, then by the induction hypothesis,

there exists a normal subgroup N of p-power index in H such that, if ϕ : H
→ H/N denotes the canonical projection, then

αCA0
(x0) ∩

⋂n−1
i=1 xiAiyi ⊂ ϕ((αCA0

(x0) ∩
⋂n−1
i=1 xiAiyi)L) = ∅.

Obviously:

αCA0
(x0) ∩

⋂n
i=1 xiAiyi = ∅ ⊂ ϕ((αCA0

(x0) ∩
⋂n
i=1 xiAiyi)L)

Thus we can assume that αCA0
(x0)∩

⋂n−1
i=1 xiAiyi 6= ∅. Therefore there exists

g ∈ H such that αCA0
(x0)∩

⋂n−1
i=1 xiAiyi = g(CA0

(x0)∩
⋂n−1
i=1 y

−1
i Aiyi). We

set F = A0 ∩
⋂n−1
i=1 y

−1
i Aiyi - F is a conjugate of a special subgroup of H

by [M], Lemma 6.5. We have: αCA0
(x0) ∩

⋂n−1
i=1 xiAiyi = gCF (x0). Now,

by the case n = 1, there exists a normal subgroup M of p-power index of H
such that M < L and, if ψ : H → H/M denotes the canonical projection,
then:

ψ(g)Cψ(F )(ψ(x0)) ∩ ψ(xnAnyn) ⊂ ψ((gCF (x0) ∩ xnAnyn)L).

This is equivalent to:

ψ−1(ψ(g)Cψ(F )(ψ(x0)) ∩ ψ(xnAnyn)) ⊂ (gCF (x0) ∩ xnAnyn)L.

On the other hand, by the induction hypothesis, there exists a normal sub-
group N of p-power index in H such that N < M and, if ϕ : H → H/N
denotes the canonical projection, then:

αCA0
(x0) ∩

⋂n−1
i=1 xiAiyi ⊂ ϕ((αCA0

(x0) ∩
⋂n−1
i=1 xiAiyi)M)
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or, equivalently:

ϕ−1(αCA0
(x0) ∩

⋂n−1
i=1 xiAiyi) ⊂ (αCA0

(x0) ∩
⋂n−1
i=1 xiAiyi)M

Thus we have:

ϕ−1(αCA0
(x0) ∩

⋂n
i=1 xiAiyi) =

ϕ−1(αCA0
(x0) ∩

⋂n−1
i=1 xiAiyi) ∩ ϕ

−1(xnAnyn) ⊂

(αCA0
(x0) ∩

⋂n−1
i=1 xiAiyi)M∩xnAnynN = gCF (x0)M ∩ xnAnynN .

Recall that N < M . Thus we have:

ϕ−1(αCA0
(x0) ∩

⋂n
i=1 xiAiyi) ⊂ gCF (x0)M∩xnAnynM ⊂

ψ−1(ψ(g)Cψ(F )(ψ(x0))) ∩ ψ
−1(ψ(xnAnyn)) =

ψ−1(ψ(g)Cψ(F )(ψ(x0)) ∩ ψ(xnAnyn)) ⊂ (gCF (x0) ∩ xnAnyn)L =
(αCA0

(x0) ∩
⋂n
i=1 xiAiyi)L.

�

We need the following criterion for conjugacy in HNN extensions:

Lemma 6.4 Let G = < H, t | t−1kt = k, ∀ k ∈ K > be an HNN exten-
sion. Let S be a subgroup of H. Let g = x0t

a1x1...t
anxn (n ≥ 1) and h =

y0t
b1y1...t

bmym be elements of G in reduced form. Then h ∈ gS if and only
if all of the following conditions hold:

1. m = n and ai = bi, for all i ∈ {1,...,n},

2. y0...yn ∈ (x0...xn)
S,

3. if α ∈ S satisfies y0...yn = αx0...xnα
−1, then:

αCS(x0...xn) ∩ y0Kx
−1
0 ∩ (y0y1)K(x0x1)

−1 ∩ ... ∩
(y0...yn−1)K(y0...yn−1)

−1 6= ∅.

Proof : Proved in [M]. �

Lemma 6.5 Let S be a special subgroup of H. Let g ∈ G \ H. Let h
∈ G \ gS . There exists a normal subgroup L of p-power index in H such
that, if ϕ : H → P = H/L denotes the canonical projection, if Q denotes
the HNN extension of P relative to ϕ(K) and if ϕ : G → Q denotes the
homomorphism induced by ϕ, we have ϕ(h) /∈ ϕ(g)ϕ(S).

Proof : Write g = x0t
a1x1...t

anxn and h = y0t
b1y1...t

bmym in reduced
forms. We have n ≥ 1 - as g /∈ H.

Step 1: We assume that the first condition in Minasyan’s criterion (see
Lemma 6.4) is not satisfied by g and h.

The special subgroup K is closed in the pro-p topology on H (see [Lo]).
Thus there exists a normal subgroup L of p-power index in H such that:
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∀ i ∈ {1,...,n-1}, xi /∈ KL (∗),
∀ j ∈ {1,...,m-1}, yj /∈ KL (∗∗).

We denote by ϕ : H → P = H/L the canonical projection. If Q denotes
the HNN extension of P relative to ϕ(K):

Q = < P , t | t
−1
ϕ(k)t = ϕ(k), ∀ k ∈ K >,

and if ϕ : G → Q denotes the homomorphism induced by ϕ - with ϕ|H =

ϕ and ϕ(t) = t -, then ϕ(g) = x0t
a1x1...t

anxn and ϕ(h) = y0t
b1y1...t

bmym
are reduced products in Q by (∗) and (∗∗) - where xi = ϕ(xi) (i ∈ {0,...,n})
and yj = ϕ(yj) (j ∈ {0,...,m}). But then the first condition in Minasyan’s
criterion will not hold for ϕ(g) and ϕ(h).

Conclusion of Step 1: We can assume that m = n and ai = bi for all i
∈ {1,...,n}.

