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Conjugacy p-separability of right-angled Artin
groups and applications

Emmanuel Toinet

ABSTRACT. We prove that every subgroup of p-power index in a right-
angled Artin group is conjugacy p-separable. In particular, every right-
angled Artin group is conjugacy p-separable. A consequence of this result is
that the outer automorphism group of a right-angled Artin group is virtually
residually p-finite. Another consequence of this result is that the outer
automorphism group of a right-angled Artin group is K-residual, where K is
the class of all outer automorphism groups of finite p-groups. We also prove
that the Torelli group of a right-angled Artin group is residually torsion-free
nilpotent, hence residually p-finite and bi-orderable.

1 Introduction

Let I' = (V,E) be a (finite) simplicial graph. The right-angled Artin
group associated to I' is the group Gr defined by the presentation:

Gr =<V |vw=uwv, ¥ {vw}eFE >

Note that, if I' is discrete, then Gr is free, and if ' is complete, then
Gr is free abelian. The rank of Gr is by definition the number of vertices
of I'. A special subgroup of Gr is a subgroup generated by a subset W of
V' - it is naturally isomorphic to the right-angled Artin group Gry), where
I'(W) denotes the full subgraph of T" generated by W. Let v be a vertex
of I'. The star of v, denoted by star(v), is the subset of V of all vertices
which are adjacent to v plus v itself. We refer to [C] for a general survey of
right-angled Artin groups.

Not much is known on automorphims of right-angled Artin groups. In
1989, Servatius conjectured a generating set for Aut(Gr) (see [Ser]). He
proved his conjecture in certain special cases, for example when the graph
is a tree. Then Laurence proved the conjecture in the general case (see [L]).
Charney and Vogtmann showed that Out(Gr) is virtually torsion-free and
has finite virtual cohomological dimension (see [CV]). Day found a finite pre-
sentation for Aut(Gr) (see [D]). Recently, Minasyan proved that Out(Gr) is
residually finite (see [M]). This result was obtained independently by Char-
ney and Vogtmann (see [CV2]), using different technics. More recently, Day



showed that Out(Gr) is either virtually nilpotent or contains a free group
(see [D3]).

Let p be a prime number. A group G is said to be residually p-finite if
for every g € G\{1}, there exists a homomorphism ¢ from G onto a finite p-
group P such that ¢(g) # 1. Note that residually p-finite implies residually
finite as well as residually nilpotent. For g, h € G, the notation g ~ h
means that g and h are conjugate. We say that G is conjugacy p-separable
if for all g, h € G, either g ~ h, or there exists a homomorphism ¢ from
G onto a finite p-group P such that ¢(g) » ¢(h). Obviously, if a group is
conjugacy p-separable, then it is residually p-finite. Following Ivanova (see
[I]), we say that a subset S of a group G is finitely p-separable if for every
g € G\ S, there exists a homomorphism ¢ from G onto a finite p-group P
such that ¢(g) € ¢(S5). We say that an element g of G is C'y,-separable if its
conjugacy class, ¢ = {aga™! | & € G}, is finitely p-separable. Note that G
is conjugacy p-separable if and only if every element of G is Cy)-separable.
Examples of groups which are known to be conjugacy p-separable include
free groups (see |LS]) and fundamental groups of oriented closed surfaces
(see [P]).

Let G be a group. The pro-p topology on G is defined by taking the
normal subgroups of p-power index in G as a basis of neighbourhoods of
1 (see [RZ]). Equipped with the pro-p topology, G becomes a topological
group. Observe that G is Hausdorff if and only if it is residually p-finite.
One can easily prove that a subset S of G is closed in the pro-p topology on
G if and only if it is finitely p-separable.

Definition 1.1 Let G be a group. We say that G is hereditarily conjugacy
p-separable if every subgroup of p-power index in G is conjugacy p-separable.

Hereditary conjugacy p-separability is obviously stronger than conjugacy
p-separability.

Our main theorem is the following:

Theorem 1.2 Every right-angled Artin group is hereditarily conjugacy p-
separable.

More generally, let I be a class of group (e.g., the class of all finite
groups, the class of all finite p-groups, etc.). We say that a group G is K-
residual if for all g € G\{1}, there exists a homomorphism ¢ from G to some
group of K such that ¢(g) # 1. Note that if I is the class of all finite p-
groups, one study residual p-finiteness. We say that a group G is conjugacy
KC-separable if for all g, h € G, either g ~ h, or there exists a homomorphism
¢ from G to some group of K such that ¢(g) « ¢(h). Note that if £ is the
class of all finite p-groups, one study conjugacy p-separability. In Section 7,
we prove the following;:



Theorem 1.3 Every right-angled Artin group is conjugacy K-separable, whe-
re KC is the class of all torsion-free nilpotent groups.

Let P be a group property (e.g., abelian, nilpotent, etc.). A group G is
said to be wvirtually P if there exists a finite index subgroup H < G such
that H has Property P. In Section 7, we prove:

Theorem 1.4 The outer automorphism group of a right-angled Artin group
1s virtually residually p-finite.

Theorem 1.5 The outer automorphism group of a right-angled Artin group
is KC-residual, where IKC is the class of all outer automorphism groups of finite

D-groups.

Let G = Gr be a right-angled Artin group. Let r be the rank of G.
We denote by T(G) the kernel of the natural homomorphism Out(G) —
GL, (7). We say that T(G) is the Torelli group of G. In Section 7, we
prove:

Theorem 1.6 The Torelli group of a right-angled Artin group is residually
torsion-free nilpotent.

This implies that the Torelli group of a right-angled Artin group is resid-
ually p-finite for every prime number p and bi-orderable.

Our proof of Theorem is purely combinatorial. It is based on HNN
extensions (see below for the definition of an HNN extension). The basic
idea is that a right-angled Artin group of rank r (r > 1) can be written as
an HNN extension of any of its special subgroups of rank r - 1. Our proof
was inspired by Minasyan’s paper (see [M]). In his paper, Minasyan proved
that every finite index subgroup in a right-angled Artin group is conjugacy
separable - that is, right-angled Artin groups are “hereditarily conjugacy
separable”. To this end, he introduced the centralizer condition and proved
that a group is hereditarily conjugacy separable if and only if it is conjugacy
separable and satisfies the centralizer condition. In Section 3, we introduce
the p centralizer condition which is analog of the centralizer condition in
[M], and we prove that a group is hereditarily conjugacy p-separable if and
only if it is conjugacy p-separable and satisfies the p centralizer condition.
In Section 4, we prove the following;:

Theorem 1.7 Every extension of a free group by a finite p-group is conju-
gacy p-separable.

From a technical point of view, Theorem [[L7 is the main result of our
paper. In Section 5, we deal with retractions that are key tools in the proof



of our main theorem, which is the object of Section 6.

My gratefulness goes to my Ph.D. thesis advisor, Luis Paris, for his trust,
time and advice.

2 HNN extensions

We start recalling the definition of an HNN extension (see |LS]). This
notion of HNN extension will be of great importance in our proof, because,
as we will see, a right-angled Artin group of rank r (r > 1) can be written
as an HNN extension of any of its special subgroups of rank r - 1.

Let H be a group. Then by the notation:

< H, hyoo | 7y >,

we mean the group defined by the presentation whose generators are the
generators of H together with h,... and the relators of H together with r,...

Let H be a group. Let I be a set of indices. Let {K;}ier and {L;}ier
be families of subgroups of H and let {v; : K; — L;}icr be a family of
isomorphisms. The HNN extension with base H, stable letters t; (i € I),
and associated subgroups K; and L; (i € I), is the group defined by the
presentation:

G=<H,t (Z S I) | ti_lk?iti = ZZ)Z(]CZ), Vk €K; (Z S I) >.

In particular, let H be a group, let K and L be subgroups of H and let
1 be an isomorphism from K to L. The HNN eztension of H relative to i
is the group defined by the presentation:

G=<H,t|t'kt=2(k),VkeK>.

From now on, we suppose K = L and ¥ = idg. In this case, G is called
the HNN extension of H relative to K:

G=<H,t|t'kt=kVkeK >

Every element of G can be written as a word zot*zy...t"z, (n > 0,
Z0yeery T € H, aq,..., an € Z\ {0}). Following Minasyan (see [M]), we will
say that the word zot® x;...t"xy, is reduced if xg € H, x1,..., Tp—1 € H\ K,
and z,, € H. Every element of G can be represented by such a reduced word.
Note that our definition of a reduced word is stronger than the definition of
a reduced word in [LS].

Lemma 2.1 (Britton’s Lemma) If a word xot™ ...t x,, is reduced with
n > 1, then xot™xq...t%x, # 1.

Proof: Proved in [M]. O



Lemma 2.2 If xgt™xy...t%x, and yotblyl...tbmym are reduced words such
that xot™xq...t%x, = yotblyl...tbmym, then m = n and a; = b; for all i €

{1,....n}.

Proof: Proved in [M]. O

A cyclic permutation of the word t* x1...t% x,, is a word t* ...t x, t" x1
t%=tpp g with k € {1,...,n}. A word t*xy...t% x, is said to be cyclically
reduced if any cyclic permutation of t*xy...t% x, is reduced. Note that, if
t%xy...t%x, is reduced and n > 2, then t**x;...t% x, is cyclically reduced
if and only if z,, € H \ K. Every element of G is conjugate to a cyclically
reduced word.

Lemma 2.3 (Collins’ Lemma) If g = t"zy...t%x, (n > 1) and h =
thiyy.. Py (m > 1) are cyclically reduced and conjugate, then there exists
a cyclic permutation h* of h and an element a € K such that g = ah*a™'.

Proof: Proved in [M]. O

Remark: There exists a natural homomorphism f : G — H, defined by
f(h) = hforall h € H, and f(t) = 1.

Remark: Let P be a group and let ¢ : H — P be a homomorphism. Let @
be the HNN extension of P relative to ¢(K):

1

Q=<P,t|t @k)t=pk),VEkeK >

Then ¢ induces a homomorphism @ : G — @, defined by @(h) = ¢(h) for
all h € H, and $(t) = t.

Lemma 2.4 With the notations of the previous remark, ker(®) is the nor-
mal closure of ker(p) in G.

Proof: Proved in [M]. O

The following simple observation is the key in the proof of our main
theorem. Let G be a right-angled Artin group of rank r (r > 1). Let H
be a special subgroup of G of rank r - 1. In other words, there exists a
partition of V: V' = WU{t} such that H = < W >. Then G can be written
as the HNN extension of H relative to the special subgroup K = C(t) =
< star(t) > of H:

G=<H,t|tkt=k,VkeK >



3 Hereditary conjugacy p-separability and p cen-
tralizer condition

We start with an observation that the reader has to keep in mind, be-
cause it will be used repeatedly in the rest of the paper: if H and K are two
normal subgroups of p-power index in a group G, then H N K is a normal
subgroup of p-power index in G.

If G is a group, H is a subgroup of G, and g € G, then we set Cg(g) =
{h € H | gh = hg}.

Definition 3.1 We say that G satisfies the p centralizer condition (pCC')
if, for every normal subgroup H of p-power index in G, and for all g € G,
there exists a normal subgroup K of p-power index in G such that K < H,
and:

Ca/r(v(9) C ¢(Ca(9)H),

where ¢ : G — G/K denotes the canonical projection.

