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Abstract. In a previous paper, we proposed a model coupling the evo-
lution of an individual’s opinions, with that of its local network. The
individual opinion dynamics is based on the bounded confidence model.
Its social network is mainly structured by its group membership: on the
one hand, an individual is connected to every members of its group and
to the other groups by a given probability to be linked to their mem-
bers on the other hand. The main result from the first studies of this
model relates to the unexpected heterogeneous size distribution of the
groups. This is explained by the dynamics of individuals. They change
their opinion talking with their close neighbour (opinions less distant
than a threshold ε), or they change groups when their opinion differs too
much (≺ ε) from the average one of their group. This first new result
leads us to study more exhaustively the various group organizations the
model provides. We found the dynamics of groups are not stable when
ε is small even if the dynamics of opinions is stable. For larger values of
ε, both the opinion and the group dynamics are stable. Looking at the
group sizes distribution, four different forms are identified depending on
ε.

1 Introduction

It is commonly acknowledged that a system can be stable at a given scale but
not at another one. This paper addresses this issue. It describes how population,
group and individual levels can differ in stability and forms. Before going into
these details, we present the assumptions of the simple simulated model of the
society we work with.

Other’s opinion is a source of cognitive inconsistency! That is what Festinger
[5] argued adding that it is experienced as dissonance. According to him, the
dissonance is a psychological discomfort or an aversive drive state that people are
motivated to reduce, just as they are motivated to reduce hunger. In his balance
theory, [10] used a similar concept and called it imbalance. More recently, [13]
showed that, as the dissonance and balance theories suggest, the disagreement
from others in a group produces cognitive inconsistency and the negative states
of dissonance or imbalance.
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Groups are a suitable place of interaction between people and the exchange
with others can lead to dissonance. They are thus at the same time the entity
creating dissonance and the one reducing it. Indeed, three strategies can be
chosen to reduce its dissonance created by the heterogeneity of the opinion inside
its group (see [13]): changing one’s own opinion to agree with others in the group,
influencing others to change their opinions, or joining a different, attitudinally
more congenial group.

The first two relates to the individual interactions which are often based
on similarity and have been extensively studied in the attraction paradigm [2]
and other theories on interpersonal interactions as the social judgment theory
[15]. The third can be linked to the personal external network of the individ-
ual. Indeed, its external neighbours provide it with some information about the
characteristics of their group and can introduce it. This stresses the importance
of the individual’s social networks.

The structure of social networks has been the subject of study in many
different disciplines. In particular, a more quantitative investigation of the topo-
logical structure of social networks has been possible with the great availability
of data of web 2.0. The analysis performed with these tools revealed that so-
cial networks usually present community based structures: analyzing networks
at different scales makes possible to identify groups of persons who are more
interconnected than the rest of society [8]. Many different algorithm have been
created to identify communities on large networks [7] and many models have
been proposed to explain the mechanism leading to the formation of such un-
derlying structure [14].

Recently many works have been done regarding evolving network topology
and their adaptation to the social background [9]: as people can influence each
other to induce a change of mind, the difference of opinion on some very im-
portant topics can also lead to the breaking of a social contact. In other terms,
since people prefer to be surrounded by persons sharing similar opinion, it is
quite likely that the change of opinions due to the opinion dynamics’ processes
can lead to the change of the network structure. Two interesting analysis of the
co-evolution of opinions and networks are [11] and [?]. In both these cases the
opinion dynamics process takes place on a random graph and the connections
among the agents are rewired in order to directly connect to someone with a
similar opinion. In the two cases the formation of completely separate groups,
sharing the same opinion, is observed at the end of the simulation. By the way
the groups observed in these cases are an effect of the dynamics and are not
a basic ingredient in its own construction. There is no impact of the group by
itself on the dynamics of the individuals as we propose in the present work.

Starting from the strategies to overcome inconsistency explained above, we
have presented in [?] a simulation model reproducing their main aspects in order
to better understand the link between the individual’s choices and the organi-
zation of the society into groups. We will model the group concept as the one
of community. It is based on a social network where an individual has most of
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its links to its own group and a minor part to the other groups. The interac-
tion process between individuals will be modeled by one of the classical opinion
dynamic model.

