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Abstract. In the paper, a yes-no model of influence is generalized to a multi-choice framework.
We introduce and study weighted influence indices of a coalition on a player in a social network,
where players have an ordered set of possible actions. Each player has an inclination to choose one
of the actions. Due to mutual influence among players, the final decision of each player may be
different from his original inclination. In a particular case, the decision of the player is closer to
the inclination of the influencing coalition than his inclination was, i.e., the distance between the
inclinations of the player and of the coalition is greater than the distance between the decision of the
player and the inclination of the coalition in question. The weighted influence index which captures
such a case is called the weighted positive influence index. We also consider the weighted negative
influence index, where the final decision of the player goes farther away from the inclination of
the coalition. We consider several influence functions defined in the generalized model of influence
and study their properties. The concept of a follower of a given coalition, and its particular case,
a perfect follower, are defined. The properties of the set of followers are analyzed.
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1 Introduction

The point of departure of this research is the framework of influence introduced in [21],
and later studied in detail, in particular, in [8, 9, 18–20, 26–29]. In the original framework,
a social network with players, also referred to as agents or actors, who have to make an
acceptance-rejection decision, is considered. The original yes-no model assumes that each
player has an inclination to say either ‘yes’ or ‘no’. By the inclination of a player we
mean a decision the player would make if he were to decide completely on his own. Then,
each player makes his decision which, due to influence of other players, may be different
from the original inclination of the player. Such a transformation of the inclinations into
the decisions is represented by an influence function. The influence we are talking about
can cover many aspects. One of the simplest examples of the influence is to follow our
bosses, directors, parents, because deciding differently from their opinions could have
bad consequences on our future position. The influence may also mean to follow our



great authorities whose opinions we rely on. Also learning, observing the consequences of
the others’ decisions can be treated as a kind of influence.

As pointed out in [20], although the influence aspects incorporated into the social
network make the framework especially attractive, the concepts introduced in the original
model are not sufficient to study this framework. The main concept introduced in the
original model [21] is the concept of decisional power (the Hoede-Bakker index) which,
in fact, does not show the actual role of the influence function. In [20] we define and
investigate the so called weighted influence indices that do measure influence between
players in the yes-no model. Several special cases of the weighted influence indices are
considered, like the possibility influence index, and the certainty influence index. Two
kinds of influence, a direct influence and an opposite influence, are studied in [20]. Under
the direct influence, an influencing coalition succeeds in making a player vote according to
the inclination of the coalition, while the inclination of the player was different from the
inclination of the coalition. The opposite influence of a coalition on a player means that
the inclinations of the player and the coalition coincide, but the player’s vote is different
from this inclination. In [19] the model of influence in a social network is compared with
the framework of command games introduced in [23, 24] (see also [30]). We show that our
framework of influence is more general than the framework of the command games, i.e.,
in particular, we define several influence functions that capture the command structure.

Considering more than just two options ‘yes’ or ‘no’ in voting situations has been
already incorporated in several works. For instance, voting systems with several levels
of approval in the input and output, where those levels are qualitatively ordered, have
been considered in [17]. The authors introduce (j, k) simple games, in which each voter
expresses one of j possible levels of input support, and the output consists of one of k
possible levels of collective support. Standard simple games are (2, 2) simple games, and
(3, 2) simple games allow each voter to have a middle option, which may be interpreted as
abstention. In [16] an a priori Shapley-Shubik power index for such (j, k) simple games is
provided. In [15] the author considers a Banzhaf score and three Banzhaf measures in this
framework. In particular, he provides an axiomatic characterization of the Banzhaf score
for (j, k) simple games, following a procedure closely related to the axiomatization for
simple games given in [10]. Important works on abstention can also be found, in particular,
in [7], and also in [14], where a considered game can be viewed as a special case of (3, 3)
simple games. Also in [11–13], the authors study voting systems with abstention, and
their ternary voting rules correspond to (3, 2) simple games with three input alternatives:
‘yes’, ‘abstention’, and ‘no’. In [3–6] the author considers games with n players and r
alternatives, where these alternatives are not ordered: each input alternative has its own
coalition of supporting players, and each such coalition is assigned an output cardinal
value. In [1] the values analyzed in [4] are extended for a coalition structure. In [2] the
authors define closely related r-games and the Banzhaf-Coleman index for these games.
In [22] multi-choice games and the Shapley value for these games are studied: the inputs
are also ordered and the output is a single cardinal value.

The model of influence, originally introduced in [21] and later studied by other au-
thors, is not the only framework of influence considered in the literature. There are other
approaches to influence that are different from the approach adopted in [18–20]. For in-
stance, the notion of influence relation in simple games has been introduced in [25] to
qualitatively compare the a priori influence of voters in a simple game, where players can
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vote either ‘yes’ or ‘no’. As defined in [25], in a simple game voter i is said to be at least
as influential as voter j, if whenever j can transform a loosing coalition into a majority
by joining it, voter i can achieve the same ceteris paribus. In [31] the influence relation
is extended to voting games with abstention, where abstention is an intermediate option
between ‘yes’ and ‘no’. A voting game with abstention consists of a non-empty set W of
tripartitions of a set of voters, and (S1, S2, S3) ∈ W means that if the players of S1 vote in
favor of a social alternative, the players of S2 abstain or are neutral, and the members of
S3 vote against it, then this alternative will be adopted as the social choice. (S1, S2, S3) is
called a winning partition or a majority. Given a voting game with abstention, assuming
that voters i and j have the same initial degree of approval, player i is said to be at
least as influential as j if whenever j can transform a loosing partition (S1, S2, S3) into
a winning partition by an upward shift in his level of approval, voter i can achieve the
same by an identical shift ceteris paribus. In [31] the authors also compare the influence
relation with some generalizations of the Shapley-Shubik and Banzhaf-Coleman power
indices to voting games with abstention [11, 15, 16].