We shall show that a group G is hereditarily conjugacy p-separable if and
only if it is conjugacy p-separable and satisfies the p centralizer condition (see
Proposition B.6]). For technical reasons, we have to introduce the following
definitions:

Definition 3.2 Let G be a group, H be a subgroup of G, and g € G. We
say that the pair (H, g) satisfies the p centralizer condition in G (pCCq) if,
for every normal subgroup K of p-power index in G, there exists a normal
subgroup L of p-power index in G such that L < K, and:

Comy(p(9)) C p(Cu(g)K),

where ¢ : G — G/L denotes the canonical projection. We say that H
satisfies the p centralizer condition in G (pCCg) if the pair (H,g) satisfies
the p centralizer condition in G for all g € G.

If G is a group, H is a subgroup of G, and g € G, then we set: g/ =
{aga~! | @ € H}. In order to prove Proposition 3.6, we need the following
statements, which are analogs of some statements obtained in [M] (Lemma
3.4, Corollary 3.5 and Lemma 3.7, respectively):

Lemma 3.3 Let G be a group, H be a subgroup of G, and g € G. Suppose
that the pair (G, g) satisfies pCCq, and that g@ is finitely p-separable in G.
If Cq(g)H s finitely p-separable in G, then g™ is also finitely p-separable
in G.



Proof: Let h € G such that h ¢ g7, If h ¢ g%, then, since ¢ is finitely
p-separable in G, there exists a homomorphism ¢ from G onto a finite p-
group P such that o(h) ¢ ©(g%). In particular, p(h) ¢ ¢(g"). Thus we
can assume that h € ¢. Let o € G such that h = aga~'. Suppose that
Colg)Na™tH # 0. Let k € Cg(9)NatH. We obtain: ak € H and h
= aga~! = akg(ak)™! € g" - a contradiction. Thus Cg(g)Na"'H = 0,
ie. a”t ¢ Cg(g)H. As Cg(g)H is finitely p-separable in G, there exists
a normal subgroup K of p-power index in G such that a™! ¢ Cg(g)HK.
Now the condition pCC¢g implies that there exists a normal subgroup L of
p-power index in G such that L < K, and:

Cayr(v(g) C p(Calg)K),

where ¢ : G — G/L denotes the canonical projection. We have: ¢(h) ¢
©(g™). Indeed, if there exists 8 € H such that p(h) = ¢(BgB~"), then cp( )
= @(57'hp), and p(a™'F)p(g) = p(a™ Bp(F~'hB) = p(a™ ha)p(a™ )
= @(g)p(a™'B) Le. p(a™'B) € Cgyr(p(g)). But then p(a™") € CG/L( (9))
o(H) C p(Calg)KH). We obtain: a~! € Cg(9)HKL = Cg(9)HK (be-

cause L < K) - a contradiction. (]

Corollary 3.4 Let G be a conjugacy p-separable group satisfying pCC, and
H be a subgroup of G such that Cq(h)H is finitely p-separable in G for all
h € H. Then H is conjugacy p-separable. Moreover, for all h € H, hl is
finitely p-separable in G.

Proof: Let h € H. Since G satisfies pCC, the pair (G, h) satisfies pCCg.
Since G is conjugacy p-separable, h® is finitely p-separable in G. Lemma
B3 now implies that h¥ is finitely p-separable in G. Therefore h* is finitely
p-separable in H. O

Lemma 3.5 Let G be a group, H be a subgroup of G, and g € G. Let K be
a normal subgroup of p-power index in G. If gH"K is finitely p-separable in

G, then there exists a normal subgroup L of p-power index in G such that L
< K, and:

Comy(p(9)) C p(Cu(g)K),

where ¢ : G — G/L denotes the canonical projection.

Proof: Note that HNK is of finite index n in H. Actually, HNK is of
p-power index in H (because HgK o~ KKH < G) However, we do not need
this fact. There exists aq,..., a, € H such that H = U ;o;(H N K). Up to
renumbering, we can assume that there exists [ € {0,.. n} such that «; “Lga;
€ g’ K foralli € {1,...,l} and a;lgai ¢ g""K for alli € {I+1,....,n}. By the
assumptions, there exists a normal subgroup L of p-power index in G such
that a;lgai ¢ "KL for all i € {I+1,....,n}. Up to replacing L by LNK,



we can assume that L < K. Let ¢ : G — G/L be the canonical projection.
Let h € Cyumry((g)). There exists h € H such that h = ¢(h). There exists
i € {l,..,n} and k € HNK such that h = a;k. We have : ¢(h~lgh) =
o(h)"Yo(g)p(h) = ¢(g). Thus h~'gh € gL. But then o; 'goy; = kh™'ghk™?
€ kgLk ™' = kgk™'L c ¢g""KL. Therefore i < I. Then there exists €
HNK such that: a;lgai = Bgp~!. This is to say that a;8 € Cy(g), and
then h = a;jk = (a,8)(B71k) € Cy(9)(HN K) C Cy(g)K. We have shown
that Cy(rm)(¢(9)) C @(Cr(9)K). O

We are now ready to prove:

Proposition 3.6 A group is hereditarily conjugacy p-separable if and only
if it is conjugacy p-separable and satisfies pCC.

Proof: Suppose that G is conjugacy p-separable and satisfies pC'C. Let
H be a subgroup of p-power index in G. Thus H is closed in the pro-p
topology on G (because G\ H = U{gH | g ¢ H}). Let h € H. The set
Ca(h)H is a finite union of left cosets modulo H and thus is closed in the
pro-p topology on G. Corollary B4 now implies that H is conjugacy p-
separable. Therefore G is hereditarily conjugacy p-separable. Suppose now
that G is hereditarily conjugacy p-separable. In particular, G is conjugacy
p-separable. We shall show that G satisfies pCC. Let g € G. Let K be a
normal subgroup of p-power index in G. We set H = K < g >. We have K
< H. Thus H is a subgroup of p-power index in GG. Therefore it is conjugacy
p-separable. And ¢"""K = ¢ c H. As g" is closed in the pro-p topology
on H, it is closed in the pro-p topology on G. The result now follows from
lemma, O

4 Extensions of free groups by finite p-groups are
conjugacy p-separable

We start with an observation that the reader has to keep in mind be-
cause it will be used repeatedly in the proof of Theorem if p: G
— H is a homomorphism from a group G to a group H, whose kernel is
torsion-free, then the restriction of ¢ to any finite subgroup of G is injective.

We need the following lemma:

Lemma 4.1 Let G = Gi*...xG,, be a free product of n conjugacy p-separable
groups G1,..., G,. Let g, h € G\ {1} be two non-trivial elements of finite
order in G such that g =~ h. There exists a homomorphism ¢ from G onto
a finite p-group P such that p(g) =~ @(h).



Proof: Since g is of finite order in G, there exists i € {1,...,n} such that
g is conjugate to an element of finite order in GG;. Thus we may assume that
g belongs to G;. Similarly, we may assume that there exists j in {1,...,n}
such that h belongs to G;. Suppose that i # j. Let ¢ : G; — P be a
homomorphism from G; onto a finite p-group P such that ¢(g) # 1. Let ¢
: G — P be the natural homomorphism extending ¢. Then ¢(g) =~ @(h).
Suppose that ¢ = j. Then g and h are not conjugate in G; - otherwise they
would be conjugate in G. Since G; is conjugacy p-separable, there exists a
homomorphism ¢ : G; — P from G; onto a finite p-group P such that ¢(g)
~ p(h). Let ¢ : G — P be defined as above. We have ¢(g) =~ @(h). O

Recall that a subnormal subgroup of a group G is a subgroup H of G
such that there exists a finite sequence of subgroups of G:

H=Hy< H <..<H, =G,

such that H; is normal in H;yq for all i € {0,...,n-1}.

In Section 4, by a graph, we mean a unoriented graph, possibly with
loops or multiple edges.

Recall that a graph of groups is a connected graph I' = (V| E), together
with a function G which assigns:

e to each vertex v € V, a group G,

e and to each edge e = {v,w} € E, a group G, together with two injective
homomorphisms o, : G, — G, and 5, : G, — G, - we are not
assuming that v # w -,

(see [Sel, see also [Dy]). The groups G, (v € V) are called the wvertex
groups of I, the groups G, (e € E) are called the edge groups of I'. The
monomorphisms «, and 3. (e € E) are called the edge monomorphisms.
The images of the edge groups under the edge monomorphisms are called
the edge subgroups.

Choose disjoint presentations G, = < X, | R, > for the vertex groups
of I'. Choose a maximal tree T in I". Assign a direction to each edge of
I'. Let {te | e € E} be a set in one-to-one correspondence with the set of
edges of I', and disjoint from the X, v € V. The fundamental group of the
above graph of groups I is the group Gr defined by the presentation whose
generators are:

X, (v evV),
te (e € F)

(called vertex and edge generators respectively) and whose relations are:



R, (vevV),
te =1 (6 S T),
teae(ge)tgl = /86(96)7 vV ge € G, (6 S E)

(called vertex, tree, and edge relations respectively). One can prove that
this is well-defined - that is, independent of our choice of T, etc. Note that
it suffices to write the edge relations for g, in a set of generators for G,.

Convention: The groups G, (v € V') and G, (e € E) will be regarded as
subgroups of Gr.

Let {T';}icr be a collection of connected and pairwise disjoint subgraphs
of I'. We may define a graph of groups I'* from I' by contracting I'; to a point
for all i € I, as follows. The graph I'* is obtained from I by contracting I';
to a point p; for all ¢ € I. The function G* is obtained from G by using the
fundamental group of I'; for the vertex group at p;, and by composing the
edge monomorphisms of I' by the natural inclusions of the vertex groups of
I'; into the fundamental group of I';, if necessary. Clearly, Gr is isomorphic
to the fundamental group Gr+ of I'*.

If 7: Gr — H is a homomorphism from Gr to a group H, such that the
restriction of 7 to each edge subgroup of I' is injective, then we may define
a graph of groups IV from I' by composing with =, as follows. The vertex
set of IV is V, and the edge set of IV is E. The vertex groups of I"” are the
groups G, = 7(Gy) (v € V), and the edge groups of I are the groups G, =
Ge (e € E). The edge monomorphisms are the monomorphisms o/, = 7o a,
and 3, = mo f (e € E). Present Gr and Gp using the same symbols for
edge generators and with the same choice of maximal tree. There exist two
homomorphisms, 7y : Gr — G and 7 : G — H such that the diagram:

Gr——=H

|

G

commutes, and that the restriction of mp to each vertex group of Gy is
injective. The homomorphism 7y is given by:

(7Tv)|GU = Tay> VoveV,
Wv(te) =t.,Ve€EFE.

And the homomorphism 7g is given by:

(WE)‘GL = (idH)\cg’ VoveV,
mE(te) = m(te), Ve € E.
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In [Dy], Dyer proved that every extension of a free group by a finite
group is conjugacy separable. The following theorem is the analog of Dyer’s
theorem for conjugacy p-separability. From a technical point of view, it is
the main result of our paper.

Theorem 4.2 Every extension of a free group by a finite p-group is conju-
gacy p-separable.

Proof: Our proof was inspired by Dyer’s one (see [Dy]). Let G be an
extension of a free group by a finite p-group. In other words, there exists a
short exact sequence:

™

1 F G

P 1,

where F' is a free group, and P is a finite p-group. Let ¢ € G. Let h € G
such that g = h.

Step 1: We show that we may assume that G satisfies a short exact
sequence:

1 F G —= Cpn 1,

where F'is a free group, n > 1, Cp» denotes the cyclic group of order p”,
and 7(g) = mw(h).