2 The model

The model presented in [?] couples an opinion dynamics process with an adaptive
network structure co-evolving with the opinion. The considered network has
a typical underlying structure based on groups. We defined group as a set of
individuals fully interconnected among them. From the point of view of the
individuals, therefore, each agent has a link to all the other members of the
same group. Moreover individuals can also be connected, with a fixed probability
pext, to members of different communities. The resulting network therefore is
composed by different complete graphs (the groups) connected among them
through the links that agents establish outside the group. At the initialization
time each agent select the membership in a group. When all the agents have
decided their membership, the internal links are established. Secondly, each agent
connects with probability pext to all the agents that are not inside its own group.
The initialization is completed randomly assigning to each agent a continuous
opinion ϑ ranging in the interval [0, 1].

Agents choose between two possible dynamics at a time: they can commu-
nicate with an other agent in their neighbourhood (exchanging opinion with it
and updating their opinions with the opinion of the other agent); or they can
reconsider their membership in the group. The choice of being part of a group,
in fact, is usually based on homophily preferences: if the average socio-cultural
attitudes of a group are strongly different from the one of a member, this mem-
ber could feel a certain uneasiness and decide to change groups. In this case we
will consider homophily preferences based on the opinion. In a simulation step
all the agents are selected and, at their turn, they can decide with probability
pchange to change their membership in a group and with probability (1-pchange)
to perform opinion dynamics.

When an agent i chooses to perform opinion dynamics, it first selects a part-
ner, j, for the contact process: the partner can be selected both among the
members of its own group or the agents connected through external connec-
tions. The opinion updating mechanism is the Bounded Confidence (BC) model
introduced by Deffuant et al. in [3] and deeply analyzed in all its aspects in [1],
[12], [6]:

if |ϑi(t) − ϑj(t)| < ε

{

ϑi(t + 1) = ϑi(t) + µ(ϑj(t) − ϑi(t))
ϑj(t + 1) = ϑj(t) + µ(ϑi(t) − ϑj(t))

(1)

The parameter ε represents the tolerance of an agent and it is the funda-
mental critical parameter of the system. The parameter µ, on the other side,
represents the relative shift of the agents after a discussion.

On the other side, the mechanism to change groups follows the following
steps: the agent looks at the distance between its opinion and the average opinion
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of its own group, OI . If |ϑi(t)−OI (t)| > ε, it changes groups looking at the groups
with which it already has a contact through an external link. It will connect to
a chosen group with a probability:

Pi→J =
1 − |ϑi(t) − OJ(t)|

∑

J⊃j∈V(i) (1 − |ϑi(t) − OJ (t)|)
(2)

where V(i) is the neighbourhood of node i.
Once an agent change groups, its connections are completely rewired: all the

connections he had before (inside the previous group and outside) are canceled.
It is connected to all the agents of the new group and new external connections
are established with the probability pext with the agents outside the new group.
All the relationship are symmetrical: this means that if an agent A is linked to
an agent B, the agent B is also linked to the agent A.

In previous papers ([4], [?]) we provided a detailed description of the opinion
dynamics process on this kind of group-based adaptive networks, specifying the
main differences with respect to static networks. We discovered some surprising
behaviours compared to the known behaviour of the Deffuant bounded confi-
dence model(BC). First of all, the coupled model exhibits a total consensus for
an ε value lower than the BC model. That is linked to the capacity of the coupled
model to suppress the minor clusters positioned in the BC model on the extrema
of the opinion space. In social psychology, groups are known as a source of co-
hesion and avoidance of the isolation. Thus, that is a very interesting fact that
the introduction of groups in the BC model suppresses the isolated individuals.
Thus, we observed an heterogeneity of the final size distribution of groups which
is more realistic than the more homogeneous size distribution obtained with the
Bounded Confidence model.

An other interesting phenomenon concernes the distribution of the group
sizes: for certain values of ε, some groups become larger as the system evolves
while other decrease in size, sometimes until containing only one individual.

Finally, from the point of view of the groups, the consensus remains for a
large set of ε values while, looking at the population level, there are a lot of opin-
ion clusters. Then, each group does not simply correspond to a subpopulation
exhibiting the same behaviour than the whole population.