The present paper is a continuation of our research on the influence indices initiated
in [20]. We aim at enlarging the set of possible yes-no decisions to a multi-choice frame-
work, and at investigating the generalized influence indices and other tools related to
the influence in the multi-choice model. In fact, we escape now from a voting situation,
where players have to say either ‘yes’ or ‘no’. It is assumed that each player has a totally
ordered set of possible actions, the same for each player, and he has to choose one of the
actions. A player has an inclination to choose a particular action, but his decision may
be different from the inclination, due to the influence by other players. Our aim is to
investigate a general framework of influence which can model many decision situations.
Hence, the set of possible actions can be, for instance, yes-no-abstain, like for ternary
voting games, a yes-no model with intermediate opinions like ‘maybe no’, ‘don’t know’,
‘maybe yes’, etc., or levels of participation/involvement, like in multi-choice games. In
our model, there is no outside event which could make a player change his decision: only
interactions between players take place. Consequently, if a player decides differently from
his original inclination, it is considered as the unique result of the influence between play-
ers. First, we analyze a positive influence, which measures how much a coalition attracts
a player, i.e., pulls the player’s vote near to the inclination of the coalition. A player
who has an inclination different from the inclination of a given coalition is said to be
influenced by this coalition if his decision is closer to the inclination of the coalition than
his inclination was. A direct influence in the yes-no model, which was analyzed in [20], is
a particular case of the positive influence: the inclinations of the player and the coalition
are different from each other, but the decision of the player coincides with the inclination
of the coalition. We also investigate a negative influence. For each inclination vector in
which the members of a given coalition have the same inclination, there is one (or two)
action(s) which is (are) the most extreme action(s). These actions lie farthest from the
inclination of the coalition. If the inclination of a player is different from such actions,
and his decision comes ‘closer’ to the extreme action, we say that there is a negative
influence of the coalition on the player. An opposite influence in the yes-no model, which
was investigated in [20], is a particular case of the negative influence: the inclinations of
the player and the coalition are the same, but the decision of the player is different from
the inclination of the coalition.
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In the set of possible actions, we display a set of ‘neutral actions’ defined as follows:
a coalition with the inclination to choose the neutral action has no ability to influence
a player. Hence, if a player decides differently from his inclination, it is assumed to be
NOT due to the influence of a coalition with the ‘neutral inclination’. One particular
case of the three-action model is a generalization of the original yes-no framework to a
yes-no-abstention scheme, where each player has an inclination to say either ‘yes’ (action
+1), or ‘no’ (action -1), or to abstain (action 0). The abstention may be defined as such a
neutral action. It is then assumed that a coalition of abstaining players has no influence
ability, but the abstention may be the result of the influence.

In the paper, we consider the set of followers, where by a follower of a given coalition
of players we mean, roughly speaking, the agent whose decision is always closer to the
inclination of the coalition in question than his inclination was. A perfect follower of a
coalition is a player who always decides according to the inclination of the coalition in
question. We study properties of the sets of followers and perfect followers, and compare
the results with the ones concerning the followers in the yes-no model. We also define
several influence functions defined in the multi-choice model, and study their properties.
We consider the majority function, the guru function, the identity function, and the mass
psychology function. Similar to the case of the followers, we compare the results on the
influence functions defined for the multi-choice model with the results on the analogous
influence functions introduced in the yes-no model of influence.

The structure of the paper is the following. In Section 2, the generalized influence
indices are defined and studied. For simplicity reasons we do not add the word generalized
when defining and discussing the indices, but they all measure the influence in a more
general framework, i.e., in the multi-choice model, and they are generalized versions of the
measures considered in [20]. In Section 3, we study the concepts of a follower, a perfect
follower of a coalition, and the concept of a purely influential function. Different influence
functions and their properties are investigated in Section 4. In Section 5 we conclude. We
also present several examples.

2 The generalized influence indices

The general framework is the following. We consider a social network with the set of
players (agents, actors) denoted by N = {1, ..., n}. There is a totally ordered set of
possible actions denoted by A, which is finite, and contains at least two actions. To each
action in A a real number is assigned, so that the ordering of these numbers reflect the
ordering of the actions (ordinal scale). Let us denote by A the set of these numbers.
Assuming there are no two actions with the same rank, we have a bijection between A
and A, so that we can deal only with A. Let us give some typical examples.

(i) The simplest case is to consider a voting situation with two actions ‘yes’ and ‘no’.
This is the model we developed in [20], and these actions were coded by the numbers
1 and −1 respectively.

(ii) A useful improvement of the previous example is to allow abstention as a possible
action. This could be called the yes-no-abstention model, and refers to ternary voting
games proposed by Felsenthal and Machover [11]. A natural coding of these actions
could be −1, 0, 1, with 0 denoting abstention.
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(iii) Considering again a voting situation, we may allow voters to express less clear-cut
opinions, and let them choose among: {no, maybe no, don’t know, maybe yes, yes},
or any similar set of actions like: {false, maybe false, . . . , true}, {strongly disagree,
disagree, slightly disagree,. . . , strongly agree}, {strong rejection, rejection, weak re-
jection, borderline, . . . , strong acceptance}, etc., which are common in opinion polls,
questionnaires on the web, evaluation grids, etc. Coding these actions may be done
by using integers, using 0 for the action demarcating the two tendencies (yes/no,
true/false, agree/disagree, etc.).

(iv) The last situation is inspired by multichoice games [22], where each player has to
choose a level of participation or degree of involvement in the game. For example, this
could be the amount of funding given to some charitable or humanitary institution,
some country in the Third World, or some area hit by a natural disaster, etc. In this
case, the simplest coding is to use the amount of funding itself.

Remark 1 With each example we have given a possible “natural” coding of the actions.
In its full generality, coding abstract elements by numbers refers to measurement theory,
and is not a simple problem. As it will be explained in the following, our model basically
computes degrees of influence and follower functions. The first notion is a cardinal notion,
which needs an interval scale to be meaningful. That is, the coding given to the actions
should reflect only a distance between the actions, and the zero is arbitrary. In other
words, the coding is unique up to a positive affine transformation. For example, in the
yes-no model, the numbers 1, 0 could be used as well. On the other hand, the second notion
(follower function) is purely ordinal, so that any coding consistent with the ordering of
the actions is suitable (ordinal scale).

Each player has an inclination to choose one of the actions. Hence, by the inclination of
a player we mean the action the player wants to choose. An inclination vector, denoted
by i, is an n-vector consisting of the actions that the players are inclined to choose. Let
I be the set of all inclination vectors, that is, I = An using the bijection between A and
A. It is assumed that players may influence each others, and due to the influences in the
network, the final decision of a player may be different from his original inclination. In
other words, each inclination vector i ∈ I is transformed into a decision vector Bi, where
B : I → I, i 7→ Bi is the influence function. The set of all influence functions will be
denoted by B. The decision vector Bi is an n-vector consisting of the decisions made by
the players.

In the set of all actions A, we distinguish the subset A0 ⊂ A, possibly empty, which is
the set of all neutral actions. A neutral action is defined as an action such that a coalition
with the inclination to choose the neutral action has no ability to influence a player. Note
that however, neutral action may be the result of the influence. We denote by A0 the
corresponding set of numerical values. Let us consider for example the yes-no-abstention
model, coded by {−1, 0, 1}. If we assume that an abstaining coalition has no ability to
influence the players, then A0 = {0}. On the other hand, if a coalition with the inclination
to abstain is assumed to be able to influence a player, then A0 = ∅.