Since G is an extension of a free group by a finite p-group, G is residually
p-finite by [G], Lemma 1.5. Therefore, if g = 1, then ¢¢ = {1} is finitely
p-separable in G. On the other hand, if ¢ is of infinite order in G, then g@
is finitely p-separable in G by [I], Proposition 5. Therefore we may assume
that g # 1 and that g is of finite order in G. Similarly, we may assume that
h # 1 and that h is of finite order in G. If 7(g) and 7(h) are not conjugate
in P, we are done. Thus, up to replacing h by a conjugate of itself, we may
assume that 7(g) = w(h). Since ker(m) = F is torsion-free, g and h have
the same order p™ (n € N*). Let H be the subgroup of G generated by g
and F'. Note that H is a subgroup of p-power index in G, and that g and h
belong to H. As % = P is nilpotent, H is subnormal in G. Thus we may
replace G by H, by [I], Proposition , so as to assume that G satisfies the
short exact sequence:

1 F G u Cp” 1.

IStrictly speaking, it follows from the proof of [[], Proposition 4, that, if there exists a
homomorphism ¢ : H — P from H onto a finite p-group P such that ¢(g) =~ ¢(h), then
there exists a homomorphism ¢ : G — @ from G onto a finite p-group @ such that ¢ (g)
~ 1(h). The exact statement of [I], Proposition 4, is slightly different.

11



Now, G is the fundamental group of a graph of groups I', whose vertex
groups are all finite groups, by [S]. As 7 G, 1s injective for all v € V, G, is
isomorphic to a subgroup of Cy» for all v € V. From now on, the groups G,
(v € V) will be regarded as subgroups of Cpn.

Step 2: We show that we may assume that all edge groups are non-
trivial, that if two different vertices are connected by an edge, then the
corresponding edge group is a proper subgroup of Cy», and that g and h
belong to two different vertex groups.

First, we show that we may assume that all edge groups are non-trivial.
Indeed, Let I'y be the subgraph of I' whose vertices are all the vertices of T',
and whose edges are the edges of I' for which the edge group is non-trivial.
Let I'y,..., ' be the connected components of I'g. Let I'* be the graph of
groups obtained from I' by contracting I'; to a point for all 7 € {1,...,r}. Let
T be a maximal tree of I'*. Then G is isomorphic to the fundamental group
G* of T*. Observe that G* is the free product of the free group on {t. | e €
E\T} and the fundamental groups of the I'; (i € {1,...,r}). Thus, it suffices
to consider the case where I' = T'; (i € {1,...,r}), by Lemma[LIl Since each
I; (i € {1,...,r}) is a graph of groups whose edge groups are all non-trivial,
the first part of the assertion is proved.

Now, we show that we may assume that if two different vertices are con-
nected by an edge, then the corresponding edge group is a proper subgroup
of Cpn. Indeed, let I'g be the subgraph of I' whose vertices are all the vertices
of I', and whose edges are the edges of I' for which the edge group is iso-
morphic to Cpn. Let I'q,..., I'; be the connected components of I'y. Choose
a maximal tree T; in T';, for all i € {1,...,r}. Let I'* be the graph of groups
obtained from I" by contracting T; to a point for all ¢ € {1,...,r}. Then G is
isomorphic to the fundamental group G* of I'*. Note that a vertex group of
I"* is either a vertex group of I', or the fundamental group of 7T}, for some ¢ €
{1,...,r}, in which case it is isomorphic to Cpn (because each T; (i € {1,...,r})
is a tree of groups whose vertex and edge groups are all equal to Cpn). Thus,
we may replace I' by I'*, so that the second part of the assertion is proved.

Since g is of finite order in G, there exists a vertex v of I'; an element gg
of finite order in the vertex group G, of v, and an element « of G such that
g = agoa!. Similarly, there exists a vertex w of I', an element hq of finite
order in the vertex group G, of w, and an element 3 of G such that h =
BhoB~t. As Cpn is abelian, we have: 7(go) = m(hg). Thus, up to replacing
g by go and h by hg, we may assume that g belongs to G,,, and h belongs
to Gy Since m, is injective, and 7(g) = m(h), we have v # w.

Step 3: We show that we may assume that I' has exactly two vertices,
and that all edges join these two vertices.
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Indeed, choose a maximal tree 7" in I". There is a path P in T joining
v to w. Choose an edge e on this path. Then T\ {e} is the disjoint union
of two trees, T, and T, - say v € T, and w € T,. Let I', be the full
subgraph of I" generated by the vertices of T, and I'y, be the full subgraph
of I' generated by the vertices of T,,. Let I'* be the graph of groups obtained
from I' by contracting I', to a point v* and I';, to a point w*. Observe that
I'* has exactly two vertices and that all edges join these two vertices. The
vertex groups of I'* are the fundamental groups of I';, and I'y,, respectively.
The edge groups of I'* are non-trivial proper subgroups of Cp». And G is
isomorphic to the fundamental group G* of I'*. Now, since the restriction of
7 to each edge subgroup of I'* is injective, we may define a graph of groups
I" from I'* by composing with 7, as described above. Denote by G’ the
fundamental group of I". There exist two homomorphisms 7y : G — G,
and 7 : G' — Cpn such that the diagram:

G —"= Cpn

o 4

G/
commutes, and that the restriction of mg to each vertex group of IV is
injective. Consequently, ker(ng) is free by [Se], II, 2.6., Lemma 8.

Set ¢ = 7y (g), and b/ = wy(h). As ¢’ and h' have order p", the vertex
groups of I'" are equal to Cpn. The edge groups of I are non-trivial proper
subgroups of Cpn. Observe that ¢’ and h' belong to two different vertex
groups, and that ¢’ (resp. ') is not conjugate to an element of one of the
edge groups. Let e be an edge of I'. Then ¢ and h’ are not conjugate in
G, *ar G, by [MKS], Theorem 4.6. (ii). Observe that G’ is an HNN exten-
sion (in the general sense) of G, x¢: G, with stable letters ¢, (a € E'\ {e}),
and associated subgroups o/, (G,), B,(G,) (a € E\ {e}). Therefore ¢’ and
B/ are not conjugate in G’ (see [Dy2], Theorem 3). Thus, we may replace I'
by IV, G by G', g by ¢’, and h by I/, so as to assume that I" has two vertices
and that all edges join these two vertices.

Step 4: We show that we may assume that " has at most two edges.
Suppose that I" has more than two edges. Choose a maximal tree T in I

- that is, an edge of I". Present G, =< g | ¢g?" =1>,Gp=<h|h" =1 >,
and G as described above. Choose an edge e € E\ T.



The edge relations corresponding to e can be reduced to the following;:

teae(ge)tgl = 56(96)7

where g, is a generator of G.. Let p® be the order of G, (s € {1,....,n-1}).
Then a.(ge) generates a subgroup of order p® of G,. But there exists a
unique subgroup of order p* in G,; it is cyclic, generated by ¢P", where r
= n - s. Thus, up to replacing g. by the preimage of g under a., we
may assume that a.(g.) = g7 . There exists k € N, such that p and k are
coprime, and that fe(ge) = hkP" . Therefore the edge relation corresponding
to e can be written:

teg? t71 = RFP",

where r € {1,...,n-1}, k € N, and p and k are coprime. Now, since 7 : G —
Cyn satisfies 7(g) = w(h), we have: 7(g)?" = n(h)*" = m(g)*?", and then
7(g)*=DP" =1 (in Cpn). As 7(g) has order p" in Cyn, we deduce that p"~"
divides k - 1. There exists a € Z such that k = ap”™" + 1. We conclude
that the edge relation corresponding to e can be written:

teg? t;t = b,

where r € {1,...,n-1}.

Let H be the normal subgroup of G generated by the elements:
g, hy ty (a € E\ {e}), t£.

Then H has index p in GG, and g and h belong to H. Thus we may replace G
by H by [I], Proposition 4. Let Gy be the fundamental group of the graph
of groups I' \ {e}. Set Go = < Xy | Ry >, where the presentation is as
fundamental group of the graph of groups I'\ {e}. Set G; = t:Got;" = < X;
| R; >, for all i € {1,...,p-1}. Clearly {1,te,...,t§71} is a Schreier transversal
for H in G. The Reidemeister-Schreier method yields the presentation:

‘s
— B g

(o

H=< XO, Xla---a prly U | RO, Rl""’ Rpfl, g{) = hg s 912)

_ 3p" To—1 _ 3p"
= hp72, ugg u = hIF1 >,

where u = t£, g; = tigt." (i € {0,...,p-1}), and h; = thtz? (j € {0,....p-1}).
Replace g by go, and h by h;. Observe that H is the fundamental group
of a graph of groups f, as follows. The graph I has 2p vertices, say vy,
wo, V1, Wi,..., Vp—1, Wp—1, and p|E| edges. Let T; be the full subgraph of I’
generated by {v;, w;} for all i € {0,....,p-1}. Then T; is isomorphic to T'\ {e}.
There is one edge joining wy to vy, one edge joining wy to wva,..., one edge
joining w,_2 to v,_1, and one edge joining vy to wp_1, and the edge groups
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associated to these egdes are isomorphic to G.. Note that g belongs to the
vertex group of vy and h belongs to the vertex group of w;.

Let I'* be the graph of groups obtained from r by contracting T; to a point
for all i € {1,...,p-1}. Then G is isomorphic to the fundamental group of I"*.
The graph I'* has p vertices, say vp,..., vp,—1. There is one edge joining vg
to vy, one edge joining vy to va,..., one edge joining v,_2 to v,_1, and one
edge joining vy to v,_1, and the edge groups associated to these edges are
all isomorphic to G.. Note that g belongs to the vertex group of vg and h
belongs to the vertex group of vy.

V0 v1 V2 v3 V4

Let T' be the maximal tree T = vgv;...vp—2Up—1. Then T\ {vov1} is the
disjoint union of two trees : vy and v1va...vp_2v,—1. Set I'T = vg and I'; =
V1V2...Up—2Vp—1. Let A be the graph of groups obtained from I'* by contract-
ing I'Y to a point for all ¢ € {1,2}. Let A’ be the graph of groups obtained
from A by composing with 7. As in Step 3, we may replace I by A’, so as
to assume that I' has two vertices and two edges joining these two vertices.

End of the proof: Present G, = < g | ¢g?" =1>,Gy, =< h|h" =1 >,
and G as described above. There are two cases:

Case 1: T" has one edge.

In this case, G is an amalgamated product of two finite abelian p-groups.
Since G is residually p-finite, G is conjugacy p-separable by [I], Theorem 2.
Thus, there exists a homomorphism ¢ from G onto a finite p-group P such

that o(g) = ¢(h).

Case 2: T has two edges.

We have:
G=<g ht]g"=1hn"=1g¢" =h" tg#t"! = h" >,

where r € {1,...,n-1}, s € {1,...,n-1}. Let:
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A= Cpn X Cps X ... x Cps xCpr

N——_———
p-1
Set m = p"+ 1. Present each factor of this product in the natural way, using
generators I1,..., Iy, respectively. Let a be the automorphism of A defined
by:

a(ry) = T122%,
04(1'2) = Tj+1, Vie {2,...,m—2}
a(Tm_1) = (22..2m_1) 7!
a(Ty) = Ty,

It is easily seen that a has order m - 1 = p”. We have:

ao(azl) = 11,
al(xl) = T1X9Tm,
a2(3:1) = $1£C2,I3$%L,

m—2

T1) = T1T2X3..Tyy—1T o0

am—Z(

Let B = Ax < a > be the semidirect product of A by < « >. Note that B
is a finite p-group. Let ¢ : G — B be the homomorphism defined by:

p(9) = =1,
@(h) = T1Tm,
p(t) = a.
Observe that the conjugacy class of ¢(g) in B is ¢(9)? = {*(z1) | k €
{0,...,m-2}}. Thus, ¢(g) and ¢(h) are not conjugate in B. O

Corollary 4.3 Let P be a finite p-group. Let A be a subgroup of P. Let Q
be the HNN extension of P relative to A:

Q=<P,t|tlat =a,VacA>.
Then Q is hereditarily conjugacy p-separable.

