
HAL Id: hal-00519325
https://hal.science/hal-00519325

Preprint submitted on 20 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strictly positive definite functions on the real line
Fabrice Derrien

To cite this version:

Fabrice Derrien. Strictly positive definite functions on the real line. 2010. �hal-00519325�

https://hal.science/hal-00519325
https://hal.archives-ouvertes.fr


Strictly positive definite functions on the real line

F. Derrien

Univ Lille Nord de France F-59 000 LILLE, FRANCE
UArtois, Laboratoire de Mathématiques de Lens EA 2462,
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Abstract

We give some necessary or sufficient conditions for a function to be strictly positive definite on R.
This problem is intimately linked with the repartition of the zeros of trigonometric polynomials.
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1. Introduction and notations

1.1. Introduction

In the theory of scattered data interpolation with linear combinations of translates of a basis
function, we have to deal with strictly positive definite functions rather than positive definite ones,
or more generally with conditionally strictly positive definite functions [2, 4, 16]. This ensures
that the interpolation problem is always solvable. Using Bochner’s characterization of continuous
positive definite functions as Fourier transforms of nonnegative finite measures, it is straightfor-
ward to see that verifying strict positive definiteness reduces to checking whether the exponen-
tials are linearly independent on a certain subset of real numbers. Some years ago, K-F. Chang
published a paper on this subject [3] but unfortunately his main result is erroneous. In fact, the
author asserts in [3, theorem 3.5] that any nonzero complex polynomial t(z) =

∑K
k=1 ckeiξkz with

ξk ∈ R is of sine type that is there are positive constants a, b, σ and τ such that

aeσ|y| ≤ |t(x + iy)| ≤ beσ|y| for all x, y ∈ R, |y| ≥ τ.

Taking for instance t(z) = eiz, we see easily that the first inequality can not be satisfied. As
a consequence, the author concludes at the end of his paper that there does not exist nonzero
trigonometric polynomial vanishing at the points xn = n + 1

8 sgn (n) where n ∈ Z, but trivially
t(x) = sin(8πx) does.
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1.2. Notations
Let us fix some usual notations for subspaces of complex valued functions defined on the

real line. We denote by C the set of continuous functions and C0 its subspace of functions van-
ishing at infinity, Ck the set of functions with k continuous derivatives, S the Schwartz space of
infinitely differentiable and rapidly decreasing functions, D the space of infinitely differentiable
functions with compact support, Lp the set of p-power integrable functions with respect to the
Lebesgue measure λ, T the set of trigonometric polynomials that is the functions of the form
t(x) =

∑K
k=1 ckeiξk x where ck are complex numbers and ξk real numbers, AP(R) the set of Bohr

almost periodic functions.
We will use also the notation AP(Z) for the set of complex valued Bohr almost periodic functions
on Z. The set of real valued Bohr almost periodic functions on R, resp. Z, is denoted by APR(R),
resp. APR(Z).

For a function φ ∈ C, we note φ̌, resp. φ̃, the function defined by φ̌(ξ) = φ(−ξ), resp.
φ̃(ξ) = φ(−ξ).

The symbol M+ stands for the set of nonnegative finite Borel measure on R. The support
of a measure µ ∈ M+ defined as the smallest closed subset of R whose complement has µ-
measure 0 is denoted by supp µ. The Fourier transform of a measure µ ∈ M+ is defined by
µ̂(ξ) =

∫
R e−iξx dµ(x).

2. Formulation of the interpolation problem, an analogue for Bochner’s theorem

Given a function ϕ ∈ C, an arbitrary set of distinct real numbers Ξ = {ξ1, . . . , ξK} and complex
numbers z1, . . . , zK , the scattered data interpolation problem consists in finding a function

u(ξ) =

K∑
k=1

ckϕ(ξ − ξk)

such that u(ξ j) = z j, j = 1 . . .K. Although this problem is equivalent to the nonsingularity of the
K × K matrix A with entries A jk = ϕ(ξ j − ξk), one wishes to know when the interpolation matrix
A is positive definite for any set Ξ. For this purpose, let us recall the following definition.

Definition 2.1. A complex valued continuous function ϕ is said positive definite (resp. strictly
positive definite) on R if for every finite set of distinct real numbers Ξ = {ξ1, . . . , ξK} and every
vector (c1, . . . , cK) ∈ CK \ {0}, the inequality

K∑
j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) ≥ 0 (resp. > 0) (1)

holds true.
We denote by P (resp. Ps) the class of such functions. Clearly Ps ⊂ P.

The class of positive definite functions is fully characterized by the Bochner’s theorem [1].

Theorem 2.1. A function ϕ ∈ P if and only if ϕ = µ̂ where µ ∈ M+, ϕ and µ being biuniquely
determined.

Therefore we can ask for an equivalent characterization of a strictly positive definite function
in terms of its Fourier transform. We state before a basic lemma.
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Lemma 2.1. Let µ ∈ M+ and f ∈ C a nonnegative function. We have∫
R

f dµ = 0⇔ f = 0 on supp µ.