In this paper we focus on the obtained equilibrium and the form of the size
distribution. The results presented in the following sections concern simulations
with N = 5000 individuals and G=500 groups. Some parameters of the model
are fixed (µ = 0.5, pext = 0.001 and pchange = 0.5) in order to study the char-
acteristic behaviours in different ranges of the tolerance parameter ε. Regarding
ε, we study the value for which the total consensus is not reached. Practically,
it means we are interested in the various ε lower than 0.267.

3 Different tolerances, different equilibria

Fig. 1 displays the typical evolutions of group sizes and individual opinions in
time for one realization of various values of ε. As we can observe from the right
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column, the opinion dynamics leads to the formation of stable opinion clusters
as it happens for static networks (even if the cluster structure is not exactly the
same as for the static case [?]).

On the other side, looking to the left column of the plot, the situation re-
garding groups is very different: for some values of ε (0.01 and 0.06) group sizes
continues to vary in time. Individuals, even if their opinion is stable, continue to
jump from one group to an other and this process never reaches a steady state.
This is not the case for ε = 0.13 and ε = 0.22. for which, after a transitory
phase, groups, as individuals, become stable over time also.

Fig. 1. Left column: Evolution in time of group sizes. Each line represents one group.
Right column: Evolution in time of individual opinions. Each line represent an individ-
ual. Each raw corresponds to a different value of ε: 0.01, 0.06,0.13,0.22
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We can argue therefore the presence of different kinds of equilibrium, for
some values of the tolerance parameter ε, we find stable opinions and unstable
groups, above a threshold value, also the groups stabilize. To study this transition
to static equilibrium we consider the relative standard deviation of the size in
the T=100 last time steps at the population level opinion equilibrium, for each
of the groups:

√

〈S2
I 〉T − 〈SI〉T

2

〈SI〉T
(3)

where the symbol 〈...〉T indicates the average on time.
This indicator, averaged for all the groups and on 100 independent realiza-

tions is displayed, with its relative error, in Fig. 2. As we can observe from this
figure, the transition to group stability can be set at ε ∼ 0.1.
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Fig. 2. Relative standard deviation on time, averaged on all the groups and on 100
realizations

This result is coherent with what we observed in [?] where we studied the
percentage of individuals susceptible to change groups as a function of ε. For
ε < 0.1 it is impossible to obtain the situation one opinion cluster in one group;
therefore the dynamics of groups cannot converge to a steady state. This situa-
tion is described in Fig. 3. First of all, we can notice that the number of opinion
clusters inside a group is always lower than the number of clusters at population
level. In particular, for ε = 0.1, we observe that the average number of opinion
clusters at population level is five, but each group contains only one cluster.
For ε < 0.1, therefore, the system is unstable: when there are several opinion
clusters by group, some individuals are necessary far from the average opinion
of the group since the distance between two opinion clusters is equal to at least
ε.



How opinion dynamics generates group hierarchies 7

0.05 0.1 0.15 0.2
ε

0

5

10

15

20

25

#c
lu

st
er

s,
 #

cl
us

te
rs

 b
y 

gr
ou

p

Fig. 3. Number of opinion clusters by group and number of opinion cluster at the
population level for various values of ε. The result is averaged on 30 realizations. The
dotted line represents the minimum and the maximum on the realizations.

Since in the following we are going to explore some statistical properties of the
size distributions, it is important to analyze in details the non-equilibrium phase.
As we observed before, for ε < 0.1 the groups are not stable. Notwithstanding
this dynamical instability, if we observe the aggregate properties of the system,
namely the size distribution at different times of the evolution, we can argue
that the statistical properties of the model remain constant. In the Fig. 4 we
analyzed the case ε = 0.01 and we displayed the group size distribution at
different moments of the evolution. The figure shows that the size distributions
maintain over time the same shape. This confirms that the size distribution
remains a good indicator of the heterogeneity of the group size in the non-
equilibrium phase.
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Fig. 4. Group size distribution for ε = 0.01 at different moment (T=500, 1000,1500)
of the evolution. The result is averaged on 100 realizations.
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4 The various levels of heterogeneity

