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OPTIMAL COUPLING FOR MEAN FIELD LIMITS

FRANC ¸OIS BOLLEY Abstract. We review recent quantitative results on the approximation of mean field diffusion equations by large systems of interacting particles, obtained by optimal coupling methods. These results concern a larger range of models, more precise senses of convergence and links with the long time behaviour of the systems to be considered.

Let us consider a Borel probability distribution f t = f t (X) on R d evolving according to the McKean-Vlasov equation

∂f t ∂t = d i,j=1 a ij ∂ 2 f t ∂X i ∂X j + d i=1 ∂ ∂X i b i [X, f t ] f t , t > 0, X ∈ R d . (1) 
Here a = (a ij ) 1≤i,j≤d is a nonnegative symmetric d × d matrix; moreover, given X in R d and a Borel probability measure

p on R d , b i [X, p] = R d b i (X, Y ) dp(Y ), 1 ≤ i ≤ d
where b(X, Y ) = (b i (X, Y )) 1≤i≤d is a vector of R d . Equation (1) has the following natural probabilistic interpretation: if f 0 is a distribution on R d , the solution f t of (1) is the law at time t of the R d -valued process (X t ) t≥0 evolving according to the mean field stochastic differential equation

dX t = σ dB t -b[X t , f t ] dt.
(2) Here the d × d matrix σ satisfies σσ * = 2a, (B t ) t≥0 is a Brownian motion in R d and f t is the law of X t in R d . It is a mean field equation in the sense that the evolution of X t is obtained by averaging the contributions b(X t , Y ) over the system, according to the distribution df t (Y ). Existence and uniqueness of solutions to (1) and (2) are proven in [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF] for globally Lipschitz drifts b and initial data f 0 with finite second moment. Non globally Lipschitz drifts are discussed in section 1.

Two instances of such evolutions are particularly interesting. First of all, when R d is the phase space of positions

x ∈ R d ′ and velocities v ∈ R d ′ with d = 2d ′ , one is interested in the Vlasov-Fokker-Planck equation ∂f t ∂t +v•∇ x f t -∇ x U * x ρ[f t ] •∇ v f t = ∆ v f t +∇ v •((A(v)+B(x))f t ), t > 0, x, v ∈ R d ′ . ( 3 
)
Here a • b denotes the scalar product of two vectors a and b in R d ′ , whereas ∇ v , ∇ v • and ∆ v respectively stand for the gradient, divergence and Laplace operators with respect to the

velocity variable v ∈ R d ′ . Moreover ρ[f t ](x) = R d ′ f t (x, v
) dv is the macroscopic density in the space of positions x ∈ R d ′ , or the space marginal of f t ; U = U (x) is an interaction potential in the position space and * x stands for the convolution with respect to the position variable x ∈ R d ′ ; finally A(v) and B(x) are respectively friction and position confinement terms. This equation is used in the modelling of diffusive stellar matter (see [START_REF] Dolbeault | Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states)[END_REF] for instance).

We are also concerned with the space homogeneous equation

∂f t ∂t = ∆ v f t + ∇ v • ((∇ v V + ∇ v W * v f t )f t ), t > 0, v ∈ R d (4) 
with d = d ′ . Here V and W are respectively exterior and interaction potentials in the velocity space, and this equation is used in the modelling of space homogeneous granular media (see [START_REF] Benedetto | A non-Maxwellian steady distribution for one-dimensional granular media[END_REF]).

The particle approximation of (1) consists in introducing N processes (X i,N t ) t≥0 , with 1 ≤ i ≤ N , which evolve no more according to the drift b[X t , f t ] generated by the distribution f t as in ( 2), but according to its discrete counterpart, namely the empirical measure

μN t = 1 N N i=1 δ X i,N t of the particle system (X 1,N t , . . . , X N,N t
). In other words we let the processes (X i,N t ) t≥0 solve

dX i,N t = σ dB i t - 1 N N i=1 b(X i,N t , X j,N t ) dt, 1 ≤ i ≤ N. (5) 
Here the (B i t ) t≥0 's are N independent standard Brownian motions on R d and we assume that the initial data X i,N 0 for 1 ≤ i ≤ N are independent variables with given law f 0 .