Proof: Let R be a subgroup of p-power index in ). Actually, we do not
need the fact that R is of p-power index. Let f : Q — P be the natural
homomorphism. We have ker(f)NP = {1}. Therefore ker(f) is free by [KS|,
Theorem 6. That is, @) is an extension of a free group by a finite p-group.

Thus R is itself an extension of a free group by a finite p-group. Therefore
R is conjugacy p-separable by Theorem O
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5 Retractions

Definition 5.1 Let G be a group and H be a subgroup of G. We say that
H is a retract of G if there exists a homomorphism prg : G — G such that
pu(G) = H and pg(h) = h for all h € H. The homomorphism py is called
a retraction of G onto H.

Remark: 1f G is a right-angled Artin group, and H is a special subgroup of
G, then H is a retract of G. A retraction of G onto H is given by:

(v) = v ifveWw
PEXOI =1 ifveV\W

In what follows (Lemma to Lemma [B.12]), we shall prove several
results on retractions that will allow us later to control the growth of some
intersections of subgroups of a right-angled Artin group in homomorphic
images of it (see Lemma [6.3)).

Lemma 5.2 Let G be a group and H be a subgroup of G. Suppose that H
is a retract of G. Let pg be a retraction of G onto H. Let N be a normal
subgroup of G such that pg(N) C N. Then py induces a retraction pg :
G/N — G/N of G/N onto the canonical image H of H in G/N, defined
by: pr(9N) = pu(9)N for all gN € G/N.

Proof : Proved in [M]. O

Remark: Let G be a group and let H and H' be two subgroups of G.
Suppose that H and H' are retracts of G and that the corresponding retrac-
tions, py and pyr, commute. Then py(H') = pyr(H) = HNH'. Moreover
HNH' is a retract of G. A retraction of G onto HNH' is given by pgng: =
PH © pr’ = P’ © PH-

Proposition 5.3 Let G be a group and Hy,..., H, be n subgroups of G.
Suppose that Hy,..., Hy, are retracts of G and that the corresponding retrac-
tions pairwise commute. Then, for every normal subgroup K of p-power
index in G, there exists a normal subgroup N of p-power index in G such
that N < K and pg,(N) C N for alli € {1,...,n}. Consequently, for every
i € {1,...,n}, the retraction py, induces a retraction pg- of G/N onto the
canonical image H; of H; in G/N.

Proof: Proved in [M] - see Remark 4.4. O

Lemma 5.4 Let G be a group and let H and H' be two subgroups of G.
Suppose that H and H' are retracts of G and that the corresponding retrac-
tions, pg and pgr, commute. Let N be a normal subgroup of G and assume
that pgr(N) € N and pg(N) C N. Then, if ¢ : G — G/N denotes the
canonical projection, o(HNH') = o(H) N p(H').
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Proof: Proved in [M]. O

The next statement is analog of Lemma 4.6 in [M]:

Corollary 5.5 Let G be a group and Hy,..., H, be n subgroups of G. Sup-
pose that Hy,..., H, are retracts of G and that the corresponding retractions
PH,s---, PH, pairwise commute. Then, for every normal subgroup K of p-
power index in G, there exists a normal subgroup N of p-power index in G
such that N < K and pr;(N) C N, for alli € {1,...,n}. Moreover, if p : G
— G/N denotes the canonical projection, then ¢((\i_y H;) = iy ¢ (H,;).

Proof: By Proposition [5.3] there exists a normal subgroup IV of p-power
index in G such that N < K and pg,(N) C N for all i € {1,....n}. We
denote by ¢ : G — G/N the canonical projection. We argue by induction
on k € {1,....,n} to prove that ap(ﬂle H;) = ﬂ§:1 ©(H;). If k = 1, then the
result is trivial. Thus we can assume that & > 2 and that the result has
been proved for k - 1. We set H' = ﬂf;ll H;. By the above remark, H' is a
retract of G. A retraction of G onto H' is given by pgr = pp, © ... 0 pm,_,.
We have:

IOH’(N) = le("'(ka72 (kafl(N))))
C PH1("'(ka—2 (N)))
C ...
C le(N)
C N.

The retractions pgr and pp, commute, so we can apply Lemma [5.4] to con-
clude that o(H'NHy) = o(H')Np(Hy). By the induction hypothesis, o(H")
= ﬂi‘:f ¢(H;). Finally @(ﬂf:l H;) = ﬂf:l o(H;). O

In the following lemmas, G is a group, and A and B are two subgroups
of G. We assume that A and B are retracts of G and that the corresponding
retractions, p4 and pp, commute.

Lemma 5.6 Let v, y € G. We set a = pa(pp(z)z)wpp(z~!) (€ AzB)
and 8 = palpp(y)y ypp(y~") (€ AyB). Are equivalent:

1. y € AzB,
2. B €a’nB,
Proof: Proved in [M]. O

Lemma 5.7 Letz € G. We set a = pa(pp(x)xV)zpp(x™!) (€ AxB) and
v = palpp(z)z~t) (€ A). Then we have:

AnzBx=! = v 1Canp(a)y.
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Proof: Proved in [M]. O

The next five statements are analogs of some statements in [M] (Lemma
5.3, Corollary 5.4, Lemma 5.5, Lemma 5.6 and Lemma 5.7, respectively):

Lemma 5.8 Let x € G. We set: a = pa(pp(x)xrpp(x~!) (¢ AxB).
If oA"B s finitely p-separable in G, then AxB is also finitely p-separable in
G.

Proof: Lety € G such that y ¢ AxB. Weset 3= pa(ps(y)y Y yps(y™t).
By Lemma 5.8, we have 8 ¢ o478, Since a4"P is finitely p-separable in G,
there exists a normal subgroup K of p-power index in G such that, if 1 :
G — G/K denotes the canonical projection, we have: ¥(3) ¢ ¢(a4"B) =
¥(a)¥ANB) | By Corollary [5.5, there exists a normal subgroup N of p-power
index in G such that N < K, pa(N) C N, pp(N) C N and, if p : G —
G/N denotes the canonical projection, then: (AN B) = ¢(A) Np(B). As-
sume that p(3) € @(a)?AMB). There exists g € AN B such that p(8) =
©0(9)e(a)p(g)~t. Then B € gag~'N. Since N < K, we obtain 8 € gag ' K.
But this contradicts the fact that (8) ¢ ¥(a)¥A7B). Therefore we have:
2(8) & 9()?AD) e, 0(8) ¢ p(a)? e We set A = p(A) and B =
¢(B). By LemmaE.2] ps induces a retraction p7 of G/N onto A and pp
induces a retraction pgz of G/N onto B. We set: T = p(z) and §J = ¢(y). We

have: ¢(a) = pz(pp@)T " )Zpp(E ") and ©(8) = px(p5@T NTepT ).
By Lemma [5.60] we have 7 ¢ AZB i.e. ¢p(y) ¢ p(AzB). O

Corollary 5.9 Let G be a group and A and B be two subgroups of G. Sup-
pose that G is residually p-finite. If A and B are retracts of G, such that the
corresponding retractions commute, then AB is finitely p-separable in G.

Proof: We apply Lemma 5.8 to x = 1. (]

Lemma 5.10 Let G be a group and A be a subgroup of G. Suppose that G
is residually p-finite and that A is a retract of G. Then if a subset S of A is

closed in the pro-p topology on A, it is also closed in the pro-p topology on
G.

Proof: We denote by S the closure of S in G - equipped with the pro-p
topology. We shall show that S C S. By Corollary 5.9, A is closed in G.
Therefore S C A. Let a € G\S. We can assume that a € A. There exists
a homomorphism ¢ from A onto a finite p-group P such that ¢(a) ¢ ¢(S5).
We set: 1) = popa. We have: ¥(a) = p(a) ¢ ©(S) = (S). Then a ¢ S.00

Lemma 5.11 Let x € G. We set a = pa(pp(x)r~ )zpp(z™'). Suppose

that the pair (ANB,a) satisfies the p centralizer condition in G. Then,
for every normal subgroup K of p-power index in G, there exists a normal
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subgroup N of p-power index in G such that N < K, pa(N) C N, pg(N) C
N and, if ¢ : G — G/N denotes the canonical projection, p(A)Ne(zBx~1)
C p(AnzBxzY)p(K).

Proof: Let K be a normal subgroup of p-power index in G. We set v =
palpp(z)z™!) € A. By Lemma 57 we have: ANxBr~! = v 'Canp(a)y.
Since the pair (A N B,«) satisfies pCCg, there exists a normal subgroup L
of p-power index in G such that L < K and, if v : G — G/L denotes the
canonical projection, Cyanp)(¥()) C ¥(Canp(a)K). This is equivalent

to 1 (Cy(anp) (¥(@))) C Canp(a)K. Indeed let g € =1 (Cyanp) (¥(a))).
We have 1(g) € Cyanp)(¥(a)) C P(Canp(a)K). Then g € Canp(a)KL
C Canp(a)K (because L < K). By corollary 5.5 there exists a normal
subgroup N of p-power index in G such that N < L, p4(N) C N, pp(N) C
N and, if ¢ : G — G/N denotes the canonical projection, p(ANB) = ¢(A)N
¢©(B). Weset A= ¢(A), B=¢(B). By Lemmal5.2] p4 induces a retraction
pz of G/N onto A and pp induces a retraction pgz of G/N onto B. Obviously

px and pz commute. We set T = ¢(x), @ = p1(p5(T)z 1 )Zpg(T 1) (€ G/N)
and ¥ = p7(p5(T)T 1) (€ A). Observe that @ = ¢(a) and 7 = (). Then,
by Lemma 5.7, we have: ANZBZ ! =7 1CAmB( V5. But ANB = p(ANB).
We have:

e H(ANTBT ) = o (7 1 Chianp) @) = 7o (Cypann) (@))7.
We have:

0 N (Cypanp) (@) C v (Cyranp) (W ())).

Indeed let g € o™ (Cpanp)(p(a))). We have ¢(g) € p(ANB) ie. g €
(AN B)N, which implies g € (AN B)L i.e. ¥(g) € (AN B); and p(g)p(a)
= p(a)p(g) i.e. gag~ta™t € N, which implies gag~ta™t € Li.e. ¥(g9)¢(a)
= ¢(a)(g). Then:

0 (Cpranp) (@) C Canp(@)K.
Therefore:
e Y (AnZBz ') C v 1Canpla)yK = (AnzBz™1)K.
We conclude that:
o(A) Ne(xBz™!) C p(ANaBr 1)p(K).
O