Step 2: We assume that the second condition in Minasyan’s criterion is

not satisfied by g and h. We set x = x0...xn and y = y0...yn. Thus y /∈ xS .

By the assumptions, xS is finitely p-separable in H. Therefore there
exists a homomorphism ϕ from H onto a finite p-group P such that ϕ(y) /∈
ϕ(x)ϕ(S). Denote by Q the HNN extension of P relative to ϕ(K), and by
ϕ : G → Q the homomorphism induced by ϕ. Now let f : Q → P be the
natural homomorphism. We have:

f(ϕ(g)) = f(x0t
a1x1...t

anxn) = x0...xn = ϕ(x),
f(ϕ(h)) = f(y0t

a1y1...t
anyn) = y0...yn = ϕ(y).

Since ϕ(y) /∈ ϕ(x)ϕ(S), we see that ϕ(h) /∈ ϕ(g)ϕ(S).

Conclusion of Step 2: We can assume that y ∈ xS. There exists α ∈ S
such that y = αxα−1.

End of the proof: Considering Minasyan’s criterion, since h /∈ gS , we
must have:

αCS(x0...xn) ∩ y0Kx
−1
0 ∩ (y0y1)K(x0x1)

−1 ∩ ... ∩ (y0...yn−1)K(x0...xn−1)
−1

= ∅.

Since K is closed in the pro-p topology on H (see [Lo]), there exists a normal
subgroup L of p-power index in H such that:

∀ i ∈ {1,...,n-1}, xi /∈ KL (∗),
∀ j ∈ {1,...,m-1}, yj /∈ KL (∗∗).
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Now by Lemma 6.3, there exists a normal subgroup N of p-power index
in H such that N < L and, if ϕ : H → P = H/N denotes the canonical
projection, then:

αCS(x) ∩ y0Kx0
−1 ∩ y0 y1K(x0 x1)

−1 ∩ ... ∩ y0...yn−1K(x0...xn−1)
−1 ⊂

ϕ((αCS(x) ∩ y0Kx
−1
0 ∩ y0y1K(x0x1)

−1 ∩ ... ∩ y0...yn−1K(x0...xn−1)
−1)L) =

∅ (∗ ∗ ∗).

where S = ϕ(S), α = ϕ(α), x = ϕ(x), xi = ϕ(xi) (i ∈ {0,...,n}), yj = ϕ(yj)
(j ∈ {0,...,n}). Let Q be the HNN extension of P relative to ϕ(K) and let
ϕ : G → Q be the homomorphism induced by ϕ. Then, by (∗) and (∗∗),
ϕ(g) = x0t

a1x1...t
anxn and ϕ(h) = y0t

a1y1...t
anyn are reduced elements of

Q. So, in view of (∗ ∗ ∗), we have ϕ(h) /∈ ϕ(g)ϕ(S). �

Lemma 6.6 Let g0 = ta1x1...t
anxn (n ≥ 1) and h0 = tb1y1...t

bmym be cycli-
cally reduced elements of G. Let h1,..., hk be elements of G. If hi /∈ gK0 for
all i ∈ {1,...,k}, then there exists a normal subgroup L of p-power index in
H such that, if ϕ : H → P = H/L denotes the canonical projection, if Q
denotes the HNN extension of P relative to ϕ(K) and ϕ : G → Q denotes
the homomorphism induced by ϕ, we have:

1. ϕ(g0) = t
a1x1...t

anxn and ϕ(h0) = t
b1y1...t

bmym are cyclically reduced
in Q - where xi = ϕ(xi) (i ∈ {1,...,n}) and yj = ϕ(yj) (j ∈ {1,...n}).

2. ϕ(hi) /∈ ϕ(g0)
ϕ(K) for all i ∈ {1,...,k}.

Proof : Since K is closed in the pro-p topology on H (see [Lo]), there
exists a normal subgroup L0 of p-power index in H such that:

∀ i ∈ {1,...,n-1}, xi /∈ KL0 (∗),
∀ j ∈ {1,...,m-1}, yj /∈ KL0 (∗∗).

Let i ∈ {1,...,k}. Since hi /∈ gK0 , there exists a normal subgroup Li of p-
power index in H such that, if ϕi : H → Pi = H/Li denotes the canonical
projection, if Qi denotes the HNN extension of Pi relative to ϕi(K) and if
ϕi : G → Qi denotes the homomorphism induced by ϕi, we have ϕi(hi) /∈
ϕi(g0)

ϕi(K) - by Lemma 6.5. We set L = L0 ∩ L1... ∩ Lk. We note that L
is a normal subgroup of p-power index in H. Let ϕ : H → P = H/L be
the canonical projection, let Q be the HNN extension of P relative to ϕ(K)
and let ϕ : G → Q be the homomorphism induced by ϕ. Then since L <
L0, ϕ(g0) = t

a1x1...t
anxn and ϕ(h0) = t

b1y1...t
bmym are cyclically reduced

in Q by (∗) and (∗∗) - where xi = ϕ(xi) (i ∈ {1,...,n}) and yj = ϕ(yj) (j
∈ {1,...,m}). Moreover since L < Li for all i ∈ {1,...,k}, we have ϕ(hi) /∈
ϕ(g0)

ϕ(K) for all i ∈ {1,...,k}. �
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Lemma 6.7 Let G = < H, t | t−1kt = k, ∀ k ∈ K > be an HNN extension.
Let S be a subgroup of H. Let g = x0t

a1x1...t
anxn be an element of G in

reduced form (n ≥ 1). Then:

CS(g) =
CS(x0...xn) ∩ x0Kx

−1
0 ∩ (x0x1)K(x0x1)

−1 ∩ ... ∩ (x0...xn−1)K(x0...xn−1)
−1.

Proof : Proved in [M]. �

Lemma 6.8 Let S be a special subgroup of H. Let L be a normal subgroup
of p-power index in G and let g = x0t

a1x1...t
anxn be an element of G in

reduced form and not contained in H. Then there exists a normal subgroup
N of p-power index of H such that if ϕ : H → P = H/N denotes the
canonical projection, if Q denotes the HNN extension of P relative to ϕ(K)
and if ϕ : G → Q denotes the homomorphism induced by ϕ, then:

1. Cϕ(S)(ϕ(g)) ⊂ ϕ(CS(g)L),

2. ker(ϕ) = N < H ∩ L,

3. ker(ϕ) < L.

