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OPTIMAL COUPLING FOR MEAN FIELD LIMITS

FRANÇOIS BOLLEY

Abstract. We review recent quantitative results on the approximation of mean field dif-
fusion equations by large systems of interacting particles, obtained by optimal coupling
methods. These results concern a larger range of models, more precise senses of convergence
and links with the long time behaviour of the systems to be considered.

Let us consider a Borel probability distribution ft = ft(X) on R
d evolving according to the

McKean-Vlasov equation

∂ft
∂t

=

d
∑

i,j=1

aij
∂2ft

∂Xi∂Xj
+

d
∑

i=1

∂

∂Xi

(

bi[X, ft] ft
)

, t > 0, X ∈ R
d. (1)

Here a = (aij)1≤i,j≤d is a nonnegative symmetric d × d matrix; moreover, given X in R
d

and a Borel probability measure p on R
d,

bi[X, p] =

∫

Rd

bi(X,Y ) dp(Y ), 1 ≤ i ≤ d

where b(X,Y ) = (bi(X,Y ))1≤i≤d is a vector of Rd. Equation (1) has the following natural
probabilistic interpretation: if f0 is a distribution on R

d, the solution ft of (1) is the law
at time t of the R

d-valued process (Xt)t≥0 evolving according to the mean field stochastic
differential equation

dXt = σ dBt − b[Xt, ft] dt. (2)

Here the d× d matrix σ satisfies σσ∗ = 2a, (Bt)t≥0 is a Brownian motion in R
d and ft is the

law of Xt in R
d. It is a mean field equation in the sense that the evolution of Xt is obtained

by averaging the contributions b(Xt, Y ) over the system, according to the distribution dft(Y ).
Existence and uniqueness of solutions to (1) and (2) are proven in [11] for globally Lipschitz
drifts b and initial data f0 with finite second moment. Non globally Lipschitz drifts are
discussed in section 1.

Two instances of such evolutions are particularly interesting. First of all, when R
d is the

phase space of positions x ∈ R
d′ and velocities v ∈ R

d′ with d = 2d′, one is interested in the
Vlasov-Fokker-Planck equation

∂ft
∂t

+v ·∇xft−
(

∇xU ∗xρ[ft]
)

·∇vft = ∆vft+∇v ·((A(v)+B(x))ft), t > 0, x, v ∈ R
d′ . (3)

Here a · b denotes the scalar product of two vectors a and b in R
d′ , whereas ∇v, ∇v· and

∆v respectively stand for the gradient, divergence and Laplace operators with respect to the

velocity variable v ∈ R
d′ . Moreover ρ[ft](x) =

∫

Rd′
ft(x, v) dv is the macroscopic density in the
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space of positions x ∈ R
d′ , or the space marginal of ft; U = U(x) is an interaction potential

in the position space and ∗x stands for the convolution with respect to the position variable
x ∈ R

d′ ; finally A(v) and B(x) are respectively friction and position confinement terms. This
equation is used in the modelling of diffusive stellar matter (see [8] for instance).

We are also concerned with the space homogeneous equation

∂ft
∂t

= ∆vft +∇v · ((∇vV +∇vW ∗v ft)ft), t > 0, v ∈ R
d (4)

with d = d′. Here V and W are respectively exterior and interaction potentials in the veloc-
ity space, and this equation is used in the modelling of space homogeneous granular media
(see [2]).

The particle approximation of (1) consists in introducing N processes (Xi,N
t )t≥0, with

1 ≤ i ≤ N , which evolve no more according to the drift b[Xt, ft] generated by the distribution
ft as in (2), but according to its discrete counterpart, namely the empirical measure

µ̂N
t =

1

N

N
∑

i=1

δ
Xi,N

t

of the particle system (X1,N
t , . . . ,XN,N

t ). In other words we let the processes (Xi,N
t )t≥0 solve

dXi,N
t = σ dBi

t −
1

N

N
∑

i=1

b(Xi,N
t ,Xj,N

t ) dt, 1 ≤ i ≤ N. (5)

Here the (Bi
t)t≥0’s are N independent standard Brownian motions on R

d and we assume that

the initial data Xi,N
0

for 1 ≤ i ≤ N are independent variables with given law f0.