Lemma 5.12 Letx,y € G. We set C = zBxz~! (< G) and o =
palps(@)z Dxpp(z™). If "B and yA"C are finitely p-separable in G and
if the pair (AN B, «) satisfies pCCq, then Cx(y)C is finitely p-separable in
G.
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Proof: Let z € G such that z ¢ C4(y)C. Suppose first that z ¢ AC.
Since aAMB is finitely p-separable in G, AzB is finitely p-separable in G
by Lemma [5.8. Therefore AC = AzBx~! is also finitely p-separable in G.
Consequently there exists a normal subgroup N of p-power index in G such
that z ¢ ACN. We obviously have z ¢ Cy4(y)CN. Thus we can assume
that z € AC. There exist a € A, ¢ € C such that z = ac. Since z ¢ Cx(y)C,
a lya ¢ yA7C. Indeed, if there exist ¢ € AN C such that a lya = gyg",
then (ag) ly(ag) = y i.e. ag € Ca(y). We obtain a € C4(y)C, and then z
€ Ca(y)C - a contradiction. Now y4"¢ is finitely p-separable in G. Then
there exists a normal subgroup K of p-power index in G such that a~lya
¢ yA"CK. By Lemma [5.11] there exists a normal subgroup N of p-power
index in G such that N < K and, if ¢ : G — G/N denotes the canonical
projection, ¢(A) N¢(C) C (AN C)p(K). For a subset S of G, we set S =
©(S). For an element g of G, we set § = ¢(g). We have: gA7¢ ¢ 5ANC-K,
Note that K <t G/N. Then 74" ¢ gANCK. Observe that a~'ga ¢ 74K
- otherwise we would have a~!ya € y4"“KN, and then a~lya € y"“K
(because N < K). We deduce that a~'ga ¢ 747, Now it suffices to show
that ¢(2) ¢ ¢(Ca(y)C). Suppose the contrary. There exist a’ € Ca(y),
d € C such that ¢(z) = ¢(a’d). Then p(ac) = ¢(a’d). Thus p(a’~la) =
o(dcl). We set § = p(a’"ta) = p(dct) (€ ANC). We have: ¢(z) =
p(a)gp(c) and @ = ¢(2)p(c) " = p(d')g. Thena 'ga =7 'p(d' 'yd)g =
7 lo(y)g =7 w7 € 72"¢ - a contradiction. We have shown that C4(y)C
is finitely p-separable in G. O

6 Proof of the main theorem

We turn now to the proof that right-angled Artin groups are hereditarily
conjugacy p-separable. We need the following theorem, which is due to
Duchamp and Krob (see [DK2]).

Theorem 6.1 Right-angled Artin groups are residually p-finite.

This theorem can also be proved using HNN extensions (see [Lo]).

Basically, Proposition establishes the main result. Proposition 6.211
and Proposition [6.212 will be proved simultaneously by induction on the
rank of G.

Proposition 6.2 Let G be a right-angled Artin group.

1. Fvery special subgroup S of G satisfies the p centralizer condition in

G (pCCq).

2. For all g € G and for all special subgroup S of G, ¢° is finitely p-
separable in G.
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From now on, we assume that G is a right-angled Artin group of rank r
(r > 1), and that H is a special subgroup of G of rank r - 1. Thus, G can
be written as an HNN extension of H relative to the special subgroup K =
C(t) = < star(t) > of H:

G=<H,t|tkt=k,VkeK >
Recall that H is a retract of G. A retraction of G onto H is given by:

(v) = v ifveWw
PEXO) =1 ifveV\W

We also assume that:

e cvery special subgroup S of H satisfies the p centralizer condition in

H (pCCH),

e for all h € H and for all special subgroup S of H, h° is finitely p-
separable in H.

The next results (Lemma to Lemma [6.13]) are preliminaries to the
proof of Proposition

In general, if A and B are subgroups of a group G, the image of the
intersection of A and B under a homomorphism ¢ : G — H do not coincide
with the intersection of the images of A and B in H. However, the p cen-
tralizer condition and the above results on retractions will allow us to obtain
the following lemma, which will be used to apply Minasyan’s criterion for
conjugacy in HNN extensions (see Lemma [6.4]).

Lemma 6.3 Let be given Ag, a conjugate of a special subgroup of H, Aq,...,
Ay, n special subgroups of H and o, xg,..., Tn, Y1,---, Yn, 2(n+1) elements of
H. Then, for every normal subgroup L of p-power index in H, there exists
a normal subgroup N of p-power index in H such that N < L and, if p : H
— H/N denotes the canonical projection, then:

aC (o) NNz TiAiTi C o((aCay(x0) NNizy wiAiyi) L)

where E = SD(AZ) (Z € {Or'"n})} a = Sp(a)7 Tj = Qp(xj) (.7 € {0,...,71}), Yk
=oyk) (k €{1,...n}).

Proof: Let L be a subgroup of p-power index in H. We argue by induc-
tion on n. Strictly speaking, the basis of our induction is n = 0 but we will
need the case n = 1. By the assumptions, there exist a special subgroup A
of H and an element 3 of H such that Ay = BAS™ 1.
n=0: We set + = 37 1293. The pair (A,x) satisfies pCCy by the as-
sumptions. There exists a normal subgroup N of p-power index in H such
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that N < L and, if ¢ : H — H/N denotes the canonical projection, then
Coay(p(x)) C e(Ca(x)L). But Cay(wo) = SCa(z)B~. We deduce that:
P(a)Cy(ag)(#(20)) C o((aCay(0))L).

n = 1: There are two cases:

Case 1: aCy,(zo) Nz1A1y1 = 0.

This is equivalent to say that: x1 ¢ aCa,(z0)y; *A1. Weset B = (y18) "4
Y13, so that we have: z; ¢ aB(Ca(z)B)B 'y;'. Now the intersection of
conjugates of two special subgroups of H is a conjugate of a special subgroup
of H (see [M], Lemma 6.5). Then AN A; is a conjugate of a special sub-
group C of H. There exists v € H such that AN A; = yCy~!. Therefore
if h € H, A" = ~(y71hy)¢y~1. Now (7 'hy)C is finitely p-separable
in H by the assumptions. We deduce that h4741 is finitely p-separable
in H. With the same argument, h4"? is finitely p-separable in H. Now
the pair (A N Aj,h) satisfies pCCy by the assumptions. We deduce that
Ca(z)B is finitely p-separable in H by Lemma This implies that
aCa,(z0)y; Ay is finitely p-separable in H. There exists a normal sub-
group M of p-power index in H such that z1 ¢ aCy, (ﬂ:o)yl_lAlM. Up to
replacing M by M N L, we can assume that M < L. Now the pair (Ag,xo)
satisfies pC'Cy by the assumptions. There exists a normal subgroup N of
p-power index in H such that N < M and, if ¢ : H — H/N denotes
the canonical projection, then C,a0)(p(z0)) C @(Ca,(w0)M), or, equiv-
alently, ™1 (Cy(ay)((0))) C Cay(xo)M. Then gpfl(aCA—o(x_o)mflA_l) C
a@‘l(CTO(x_o))yflAl C aCy, (:Uo)yflAlM. Therefore: =1 ¢ 80_1(5070(55_0)
71 'A}). Finally: aC(70) N 71 A1 = 0.

Case 2: aCy,(zo) Nx1A1y1 # 0.

Remark: If G is a group and H, K are two subgroups of G such that
aH NbKc # ) - where a, b, c € G -, then for all g € aH NbKec, we have
aHNbKe = g(HNc 'Kc).

Choose g € aCy,(xo) N z1A1y1. Then we have: aCy,(zo) N z1A1y1 =
9(Ca, (o) ﬂyflAlyl). We set D = Aoﬂyl_lAlyl. Then aC 4, (zo) N1 4111
= gCp(zp). Now, D is a conjugate of a special subgroup E of H by [M],
lemma 6.5. There exists § € H such that D = §E5~!. As above, the pair
(D,xz) satisfies pCCp. There exists a normal subgroup M of p-power index
in H such that M < L and, if ¢» : H — H/M denotes the canonical pro-
jection, we have: Cyp)(¥(w0)) C ¥(Cp(zo)L). Now by Lemma E.IT] there
exists a normal subgroup N of p-power index in H such that N < M and, if ¢
: H — H/N denotes the canonical projection, then p(A)N¢((y18) "t A1y18)
C (AN (y18) "L A1y18)p(M). Therefore:

Ao N7 VAT = @(BABTY) N(yy M Aryr) =
e(B)(p(A) No((y1B) A1 B))e(B~1) C
@(B) (AN (118) " A1y B)p(M))p(B71) = (Ao Nyy ' Aryn)p(M) =
@(D)p(M) (%).
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For § C H, we set S = ¢(S) and for h € H, we set h = ¢(h). We have g €
aC4(To) NT1A171. Therefore aC (7o) NZT1A171 = g(C4;(Z0) Nyt L An).
Considering (), we obtain:

aC4(T0) NTTAY1 = §C 45 gr-174,55(T0) € GCo(D)p(ar) (T0)-

Recall that N < M. Then ¢ : H — H/M induces a homomorphism zZ :
H/N — H/M such that ¢ = 1 o ¢. Note that ¥(o(D)p(M)) = (D). Let
S C‘P(D)QO(M) (Zo). Then:

h(z) € Cy(py(¥(w0)) C Y(Cp(o)L) = P (p(Cp(xo)L)).

Therefore z € o(Cp(zg)L)ker(v) = o(Cp(xo)L) because ker(v) = (M)
< ¢(L). We deduce that Cy(p),(ar) (o) C ¢(Cp(xo)L). We conclude that

aCy.(To) N1 A1 C g(Cp(xo)L) = w(gCp(x0)L) =
P((aCay(zo) N1 A1y1)L).
Inductive step: Suppose that n > 1 and that the result has been proved for
n - 1.
Note that if aCa, (z0) N1} z;Asy; = 0, then by the induction hypothesis,
there exists a normal subgroup N of p-power index in H such that, if o : H
— H/N denotes the canonical projection, then

aCy,(T) N5 T C @((aCay(x0) NN ziAiyi) L) = 0.
Obviously:
aCy. (7o) NNz, Az = 0 C o((aCaq(x0) NNz, ziAiyi) L)

Thus we can assume that aCy, (:Uo)ﬂﬂ?;f x; Ay # 0. Therefore there exists
g € H such that aCa,(z0) N1} ziAiyi = g(Cay(x0) N vy L Asys). We
set F'= AgN ﬂ?;ll y;lAiyl- - F' is a conjugate of a special subgroup of H
by [M], Lemma 6.5. We have: aCa,(x0) N (=, zidiy; = gCr (o). Now,
by the case n = 1, there exists a normal subgroup M of p-power index of H
such that M < L and, if ¢ : H — H/M denotes the canonical projection,
then:

U(9)Cyr) (¥(20)) N (2nAnyn) C ((9CF(x0) N 2nApyn)L).
This is equivalent to:
¢71(¢(9)Cw(F) (1/1(900)) N w(annyn)) - (gCF(xO) N annyn)L-

On the other hand, by the induction hypothesis, there exists a normal sub-
group N of p-power index in H such that N < M and, if o : H — H/N
denotes the canonical projection, then:

aC(T0) NN Tidi C e((aCay(zo) NN ziAiy:) M)
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or, equivalently:

o~ ([@C 4 (o) NNy ' T AT C (aCay(x0) NI i Asyi) M
Thus we have:
- (aC—(:c—o) N Tiddn) =
(ac_(xO) N ﬂz 1 T; zyz) Ny 1(mAny_n) C
(aCly, (mo) N ﬂz:l 2 Ay ) M Nz Apyn N = gCr(xo)M N xy ApynN.
Recall that N < M. Thus we have:
SD_l(aC/TO(x_O) NNz Ti A7) C gOF(x0) MNay ApynM C
O (W (9)Cyry ((0))) N~ (W (2n Anyn)) =

wil(w(g)cw(F) (Y(w0)) NY(xnAnyn)) C (9CF(x0) N TnAnyn)L =
(aCay(zo) MLy ziAiyi) L.