Proof : We have n ≥ 1 - as g /∈ H.
As above, K is closed in the pro-p topology on H (see [Lo]). Therefore there
exists a normal subgroup M of p-power index in H such that:

∀ i ∈ {1,...,n-1}, xi /∈ MK (∗).

We set L′ = H ∩ L. Note that L′ is a normal subgroup of p-power index in
H. Thus, up to replacing M by M ∩ L′, we can assume that M < L′. We
set x = x0...xn. We have:

CS(g) =
CS(x) ∩ x0Kx

−1
0 ∩ (x0x1)K(x0x1)

−1 ∩ ... ∩ (x0...xn−1)K(x0...xn−1)
−1,

by Lemma 6.7. We denote by I the intersection in the right-hand side. By
Lemma 6.3, there exists a normal subgroup N of p-power index in H such
that N < M and if ϕ : H → P = H/N denotes the canonical projection,
we have:

CS(x) ∩ x0Kx0
−1 ∩ x0 x1K(x0 x1)

−1 ∩ ... ∩ x0...xn−1K(x0...xn−1)
−1 ⊂

ϕ(IM)

where S = ϕ(S), x = ϕ(x), xi = ϕ(xi) (i ∈ {0,...,n}). We denote by J
the intersection in the left-hand side. Let Q be the HNN extension of P
relative to ϕ(K), let ϕ : G → Q be the homomorphism induced by ϕ. Then
x0t

a1x1...t
anxn is a reduced form of ϕ(g) in Q by (∗). But then Cϕ(S)(ϕ(g))

= J - by Lemma 6.7. Now ϕ(M) < ϕ(L′) = ϕ(L′) < ϕ(L). Therefore:
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Cϕ(S)(ϕ(g)) = J ⊂ ϕ(IM) = ϕ(I)ϕ(M) ⊂ ϕ(I)ϕ(L) = ϕ(CS(g))ϕ(L) =
ϕ(CS(g)L).

Finally we remark that ker(ϕ) = N < M < L′ = H ∩L < L. Since ker(ϕ)
is the normal closure of ker(ϕ) in G, we conclude that ker(ϕ) < L (because
L is normal in G). �

A prefix of ta1x1...t
anxn is an element of G of the form ta1x1...t

akxk for
some k ∈ {0,...,n}. We need the following result:

Proposition 6.9 Let G = < H, t | t−1kt = k, ∀ k ∈ K > be an HNN
extension. Let g = ta1x1...t

anxn be a cyclically reduced element of G (n ≥
1). Let {p1,...,pn+1} be the set of all prefixes of g - we are not assuming
that p1,..., pn+1 are ordered. There are two cases:

1. if xn ∈ K, then n = 1 and CG(g) = < t > CK(g).

2. if xn ∈ H \ K, let {p1,...,pm} be the set of prefixes of g satisfying
p−1
i gpi ∈ gK (m ∈ {0,...,n+1}). For each i ∈ {1,...,m}, we choose αi

∈ K such that p−1
i gpi = α−1

i gαi. We set S = {αip
−1
i | i ∈ {1,...,m}}.

Then CG(g) = CK(g) < g > S.

Proof : Proved in [M]. �

Lemma 6.10 Let L be a normal subgroup of p-power index in G. Let g0
= ta1x1...t

anxn (n ≥ 1) be a cyclically reduced element of G. There exists
a normal subgroup N of p-power index in H such that, if ϕ : H → P =
H/N denotes the canonical projection, if Q denotes the HNN extension of
P relative to ϕ(K) and if ϕ : G → Q denotes the homomorphism induced
by ϕ, we have:

1. CQ(ϕ(g0)) ⊂ ϕ(CG(g0)L),

2. ker(ϕ) = N < H ∩ L,

3. ker(ϕ) < L.

Proof : Let {p1,...,pn+1} be the set of all prefixes of g0. Renumbering
p1,..., pn+1, if necessary, we can assume that there exists m ∈ {0,...,n}
such that p−1

i g0pi ∈ gK0 for all i ∈ {1,...,m} and p−1
i g0pi /∈ gK0 for all i ∈

{m+1,...,n+1}. For each i ∈ {1,...,m}, we choose αi ∈ K such that p−1
i g0pi

= α−1
i g0αi. We set S = {αip

−1
i | i ∈ {1,...,m}}. We set hi = p−1

i g0pi
for all i ∈ {m+1,...,n+1}. By Lemma 6.6, there exists a normal subgroup
N1 of p-power index in H such that, if ϕ1 : H → P1 = H/N1 denotes
the canonical projection, if Q1 denotes the HNN extension of P1 relative
to ϕ1(K), and if ϕ1 : G → Q1 denotes the homomorphism induced by
ϕ1, then ϕ1(g0) is cyclically reduced in Q1, and ϕ1(hi) /∈ ϕ1(g0)

ϕ1(K) for
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all i ∈ {m+1,...,n+1}. On the other hand, by Lemma 6.8, there exists a
normal subgroup N2 of p-power index in H such that, if ϕ2 : H → P2 =
H/N2 denotes the canonical projection, if Q2 denotes the HNN extension
of P2 relative to ϕ2(K) and if ϕ2 : G → Q2 denotes the homomorphism
induced by ϕ2, we have: Cϕ2(K)(ϕ2(g0)) ⊂ ϕ2(CK(g0)L), ker(ϕ2) < H ∩ L
and ker(ϕ2) < L. We set N = N1 ∩N2. Note that N is a normal subgroup
of p-power index in H. Let ϕ : H → P = H/N be the canonical projection,
let Q be the HNN extension of P relative to ϕ(K) and let ϕ : G → Q be
the homomorphism induced by ϕ. Since N < N1, ϕ(g0) is cyclically reduced
in Q and ϕ(hi) /∈ ϕ(g0)

ϕ(K) for all i ∈ {m+1,...,n+1}. On the other hand,
since N < N2, we have:

ϕ−1(Cϕ(K)(ϕ(g0))) ⊂ ϕ2
−1(Cϕ2(K)(ϕ2(g0))) ⊂ CK(g0)L (∗).