Before formalizing the influence concepts, we introduce several notations for conve-
nience. First of all, cardinality of sets S, T, . . . will be denoted by the corresponding lower
case s, t, . . .. We omit braces for sets, e.g., {k,m}, N \ {j}, S ∪ {j} will be written km,
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N \ j, S ∪ j, etc. We introduce for any ∅ 6= S ⊆ N

IS := {i ∈ I | ∀k, j ∈ S [ik = ij ∧ ik ∈ A \ A0]}, (1)

which is simply the set of inclination vectors under which all players in S have the
inclination to choose the same action, different from the neutral action. We denote by
iS ∈ A \ A0 the value ik for some k ∈ S, i ∈ IS, that is, the inclination of the members
of S under i.

Let us now focus on the influence issue. In Sections 2.1 and 2.2, we propose how to
measure the positive influence and the negative influence, respectively.

2.1 The positive influence indices

The concept of the positive influence adopted in this section is related to the concept
of the direct influence of a coalition on a player defined in [20]. It is assumed that the
player’s inclination is different from the inclination of the coalition, and the player’s
decision differs from his inclination. However, in the yes-no framework, if a player votes
differently from his inclination, the change is uniquely defined, since there are only two
possibilities: ‘yes’ or ‘no’. In the model with an ordered set of possible actions, we can
observe more than just the changes, i.e., we have also an information about different
distances between actions. Consequently, in the generalized model with an ordered set
of possible actions, we need to introduce a more sophisticated measure of the influence,
which distinguishes ‘how much’ a player changes his ‘position’.

Let for each S ⊆ N and j ∈ N \ S

IS→j := {i ∈ IS | ij 6= iS}. (2)

IS→j denotes the set of all inclination vectors of potential positive influence of S on j.
Given coalition S ⊂ N , player j /∈ S, and inclination vector i ∈ IS→j, there is a certain
(positive) distance |ij − iS| between ij and iS. Under the influence, the decision (Bi)j of
player j may be different from his inclination, and what we can also measure is a distance
|(Bi)j − iS| between the decision of the player and the inclination of the coalition. Did
the coalition succeed in making the player ‘put’ his decision closer to the inclination of
the coalition? Consequently, for each S ⊆ N , j ∈ N \ S, and B ∈ B, we can define the
set of all inclination vectors of positive influence of S on j under given B as

Ipos
S→j(B) := {i ∈ IS→j | |(Bi)j − iS| < |ij − iS|}. (3)

For each S ⊆ N , j ∈ N \ S and i ∈ IS→j, we introduce a weight αS→j
i ∈ [0, 1] of

influence of coalition S on j ∈ N \ S under the inclination vector i ∈ IS→j. We assume

that for each S ⊆ N and j ∈ N\S, there exists i ∈ IS→j such that αS→j
i > 0. Moreover, we

impose a kind of symmetry assumption that αS→j
i depends solely on numbers na(S, j, i),

for a ∈ A \ (A0 ∪ {ij}), where na(S, j, i) is the number of players in N \ j with the
inclination to choose action a ∈ A \ (A0 ∪ {ij}) under i ∈ IS→j.

Definition 1 Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted positive influence
index of coalition S on player j is defined as

Dα(B,S → j) :=

∑
i∈I

pos
S→j

(B) [|ij − iS| − |(Bi)j − iS|] α
S→j
i

∑
i∈IS→j

|ij − iS|α
S→j
i

∈ [0, 1]. (4)
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The possibility positive influence index of coalition S on player j is given by

D(B,S → j) :=

∑
i∈I

pos
S→j

(B) [|ij − iS| − |(Bi)j − iS|]
∑

i∈IS→j
|ij − iS|

, (5)

that is,
D(B,S → j) = Dα(B,S → j) (6)

where αS→j
i = 1 for each i ∈ IS→j. (7)

The weighted positive influence index defined in (4) generalizes the weighted direct in-
fluence index defined for the yes-no model of influence (see [20], Definition 5). Similarly,
the possibility positive influence index defined in (5) is a generalization of the possibility
direct influence index for the yes-no model (see [20], Definition 3).

Remark 2 Given B ∈ B, S ⊆ N , j ∈ N \ S, if for each i ∈ Ipos
S→j(B), the decision of

player j ‘lies’ between his inclination and the inclination of coalition S, i.e., if for each
i ∈ Ipos

S→j(B)
|ij − iS| = |(Bi)j − ij| + |(Bi)j − iS|

then the weighted positive influence index of coalition S on player j is equal to

Dα(B,S → j) =

∑
i∈I

pos
S→j

(B) |(Bi)j − ij|α
S→j
i

∑
i∈IS→j

|ij − iS|α
S→j
i

. (8)

Note that we do not distinguish between two situations in which the decisions of the
influenced player are different from each other, but their distances from the inclination
of the coalition are the same. Let us consider a situation, in which the decision of the
influenced player ‘lies’ between his inclination and the inclination of the coalition. Next,
let us imagine that the influenced player ‘puts’ his decision on the ‘other side’ of the
inclination of the coalition, farther from his own inclination, but the distance between his
decision and the inclination of the coalition is the same as before. If this holds for each
i ∈ Ipos

S→j(B), we get the same weighted positive influence index of the coalition on the
player.

If we wanted to register only the fact of the influence between players, that is, to
consider all cases when a player’s decision is different from his inclination, without dis-
tinguishing how much the player changes his position, then we could define the general
influence index:

d(B,S → j) :=
|I∗

S→j(B)|

|IS→j|
,

where IS→j is defined in (2), and

I∗
S→j(B) := {i ∈ IS→j | (Bi)j 6= ij}.

In the yes-no framework, d(B,S → j) coincides with the possibility direct influence index
defined in [20]. Note that

Fact 1 Given B ∈ B, S ⊆ N , j ∈ N \ S, if D(B,S → j) = 1, then d(B,S → j) = 1.
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Proof: Suppose D(B,S → j) = 1. This means that

∑

i∈I
pos
S→j

(B)

[|ij − iS| − |(Bi)j − iS|] =
∑

i∈IS→j

|ij − iS| (9)

and this implies that Ipos
S→j(B) = IS→j and (Bi)j = iS for all i ∈ IS→j. Hence, (Bi)j 6= ij

always holds. �

2.2 The negative influence indices

The concept of the influence adopted in this section is related to the opposite influence of
a coalition on a player in the yes-no model defined in [20]. Under the opposite influence
in the yes-no model, the inclinations of the coalition and the player coincide, but the
decision of the player differs from his inclination. When measuring a negative influence
of a coalition on a player in the model with an ordered set of possible actions, we look
for the inclination vectors, in which the inclination of the player is different from the
action(s) placed farthest from the inclination of the coalition. If the decision of the player
is farther from the inclination of the coalition than his inclination was, we say that such an
inclination vector is the inclination vector of (observed) negative influence of the coalition
on the player. Let us note that while in the case of the positive influence, the coalition tries
to ‘attract’ the player’s decision as close to its incli! nation as possible, when considering
the negative influence, the decision of the player is as far from the inclination of the
coalition as possible. Below, we formalize the concepts of negative influence. For each
a ∈ A \ A0, we define