The mean field force b[X t , f t ] in (2) is replaced in (5) by the pairwise actions 1 N b(X i,N t , X j,N t ) of particle j on particle i. In particular, even in this case when the initial data X i,N 0 are independent, the particles get correlated at all t > 0. But, since this interaction is of order 1/N , it may be reasonable that two of these interacting particles (or a fixed number k of them) become less and less correlated as N gets large.

In order to state this propagation of chaos property we let, for each i ≥ 1, ( Xi t ) t≥0 be the solution of

d Xi t = σ dB i t -b[ Xi t , f t ] dt Xi 0 = X i,N 0 (6)
where f t is the distribution of Xi t . The processes ( Xi t ) t≥0 with i ≥ 1 are independent since the initial conditions and driving Brownian motions are independent. Moreover they are identically distributed and their common law at time t evolves according to (1), so is the solution f t of (1) with initial datum f 0 . In this notation, and as N gets large, we expect the N processes (X i,N t ) t≥0 to look more and more like the N independent processes ( Xi t ) t≥0 : Theorem ( [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF], [START_REF] Sznitman | Topics in propagation of chaos[END_REF]) If b is a Lipschitz map on R 2d and f 0 a Borel distribution on R d with finite second moment, then, in the above notation, for all t ≥ 0 there exists a constant C such that

E|X i,N t -Xi t | 2 ≤ C N for all N.
This results also holds in a more general setting when the diffusion matrix can depend on X and on the distribution in a Lipschitz way, and can be stated at the level of the paths of the processes on finite time intervals.

First of all, it ensures that the common law f 1,N t of any (by exchangeability) of the particles X i,N t converges to f t as N goes to infinity, according to

W 2 2 (f 1,N t , f t ) ≤ E|X i,N t -Xi t | 2 ≤ C N • (7) 
Here the Wasserstein distance of order p ≥ 1 between two Borel probability measures µ and ν on R q with finite moment of order p ≥ 1 is defined by

W p (µ, ν) = inf E|X -Y | p 1/p
where the infimum runs over all couples of random variables (X, Y ) with X having law µ and Y having law ν (see [START_REF] Villani | Optimal transport, old and new[END_REF] for instance). Moreover, it proves a quantitative version of propagation of chaos : for all fixed k, the law f k,N t of any (by exchangeability) k particles X i,N t converges to the product tensor (f t ) ⊗k as N goes to infinity, according to

W 2 2 (f k,N t , (f t ) ⊗k ) ≤ E|(X 1,N t , . . . , X k,N t ) -( X1 t , . . . , Xk t )| 2 ≤ kC N •
It finally gives the following first result on the convergence of the empirical measure μN t of the particle system to the distribution f t : if ϕ is a Lipschitz map on R d , then

E 1 N N i=1 ϕ(X i,N t )- R d ϕ df t 2 ≤ 2 E ϕ(X i,N t )-ϕ( Xi t ) 2 +2 E 1 N N i=1 ϕ( Xi t )- R d ϕ df t 2 ≤ C N (8) 
by the Theorem and a law of large numbers argument on the independent variables Xi t .

Recent attention has been brought to improve these classical results in three directions:

1. enlarging the setting to non Lipschitz drift terms; 2. providing more precise estimates on the approximation of the solution to (1) by the empirical measure of the particle system; 3. providing time uniform estimates when possible, in connexion with the long time behaviour of the solutions.

Non Lipschitz drifts

The interest for such mean field limits with locally but non globally Lipschitz drifts has been renewed by kinetic models, in which the interaction may become larger for larger relative velocities.

For instance, for space homogeneous models such as (4) with W (z) = |z| 3 and d = 1, the difficulty brought by the non Lipschitz drift has been solved by convexity arguments, first in dimension one in [START_REF] Benachour | Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos[END_REF], then more generally in any dimension in [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly case[END_REF], [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF].