There are two cases:
Case 1: xn ∈ K. Then n = 1, CG(g0) = < t > CK(g0) and CQ(ϕ(g0)) =
< t > Cϕ(K)(ϕ(g0)) - by Proposition 6.9. Now (∗) implies:

CQ(ϕ(g0)) ⊂ < ϕ(t) > ϕ(CK(g0)L) = ϕ(< t > CK(g0)L) = ϕ(CG(g0)L).

Case 2: xn ∈ H \ K. If i ∈ {1,...,m}, ϕ(pi)
−1ϕ(g0)ϕ(pi) = ϕ(p−1

i g0pi) ∈
ϕ(g0)

ϕ(K) - because p−1
i g0pi ∈ gK0 -, whereas if i ∈ {m+1,...,n+1}, ϕ(pi)

−1

ϕ(g0)ϕ(pi) = ϕ(hi) /∈ ϕ(g0)
ϕ(K). Therefore {ϕ(p1),...,ϕ(pm)} is the set of

all prefixes of ϕ(g0) satisfying ϕ(pi)
−1ϕ(g0)ϕ(pi) ∈ ϕ(g0)

ϕ(K). Now CG(g0)
= CK(g0) < g0 > S and CQ(ϕ(g0)) = Cϕ(K)(ϕ(g0)) < ϕ(g0) > S where S
= ϕ(S) = {ϕ(αi)ϕ(pi)

−1 | i ∈ {1,...,m}} - by Proposition 6.9. We deduce
that:

CQ(ϕ(g0)) ⊂ ϕ(CK(g0)L) < ϕ((g0) > ϕ(S) = ϕ(CK(g0)L < g0 > S) =
ϕ(CG(g0)L).

�

Proposition 6.11 Let G be a right-angled Artin group of rank r (r ≥ 1).
Let g ∈ G. If g 6= 1, then there exists a special subgroup H of rank r-1 of
G such that g /∈ HG.

Proof : Proved in [M]. �

Lemma 6.12 Every special subgroup S of G satisfies the p centralizer con-
dition in G, pCCG.

Proof : Let g ∈ G. Let L be a normal subgroup of p-power index in G.
There are two cases:
Case 1: S 6= G.
Let H be a special subgroup of rank r - 1 of G such that S < H. Then G
can be written as an HNN extension of H, relative to a special subgroup K
of H:
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G = < H, t | t−1kt = k, ∀ k ∈ K >.

We set L′ = H ∩L. We note that L′ is a normal subgroup of p-power index
in H. There are two cases:
Subcase 1: g ∈ H.
By the assumptions, the pair (S,g) satisfies the p centralizer condition in H
(pCCH). There exists a normal subgroup M of p-power index in H such
that M < L′ and, if ψ : H → P = H/M denotes the canonical projection,
we have:

Cψ(S)(ψ(g)) ⊂ ψ(CS(g)L
′) (∗).

We denote by f : G→ H the natural homomorphism. We note that f−1(M)
is a normal subgroup of p-power index in G (because f−1(M) is the kernel of
the homomorphism ψ◦f). Therefore, N = L∩f−1(M) is a normal subgroup
of p-power index in G. Moreover N < L and f(N) < M . We denote by
ϕ : G → Q = G/N the canonical projection. We observe that ker(ψ) =
M , ker(ϕ) = N , M < f−1(M) ∩ L ∩ H = N ∩ H and N ∩ H ⊂ f(N) <
M . Therefore M = N ∩ H. Thus we can assume that P < Q and ϕ|H =
ψ. But then ψ(L′) = ϕ(L′) ⊂ ϕ(L). Recall that g ∈ H and S < H. Thus
considering (∗), we obtain:

Cϕ(S)(ϕ(g)) = Cψ(S)(ψ(g)) ⊂ ψ(CS(g))ψ(L
′) ⊂ ϕ(CS(g))ϕ(L) =

ϕ(CS(g)L).

Subcase 2: g ∈ G \H.
Write g = x0t

a1x1...t
anxn in a reduced form (n ≥ 1). Then, by Lemma 6.8,

there exists a normal subgroup M of p-power index in H such that, if ψ :
H → P = H/M denotes the canonical projection, if Q denotes the HNN
extension of P relative to ψ(K) and if ψ : G→Q denotes the homomorphism
induced by ψ, then: Cψ(S)(ψ(g)) ⊂ ψ(CS(g)L), ker(ψ) < H∩L, and ker(ψ)

< L. We note that ψ(S) ∩ ψ(L) = ψ(S) ∩ ψ(L) < P is finite. Since Q is

residually p-finite (see [Lo], Lemma 2.8), ψ(g)ψ(S)∩ψ(L) is finitely p-separable
in Q. Therefore, by Lemma 3.5, there exists a normal subgroup N of p-
power index in Q such that N < ψ(L) and, if χ : Q → R = Q/N denotes
the canonical projection, then:

Cχ(ψ(S))(χ(ψ(g))) ⊂ χ(Cψ(S)(ψ(g))ψ(L)).

We set ϕ = χ ◦ ψ : G → R. We have: ker(ϕ) = ψ
−1

(ker(χ)) = ψ
−1

(N) ⊂

ψ
−1

(ψ(L)) = Lker(ψ). Now ker(ψ) < L. Then ker(ϕ) < L. And:

Cϕ(S)(ϕ(g)) = Cχ(ψ(S))(χ(ψ(g))) ⊂ χ(Cψ(S)(ψ(g))ψ(L)) ⊂

χ(ψ(CS(g)L)ψ(L)) = ϕ(CS(g)L).
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Case 2: S = G.
If g = 1, then the result is trivial. Thus we can assume that g 6= 1. Then,
by Proposition 6.11, there exists a special subgroup of rank r - 1 H of G
such that g /∈ HG. As usual, G can be written as an HNN extension of H
relative to a special subgroup K of H:

G = < H, t | t−1kt = k, ∀ k ∈ K >.