M(a) := {ã ∈ A | ã = arg max
a′∈A

|a − a′|}. (10)

M(a) is the set of all actions whose distance to the action a is maximal. Note that a
neutral action may belong to the set M(a). Of course, |M(a)| ∈ {1, 2}. In particular, for
each S ⊆ N and i ∈ IS, the coalition S has its inclination iS, and then M(iS) is the set
of all possible actions which are the farthest actions from the inclination iS, and M(iS)
may have either 1 or 2 elements. For each S ⊆ N and j ∈ N \S, the set of all inclination
vectors of potential negative influence of S on j is defined as

ĨS→j := {i ∈ IS | ij /∈ M(iS)}. (11)

For each S ⊆ N , j ∈ N \ S, B ∈ B, and i ∈ ĨS→j

ĩ
ij
S := arg min

ĩS∈M(iS)
|ij − ĩS| (12)

ĩ
(Bi)j

S := arg min
ĩS∈M(iS)

|(Bi)j − ĩS|. (13)

If |M(iS)| = 2, then ĩ
ij
S is the action from M(iS) which is closer to the inclination ij of

player j, and ĩ
(Bi)j

S is the action from M(iS) which is closer to the decision (Bi)j of j.
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Of course, if |M(iS)| = 1, then ĩ
ij
S = ĩ

(Bi)j

S . The set of all inclination vectors of negative
influence of S on j under given B is defined as

Ĩneg
S→j(B) := {i ∈ ĨS→j | |ij − ĩ

ij
S | > |(Bi)j − ĩ

(Bi)j

S |}. (14)

In a similar way as before, for each S ⊆ N , j ∈ N \ S and i ∈ ĨS→j, we introduce a

weight αS→j
i ∈ [0, 1] of influence of coalition S on j ∈ N \ S under the inclination vector

i ∈ ĨS→j, where αS→j
i depends on numbers na(S, j, i), for a ∈ A \ A0.

Definition 2 Given B ∈ B, for each S ⊆ N , j ∈ N \ S, the weighted negative influence
index of coalition S on player j is defined as

Dneg
α (B,S → j) :=

∑
i∈Ĩ

neg
S→j

(B)

[
|ij − ĩ

ij
S | − |(Bi)j − ĩ

(Bi)j

S |
]
αS→j

i

∑
i∈ĨS→j

|ij − ĩ
ij
S |α

S→j
i

∈ [0, 1]. (15)

The possibility negative influence index of coalition S on player j is given by

D
neg

(B,S → j) :=

∑
i∈Ĩ

neg
S→j

(B)

[
|ij − ĩ

ij
S | − |(Bi)j − ĩ

(Bi)j

S |
]

∑
i∈ĨS→j

|ij − ĩ
ij
S |

. (16)

The weighted negative influence index defined in (15) generalizes the weighted opposite
influence index defined for the yes-no model of influence (see [20], Definition 5). Similarly,
the possibility negative influence index defined in (16) is a generalization of the possibility
opposite influence index for the yes-no model (see [20], Definition 3).

2.3 The Examples

The typical situations given in the beginning of Section 2 show a broad applicability of
the generalized framework and the influence indices that are studied in the paper. One of
the natural applications of the model with an ordered set of actions is an application to
politics, in particular to elections. An ideological line indicating a political orientation of
candidates or parties, from the Left Wing via the Center to the Right Wing, has its natural
interpretation here. Below, we present two other examples, corresponding respectively to
situations (ii) and (iv) of Section 2, in which we calculate all concepts introduced in the
paper.

Example 1 As mentioned before, a particular case of our generalized framework is a
yes-no-abstention model, in which each player has an inclination either to say ‘yes’ or
‘no’, or to abstain. Let us check how the concepts and formulas introduced above look
like for this three-action example. We have A = {−1, 0, +1}, A0 = {0},

IS = {i ∈ I | ∀k, j ∈ S [ik = ij ∧ ik 6= 0}

IS→j = {i ∈ IS | ij 6= iS}

I∗
S→j(B) = {i ∈ IS→j | (Bi)j 6= ij}

9



αS→j
i depends on the number niS(S, j, i), where

niS(S, j, i) = |{m ∈ N \ j | im = iS}|.

Let for a ∈ {−1, +1}, b, c ∈ {−1, 0, +1}, and x ∈ {a, b, c}, s(x) denote the sign of x, that
is, s(x) = + if x = +1, s(x) = − if x = −1, and s(x) = 0 if x = 0. Moreover, let

I
s(a)s(b)s(c)
S→j (B) := {i ∈ IS | iS = a ∧ ij = b ∧ (Bi)j = c}.

Then we have
D(B,S → j) =

|I−0−
S→j(B)| + |I−+0

S→j(B)| + |I+0+
S→j(B)| + |I+−0

S→j(B)| + 2
(
|I−+−

S→j (B)| + |I+−+
S→j (B)|

)

2 · 3n−s

d(B,S → j) =
|I∗

S→j(B)|

|IS→j|
=

|I−0−
S→j(B)| + |I−+0

S→j(B)| + |I+0+
S→j(B)| + |I+−0

S→j(B)|

4 · 3n−s−1
+

+
|I−+−

S→j (B)| + |I+−+
S→j (B)| + |I−0+

S→j(B)| + |I+0−
S→j(B)|

4 · 3n−s−1
.

For a ∈ {−1, +1}, M(a) = {−a}

ĨS→j = {i ∈ IS | |ij − iS| ∈ {0, 1}}

ĩ
ij
S = ĩ

(Bi)j

S = −iS

Ĩneg
S→j(B) = {i ∈ IS | |ij + iS| > |(Bi)j + iS|}

D
neg

(B,S → j) =

|I−0+
S→j(B)| + |I−−0

S→j(B)| + |I+0−
S→j(B)| + |I++0

S→j(B)| + 2
(
|I−−+

S→j (B)| + |I++−
S→j (B)|

)

2 · 3n−s
.

Example 2 Let us consider another very simple example with three players and three
actions. A three-member committee of the research lab is to decide about a new budget
for external seminars. The actions are placed on the line ‘changing the seminar budget’:

– Action a : to decrease the present seminar budget by 1000 euro;
– Action b : to keep the seminar budget unchanged;
– Action c : to increase the present seminar budget by 2000 euro.

According to Remark 1, we may code these actions by −1, 0 and +2 respectively.
Determining the seminar budget is not an obvious decision to be made, because it may

be related to a change of the budget for other expenses of the lab. The committee consists
of the director of the lab (player 1), and two other professors who chair two different
sections. Each committee member has an inclination to choose one of the actions, but due
to some influence of the others, he can vote differently from his preliminary intention. It is
assumed that the director of the lab always votes according to his (original) inclination.
If the director and another professor both want to change the budget, the remaining
colleague will follow their inclination. The boss influences on his own a colleague with
the inclination to keep the seminar budget unchanged, but if a coalition of the committee
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members is inclined to keep the old budget, it has no ability to influence the remaining
professor(s).