From the Fig. 1 we can also extract interesting considerations regarding the
distribution of group sizes. Since we use a random procedure to fill the group
structures, at the initial state, all the groups are distributed with a small devia-
tion (σS = 3.15) around the average value: 〈S〉 = N/G = 10. The average size of
the larger group, at the beginning is Smax = 20.8 ± 1.62. Of course the average
size of the groups will remain the same during all the evolution of the system
since the population N and the number of groups G are constant. By the way,
looking at the Fig. 1 and taking into account the considerations about Fig. 4,
we observe that for ε = 0.01, some bigger groups (S ∼ 100) already appear. At
ε = 0.06 a macroscopic group containing more than 20% is present, while all
the other groups seem to be much smaller. The situation is again different at
ε = 0.1 where many intermediate sizes seem to be allowed. Finally, for ε = 0.22
the situation seems to be similar to the initialization moment. A statistical de-
scription of these different situations is displayed in Fig. 5 where the cumulative
size distributions for the four cases analyzed in Fig. 1 are reported.
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Fig. 5. Cumulative size distribution at the end of the evolution for ε =
0.01, 0.06, 0.13, 0.22. The dotted lines represent the size distribution at the initializa-
tion. The result is averaged on 100 realizations.

Fig. 5 provides a statistical description of the assumption we did by the
observation of the typical run in Fig. 1: for ε = 0.01 group sizes present a
distribution that decrease fast with the size and that can be fitted with an
Exponential law. For ε = 0.06 we observe a bi–modal distribution, where the
large tail corresponds to the few macroscopic groups. For ε = 0.13 group sizes
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present a sort of hierarchy structure where all the sizes seem to be possible.
The data, in this case, can be fitted with a power law distribution, denoting the
absence of a typical scale in the system. Finally the size distribution for ε = 0.22
is not strongly dissimilar to the initial one.

A more complete set of cumulative degree distributions for different values
of ε is given in figure 6.

Fig. 6. Cumulative size distribution at the end of the evolution for all the analyzed
values of ε. The result is averaged on 100 realizations.

The variability of the sizes, at the final state is described from the second
moment of the size distribution 〈S2〉I,real. We can provide a characterization
of the heterogeneity level of the group structures introducing the parameter:
κ = 〈S2〉/(〈S〉)2: if κ � 1 the variance is dominated by the second moment
and therefore the sizes are strongly heterogeneous, while for κ ∼ 1 we have an
homogeneous distribution. The Fig. 7 displayed this parameter as function of ε.
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Fig. 7. Heterogeneity between group sizes as a function of ε. The result is averaged on
100 realizations.

As we can see, the parameter κ quickly increases for ε > 0.02, reaches a pick
for ε ∼ 0.07 and rapidly decreases. Connecting this information with the analysis
of the size distributions (Fig. 6) we can argue that: for ε ≤ 0.02 the system
presents an exponential size-distribution and, therefore, it is characterized by
a low value of heterogeneity. The range 0.02 < ε ≤ 0.1 corresponds to the bi-
modal distribution, with the two characteristics scales (small groups and few
macroscopic groups). This is the phase of higher heterogeneity. The range 0.1 <
ε ≤ 0.14, instead, is characterized by a scale free group size distribution. Also this
phase presents a high level of heterogeneity, even if lower than in the previous
case. Finally the distribution returns gradually to the initial one (passing through
situations very similar to the ones obtained for ε ≤ 0.02). For ε > 0.2 the groups
result to be homogeneous in size among them.

5 An heuristic explanation of stability and heterogeneity

The mechanism that generates heterogeneity is a hidden preferential attachment
that estabilishes the rapid growth of some particular groups. The model in fact
implies that an individual, when he chooses a group, considers in his selection
only the groups on which he can retrieve information, namely the groups in which
he has a friend (a link). Since the choice of the external links does not depend on
the membership (an agent has the same probability pext to select all the agents
that are non member of its own group), the probability that an external link
ends in a big group is higher. The fact that more links bring to the bigger groups,
makes these more eligible as possible destinations when agents decide to change
groups. The creation of heterogeneity is therefore an effect of this preferential
attachment. The different shapes of the size distribution (exponential, bi–modal,
power law) are a consequence of the fact that for different values of ε the rich
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get richer mechanism happens in different ways. At the beginning, due to the
random initialization, the average opinion of each group is OI ∼ 0.5. Therefore,
on average, all the individuals with an opinion ϑ situated in the range 0.5− ε <
ϑ < 0.5+ε are stable: since their opinion is very similar to the average opinion of
the group, they are satisfied and they won’t change groups. The group dynamics
therefore starts from the agents with opinions further than ε from the center
of the opinion interval. When ε → 0 the number of agent that are initially
susceptible to move is higher.