Let g0 = ta1x1...t
anxn be a cyclically reduced element in G conjugate to g.

Choose α ∈ G such that g = αg0α
−1. Note that g /∈ HG implies that n ≥

1. By Lemma 6.10, there exists a normal subgroup M of p-power index in
H such that, if ψ : H → P = H/M denotes the canonical projection, if Q
denotes the HNN extension of P relative to ψ(K) and if ψ : G → Q denotes
the homomorphism induced by ψ, then: CQ(ψ(g0)) ⊂ ψ(CG(g0)L), ker(ψ)
< H ∩ L and ker(ψ) < L. Now Q is hereditarily conjugacy p-separable by
Corollary 4.3. Then Q satisfies the p centralizer condition by Proposition
3.6. There exists a normal subgroup N of p-power index in Q such that N
< ψ(L) and if χ : Q→ R = Q/N denotes the canonical projection, we have:

CR(χ(ψ(g0))) ⊂ χ(CQ(ψ(g0))ψ(L)).

We set ϕ = χ ◦ ψ : G → R. As above, we have ker(ϕ) = ψ
−1

(ker(χ)) =

ψ
−1

(N) ⊂ ψ
−1

(ψ(L)) = Lker(ψ). Now ker(ψ) < L. Then ker(ϕ) < L.
And:

CR(ϕ(g0)) = Cϕ(G)(ϕ(g0)) = Cχ(ψ(G))(χ(ψ(g0))) ⊂ χ(Cψ(G)(ψ(g0))ψ(L)) ⊂

χ(ψ(CG(g0)L)ψ(L)) = ϕ(CG(g0)L).

Finally:

ϕ(α)CR(ϕ(g0))ϕ(α)
−1 ⊂ ϕ(α)ϕ(CG(g0)L)ϕ(α)

−1.

That is,

CR(ϕ(g)) ⊂ ϕ(CG(g)L).

�

Lemma 6.13 For every g ∈ G and for every special subgroup S of G, gS

is finitely p-separable in G.

Proof : There are two cases:
Case 1: S 6= G.
Let H be a special subgroup of rank r - 1 of G such that S < H. As usual,
G can be written as an HNN extension of H relative to a special subgroup
K of H:

G = < H, t | t−1kt = k, ∀ k ∈ K >.
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Let g ∈ G. There are two cases:
Subcase 1: g ∈ H.
Then gS is finitely p-separable inH by the assumptions. SinceG is residually
p-finite by Theorem 6.1, gS is finitely p-separable in G by Lemma 5.10.
Subcase 2: g ∈ G \H.
Let h ∈ G\gS . By Lemma 6.5, there exists a normal subgroup L of p-power
index in H such that, if ϕ : H → P = H/L denotes the canonical projection,
if Q denotes the HNN extension of P relative to ϕ(K) and if ϕ : G → Q
denotes the homomorphism induced by ϕ, we have ϕ(h) /∈ ϕ(g)ϕ(S). Now
ϕ(S) = ϕ(S) < P is finite and Q is residually p-finite (see [Lo], Lemma 2.8).
Then there exists a homomorphism χ : Q → R from Q onto a finite p-group
R such that χ(ϕ(h)) /∈ χ(ϕ(g)ϕ(S)). We set ψ = χ ◦ ϕ : G → R. It is clear
that ψ suits.
Case 2: S = G.
Let g ∈ G.
If g = 1, then, since G is residually p-finite by Theorem 6.1, gG = {1}
is finitely p-separable in G. Thus we can assume that g 6= 1. Then, by
Proposition 6.11, there exits a special subgroup of rank r - 1 H of G such
that g /∈ HG. As usual, G can be written as an HNN extension of H relative
to a special subgroup K of H:

G = < H, t | t−1kt = k, ∀ k ∈ K >.

Let h ∈ G \ gG. Let g0 = ta1x1...t
anxn and h0 = tb1y1...t

bmym be cyclically
reduced elements of G conjugate to g and h respectively. Note that g /∈ HG

implies that n ≥ 1. There are two cases:
Subcase 1: h0 ∈ H. Then, by Lemma 6.6, there exists a normal subgroup
L of p-power index in H such that, if ϕ : H → P = H/L denotes the
canonical projection, if Q denotes the HNN extension of P relative to ϕ(K)
and ϕ : G → Q denotes the homomorphism induced by ϕ, we have: ϕ(g0)
= t

a1x1...t
anxn is cyclically reduced in Q - where xi = ϕ(xi) (i ∈ {1,...,n}).

Since n ≥ 1, we have: ϕ(g0) /∈ PQ = ϕ(HG). Therefore ϕ(g0) /∈ ϕ(h0)
Q =

ϕ(hG0 ) ⊂ ϕ(HG). Now Q is conjugacy p-separable by Corollary 4.3. Thus
there exists a homomorphism χ from Q onto a finite p-group R such that
χ(ϕ(g0)) /∈ χ(ϕ(h0))

R. We set ψ = χ ◦ ϕ : G → R. It is clear that ψ suits.
Subcase 2: h0 ∈ G \H. Let {h1,...,hm} be the set of all cyclic permutations
of h0. Then, since h /∈ gG, we have: hi /∈ gG0 for all i ∈ {1,...,m}. Therefore,
by Lemma 6.6, there exists a normal subgroup L of p-power index in H such
that, if ϕ : H → P = H/L denotes the canonical projection, if Q denotes the
HNN extension of P relative to ϕ(K) and ϕ : G→ Q denotes the homomor-

phism induced by ϕ, then: ϕ(g0) = t
a1x1...t

anxn and ϕ(h0) = t
b1y1...t

bmym
are cyclically reduced in Q - where xi = ϕ(xi) (i ∈ {1,...,n}) and yj = ϕ(yj)
(j ∈ {1,...n}) - and ϕ(hi) /∈ ϕ(g0)