Themean field force b[Xt, ft] in (2) is replaced in (5) by the pairwise actions
1

N
b(Xi,N

t ,Xj,N
t )

of particle j on particle i. In particular, even in this case when the initial data Xi,N
0

are inde-
pendent, the particles get correlated at all t > 0. But, since this interaction is of order 1/N ,
it may be reasonable that two of these interacting particles (or a fixed number k of them)
become less and less correlated as N gets large.

In order to state this propagation of chaos property we let, for each i ≥ 1, (X̄i
t)t≥0 be the

solution of
{

dX̄i
t = σ dBi

t − b[X̄i
t , ft] dt

X̄i
0
= Xi,N

0

(6)

where ft is the distribution of X̄i
t . The processes (X̄i

t)t≥0 with i ≥ 1 are independent since
the initial conditions and driving Brownian motions are independent. Moreover they are
identically distributed and their common law at time t evolves according to (1), so is the
solution ft of (1) with initial datum f0. In this notation, and as N gets large, we expect the

N processes (Xi,N
t )t≥0 to look more and more like the N independent processes (X̄i

t)t≥0:

Theorem ([11], [12]) If b is a Lipschitz map on R
2d and f0 a Borel distribution on R

d with
finite second moment, then, in the above notation, for all t ≥ 0 there exists a constant C such
that

E|Xi,N
t − X̄i

t |
2 ≤

C

N
for all N.
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This results also holds in a more general setting when the diffusion matrix can depend on
X and on the distribution in a Lipschitz way, and can be stated at the level of the paths of
the processes on finite time intervals.

First of all, it ensures that the common law f1,N
t of any (by exchangeability) of the particles

Xi,N
t converges to ft as N goes to infinity, according to

W 2

2 (f
1,N
t , ft) ≤ E|Xi,N

t − X̄i
t |
2 ≤

C

N
· (7)

Here the Wasserstein distance of order p ≥ 1 between two Borel probability measures µ and
ν on R

q with finite moment of order p ≥ 1 is defined by

Wp(µ, ν) = inf
(

E|X − Y |p
)1/p

where the infimum runs over all couples of random variables (X,Y ) with X having law µ and
Y having law ν (see [13] for instance).

Moreover, it proves a quantitative version of propagation of chaos : for all fixed k, the law

fk,N
t of any (by exchangeability) k particles Xi,N

t converges to the product tensor (ft)
⊗k as

N goes to infinity, according to

W 2

2 (f
k,N
t , (ft)

⊗k) ≤ E|(X1,N
t , . . . ,Xk,N

t )− (X̄1

t , . . . , X̄
k
t )|

2 ≤
kC

N
·

It finally gives the following first result on the convergence of the empirical measure µ̂N
t of

the particle system to the distribution ft: if ϕ is a Lipschitz map on R
d, then

E

∣

∣

∣

1

N

N
∑

i=1

ϕ(Xi,N
t )−

∫

Rd

ϕdft

∣

∣

∣

2

≤ 2E
∣

∣ϕ(Xi,N
t )−ϕ(X̄i

t)
∣

∣

2
+2E

∣

∣

∣

1

N

N
∑

i=1

ϕ(X̄i
t)−

∫

Rd

ϕdft

∣

∣

∣

2

≤
C

N
(8)

by the Theorem and a law of large numbers argument on the independent variables X̄i
t .

Recent attention has been brought to improve these classical results in three directions:
1. enlarging the setting to non Lipschitz drift terms;
2. providing more precise estimates on the approximation of the solution to (1) by the

empirical measure of the particle system;
3. providing time uniform estimates when possible, in connexion with the long time be-

haviour of the solutions.

1. Non Lipschitz drifts

The interest for such mean field limits with locally but non globally Lipschitz drifts has
been renewed by kinetic models, in which the interaction may become larger for larger relative
velocities.

For instance, for space homogeneous models such as (4) with W (z) = |z|3 and d = 1, the
difficulty brought by the non Lipschitz drift has been solved by convexity arguments, first in
dimension one in [1], then more generally in any dimension in [7], [9].