Using the notation introduced in the paper, we have the committee (the set of players)
N = {1, 2, 3}, the set of actions A = {−1, 0, +2}, and the action 0 as the neutral action,
A0 = {0}. Moreover, there are 27 possible inclination vectors, |I| = 27. Table 1 shows
the inclination vectors and the decision vectors.

Table 1. The inclination and decision vectors

i ∈ I Bi i ∈ I Bi i ∈ I Bi

(−1,−1,−1) (−1,−1,−1) (0, 0, 0) (0, 0, 0) (2, 2, 2) (2, 2, 2)

(−1,−1, 0) (−1,−1,−1) (0, 0,−1) (0, 0,−1) (2, 2,−1) (2, 2, 2)

(−1, 0,−1) (−1,−1,−1) (0,−1, 0) (0,−1, 0) (2,−1, 2) (2, 2, 2)

(0,−1,−1) (0,−1,−1) (−1, 0, 0) (−1,−1,−1) (−1, 2, 2) (−1, 2, 2)

(−1,−1, 2) (−1,−1,−1) (0, 0, 2) (0, 0, 2) (2, 2, 0) (2, 2, 2)

(−1, 2,−1) (−1,−1,−1) (0, 2, 0) (0, 2, 0) (2, 0, 2) (2, 2, 2)

(2,−1,−1) (2,−1,−1) (2, 0, 0) (2, 2, 2) (0, 2, 2) (0, 2, 2)

(−1, 0, 2) (−1,−1, 2) (0,−1, 2) (0,−1, 2) (2,−1, 0) (2,−1, 2)

(−1, 2, 0) (−1, 2,−1) (0, 2,−1) (0, 2,−1) (2, 0,−1) (2, 2,−1)

Note that for S ⊆ {2, 3}, Dα(B,S → 1) = 0, because (Bi)1 = i1 for each i ∈ I. The
possibility positive and general influence indices are as follows:

D(B, 1 → 2) = D(B, 1 → 3) =
5

9
, d(B, 1 → 2) = d(B, 1 → 3) =

2

3

D(B, 2 → 3) = D(B, 3 → 2) = d(B, 2 → 3) = d(B, 3 → 2) =
1

3

D(B, 12 → 3) = D(B, 13 → 2) = d(B, 12 → 3) = d(B, 13 → 2) = 1.

When considering, for instance, the influence of player 1 on player 2, we verify 12
inclination vectors in which player 1’s inclination is both different from 0 and different
from player 2’s inclination. In the case of 8 out of these 12 inclination vectors, player
2 votes differently from his inclination. Note however that the influence has different
strength. For instance, when we look at the inclination vectors (−1, 0,−1) and (−1, 2,−1),
in both cases the decision vector is equal to (−1,−1,−1). Nevertheless, in the first case,
player 2 has moved only from 0 to −1, while in the second case, he changed from 2 to
−1.

We calculate also the possibility negative influence indices which, in most cases except
two indices, are equal to 0. These indices with positive values are:

D
neg

(B, 2 → 3) = D
neg

(B, 3 → 2) =
(1 − 0) + (2 − 0)

27
=

1

9
.

For instance, the inclination vector (−1, 2, 0) leads to the decision vector (−1, 2,−1),
which counts for the negative influence of player 2 on player 3. Both in the denominator
and the numerator of D

neg
(B, 2 → 3) we write 1: the farthest action of player 2 with

the inclination 2 is −1, which is of a distance equal to 1 from the neutral inclination
of player 3, and player 3 decides for the action −1. Moreover, the inclination vector
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(2,−1, 0) leads to the decision vector (2,−1, 2), and we write 2 both in the denominator
and the numerator of D

neg
(B, 2 → 3). Nevertheless, we should be aware that although

the negative influence index of player 2 on player 3 has a positive value, it is rather due
to the positive influence of player 1 on player 3. As it was described before, player 1
has the ability to make an abstaining player decide according to the inclination of player
1. In both inclination vectors (−1, 2, 0) and (2,−1, 0), the inclinations of players 1 and
2 are as far from each other as possible. In a similar way we can analyze the case of
D

neg
(B, 3 → 2).

3 Following a coalition

In this section, we focus on the positive influence. Concepts related to the positive influ-
ence are the concepts of follower and of perfect follower of a given coalition. As mentioned
in the Introduction, a follower of a given coalition of players is an agent whose decision
is never farther from the inclination of the coalition in question than his inclination was.
A voter who always decides according to the inclination of the coalition in question is
called a perfect follower of that coalition.

Definition 3 Let ∅ 6= S ⊆ N and B ∈ B. The set of followers of S under B is defined
as

FB(S) := {j ∈ N | ∀i ∈ IS [[ij 6= iS ⇒ |(Bi)j−iS| < |ij−iS|] ∧ [ij = iS ⇒ (Bi)j = iS]]},
(17)

where FB(∅) := ∅, and the set of perfect followers of S under B is defined as

F per
B (S) := {j ∈ N | ∀i ∈ IS [(Bi)j = iS]}. (18)

Of course, each perfect follower is also a follower, i.e., for each B ∈ B and S ⊆ N ,

F per
B (S) ⊆ FB(S).

Note that FB and F per
B define functions from 2N to 2N , which we call follower func-

tion and perfect follower function. The next proposition studies the properties of these
functions.

Proposition 1 Let B ∈ B. Then the following holds:

(i) Whenever S ∩ T = ∅, FB(S) ∩ FB(T ) = ∅.
(ii) FB is an isotone function (S ⊆ S ′ implies FB(S) ⊆ FB(S ′)).

Consequently, if FB(N) = ∅, then FB ≡ ∅.
(iii) For each j ∈ F per

B (S) \ S, Dα(B,S → j) = 1, and Dneg
α (B,S → j) = 0.

Proof: (i) Since S ∩ T = ∅, IS ∩ IT strictly includes IS∪T . Then there exists i ∈ IS ∩ IT

such that iS 6= iT . Suppose that j ∈ FB(S) ∩ FB(T ). Take i such that ij 6= iS and
0 < |iS−iT | = |iS−ij|+|ij−iT |. We have |(Bi)j−iS| < |ij−iS| and |(Bi)j−iT | ≤ |ij−iT |.
Hence, |(Bi)j − iS| + |(Bi)j − iT | < |ij − iS| + |ij − iT | = |iS − iT |. On the other hand,
|iS − iT | = |iS − (Bi)j + (Bi)j − iT | ≤ |iS − (Bi)j| + |(Bi)j − iT |, a contradiction.