ϕ(K) for all i ∈ {1,...,m}. Consequently, by
Lemma 2.3, ϕ(g0) /∈ ϕ(h0)

Q. Now Q is conjugacy p-separable by Corollary
4.3. Then there exists a homomorphism χ from Q onto a finite p-group R
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such that: χ(ϕ(g0)) /∈ χ(ϕ(h0))
R. Therefore χ(ϕ(g)) /∈ χ(ϕ(h))R. We set ψ

= χ ◦ ϕ : G → R. It is clear that ψ suits. �

Proof of Proposition 6.2: We argue by induction on the rank r of G. If
r = 0, then the result is trivial. Thus we can assume that r ≥ 1 and that
the result has been proved for 1,..., r - 1. Now, Proposition 6.2.1 follows
from Lemma 6.12, and Proposition 6.2.2 follows from Lemma 6.13. �

We are now ready to prove:

Theorem 6.14 Every right-angled Artin group is hereditarily conjugacy p-
separable.

Proof : Let G be a right-angled Artin group. Let g ∈ G. Then gG is
finitely p-separable in G by Proposition 6.2.1. We deduce thatG is conjugacy
p-separable. On the other hand, G satisfies the p centralizer condition by
Proposition 6.2.2. We conclude that G is hereditarily conjugacy p-separable
by Proposition 3.6. �

7 Applications

The first application that we mention is an application of our main result
to separability properties of right-angled Artin groups.

Recall that a group is said to be conjugacy K-separable, whereK is a class
of groups, if for all g, h ∈ G, either g ∼ h, or there exists a homomorphism
ϕ from G to some group of K such that ϕ(g) ≁ ϕ(h).

For a group G, we denote by (Cn(G))n≥1 the lower central series of G.
Recall that (Cn(G))n≥1 is defined inductively by C1(G) = G, and Cn+1(G)
= [G,Cn(G)] for all n ≥ 1.

Theorem 7.1 Every right-angled Artin group is conjugacy K-separable, whe-
re K is the class of all torsion-free nilpotent groups.

Proof : Let G be a right-angled Artin group. Let g, h ∈ G such that g ≁

h. Let p be a prime number. Then G is conjugacy p-separable by Theorem
6.14. Thus, there exists a homomorphism ϕ from G onto a finite p-group P
such that ϕ(g) ≁ ϕ(h). Now, P is nilpotent. Therefore, there exists n ≥ 1
such that Cn(P ) = {1}. Let π : G → G

Cn(G) be the canonical projection.

It follows from [DK2] that G
Cn(G) is a torsion-free nilpotent group. Since

ϕ(Cn(G)) < Cn(P ) = {1}, ϕ induces a homomorphism ϕ̃ : G
Cn(G) → P such

that ϕ = ϕ̃ ◦ π. As ϕ(g) ≁ ϕ(h), we have π(g) ≁ π(h). �
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We turn now to applications of our main result to residual properties of
outer automorphism groups of right-angled Artin groups.

Let G be a group. An automorphism ϕ of G is said to be conjugating if
for every g ∈ G, ϕ(g) ∼ g. We say that G has Property A if every conjugating
automorphism of G is inner. Minasyan proved (see [M]):

Proposition 7.2 Right-angled Artin groups have Property A.

Let G be a group. We denote by Ip(G) the kernel of the natural ho-
momorphism Out(G) → GL(H1(G,Fp)) (where Fp denotes the finite field
with p elements). Paris proved (see [P]):

Theorem 7.3 Let G be a finitely generated group. If G is conjugacy p-
separable and has Property A, then Ip(G) is residually p-finite.

Recall that a group G is said to be virtually P, where P is a group
property, if there exists a finite index subgroup H < G such that H has
Property P. We are now ready to prove:

Theorem 7.4 The outer automorphism group of a right-angled Artin group
is virtually residually p-finite.

Proof : This follows immediately from Theorem 6.14, Proposition 7.2
and Theorem 7.3. �

Recall that a group G is K-residual, where K is a class of groups, if for
all g ∈ G\{1}, there exists a homomorphism ϕ from G to some group of K
such that ϕ(g) 6= 1. Myasnikov proved (see [My]):

Theorem 7.5 Let G be a finitely generated group. If G is conjugacy p-
separable and has property A, then Out(G) is K-residual, where K is the
class of all outer automorphism groups of finite p-groups.

We are now ready to prove:

Theorem 7.6 The outer automorphism group of a right-angled Artin group
is K-residual, where K is the class of all outer automorphism groups of finite
p-groups.

Proof : This follows immediately from Theorem 6.14, Proposition 7.2
and Theorem 7.5. �

The next application was suggested to the author by Ruth Charney and
Luis Paris.
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Let G = GΓ be a right-angled Artin group. Let r be the rank of G. We
denote by T (G) the kernel of the natural homomorphism Aut(G) → GLr(Z)
and by T (G) the kernel of the natural homomorphism Out(G) → GLr(Z).
We call T (G) the Torelli group of G. Note that T (G) = T (G)/Inn(G). In
[D2], Day proved that T (G) is finitely generated. Therefore T (G) is finitely
generated. Now, we prove the following:

Theorem 7.7 The Torelli group of a right-angled Artin group is residually
torsion-free nilpotent.

In order to prove Theorem 7.7, we have to introduce the notion of sepa-
rating Z-linear central filtration.

Recall that a central filtration on a group G is a sequence (Gn)n≥1 of
subgroups of G satisfying the conditions:

G1 = G,
Gn > Gn+1,

[Gm, Gn] < Gm+n for all m, n ≥ 1.

Let F = (Gn)n≥1 be a central filtration. Then the mapping G × G →
G, (x, y) 7→ xyx−1y−1 induces on:

LF (G) =
⊕

n≥1
Gn

Gn+1

a Lie bracket which makes LF (G) into a graded Lie Z-algebra.
We say that (Gn)n≥1 is a separating filtration if ∩n≥1Gn = {1}. We say

that (Gn)n≥1 is Z-linear if for all n ≥ 1, the Z-module Gn

Gn+1
is free of finite

rank.