We need the following criterion for conjugacy in HNN extensions:

Lemma 6.4 Let G = < H, t |t~ 'kt =k, Vk € K > be an HNN exten-
sion. Let S be a subgroup of H. Let g = xot™xy...tx, (n > 1) and h =
yotP y1...t°my,, be elements of G in reduced form. Then h € g° if and only
if all of the following conditions hold:

1. m =n and a; = b;, for alli € {1,...,n},

2. Yo Yn € (xg...7n)°

J

3. if a € S satisfies yo...yn = axg...xpa L, then:

aCs(xg...xp) N yonal N (yoy1) K xox ) N
(Y0--Yn—1) K (Yo.-Yn—1) "

Proof: Proved in [M]. O

Lemma 6.5 Let S be a special subgroup of H. Let g € G\ H. Let h
€ G\ ¢g°. There exists a normal subgroup L of p-power index in H such
that, if ¢ : H — P = H/L denotes the canonical projection, if Q denotes
the HNN extension of P relative to p(K) and if ¢ : G — Q denotes the
homomorphism induced by @, we have B(h) ¢ B(g)?).

Proof: Write g = zot™x;...t%x, and h = yot" y;...t°"y,, in reduced
forms. We haven > 1-asg ¢ H.

Step 1: We assume that the first condition in Minasyan’s criterion (see
Lemma [6.4)) is not satisfied by g and h.

The special subgroup K is closed in the pro-p topology on H (see [Ld]).
Thus there exists a normal subgroup L of p-power index in H such that:

25



Vie{l,..n1}, x; ¢ KL (%),
Vje{l,..m1}, y; ¢ KL (xx).

We denote by ¢ : H — P = H/L the canonical projection. If () denotes
the HNN extension of P relative to ¢(K):

1

Q=<P, 1|7 ok)t=0pk),VkeK >,

and if o : G — @ denotes the homomorphism induced by ¢ - with @), =
¢ and p(t) = -, then B(g) = Tot"' T1..t"" T, and B(h) = %fblﬁ...fbmy_m
are reduced products in @ by (x) and (xx) - where T; = p(z;) (i € {0,...,n})
and 7; = ®(y;) (J € {0,...,m}). But then the first condition in Minasyan’s
criterion will not hold for (g) and B(h).

Conclusion of Step 1: We can assume that m = n and a; = b; for all 4
e {1,..n}.

Step 2: We assume that the second condition in Minasyan’s criterion is

not satisfied by g and h. We set © = z¢...z,, and y = yo...yn. Thus y ¢ z°.

By the assumptions, z° is finitely p-separable in H. Therefore there
exists a homomorphism ¢ from H onto a finite p-group P such that p(y) ¢
@(x)?5). Denote by @Q the HNN extension of P relative to p(K), and by
© : G — @ the homomorphism induced by ¢. Now let f : Q — P be the
natural homomorphism. We have:

f@(9)) = f(@ot"'71..8"Ty) = T.. Ty = (),
f@h) = fF@Gt" 712" Tn) = Yo--Tn = ¢(y)-

Since ¢(y) ¢ p(x)?), we see that p(h) ¢ B(g)?().

Conclusion of Step 2: We can assume that y € z°. There exists o € S

such that y = axa™'.

End of the proof: Considering Minasyan’s criterion, since h ¢ q°, we
must have:

aCs(xg..xn) NyoKzy ' N (Yoy1) K (zox1) ™ N oo O (Yoo Yn—1) K (20 p—1)
= 0.

Since K is closed in the pro-p topology on H (see [Lol]), there exists a normal
subgroup L of p-power index in H such that:

Vie{l,..n1}, x; ¢ KL (%),
Vje{l,..,m1}, y; ¢ KL (xx).
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Now by Lemma [6.3] there exists a normal subgroup N of p-power index
in H such that N < L and, if ¢ : H - P = H/N denotes the canonical
projection, then:

acg(f)ﬂ%fx—o—lﬂ%mf(x—oxl) N e VY0 Y1 K (T0.. T 1) lc
cp((an(x)ﬂyonalﬂyole(xoxl) N N Yoo Yn1 K (zo.owp1) L) =

where S = SD(S)’ a = SD(OZ)’ T = Qp(x)a T = SD(CCZ) (Z € {0"--an})’ y; = go(y])
(7 € {0,...,n}). Let @ be the HNN extension of P relative to ¢(K) and let
® : G — @ be the homomorphism induced by ¢. Then, by (%) and (xx),
?(g) = ot "' 77..1"" 7, and B(h) = Yot ' yr..t" y_n are reduced elements of
Q. So, in view of (x % %), we have B(h) ¢ B(g)?® O

Lemma 6.6 Let gg = t“xy...t%x, (n > 1) and hg = t" y;...t°y,, be cycli-
cally reduced elements of G. Let hy,..., hy, be elements of G. If h; & g& for
all i € {1,...,k}, then there exists a normal subgroup L of p-power index in
H such that, if ¢ : H — P = H/L denotes the canonical projection, if Q
denotes the HNN extension of P relative to p(K) and @ : G — @ denotes
the homomorphism induced by ¢, we have:

1. §(go) = 1" Z1..8"" Ty and B(ho) = . 3 G are cyclically reduced
in Q - where T; =@(z;) (1 € {1,....n}) andg; =B(y;) (j € {1,..n}).

2. B(hi) ¢ B(go)?E) for all i € {1,...,k}.

Proof: Since K is closed in the pro-p topology on H (see [Ld]), there
exists a normal subgroup Lg of p-power index in H such that:

Vie{l,..n1}, x; ¢ KLy (%),
Vije{l,..,m-1}, y; ¢ KLg (%x).

Let i € {1,...,k}. Since h; ¢ g{f, there exists a normal subgroup L; of p-
power index in H such that, if ¢; : H — P, = H/L; denotes the canonical
projection, if @; denotes the HNN extension of P; relative to ¢;(K) and if
®; : G — Q; denotes the homomorphism induced by ¢;, we have g;(h;) ¢
%i(g0)?%) - by Lemma 65l We set L = Lo N Ly... N L. We note that L
is a normal subgroup of p-power index in H. Let ¢ : H — P = H/L be
the canonical projection, let @ be the HNN extension of P relative to ¢(K)
and let  : G — @ be the homomorphism induced by ¢. Then since L <
Lo, 9(g0) = t"77..t"" %, and B(ho) = .. G are cyclically reduced
in @ by (x) and (x*) - where T; = @(z;) (i € {1,...,n}) and 7; = B(y;) (J
€ {1,....,m}). Moreover since L < L; for all i € {1,....,k}, we have @(h;) ¢
®(g0)% P for all i € {1,....,k}. O
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Lemma 6.7 LetG =< H, t|t 'kt =k, V k € K > be an HNN extension.
Let S be a subgroup of H. Let g = xot*x;...tx, be an element of G in
reduced form (n > 1). Then:

Cs(g) =
Cs(zg...xn) N onxo_l N (zox1) K (zor1) 1NN (2o 1) K (20 2n—1) L.

Proof: Proved in [M]. O

Lemma 6.8 Let S be a special subgroup of H. Let L be a normal subgroup
of p-power index in G and let g = xot® x1...t% x, be an element of G in
reduced form and not contained in H. Then there exists a normal subgroup
N of p-power index of H such that if ¢ : H — P = H/N denotes the
canonical projection, if Q@ denotes the HNN extension of P relative to p(K)
and if p : G = @Q denotes the homomorphism induced by v, then:

1. Cys)(@(9)) € P(Cs(g)L),
2. ker(p) =N <HNL,

3. ker(®) < L.

Proof: We haven > 1-asg ¢ H.
As above, K is closed in the pro-p topology on H (see [Lo]). Therefore there
exists a normal subgroup M of p-power index in H such that:

Vie{l,..n1}, x; ¢ MK (x).

We set L' = H N L. Note that L’ is a normal subgroup of p-power index in
H. Thus, up to replacing M by M N L', we can assume that M < L. We
set x = xg...x,. We have:

Cs(g) =
Cs(x) NxoKay' N (zor1) K (zor1) ™t Moo N (201 K (2000 2n—1) 7,

by Lemma We denote by I the intersection in the right-hand side. By
Lemma [6.3], there exists a normal subgroup N of p-power index in H such
that N < M and if ¢ : H — P = H/N denotes the canonical projection,
we have:

Cs(@) NzoKzo ' NZo 1K (To T1) ' N ... NTo.. T K (To.. Tp1)  C
e(IM)

where S = p(S), T = ¢(z), T; = ¢(x;) (i € {0,...,n}). We denote by J
the intersection in the left-hand side. Let @) be the HNN extension of P
relative to ¢(K), let  : G — @ be the homomorphism induced by . Then
Tot " T1..1"" Ty, is a reduced form of (g) in Q by (). But then Cysy(#(g))
= J - by Lemma 6.7 Now ¢(M) < ¢(L') = (L") < B(L). Therefore:
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Cops)(®(9) = J C o(IM) = o(I)p(M) C p(I)p(L) = 2(Cs(g))p(L) =
?(Cs(g)L).

Finally we remark that ker(¢) = N < M < L' = HNL < L. Since ker (@)
is the normal closure of ker(y) in G, we conclude that ker(®) < L (because
L is normal in G). O

A prefiz of t* xq...t% x, is an element of G of the form t* xy...t% xy, for
some k € {0,....,n}. We need the following result:

Proposition 6.9 Let G = < H, t |t 'kt =k, Vk € K > be an HNN
extension. Let g = t™zq...t""x,, be a cyclically reduced element of G (n >
1). Let {pi,...,pnt1} be the set of all prefizes of g - we are not assuming
that p1,..., ppy1 are ordered. There are two cases:

1. ifxy, € K, thenn = 1 and Cg(g) = <t > Ck(9g).

2. if v, € H\ K, let {p1,....pm} be the set of prefizes of g satisfying
pi_lgpi c g% (m €{0,...n+1}). For eachi € {1,...,m}, we choose «;
€ K such that p; *gp; = a; 'gay;. We set S = {ayp;* | i € {1,...,m}}.
Then Ca(g) = Ck(g) <g > S.