(ii) Take S ⊆ S ′ and j ∈ FB(S). i ∈ IS′ implies i ∈ IS by antitonicity. If ij 6= iS, then
|(Bi)j − iS| < |ij − iS|, and if ij = iS, then (Bi)j = iS. Since iS = iS′ , j ∈ FB(S ′).
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(iii) Let B ∈ B, S ⊂ N , F per
B (S) 6= ∅, and j ∈ F per

B (S) \ S. Hence, for each i ∈ IS,
(Bi)j = iS, and therefore Dα(B,S → j) = 1, and Dneg

α (B,S → j) = 0. �

Note that Proposition 1 generalizes our results presented in [20] to the model with
an ordered set of possible actions. In [20] (Prop. 2), we prove similar results (i) and
(ii) for the set of followers in the yes-no model, where the concept of follower in such a
model coincides with the concept of perfect follower introduced in the present paper. In
[20] (Prop. 2(iii)), we show that the weighted direct influence index of a coalition on its
follower outside the coalition is equal to 1, while the weighted opposite influence index
is equal to 0. In the multi-choice game, these properties remain true only for the perfect
followers.

Assume FB is not identically the empty set. The kernel of B is the set of “true”
influential coalitions:

K(B) := {S ∈ 2N | FB(S) 6= ∅, and S ′ ⊂ S ⇒ FB(S ′) = ∅}.

The kernel is well defined due to isotonicity.

Definition 4 Let S, T be two disjoint nonempty subsets of N . B is said to be a purely
influential function of S upon T if it satisfies for all i ∈ IS:

(Bi)j =

{
iS if j ∈ T

ij otherwise.
(19)

The set of such functions is denoted BS→T .

Note that these functions are arbitrary on I \ IS. The cardinality of BS→T is

|BS→T | = |A|n(|A|s−|A|+|A0|)|A|n−s

(20)

Proposition 2 Let S, T be two disjoint nonempty subsets of N . Then the following holds:

(i) For all B ∈ BS→T , FB(S) ⊇ S ∪ T , and F per
B (S) = S ∪ T .

(ii) For each B ∈ BS→T and j ∈ N \ S, Dneg
α (B,S → j) = 0, and

Dα(B,S → j) =

{
1 if j ∈ T

0 if j ∈ N \ (S ∪ T )
(21)

Proof: (i) Take t ∈ S ∪ T . If t ∈ T , then for any i ∈ IS, (Bi)t = iS. If t ∈ S, then for
any i ∈ IS, (Bi)t = it = iS. Hence t ∈ FB(S). On the other hand, take t ∈ F per

B (S). Then
for any i ∈ IS, (Bi)t = iS, and hence t ∈ S ∪ T .

(ii) Let B ∈ BS→T . Then for each i ∈ IS, (Bi)j = iS for j ∈ T , and (Bi)j = ij for j /∈ T .
Since IS→j ⊂ IS, we have for each i ∈ IS→j, (Bi)j = iS for j ∈ T , and (Bi)j = ij for j /∈ T .
Hence, if j ∈ T , then Dα(B,S → j) = 1, and if j ∈ N \ (S ∪ T ), then Dα(B,S → j) = 0.
Moreover, for each j ∈ N \ S, Dneg

α (B,S → j) = 0. �

Proposition 2 generalizes our results shown in [20] (Prop. 3). However, while in the
yes-no model the set of followers of coalition S under a purely influential function of S
upon T is equal to S ∪ T , in the multi-choice model only the inclusion remains valid.
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Example 3 The sets of followers and perfect followers for Example 2 presented in Section
2.3 are the following:

F per
B (S) = FB(S) for each S ⊆ N

FB(∅) = FB(2) = FB(3) = ∅, FB(1) = {1}

FB(23) = {2, 3}, FB(12) = FB(13) = FB(123) = {1, 2, 3}

The kernel K(B) = {{1}, {2, 3}}. Moreover, B ∈ B12→3 ∩ B13→2.

4 The influence functions

In this section, several influence functions B ∈ B, originally defined in [20], are generalized
for the multi-choice model. We investigate the properties of these functions and compare
them with our results on the analogous functions in the yes-no model. In particular, for
each influence function analyzed, we determine the follower and perfect follower functions,
and the values of the (positive and negative) weighted influence indices.

Some simple examples of influence functions are:

(i) The majority function. Let n ≥ t > ⌊n
2
⌋, and introduce for any i ∈ I and a ∈ A\A0,

the set
ia := {k ∈ N | ik = a}. (22)

The majority influence function Maj[t] ∈ B is defined by

(
Maj[t]i

)
j
:=

{
a, if ∃a ∈ A \ A0 [|ia| ≥ t]

ij, otherwise
, ∀i ∈ I, ∀j ∈ N. (23)

If a majority of players have an inclination a, then all players decide for a. If not, each
player decides according to his own inclination.

(ii) The guru function. Let k̃ ∈ N be a particular player called the guru. The guru

influence function Gur[k̃] ∈ B is defined by

(Gur[k̃]i)j = i
k̃
, ∀i ∈ I, ∀j ∈ N. (24)

When a guru exists, every player follows always the guru.
(iii) The identity function Id ∈ B is defined by

Idi = i, ∀i ∈ I. (25)

(iv) The mass psychology function. Let t ∈ (0, n] and a ∈ A \ A0. Functions B ∈ B
satisfying for each i ∈ I

if |ia| ≥ t, then (Bi)a ⊇ ia (26)

are called mass psychology influence functions. If there is a sufficiently high number
of players with inclination a, none of these players will decide differently than a, and
they will possibly attract other players to choose action a. We denote by B[a,t] the set
of such influence functions.
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We list some basic properties of the influence functions mentioned.

Proposition 3 Let n ≥ t > ⌊n
2
⌋ and consider the majority function Maj[t]. Then the

following holds:

(i) For each ∅ 6= S ⊆ N such that s ≥ t, and for each j ∈ N \ S, Dα(Maj[t], S → j) = 1,
and Dneg

α (Maj[t], S → j) = 0.
If t = n, then for each ∅ 6= S ⊆ N and j ∈ N \ S,
Dα(Maj[t], S → j) = Dneg

α (Maj[t], S → j) = 0.
(ii) For each S ⊆ N ,

FMaj[t](S) =





N, if s ≥ t

S, if n − t < s < t

∅, if s ≤ n − t.

(27)

(iii) The kernel is K(Maj[t]) = {S ⊆ N | |S| = n − t + 1}.

Proof: (i) Let ∅ 6= S ⊆ N be such that s ≥ t, and j ∈ N \ S. For each i ∈ IS, there
is a ∈ A \ A0 such that iS = a, and therefore |ia| ≥ s ≥ t. Hence, (Maj[t]i)j = a = iS for

each i ∈ IS, which gives Dα(Maj[t], S → j) = 1, and Dneg
α (Maj[t], S → j) = 0.