For a group G, we denote by (CnZ(G))n≥1 the sequence of subgroups of G

defined inductively by C1Z(G) = G, and [G,CnZ(G)] < Cn+1Z (G) and
Cn+1Z (G)
[G,CnZ(G)]

is the torsion subgroup of
CnZ(G)

[G,CnZ(G)] for all n ≥ 1.

Proposition 7.8 For all m, n ≥ 1, [CmZ (G), CnZ(G)] < Cm+nZ (G).

Proof : Proved in [BL] (see Proposition 7.2). �

Thus, (CnZ(G))n≥1 is a central filtration on G. We denote by LZ(G) the
corresponding graded Lie Z-algebra.

For a group G, we denote by Ab(G) the abelianization G
[G,G] of G, and

by Z(G) the center of G. For a Lie algebra g, we denote by Z(g) the center
of g.

Let G be a group. For n ≥ 1, we denote by An the kernel of the natural
homomorphism Aut(G) → Aut( G

Cn+1Z (G)
). Let π : Aut(G) → Out(G) be the

canonical projection. For n ≥ 1, we set Bn = π(Gn).
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Theorem 7.9 If Ab(G) is finitely generated, and Z(Fp⊗LZ(G)) = {0} for
every prime number p, then (Bn)n≥1 is a Z-linear central filtration on B1.
Furthermore, (Bn)n≥1 is separating if and only if G satisfies the condition:

(IN(G)): For every ϕ ∈ Aut(G), if ϕ induces an inner automorphism of
G

CnZ(G) for all n ≥ 1, then ϕ is inner.

Proof : Proved in [BL] (see Corollary 9.9). �

From now on, we assume that G = GΓ is a right-angled Artin group of
rank r (r ≥ 1). We shall show that G satisfies the conditions of Theorem
7.9. Since B1 is precisely the Torelli group of G, Theorem 7.7 will then
result from the following:

Theorem 7.10 Let B be a group. Suppose that B admits a separating Z-
linear central filtration, (Bn)n≥1. Then B is residually torsion-free nilpotent.

Proof : Proved in [BL] (see Theorem 6.1). �

We need to introduce the following notations. Let K be a commutative
ring. We denote by MΓ the monoid defined by the presentation:

MΓ = < V | vw = wv, ∀ {v,w} ∈ E >,

by AΓ the associative K-algebra of the monoid MΓ, and by LΓ the Lie
K-algebra defined by the presentation:

LΓ = < V | [v;w] = 0, ∀ {v,w} ∈ E >.

The following theorem is due to Duchamp and Krob (see [DK]):

Theorem 7.11 The K-module LΓ is free.

Thus, by the Poincaré-Birkhoff-Witt theorem, LΓ can be regarded as
a Lie subalgebra of its enveloping algebra, for which Duchamp and Krob
established the following (see [DK]):

Theorem 7.12 The enveloping algebra of LΓ is isomorphic to AΓ.

Furthermore, in [DK2], Duchamp and Krob proved the following theo-
rem, which generalizes a well-known theorem of Magnus (see [MKS]):

Theorem 7.13 Suppose that K = Z. The graded Lie Z-algebra associated
to the lower central series of G is isomorphic to LΓ.
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Let Z= ∩v∈V star(v). Then Z(G) is the special subgroup of G generated
by Z. Let H be the special subgroup of G generated by V \Z. We have: G
= H × Z. The proof of Theorem 7.7 will use the following:

Lemma 7.14 Suppose that Z(GΓ) = {1}. Then Z(LΓ) = {0}.

Proof : Let g ∈ Z(LΓ). Suppose that g 6= 0. Let v ∈ V . We have [g; v]
= 0 (in LΓ). Now, LΓ can be regarded as a Lie subalgebra of AΓ by Theo-
rem 7.11 and Theorem 7.12. Thus, we have gv = vg (in AΓ). Therefore g
belongs to the subalgebra of AΓ generated by star(v) (see [KR]). Since v is
arbitrary, this leads to a contradiction with our assumption. �

Remark : In the above lemma, K is arbitrary.

From now on, we assume that K = Z. Recall that (Cn(G))n≥1 denotes
the lower central series of G. We are now ready to prove:

Theorem 7.15 The Torelli group of a right-angled Artin group is residually
torsion-free nilpotent.

Proof : Let Z= ∩v∈V star(v). Then Z(G) is the special subgroup of G
generated by Z. Let H be the special subgroup of G generated by V \ Z.
We have: G = H×Z(G). Note that Z(H) = {1}. First, we show that T (G)
= T (H). Let ϕ : T (G) → T (H) be the homomorphism defined by:

ϕ(α)(h, k) = (α(h), k),

for all α ∈ T (G), h ∈ H, k ∈ Z(G). Clearly, ϕ is well-defined and injective.
We shall show that ϕ is surjective. Let β ∈ T (G). For g ∈ G, we set β(g) =
(β1(g), β2(g)), where β1(g) ∈ H and β2(g) ∈ Z(G). Let h ∈ H. We denote
by h the canonical image of h in Ab(H). Note that the canonical image of
h in Ab(G) = Ab(H) × Z(G) is (h,1). Since β ∈ T (G), we have: (h,1) =
(β1(h),β2(h)), and then β2(h) = 1. Let k ∈ Z(G). Since β(k) lies in the
center of G, we have β1(k) = 1. Note that the canonical image of k in Ab(G)
is (1,k). As β ∈ T (G), we have β2(k) = k. Finally, we have:

β(h, k) = (β1(h), k),

for all h ∈ H and k ∈ Z(G). Applying the same argument to β−1, we obtain
that the restriction α of β1 to H is an automorphism of H. Therefore β =
ϕ(α). We have shown that T (G) = T (H). It is easily seen that this implies
that T (G) = T (H). Thus, up to replacing G by H, we can assume that
Z(G) = {1}. On the other hand, it follows from [DK2] that for all n ≥ 1,
there exists dn ∈ N such that:

Cn(G)
Cn+1(G)