Proof: Proved in [M]. O

Lemma 6.10 Let L be a normal subgroup of p-power index in G. Let gg
=t"zy...t%x, (n > 1) be a cyclically reduced element of G. There exists
a normal subgroup N of p-power index in H such that, if p : H — P =
H/N denotes the canonical projection, if Q denotes the HNN extension of
P relative to p(K) and if ¢ : G — Q denotes the homomorphism induced
by v, we have:

1. CQ(@(go)) - @(CG(QO)L);
2. ker(p) =N < HNL,
3. ker(p) < L.

Proof: Let {p1,....pn+1} be the set of all prefixes of gy. Renumbering
Pl Pnt1, if necessary, we can assume that there exists m € {0,....,n}
such that pi_lgopi € g& for all i € {1,....,m} and pi_lgopl- ¢ g& for all i €
{m+1,....,n+1}. For each i € {1,...,m}, we choose «; € K such that p[lgopi
= a; 'goai. We set S = {ayp; ' | i € {1,..,m}}. We set h; = p; 'gop;
for all i € {m+1,....n+1}. By Lemma [6.6] there exists a normal subgroup
Ny of p-power index in H such that, if ¢y : H — P = H/N; denotes
the canonical projection, if Q1 denotes the HNN extension of P; relative
to p1(K), and if §1 : G — @1 denotes the homomorphism induced by
@1, then ¢1(go) is cyclically reduced in Qq, and %1(h;) ¢ B1(go)? ) for

29



all i € {m+1,...,n+1}. On the other hand, by Lemma [6.8] there exists a
normal subgroup N» of p-power index in H such that, if g0 : H — P, =
H/N; denotes the canonical projection, if Q2 denotes the HNN extension
of P, relative to po(K) and if $3 : G — Q2 denotes the homomorphism
induced by 2, we have: Cgz(x)(®2(90)) C P2(Ck(g0)L), ker(p2) < HN L
and ker(@z) < L. We set N = N; N Na. Note that N is a normal subgroup
of p-power index in H. Let ¢ : H — P = H/N be the canonical projection,
let @ be the HNN extension of P relative to ¢(K) and let o : G — @ be
the homomorphism induced by ¢. Since N < Np, B(go) is cyclically reduced
in Q and @(h;) ¢ B(go)?") for all i € {m+1,....,n+1}. On the other hand,
since N < N, we have:

2 N (Coury(@(90))) € B2 HCoy i) (@2(90))) C Cr(g0)L ().

There are two cases:
Case 1: z, € K. Then n =1, Cg(g0) = < t > Cr(go) and Cq(@(g0)) =
<t > Cuk)(®(g0)) - by Proposition 9 Now (x) implies:

Co(®(90)) € <P(t) > P(Cr(90)L) = P(< t > Cr(90)L) = P(Ca(g0)L)-

Case 2: m, € H\ K. If i € {1,..,m}, p(p:)"'%(90)@(pi) = P(p; 'g0pi) €
B(g0)?%) - because p{lgopi € g{f-, whereas if i € {m+1,...n+1}, §(p;)~*
B(90)P(pi) = B(hi) ¢ P(go)?™). Therefore {B(p1),....5(pm)} is the set of
all prefixes of P(go) satisfying B(pi) ™' (90)7(pi) € P(go)?™). Now Cc(go)
= Ck(g90) < go > S and Cq(®(g90)) = Coy(i)(#P(g0)) < P(go) > S where S
=2(9) = {®lay)@(ps)~' | i € {1,...,m}} - by Proposition We deduce
that:

Co(®(90)) € P(Ck(g0)L) <P((g90) > P(S) = P(Ck(go)L < go > 5) =
?(Ca(go)L).

O

Proposition 6.11 Let G be a right-angled Artin group of rank r (r > 1).
Let g € G. If g # 1, then there exists a special subgroup H of rank r-1 of
G such that g ¢ HC.

Proof: Proved in [M]. O

Lemma 6.12 FEwvery special subgroup S of G satisfies the p centralizer con-
dition in G, pCCg.

Proof: Let g € G. Let L be a normal subgroup of p-power index in G.
There are two cases:
Case 1: S # @G.
Let H be a special subgroup of rank r - 1 of G such that S < H. Then G
can be written as an HNN extension of H, relative to a special subgroup K
of H:
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G=<H,t|tkt=kVkeK >

We set L' = HN L. We note that L’ is a normal subgroup of p-power index
in H. There are two cases:

Subcase 1: g € H.

By the assumptions, the pair (S,g) satisfies the p centralizer condition in H
(pCCp). There exists a normal subgroup M of p-power index in H such
that M < L' and, if ¢ : H — P = H/M denotes the canonical projection,
we have:

Cyes)(®(9)) C ¥(Cslg)L') ().

We denote by f : G — H the natural homomorphism. We note that f~!(M)
is a normal subgroup of p-power index in G (because f~'(M) is the kernel of
the homomorphism 1o f). Therefore, N = LN f~1(M) is a normal subgroup
of p-power index in G. Moreover N < L and f(N) < M. We denote by
¢ : G = @ = G/N the canonical projection. We observe that ker(y) =
M, ker(p) = N, M < f~Y(M)NLNH =NNHand NNH C f(N) <
M. Therefore M = N N H. Thus we can assume that P < @ and ¢, =
1. But then (L") = p(L') C ¢(L). Recall that ¢ € H and S < H. Thus
considering (*), we obtain:

Cus)(p(9)) = Cys)(¥(g)) C (Cs(9) (L) C o(Cs(g))p(L) =
¢(Cs(g)L).

Subcase 2: g € G\ H.

Write g = zot* xy...t%" z,, in a reduced form (n > 1). Then, by Lemma [6.8],
there exists a normal subgroup M of p-power index in H such that, if ¢ :
H — P = H/M denotes the canonical projection, if @ denotes the HNN
extension of P relative to ¢)(K) and if 1) : G — @ denotes the homomorphism
induced by ¢, then: C g, (¥(9)) € ¥(Cs(g)L), ker(yp) < HN L, and ker (1))
< L. We note that 1(S) N(L) = (S) N(L) < P is finite. Since Q is
residually p-finite (see [Lo], Lemma 2.8), 1(g)?($)W(©) is finitely p-separable
in Q. Therefore, by Lemma B35 there exists a normal subgroup N of p-
power index in @ such that N < ¢(L) and, if x : Q — R = Q/N denotes
the canonical projection, then:

Coupisn X(@(9))) € X(Cys) (%(9)B (L))

We set ¢ = xy o1 : G — R. We have: ker(p) = E_l(ker(x)) = (N)cC
J— 1 J— J— J—

v (¢Y(L)) = Lker(y). Now ker(y)) < L. Then ker(p) < L. And:

Co(s)((9)) = C, sy (X (@(9))) € X(Cys) (¥ (9))¥(L)) C
)
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Case 2: S =G.

If g = 1, then the result is trivial. Thus we can assume that g # 1. Then,
by Proposition [6.11] there exists a special subgroup of rank r - 1 H of G
such that g ¢ HY. As usual, G can be written as an HNN extension of H
relative to a special subgroup K of H:

G=<H,t|tkt=k,VkeK >

Let g9 = t"x1...t% 2, be a cyclically reduced element in G conjugate to g.
Choose a € G such that g = agoa™'. Note that g ¢ H implies that n >
1. By Lemma [6.I0] there exists a normal subgroup M of p-power index in
H such that, if v : H — P = H/M denotes the canonical projection, if @
denotes the HNN extension of P relative to ¢(K) and if ¢ : G — @Q denotes
the homomorphism induced by v, then: Cq(¥(go)) C ¥(Cq(g0)L), ker ()
< HNL and ker(y)) < L. Now @ is hereditarily conjugacy p-separable by
Corollary B3l Then @ satisfies the p centralizer condition by Proposition
There exists a normal subgroup N of p-power index in @) such that N
< (L) and if x : Q@ — R = Q/N denotes the canonical projection, we have:

Cr(x(¥(90))) < X(Co(¥(g0)¥(L))-

We set p = yo1 : G — R. As above, we have ker(p) = E_l(ker(x)) =
Eil(N) C Eil(E(L)) = Lker(y). Now ker()) < L. Then ker(p) < L.

And:

Finally:
That is,

O

Lemma 6.13 For every g € G and for every special subgroup S of G, g°
is finitely p-separable in G.

Proof: There are two cases:
Case 1: S # @G.
Let H be a special subgroup of rank r - 1 of G such that S < H. As usual,
G can be written as an HNN extension of H relative to a special subgroup

K of H:
G=<H,t|t'kt=kVkeK >
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Let g € G. There are two cases:

Subcase 1: g € H.

Then ¢° is finitely p-separable in H by the assumptions. Since G is residually
p-finite by Theorem B} ¢° is finitely p-separable in G by Lemma .10l
Subcase 2: g € G\ H.

Let h € G\ ¢°. By Lemma[G.5] there exists a normal subgroup L of p-power
index in H such that, if ¢ : H — P = H/L denotes the canonical projection,
if @ denotes the HNN extension of P relative to ¢(K) and if o : G — Q
denotes the homomorphism induced by ¢, we have (h) ¢ B(g9)?%). Now
?(S) = ¢(S) < P is finite and @ is residually p-finite (see [Lo], Lemma 2.8).
Then there exists a homomorphism x :  — R from @ onto a finite p-group
R such that x(@(h)) ¢ x(B(g)?*)). Weset ) = yoB : G — R. It is clear
that ¢ suits.

Case 2: S =G.

Let g € G.

If g = 1, then, since G is residually p-finite by Theorem 61, ¢ = {1}
is finitely p-separable in G. Thus we can assume that g # 1. Then, by
Proposition [6.11] there exits a special subgroup of rank r - 1 H of G such
that g ¢ HY. As usual, G can be written as an HNN extension of H relative
to a special subgroup K of H:

G=<H,t|t'kt=kVkeK >

Let h € G\ ¢g%. Let go = tzy...t% 2, and hg = t1y;...t""y,, be cyclically
reduced elements of G conjugate to g and h respectively. Note that g ¢ HE
implies that n > 1. There are two cases:

Subcase 1: hg € H. Then, by Lemma [6.0] there exists a normal subgroup
L of p-power index in H such that, if ¢ : H — P = H/L denotes the
canonical projection, if ) denotes the HNN extension of P relative to ¢(K)
and ¥ : G — @ denotes the homomorphism induced by ¢, we have: %(go)
= t"71..1"" T, is cyclically reduced in Q - where T; = p(x;) (i € {1,....,n}).
Since n > 1, we have: B(go) ¢ P9 = B(H®). Therefore (go) ¢ B(ho)¥ =
B(h§) € B(HE). Now Q is conjugacy p-separable by Corollary B3l Thus
there exists a homomorphism x from ) onto a finite p-group R such that
x(@(90)) ¢ x(@(ho)). Weset 1) = xop : G — R. It is clear that 1 suits.
Subcase 2: hg € G\ H. Let {hy,....,hn, } be the set of all cyclic permutations
of hg. Then, since h ¢ g%, we have: h; ¢ g§ for all i € {1,....,m}. Therefore,
by Lemma [6.6] there exists a normal subgroup L of p-power index in H such
that, if ¢ : H — P = H/L denotes the canonical projection, if @) denotes the
HNN extension of P relative to ¢(K) and @ : G — @ denotes the homomor-
phism induced by ¢, then: B(go) = "' 771...1°" T, and B(hg) = O
are cyclically reduced in @) - where Z; = @(x;) (¢ € {1,...,n}) and 7; = &(y;)
(j € {1,..n}) - and B(h;) & B(go)?H) for all i € {1,...,m}. Consequently, by
Lemma 23, (g0) ¢ ®(ho)¥. Now Q is conjugacy p-separable by Corollary
43l Then there exists a homomorphism y from @ onto a finite p-group R
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such that: ¥(7(g0)) ¢ x(7(ho))%. Therefore x(7(g)) & x(F(1))%. We set 1
=xop: G — R. It is clear that 1 suits. O

Proof of Proposition [6.Z We argue by induction on the rank r of G. If
r = 0, then the result is trivial. Thus we can assume that » > 1 and that
the result has been proved for 1,..., » - 1. Now, Proposition 6211 follows
from Lemma [6.12] and Proposition £.212 follows from Lemma O

We are now ready to prove:

Theorem 6.14 FEvery right-angled Artin group is hereditarily conjugacy p-
separable.

Proof: Let G be a right-angled Artin group. Let ¢ € G. Then ¢% is
finitely p-separable in G by Proposition[6.211. We deduce that G is conjugacy
p-separable. On the other hand, G satisfies the p centralizer condition by
Proposition [6.212. We conclude that G is hereditarily conjugacy p-separable
by Proposition O

7 Applications

The first application that we mention is an application of our main result
to separability properties of right-angled Artin groups.