Another important point is that the average initial number of individuals
in a group is: nI = N/G. The average distance between two individuals at the
initial point therefore is: d = 1/(nI − 1), since the opinion space measures 1.
When d ≥ ε opinion dynamics, on average, does not happen. With our choice of
parameters it is always the case for ε < 0.1.

Two mechanisms linked to the both dynamics are responsible for the hetero-
geneity emergence. At a first stage, the initial small unbalance due to stochas-
ticity of the average opinion of groups, favors a polarization of the groups. The
Fig 8 shows how it occurs due to the dynamics of group change. It represents 3
groups with 6 agents (grey squares) in each. Agents with an opinion far from the
average (the dark vertical line) start to move to groups with a closer OI . These
moves implies a polarisation of the average opinion of the group which, at its
turn, leads in each group to a desertification of one opinion extreme in favour of
the other.

Fig. 8. Group dynamics polarisation effect. Evolution of a population of 18 individuals
in 3 groups. The time goes from the left to the right starting from the top. Time 0 to
3.

As people condense on one extreme, opinion dynamics happens reducing
the standard deviation of the group opinion. The Fig. 9 shows how two close
(regarding ε) individuals influence each other leading to more cohesiveness of
the group members because the minimum opinion of the group become closer to
the maximum one. This standard deviation decreasing phenomenon gives to the
new individual arriving in the group more chance to be satisfied and to remain
in the group.
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Fig. 9. Opinion dynamics decreasing standard deviation effect. Evolution of a popu-
lation of 18 individuals in 3 groups. The time goes from the left to the right. Time 4
and 5

One can see that at a given time, the number of individuals in each group can
differ a lot. That is sufficient for the preferential attachment described previously
to allow a larger group to become larger and larger. Depending on the number of
opinion clusters, the more or less remaining central people are going to attract
the more extreme opinion clusters and, if they are enough, make the group
having an average opinion close to the center. That is the most frequent case.
The exception is when ε leads to three clusters at the population level.

This phenomenon leading to the emergence of heterogeneity does not occur
completely for ε → 0 because all the agents (also the central ones) move since
the beginning, forbidding the polarization of group opinions. For higher values
of ε the polarization starts to occur, but the probability of finding a group
able to gather the central opinions ( i.e. a group containing a higher number of
central individual stable since the beginning) is lower, since the stability interval
is very small. Just one or few groups have this characteristic and, therefore, the
capacity of starting the rich get richer mechanism. This leads to the bi–modal
distribution.

Finally, as ε increases, the number of groups suitable for the preferential
attachment also increases, allowing the simultaneous growth of more than one
macroscopic group. This is the origin of the power law distribution.

Stability is connected to the relative speed of the opinion dynamics process
and of the group dynamics. As ε → 0 opinion dynamics became slower, never
allowing the formation of one cluster in one group. Opinion dynamics, in fact, for
low values of ε can happen only at population level on large time scale, without
influencing the group formation. As we observed before, for higher values of ε
opinion dynamics start to be possible also at group level. Since the number of
connections inside groups is higher, this mechanism accelerates opinion dynamics
process. The combination of opinion dynamics and group dynamics bring in
such cases to specification of opinions inside groups, one cluster in one group.
In intermediate cases, like for ε = 0.06, many small groups composed of two
symmetrical side clusters remains. This situation allows a continuous exchange
between the central cluster and the groups in such situation.
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6 Conclusions

In this paper we analyzed the properties of the groups obtained by a combined
dynamics of opinions and membership choices. In particular we analyzed two
aspects: the different kind of equilibrium and the size distributions.