≃ Zdn .
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Now, for all n ≥ 1, Cn(G) < CnZ(G), and CnZ(G)

Cn(G) is the torsion subgroup of
G

Cn(G) by [BL], Proposition 7.2. It follows that CnZ(G) = Cn(G) for all n

≥ 1, and that LZ(G) = LΓ by Theorem 7.13. Since Z(G) = {1}, we have
Z(Fp ⊗ LΓ) = {0} for every prime number p - by Lemma 7.14. We deduce
that (Bn)n≥1 is a Z-linear central filtration on T (G) by Theorem 7.9. Now,
let ϕ ∈ Aut(G) such that ϕ induces an inner automorphism on G

Cn(G) for all

n ≥ 1. Let g ∈ G. Suppose that ϕ(g) and g are not conjugate in G. Then
it follows from the proof of Theorem 7.1 that there exists n ≥ 1 such that
the canonical images of ϕ(g) and g in G

Cn(G) are not conjugate in G
Cn(G) -

contradicting our assumption. Thus ϕ is conjugating. Therefore ϕ is inner
by Proposition 7.2. We deduce that (Bn)n≥1 is separating by Theorem 7.9.
We conclude that T (G) is residually torsion-free nilpotent by Theorem 7.10.

�

Corollary 7.16 The Torelli group of a right-angled Artin group is residu-
ally p-finite for every prime number p.

Proof : This follows immediately from Theorem 7.15 and Theorem 2.1.(i)
in [G]. �

Corollary 7.17 The Torelli group of a right-angled Artin group is bi-order-
able.

Proof : This follows immediately from Theorem 7.15 and [R] (see also
[MR], Theorem 2.4.8.). �

References

[BL] H. Bass, A. Lubotzky. Linear-central filtrations on groups. The math-
ematical legacy of Wilhelm Magnus: groups, geometry and special func-
tions (Brooklyn, NY, 1992), 45–98, Contemp. Math., 169, Amer. Math.
Soc., Providence, RI, 1994.

[C] R. Charney. An introduction to right-angled Artin groups. Geom. Ded-
icata 125 (2007), 141–158.

[CV] R. Charney, K. Vogtmann. Finiteness properties of automorphism
groups of right-angled Artin groups. Bull. Lond. Math. Soc. 41 (2009),
no. 1, 94–102.

[CV2] R. Charney, K. Vogtmann. Subgroups and quotients of automorphism
group of RAAGS. arXiv:0909.2444v1.

[D] M.B. Day. Peak reduction and finite presentations for automorphism
groups of right-angled Artin groups. Geom. Topol. 13 (2009), no. 2, 817–
855.

39



[D2] M.B. Day. Symplectic structures on right-angled Artin groups: be-
tween the mapping class group and the symplectic group. Geom. Topol.
13 (2009), no. 2, 857–899.

[D3] M.B. Day. On solvable subgroups of automorphism groups of right-
angled Artin groups. arXiv:0910.4789.

[Dy] J.L. Dyer. Separating conjugates in free-by-finite groups. J. London
Math. Soc. (2) 20 (1979), no. 2, 215–221.

[Dy2] J.L. Dyer. Separating conjugates in amalgamated free products and
HNN extensions. J. Austral. Math. Soc. Ser. A 29 (1980), no. 1, 35–51.

[DK] G. Duchamp, D. Krob. The free partially commutative Lie algebra:
bases and ranks. Adv. Math. 95 (1992), no. 1, 92–126.

[DK2] G. Duchamp, D. Krob. The lower central series of the free partially
commutative group. Semigroup Forum 45 (1992), no. 3, 385–394.

[G] K.W. Gruenberg. Residual properties of infinite soluble groups. Proc.
London Math. Soc. (3) 7 (1957), 29–62.

[I] E.A. Ivanova. On conjugacy p-separability of free products of two groups
with amalgamation. Math. Notes 76 (2004), no. 3-4, 465–471.

[KR] K.H Kim, F.W. Roush. Homology of certain algebras defined by
graphs. J. Pure Appl. Algebra 17 (1980), no. 2, 179–186.

[KS] A. Karrass, D. Solitar. Subgroups of HNN groups and groups with one
defining relation. Canad. J. Math. 23 (1971), 627–643.

[L] M.R. Laurence. A generating set for the automorphism group of a graph
group. J. London Math. Soc. (2) 52 (1995), no. 2, 318–334.

[Lo] K. Lorensen. Groups with the same cohomology as their profinite com-
pletions. J. Algebra 320 (2008), no. 4, 1704–1722.

[LS] R.C. Lyndon, P.E. Schupp. Combinatorial group theory. Reprint of the
1977 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[M] A. Minasyan. Hereditary conjugacy separability of right angled Artin
groups and its applications. arXiv:0905.1282.

[My] A.G. Myasnikov. Approximability of outer automorphism groups of
free groups of finite rank. Algebra i Logika 20 (1981), no. 3, 291–299.

[MR] R. Botto Mura, A.H. Rhemtulla. Orderable groups. Lecture Notes
in Pure and Applied Mathematics, Vol. 27. Marcel Dekker, Inc., New
York-Basel, 1977. iv+169 pp.

40



[MKS] W. Magnus, A. Karrass, D. Solitar. Combinatorial group theory.
Presentations of groups in terms of generators and relations. Reprint of
the 1976 second edition. Dover Publications, Inc., Mineola, NY, 2004.

[P] L. Paris. Residual p properties of mapping class groups and surface
groups. Trans. Amer. Math. Soc. 361 (2009), no. 5, 2487–2507.

[R] A.H. Rhemtulla. Residually Fp-groups, for many primes p, are order-
able. Proc. Amer. Math. Soc. 41, 31-33 (1973).

[RZ] L. Ribes, P. Zalesskii. Profinite groups. Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathe-
matics, 40. Springer-Verlag, Berlin, 2000.

[S] G.P. Scott. An embedding theorem for groups with a free subgroup of
finite index. Bull. London Math. Soc. 6 (1974), 304–306.

[Se] J.P. Serre. Arbres, amalgames, SL2. Astérisque, No. 46. Société
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