If t = n, then (Maj[t]i)j = ij for each i ∈ I, j ∈ N . Hence, by virtue of (4) and (15),

Dα(Maj[t], S → j) = 0 and Dneg
α (Maj[t], S → j) = 0.

(ii) Let S ⊆ N be such that s ≥ t. Suppose that FMaj[t](S) 6= N . Then there exists j ∈ N

such that j /∈ FMaj[t](S). Hence, there is ĩ ∈ IS such that either (Maj[t]̃i)j 6= ĩS and ĩj = ĩS,

or |(Maj[t]̃i)j − ĩS| ≥ |̃ij − ĩS| > 0 and ĩj 6= ĩS. This means that (Maj[t]̃i)j 6= ĩS. But ĩS = a

for certain a ∈ A \ A0, and |̃ia| ≥ s ≥ t. Hence, (Maj[t]̃i)j = a = ĩS, a contradiction.

Let S ⊆ N be such that n − t < s < t, and therefore s < t and n − s < t. Hence, for
each i ∈ IS, either there exists a ∈ A \ A0 such that |ia| ≥ t and iS = a, and hence
(Maj[t]i)j = a = iS for each j ∈ N , or (Maj[t]i)j = ij for each j ∈ N .

Note that S ⊆ FMaj[t](S), because if j ∈ S, then for each i ∈ IS, either (Maj[t]i)j = iS or

(Maj[t]i)j = ij = iS.
Suppose FMaj[t](S) 6⊆ S. Hence, there is k /∈ S such that k ∈ FMaj[t](S), and therefore for

each i ∈ IS, (Maj[t]i)k = iS if ik = iS, and |(Maj[t]i)k − iS| < |ik − iS| if ik 6= iS. Take ĩ ∈ IS

such that ĩS 6= ĩk = ĩj for each j /∈ S. Then we have (Maj[t]̃i)k = ĩk 6= ĩS, a contradiction.

Let S ⊆ N be such that s ≤ n − t. Suppose that FMaj[t](S) 6= ∅, and let j̃ ∈ FMaj[t](S).

Hence, for each i ∈ IS, (Maj[t]i)j̃ = iS if ij̃ = iS, and |(Maj[t]i)j̃ − iS| < |ij̃ − iS| if ij̃ 6= iS.

Take ĩ ∈ IS such that ĩS 6= ĩk = a for each k /∈ S and a certain a ∈ A \ A0. Hence,
|̃ia| = n − s ≥ t, and therefore for each j ∈ N , (Maj[t]̃i)j = a 6= ĩS, a contradiction.

(iii) By virtue of (27), we have the following. If |S| ≤ n− t, then FMaj[t](S) = ∅, and hence

S /∈ K(Maj[t]). If |S| = n − t + 1, then FMaj[t](S) = S, but for each S ′ ⊂ S, |S ′| ≤ n − t,

and therefore FMaj[t](S
′) = ∅. Hence, S ∈ K(Maj[t]). If |S| > n− t + 1, then FMaj[t](S) 6= ∅,

and there exists S ′ ⊂ S such that |S ′| ≥ n − t + 1, which means that FMaj[t](S
′) 6= ∅.

Hence, S /∈ K(Maj[t]). �
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First of all, let us notice that the majority function Maj[t] defined in the multi-choice
model is somewhat different from the majority function introduced in the yes-no model;
see [20] (Section 5). In the yes-no model, if the majority of players has the inclination +1,
then all players decide +1, but if not, then all players decide −1. In the multi-choice model
of influence, according to (23), if there is no action a such that the majority of players
have the inclination a, then each agent follows his own inclination. Consequently, the
results on the majority function in the multi-choice model are slightly different from the
ones obtained for the yes-no model. One of the differences concerns the set of followers,
which additionally, as already mentioned, is defined differently in [20] and in the present
paper. As shown in [20], if the cardinality s of coalition S is at least t, then each player
is a follower of that coalition, but if the cardinality of the coalition is smaller than t,
then the set of followers of that coalition is empty. In the multi-choice model, as can be
seen in (27), if s is at least t, then we get the same result as for the yes-no model: every
player is a follower of such a coalition. Nevertheless, if n− t < s < t, then all members of
the coalition and only them are the followers of that coalition. Only coalitions with the
cardinality at most n− t have no followers. Consequently, the kernels in both models dif!
fer from each other: while in the yes-no model the kernel consists of all coalitions with the
cardinality t, in the present model the coalitions with exactly n−t+1 members create the
kernel. Concerning the influence indices under Maj[t], in [20] we show that the weighted
direct influence index of any coalition with the cardinality at least t on a player outside
this coalition is equal to 1. In the present paper we get the similar result: the weighted
positive influence index of a coalition with at least t members on a player outside the
coalition is also equal to 1.

Proposition 4 Let k̃ ∈ N and consider the guru influence function Gur[k̃]. Then the
following holds:

(i) For each ∅ 6= S ⊆ N such that k̃ ∈ S, and for each j ∈ N \ S,

Dα(Gur[k̃], S → j) = 1, and Dneg
α (Gur[k̃], S → j) = 0.

(ii) For each S ⊆ N ,

F
Gur[k̃](S) =

{
N, if k̃ ∈ S

∅, if k̃ /∈ S.
(28)

(iii) The kernel is K(Gur[k̃]) = {k̃}.

(iv) Gur[k̃] is the unique purely influential function of k̃ upon N \k̃, i.e., B
k̃→N\k̃ = {Gur[k̃]}.

Proof: (iv) Gur[k̃] ∈ B
k̃→N\k̃ comes immediately from (19) and (24). Now, B

k̃→N\k̃ is

reduced to a singleton since I \ I
k̃

= ∅.

(i) Let ∅ 6= S ⊆ N be such that k̃ ∈ S, and j ∈ N \ S. Hence, in particular for each

i ∈ IS, (Gur[k̃]i)j = i
k̃

= iS, which gives Dα(Gur[k̃], S → j) = 1. Moreover, Ĩneg
S→j(B) = ∅,

ad therefore Dneg
α (Gur[k̃], S → j) = 0.

(ii) Let S ⊆ N be such that k̃ ∈ S. Since Gur[k̃] is purely influential by (iv), F
[k̃]
Gur is an

isotone function, and from Prop. 2 (i), we get F
Gur[k̃](S) = N .
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Let S ⊆ N be such that k̃ /∈ S. Suppose that F
Gur[k̃](S) 6= ∅. Let j̃ ∈ F

Gur[k̃](S). Hence, for

each i ∈ IS, (Gur[k̃]i)j̃ = iS if ij̃ = iS. Take ĩ ∈ IS such that ĩS 6= ĩ
k̃

and ij̃ = iS. Hence, for

each j ∈ N , (Gur[k̃]̃i)j = ĩ
k̃
6= ĩS, and in particular, (Gur[k̃]̃i)j̃ = ĩ

k̃
6= ĩS, a contradiction.