Space inhomogeneous collective behaviour models are under study in [START_REF] Bolley | Work in preparation[END_REF], for which known convexity arguments do not apply.

Deviation bounds for the empirical measure

The averaged estimate (8) ensures that the particle system is an appropriate approximation to solutions to (1). However, when the particle system is used for numerical simulations, one may wish to establish estimates making sure that the numerical method has a very small probability to give wrong results. This was achieved in [START_REF] Bolley | Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly case[END_REF], [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF] by the use of (Talagrand) transportation inequalities. It is proved in these works, under diverse hypotheses on the initial data and in diverse contexts, that for all t the law f N,N t of the particle system at time t satisfies a transportation inequality

W 1 (ν, f N,N t ) 2 ≤ 1 c H(ν|f N,N t )
for all measures ν on R dN . Here c may depend on t (but neither on N nor on ν), and

H(ν|f N,N t ) = R dN dν df N,N t ln dν df N,N t df N,N t
is the relative entropy of ν with respect to f N,N t , to be interpreted as +∞ if ν is not absolutely continuous with respect to f N,N t . Then an argument by S. Bobkov and F. Götze, based on the Kantorovich-Rubinstein dual formulation

W 1 (ν, f N,N t ) = sup R dN Φ dν - R dN Φ df N,N t , Φ 1-Lipschitz on R dN (9) 
and the dual formulation of the entropy, ensures that

P 1 N N i=1 ϕ(X i,N t ) - R d ϕ df 1,N t > r ≤ e -c N r 2
for all N ≥ 1, r > 0 and all 1-Lipschitz maps ϕ on R d (see [START_REF] Villani | Optimal transport, old and new[END_REF]Chapter 22] for instance). Since moreover 9), ( 7) and the bound W 1 ≤ W 2 , this ensures one-observable error bounds like

1 N N i=1 ϕ(X i,N t ) - R d ϕ df t ≤ 1 N N i=1 ϕ(X i,N t ) - R d ϕ df 1,N t + W 1 (f 1,N t , f t ) ≤ 1 N N i=1 ϕ(X i,N t ) - R d ϕ df 1,N t + C N by (
P 1 N N i=1 ϕ(X i,N t ) - R d ϕ df t > C N + r ≤ 2 e -cN r 2 (10) 
for all N, r and all 1-Lipschitz maps ϕ on R d . In this argument we see how well adapted to this issue are the Wasserstein distances: from their definition they can easily be bounded from above by simple estimates on the processes, as in [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly case[END_REF], and in turn they lead to straightforward estimates on Lipschitz observables, by [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF].

Uniformly on Lipschitz observables, and for the Wasserstein distance W 1 which, up to moment conditions, metrizes the narrow topology on measures, estimates like

P W 1 (μ N t , f t ) > r ≤ e -λN r 2 , (11) 
or even

P sup 0≤t≤T W 1 (μ N t , f t ) > r ≤ e -cN r 2
were reached in [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF], provided N is larger than an explicit N 0 (r), hence ensuring that the probability of observing any significant deviation during a whole time period [0, T ] is small. Also bounds were obtained on the pointwise deviation of a mollified empirical measure around the solution f t .

Time uniform estimates and long time behaviour

Under convexity assumptions on the potentials V and W, the solution to the space homogeneous granular media equation ( 4) has been proven to converge algebraically or exponentially fast to a unique steady state (see [START_REF] Carrillo | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF] for an entropy dissipation proof based on interpreting (4) as a gradient flow in the Wasserstein space, and also [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly case[END_REF], [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF]). In this setting one can hope for time uniform constants in estimates ( 8)-( 10)- [START_REF] Méléard | Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models[END_REF], which were obtained in [START_REF] Bolley | Quantitative concentration inequalities for empirical measures on non-compact spaces[END_REF], [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non uniformly case[END_REF], [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF], [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF].

Also convergence to equilibrium (through a contraction argument in W 2 distance) and time uniform deviation bounds were obtained in [START_REF] Bolley | Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation[END_REF] for solutions to the (now space inhomogeneous) Vlasov-Fokker-Planck equation (3).