Recall that a group is said to be conjugacy IC-separable, where K is a class
of groups, if for all g, h € G, either g ~ h, or there exists a homomorphism
¢ from G to some group of K such that ¢(g) ~ ¢(h).

For a group G, we denote by (C"(G)),>1 the lower central series of G.
Recall that (C™(G))p>1 is defined inductively by C1(G) = G, and C"T1(G)
= [G,C"(@Q)] for all n > 1.

Theorem 7.1 Every right-angled Artin group is conjugacy K-separable, whe-
re KC is the class of all torsion-free nilpotent groups.

Proof: Let G be a right-angled Artin group. Let g, h € G such that g ~
h. Let p be a prime number. Then G is conjugacy p-separable by Theorem
Thus, there exists a homomorphism ¢ from G onto a finite p-group P
such that ¢(g) = ¢(h). Now, P is nilpotent. Therefore, there exists n > 1
such that C"(P) = {1}. Let 7 : G — CHL(G) be the canonical projection.
It follows from [DK2] that CnL(G) is a torsion-free nilpotent group. Since
©(C™"(GQ)) < C™(P) = {1}, ¢ induces a homomorphism @ : C"L(G) — P such
that ¢ = gom. As p(g) = ¢(h), we have w(g) » m(h). O
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We turn now to applications of our main result to residual properties of
outer automorphism groups of right-angled Artin groups.

Let G be a group. An automorphism ¢ of G is said to be conjugating if
for every g € G, v(g) ~ g. We say that G has Property A if every conjugating
automorphism of G is inner. Minasyan proved (see [M]):

Proposition 7.2 Right-angled Artin groups have Property A.

Let G be a group. We denote by Z,(G) the kernel of the natural ho-
momorphism Out(G) — GL(H(G,F,)) (where IF), denotes the finite field
with p elements). Paris proved (see [P]):

Theorem 7.3 Let G be a finitely generated group. If G is conjugacy p-
separable and has Property A, then I,(G) is residually p-finite.

Recall that a group G is said to be virtually P, where P is a group
property, if there exists a finite index subgroup H < G such that H has
Property P. We are now ready to prove:

Theorem 7.4 The outer automorphism group of a right-angled Artin group
1s virtually residually p-finite.

Proof: This follows immediately from Theorem [6.14] Proposition
and Theorem [T.3| 0

Recall that a group G is K-residual, where K is a class of groups, if for
all g € G\{1}, there exists a homomorphism ¢ from G to some group of K
such that ¢(g) # 1. Myasnikov proved (see [My]):

Theorem 7.5 Let G be a finitely generated group. If G is conjugacy p-
separable and has property A, then Out(G) is K-residual, where K is the
class of all outer automorphism groups of finite p-groups.

We are now ready to prove:

Theorem 7.6 The outer automorphism group of a right-angled Artin group
is KC-residual, where IKC is the class of all outer automorphism groups of finite

D-groups.

Proof: This follows immediately from Theorem [6.14] Proposition
and Theorem O

The next application was suggested to the author by Ruth Charney and
Luis Paris.
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Let G = Gr be a right-angled Artin group. Let r be the rank of G. We
denote by T'(G) the kernel of the natural homomorphism Aut(G) — GL,(Z)
and by 7 (G) the kernel of the natural homomorphism Out(G) — GL,(7Z).
We call T(G) the Torelli group of G. Note that 7(G) = T(G)/Inn(G). In
[D2], Day proved that T'(G) is finitely generated. Therefore 7(G) is finitely
generated. Now, we prove the following;:

Theorem 7.7 The Torelli group of a right-angled Artin group is residually
torsion-free nilpotent.

In order to prove Theorem [Z.7, we have to introduce the notion of sepa-
rating Z-linear central filtration.

Recall that a central filtration on a group G is a sequence (Gjp)p>1 of
subgroups of G satisfying the conditions:

Gi1 =G,
Gn > Gn+17
(G, Gn] < G for all m, n > 1.

Let F = (Gn)n>1 be a central filtration. Then the mapping G x G —

G, (z,y) — zyz~'y~! induces on:

Gn
Lr (G) = @@1 Gni1
a Lie bracket which makes £r(G) into a graded Lie Z-algebra.
We say that (G )n>1 is a separating filtration if N,>1G, = {1}. We say

that (Gy,)n>1 is Z-linear if for all n > 1, the Z-module o is free of finite
rank.

For a group G, we denote by (C7(G))n>1 the sequence of subgroups of G

. . 1 _ n n+1 C%Hrl(G)
defined inductively by C (G) =G, and [G,Cy(G)] < C77(G) and (x|

Cz(G)
is the torsion subgroup of 7@ eiel) for all n > 1.

Proposition 7.8 For all m, n > 1, [CI(G),C%(G)] < C;(G).
Proof: Proved in [BL] (see Proposition 7.2). O

Thus, (C%(G))n>1 is a central filtration on G. We denote by L7(G) the
corresponding graded Lie Z-algebra.

For a group G, we denote by Ab(G) the abelianization [G—GG] of G, and
by Z(G) the center of G. For a Lie algebra g, we denote by Z(g) the center
of g.

Let G be a group. For n > 1, we denote by A,, the kernel of the natural
homomorphism Aut(G) — Aut( Let 7 : Aut(G) — Out(G) be the

canonical projection. For n > 1, we set B, = m(G,,).

i)
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Theorem 7.9 If Ab(G) is finitely generated, and Z(F,® L7(G)) = {0} for
every prime number p, then (By)n>1 is a Z-linear central filtration on Bj.
Furthermore, (By)n>1 is separating if and only if G satisfies the condition:

(IN(G)): For every ¢ € Aut(G), if ¢ induces an inner automorphism of
C"L(G) for allm > 1, then @ is inner.
7

Proof: Proved in [BL] (see Corollary 9.9). O

From now on, we assume that G = Gr is a right-angled Artin group of
rank 7 (r > 1). We shall show that G satisfies the conditions of Theorem
[[9 Since Bj is precisely the Torelli group of G, Theorem [7.7] will then
result from the following:

Theorem 7.10 Let B be a group. Suppose that B admits a separating Z-
linear central filtration, (Bp)n>1. Then B is residually torsion-free nilpotent.

Proof: Proved in [BL] (see Theorem 6.1). O

We need to introduce the following notations. Let K be a commutative
ring. We denote by Mt the monoid defined by the presentation:

Mr =<V ]ovw=uwv,V{vw}ekFE >,

by Ar the associative K-algebra of the monoid Mr, and by Lp the Lie
K-algebra defined by the presentation:

Lr =<V |[yw] =0,V {vw} € E >.
The following theorem is due to Duchamp and Krob (see [DK]):
Theorem 7.11 The K-module Lr is free.

Thus, by the Poincaré-Birkhoff-Witt theorem, Lr can be regarded as
a Lie subalgebra of its enveloping algebra, for which Duchamp and Krob
established the following (see [DK]):

Theorem 7.12 The enveloping algebra of Lr is isomorphic to Ar.

Furthermore, in [DK2|, Duchamp and Krob proved the following theo-
rem, which generalizes a well-known theorem of Magnus (see [MKS]):

Theorem 7.13 Suppose that K = 7. The graded Lie Z-algebra associated
to the lower central series of G is isomorphic to Lr.
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Let Z= Nyeystar(v). Then Z(G) is the special subgroup of G generated
by Z. Let H be the special subgroup of G generated by V' \ Z. We have: G
= H x Z. The proof of Theorem [.7] will use the following;:

Lemma 7.14 Suppose that Z(Gr) = {1}. Then Z(Lr) = {0}.

Proof: Let g € Z(Lr). Suppose that g # 0. Let v € V. We have [g;v]
= 0 (in Lr). Now, Lp can be regarded as a Lie subalgebra of Ar by Theo-
rem [Z.T11] and Theorem Thus, we have gv = vg (in Ar). Therefore g
belongs to the subalgebra of Ar generated by star(v) (see [KR]). Since v is
arbitrary, this leads to a contradiction with our assumption. U

Remark: In the above lemma, K is arbitrary.

From now on, we assume that K = Z. Recall that (C"(G))n>1 denotes
the lower central series of G. We are now ready to prove:

Theorem 7.15 The Torelli group of a right-angled Artin group is residually
torsion-free nilpotent.

Proof: Let Z= Nyeystar(v). Then Z(G) is the special subgroup of G
generated by Z. Let H be the special subgroup of G generated by V' \ Z.
We have: G = H x Z(@G). Note that Z(H) = {1}. First, we show that T (G)
=T(H). Let ¢ : T(G) — T(H) be the homomorphism defined by:

p(a)(h, k) = (a(h), k),

foralla € T(G), h € H, k € Z(G). Clearly, ¢ is well-defined and injective.
We shall show that ¢ is surjective. Let 5 € T(G). For g € G, we set §(g) =
(B1(9), B2(g)), where 1(g) € H and pa2(g) € Z(G). Let h € H. We denote
by h the canonical image of h in Ab(H). Note that the canonical image of
h in Ab(G) = Ab(H) x Z(G) is (h,1). Since 8 € T(G), we have: (h,1) =
(B1(h),B2(h)), and then fo(h) = 1. Let k € Z(G). Since [(k) lies in the
center of G, we have /31 (k) = 1. Note that the canonical image of k in Ab(G)

is (1,k). As g € T(G), we have f2(k) = k. Finally, we have:

5(h’ k) = (ﬁl(h)’ kj),

for all h € H and k € Z(G). Applying the same argument to 3!, we obtain
that the restriction « of 81 to H is an automorphism of H. Therefore g =
(). We have shown that T(G) = T(H). It is easily seen that this implies
that 7(G) = T(H). Thus, up to replacing G by H, we can assume that
Z(G) = {1}. On the other hand, it follows from [DK2| that for all n > 1,
there exists d,, € IN such that:

C™(G) . rdn
oGy = 2

38



Now, for all n > 1, C™(G) < C}(G), and g%gg; is the torsion subgroup of

CnL(G) by [BL], Proposition 7.2. It follows that C%(G) = C™(G) for all n
> 1, and that £7(G) = Lr by Theorem [[.I3] Since Z(G) = {1}, we have
Z(F, ® Lr) = {0} for every prime number p - by Lemma [Z.T4l We deduce
that (By,)n>1 is a Z-linear central filtration on 7 (G) by Theorem [Z.9 Now,
let ¢ € Aut(G) such that ¢ induces an inner automorphism on C”L(G) for all
n > 1. Let g € G. Suppose that ¢(g) and g are not conjugate in G. Then
it follows from the proof of Theorem [7.T] that there exists n > 1 such that
the canonical images of ¢(g) and ¢ in C”L(G) are not conjugate in C”L(G) -
contradicting our assumption. Thus ¢ is conjugating. Therefore ¢ is inner
by Proposition We deduce that (B,,),>1 is separating by Theorem [Z.9]
We conclude that T (G) is residually torsion-free nilpotent by Theorem [7.10

O

Corollary 7.16 The Torelli group of a right-angled Artin group is residu-
ally p-finite for every prime number p.

Proof: This follows immediately from Theorem [I.T5]and Theorem 2.1.(i)
in [G]. O

Corollary 7.17 The Torelli group of a right-angled Artin group is bi-order-
able.

Proof: This follows immediately from Theorem and [R] (see also
IMR], Theorem 2.4.8.). O
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