(iii) clear from (28). �

Since the guru function is defined in the same way both in the yes-no and multi-
choice models, the results on the set of followers, the kernels, and the influence indices of
a coalition with the guru on an ‘outside’ player are the same in both frameworks.

Proposition 5 Let us consider the identity function Id. Then the following holds:

(i) For each ∅ 6= S ⊆ N and j ∈ N \ S, Dα(Id, S → j) = Dneg
α (Id, S → j) = 0.

(ii) For each S ⊆ N , FId(S) = S.
(iii) The kernel is K(Id) = {{k}, k ∈ N}.

Proof: (i) For each ∅ 6= S ⊆ N and j ∈ N \ S, (Bi)j = ij for i ∈ I, and therefore
Dα(Id, S → j) = 0, and Dneg

α (Id, S → j) = 0.

(ii) Note that S ⊆ FId(S), because if j ∈ S, then in particular for each i ∈ IS, (Idi)j =
ij = iS. Suppose FId(S) 6⊆ S. Hence, there is k /∈ S such that k ∈ FId(S), and therefore

for each i ∈ IS, (Idi)k = iS if ik = iS, and |(Idi)k − iS| < |ik − iS| if ik 6= iS. Take ĩ ∈ IS

such that ĩS 6= ĩk. Then we have |(Id̃i)k − ĩS| < |̃ik − ĩS|, but Id̃i = ĩ, a contradiction.

(iii) Clear from (ii). �

Similar as for the guru function, since the identity function is defined in the same way
in the yes-no and multi-choice models, we obtain the same results.

Proposition 6 Let t ∈ (0, n] and a ∈ A\A0 be fixed, and consider any influence function
B in B[a,t]. Then the following holds:

(i) There exists B ∈ B[a,t] such that for each ∅ 6= S ⊆ N and j ∈ N \ S,

Dα(B,S → j) = Dneg
α (B,S → j) = 0. (29)

(ii) For each ∅ 6= S ⊆ N such that s > n− t, t > 1, and j ∈ N \ S, there exists B ∈ B[a,t]

such that

Dα(B,S → j) = 1. (30)

(iii) For each S ⊆ N ,

FB(S) ⊆ S if s ≤ n − t. (31)

Moreover, there exists B ∈ B[a,t] such that for each S ⊆ N , FB(S) = S.

Proof: (i) Remark that Id ∈ B[a,t] for any a ∈ A \ A0 and any t ∈ (0, n]. By virtue of
Proposition 5, (i), we get Dα(Id, S → j) = 0 and Dneg

α (Id, S → j) = 0 for each ∅ 6= S ⊆ N
and j ∈ N \ S.
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(ii) Take arbitrary ∅ 6= S ⊆ N such that s > n− t, t > 1, and j /∈ S. Define B as follows:

(Bi)k =

{
iS, if i ∈ IS→j and k = j

ik, otherwise

Note that B belongs to B[a,t], because if i ∈ Ia′

S→j for a′ 6= a, where

Ia′

S→j = {i ∈ IS→j | iS = a′}

then |ia| < t, and if i ∈ I \ Ia′

S→j, then (26) is satisfied. We have Dα(B,S → j) = 1.

(iii) Let t ∈ (0, n], a ∈ A \ A0, and s ≤ n − t. Suppose there is B ∈ B[a,t] such that
FB(S) 6⊆ S for a certain S ⊆ N . This means that FB(S) 6= ∅, since ∅ ⊆ S for each S.
Hence, there is k /∈ S such that k ∈ FB(S). This means that for each i ∈ IS, (Bi)k = iS
if ik = iS, and |(Bi)k − iS| < |ik − iS| if ik 6= iS. Take ĩ ∈ IS such that ĩS 6= a, ĩk = a, and
|̃ia| ≥ t. Such an ĩ always exists, because n − s ≥ t. Since |̃ia| ≥ t, we have (̃i)a ⊆ (Bĩ)a,
and therefore (Bĩ)k = a, but then |a − ĩS| = |(Bĩ)k − ĩS| < |̃ik − ĩS| = |a − ĩS|, a
contradiction.
If we take B = Id, then for each S ⊆ N , FId(S) = S. �

The mass psychology function in the multi-choice model of influence is a natural
generalization of such a function in the yes-no model. Also in the case of this influence
function, all results obtained above in Proposition 6 are the same as the ones concerning
the yes-no model.

5 Conclusions

The main improvement of this paper concerns the enlargement of the set of possible
actions in the original framework of influence in a social network, in which players have
only two inclinations and two possible decisions. While in the original framework only a
yes-no decision was considered, in the present paper we analyze a situation where each
player has a totally ordered set of possible actions. A player has an inclination to choose
one of the actions, but due to the influence by the others, his decision may be different
from his inclination. The main aim of this work, which at the same time emphasizes the
innovative elements of the paper, is therefore to generalize the key concepts of the yes-no
model of influence (see, [20]) to the framework with an ordered set of possible actions.
Consequently, we define the generalized (weighted) influence indices that measure two
kinds of influence, i.e., the positive influence and the negative influence. While the positive
influence defined in this generalized framework is related to the direct influence studied
in the yes-no model, the negative influence is related to the opposite influence defined in
[20].

Another important concept of the influence is the concept of follower. While in the
original model (see, [20]) the follower of a coalition always decides according to the incli-
nation of that coalition, in the multi-choice model a player is said to be the follower of a
coalition if his decision is never farther from the inclination of the coalition. A particular
case of the follower that we look at is the perfect follower of a coalition, i.e., a player whose
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decision is always equal to the inclination of the coalition. We check which properties of
the set of followers introduced in the yes-no model remain valid in the multi-choice model
of influence.

Furthermore, we study another key concept of influence: the influence function. For
several influence functions analyzed in [20], we define and study the analogous functions
defined in the multi-choice model. The influence functions that we analyze are the major-
ity function, the guru function, the identity function, and the mass psychology function.
The results on properties of the majority function defined in the multi-choice framework
differ from the ones concerning the original yes-no model, but this is not surprising, since
definitions of the majority function for these both models are different. All the remaining
influence functions that we consider in this paper have their properties analogous to the
properties of the corresponding influence functions in the yes-no framework.

Combining multi-choice problems with influence aspects creates a challenging frame-
work to study. To the best of our knowledge, the concept of the influence indices in the
multi-choice model has not been proposed before. Hence, this is an interesting concept
from a theoretical point of view, but also its applicability is worth remarking, since in
real-life situations frequently a choice of one action from among several (or many) possible
actions is to be made.
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