For what concerns the equilibrium, two main situations can be identified: for
ε < 0.1, even if all the opinion clusters are formed, the dynamics of groups never
reaches a stable state. In this case, however, even if the individuals continue to
jump from one group to the other, at the aggregate level the degree distribution
results stable. For ε ≥ 0.1, instead, the system reaches an equilibrium where
neither the opinions nor the groups change over time.

Regarding the group sizes we identified four characteristic regions: low het-
erogeneity phase (ε < 0.02); few groups dominance (0.02 < ε < 0.1) where
macroscopic structures are formed; group hierarchy (0.1 < ε < 0.2) and group
homogeneity (ε > 0.2).

The phenomenological analysis we provided, by the way, highlights some
important points: first of all, the dynamics strongly depends on the number of
initial groups and, in particular from the initial number of individuals in the
groups. This point is a subtle one and a more analytical study would be needed,
through a mean field analysis.

Moreover, we tried to eliminate the preferential attachment mechanism, giv-
ing to the agents the possibility to do a rational choice between all the groups
independently from the network structure. With this option, we didn’t observe
any heterogeneity for ε < 0.1 but some heterogeneity remains in the other case.
Also in this case, some simple mathematical models, would be needed to provide
a better quantitative explanation.

Finally, what we obtained, except for very low values of ε, is that the het-
erogeneity level of sizes decreases when ε increases. The significance of such a
result is not easy to catch. Indeed one can notice that the ε used for group as-
sessment and the one used for individual assessment are quite different in their
meaning. They could be considered as two parameters in another model. On
the one hand, smaller is ε, larger is the need for cohesion of the individual to
recognize a group as its own group. On the other hand, larger is ε, more tolerant
is the individual regarding the opinion difference to others. Concretely, it means
that an individual more defines itself by its own opinion when ε is low while it
more defines itself by its group membership when ε is large. One can see a kind
of individualistic society versus a collective one. That is very counterintuitive is
that the individualistic society leads to the emergence of large majority groups
while the collective society leads to a much more homogeneous size of groups!
A deeper investigation in the social psychological litterature would be necessary
to assess about the realistic feature of this result.

References

1. E. Ben-Naim, PL Krapivsky, and S. Redner. Bifurcations and patterns in compro-
mise processes. Physica D: Nonlinear Phenomena, 183(3-4):190–204, 2003.



14 F. Gargiulo, S. Huet

2. D. Byrne. The Attraction Paradigm. 1971.
3. G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs among inter-

acting agents. Advances in Complex Systems, 3(4):87–98, 2000.
4. Gargiulo F. and S. Huet. Opinion dynamics on a group structured adaptive net-

work. 2009.
5. L. Festinger. A Theory of Cognitive Dissonance. page 291, 1957.
6. S. Fortunato. Universality of the Threshold for Complete Consensus for the Opin-

ion Dynamics of Deffuant et al. International Journal of Modern Physics C,
15:1301–1307, 2004.

7. S. Fortunato. Community detection in graphs. Physics Reports, 486:75–174, 2010.
8. M. Girvan and MEJ Newman. Community structure in social and biological net-

works. Proceedings of the National Academy of Sciences, 99(12):7821, 2002.
9. T. Gross and B. Blasius. Adaptive coevolutionary networks: a review. Journal of

the Royal Society Interface, 5(20):259, 2008.
10. F. Heider. Attitudes and Cognitive Organization. The Journal of Psychology,

21:107–112, 1946.
11. B. Kozma and A. Barrat. Consensus formation on adaptive networks. Physical

Review E, 77(1):16102, 2008.
12. J. Lorenz. Continuous Opinion Dynamics Under Bounded Confidence:. a Survey.

International Journal of Modern Physics C, 18:1819–1838, 2007.
13. D. Matz and W. Woody. Cognitive dissonance in groups: The consequences of

disagreement. Journal of personality and social psychology, 88(1):22–37, 2005.
14. G. Palla, A.L. Barabási, and T. Vicsek. Quantifying social group evolution.

NATURE-LONDON-, 446(7136):664, 2007.
15. M. Sherif and C. I. Hovland. Social judgment: Assimilation and contrast effects in

communication and attitude change. 1961.