Space inhomogeneous collective behaviour models are under study in [3], for which known
convexity arguments do not apply.
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2. Deviation bounds for the empirical measure

The averaged estimate (8) ensures that the particle system is an appropriate approximation
to solutions to (1). However, when the particle system is used for numerical simulations, one
may wish to establish estimates making sure that the numerical method has a very small
probability to give wrong results.

This was achieved in [4], [7], [9], [10] by the use of (Talagrand) transportation inequalities.
It is proved in these works, under diverse hypotheses on the initial data and in diverse contexts,

that for all t the law fN,N
t of the particle system at time t satisfies a transportation inequality

W1(ν, f
N,N
t )2 ≤

1

c
H(ν|fN,N

t )

for all measures ν on R
dN . Here c may depend on t (but neither on N nor on ν), and

H(ν|fN,N
t ) =

∫

RdN

dν

dfN,N
t

ln
dν

dfN,N
t

dfN,N
t

is the relative entropy of ν with respect to fN,N
t , to be interpreted as +∞ if ν is not absolutely

continuous with respect to fN,N
t . Then an argument by S. Bobkov and F. Götze, based on

the Kantorovich-Rubinstein dual formulation

W1(ν, f
N,N
t ) = sup

{

∫

RdN

Φ dν −

∫

RdN

Φ dfN,N
t , Φ 1-Lipschitz on R

dN
}

(9)

and the dual formulation of the entropy, ensures that

P

[ 1

N

N
∑

i=1

ϕ(Xi,N
t )−

∫

Rd

ϕdf1,N
t > r

]

≤ e−cN r2

for all N ≥ 1, r > 0 and all 1-Lipschitz maps ϕ on R
d (see [13, Chapter 22] for instance).

Since moreover

∣

∣

∣

1

N

N
∑

i=1

ϕ(Xi,N
t )−

∫

Rd

ϕdft

∣

∣

∣
≤

∣

∣

∣

1

N

N
∑

i=1

ϕ(Xi,N
t )−

∫

Rd

ϕdf1,N
t

∣

∣

∣
+W1(f

1,N
t , ft)

≤
∣

∣

∣

1

N

N
∑

i=1

ϕ(Xi,N
t )−

∫

Rd

ϕdf1,N
t

∣

∣

∣
+

√

C

N

by (9), (7) and the bound W1 ≤ W2, this ensures one-observable error bounds like

P

[

∣

∣

∣

1

N

N
∑

i=1

ϕ(Xi,N
t )−

∫

Rd

ϕdft

∣

∣

∣
>

√

C

N
+ r

]

≤ 2 e−cNr2 (10)

for all N, r and all 1-Lipschitz maps ϕ on R
d. In this argument we see how well adapted to

this issue are the Wasserstein distances: from their definition they can easily be bounded from
above by simple estimates on the processes, as in (7), and in turn they lead to straightforward
estimates on Lipschitz observables, by (9).

Uniformly on Lipschitz observables, and for the Wasserstein distance W1 which, up to
moment conditions, metrizes the narrow topology on measures, estimates like

P

[

W1(µ̂
N
t , ft) > r

]

≤ e−λNr2 , (11)
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or even
P

[

sup
0≤t≤T

W1(µ̂
N
t , ft) > r

]

≤ e−cNr2

were reached in [5], provided N is larger than an explicit N0(r), hence ensuring that the
probability of observing any significant deviation during a whole time period [0, T ] is small.
Also bounds were obtained on the pointwise deviation of a mollified empirical measure around
the solution ft.

3. Time uniform estimates and long time behaviour

Under convexity assumptions on the potentials V and W, the solution to the space homoge-
neous granular media equation (4) has been proven to converge algebraically or exponentially
fast to a unique steady state (see [6] for an entropy dissipation proof based on interpreting (4)
as a gradient flow in the Wasserstein space, and also [7], [9], [10]). In this setting one can hope
for time uniform constants in estimates (8)-(10)-(11), which were obtained in [5], [7], [9], [10].

Also convergence to equilibrium (through a contraction argument in W2 distance) and time
uniform deviation bounds were obtained in [4] for solutions to the (now space inhomogeneous)
Vlasov-Fokker-Planck equation (3).
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