Proof. Let us set X = supp µ. Since R \ X is the largest open subset of R with µ-measure 0 and
the set { f > 0} is open, we have∫

R
f dµ = 0⇔ µ({ f > 0}) = 0⇔ { f > 0} ⊂ R \ X ⇔ X ⊂ { f = 0} ⇔ f = 0 on X.

�

Proposition 2.1. Let ϕ = µ̂ ∈ P. Then ϕ ∈ Ps if and only if there does not exist t ∈ T \ {0}
vanishing on supp µ.

Proof. Let t ∈ T \ {0}. Remark first that t can be written in the form t(x) =
∑K

k=1 ckeiξk x where xk

are pairwise distinct real numbers and ck are complex numbers, not all zero. We have

K∑
j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) =

K∑
j=1

K∑
k=1

c̄ jck

∫
R

e−i(ξ j−ξk)x dµ(x)

=

∫
R

K∑
j=1

c̄ je−iξ j x
K∑

k=1

ckeiξk x dµ(x)

=

∫
R

∣∣∣∣∣ K∑
k=1

ckeiξk x
∣∣∣∣∣2 dµ(x)

=

∫
R
|t(x)|2 dµ(x).

From lemma 2.1 the last integral is 0, i.e. ϕ < Ps, if and only if t vanishes on supp µ. �

3. Elementary properties of strictly positive definite functions

The next result shows in particular that the class Ps is a convex cone, closed under multipli-
cation.

Theorem 3.1. Let ϕ ∈ Ps and ψ ∈ P. Then

(i) ϕ + ψ ∈ Ps,
(ii) ϕψ ∈ Ps provided that ψ , 0.

Proof. Let t ∈ T and write ϕ = µ̂, ψ = ν̂ so that ϕ + ψ = µ̂ + ν and ϕψ = µ̂ ? ν. It is clear that
µ + ν and µ ? ν are in M+. We have from proposition 2.1∫

R
|t|2 d(µ + ν) = 0 =⇒

∫
R
|t|2 dµ = 0 =⇒ t = 0.

For the second assertion, we remark by Fubini’s theorem that∫
R
|t|2 d(µ ? ν) :=

∫
R2
|t(x + y)|2 dµ(x) dν(y) =

∫
R

dν(y)
∫
R
|t(x + y)|2 dµ(x)
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and if we suppose ψ , 0, then supp ν , ∅. From lemma 2.1 and proposition 2.1, it follows that∫
R
|t|2 d(µ ? ν) = 0 =⇒

∫
R
|t(x + y)|2 dµ(x) = 0 for y ∈ supp ν =⇒ t = 0.

�

Theorem 3.2. Let ϕ be a function in Ps. Then

(i) ϕ is hermitian i.e. ϕ̌ = ϕ̄,
(ii) ϕ(0) > 0 and |ϕ(ξ)| < ϕ(0) for all ξ , 0,

(iii) ϕ(a·) ∈ Ps provided that a , 0,
(iv) the functions ϕ̄,<ϕ and |ϕ|2 are in Ps,
(v) h ◦ ϕ ∈ Ps if h(z) =

∑∞
n=0 anzn is a nonconstant power series with nonnegative coefficients,

converging for z = ϕ(0).

Proof. By theorem 2.1 we have ϕ = µ̂ where µ ∈ M+ so that ϕ(−ξ) =
∫
R eiξx dµ(x) = ϕ(ξ).

In the definition 1, let n = 1 to obtain ϕ(0) > 0 and then let n = 2, ξ1 = ξ, ξ2 = 0, c1 = 1, c2 = −1
which shows that ϕ(0)2 − ϕ(ξ)ϕ(−ξ) = ϕ(0)2 − |ϕ(ξ)|2 > 0 whenever ξ , 0.
The third assertion follows immediately from the definition 1.
Taking a = −1 shows that ϕ̄ = ϕ̌ ∈ Ps and so are the functions<ϕ = 1

2 (ϕ + ϕ̄) and |ϕ|2 = ϕϕ̄ by
the preceding theorem.
Since |anϕ

n(ξ)| ≤ anϕ
n(0) for all ξ ∈ R and all n ≥ 0 and

∑∞
n=0 anϕ

n(0) < ∞, the series
∑∞

n=0 anϕ
n

converges uniformly on R by the Weierstrass M-test and so its sum h◦ϕ is continuous. Since h is
nonconstant, there exists a coefficient an0 > 0 with n0 ≥ 1 and hence by theorem 3.1, an0ϕ

n0 ∈ Ps

and each partial sum
∑N

n,n0
anϕ

n is either 0 or in Ps. It follows that its pointwise limit is in P and
then h ◦ ϕ =

∑∞
n,n0

anϕ
n + an0ϕ

n0 is in Ps. �

4. Reproducing kernel Hilbert space

Given a strictly positive definite function ϕ on R, the construction of the associated repro-
ducing kernel Hilbert space is standard. We denote by H0 the complex linear space spanned by
the functions ϕξ, ξ ∈ R where ϕξ(η) = ϕ(η − ξ). If u =

∑K
k=1 ckϕξk and v =

∑J
j=1 d jϕη j belong to

H0, then we define a sesquilinear form (u, v) on H0 by the formula

(u, v) =

J∑
j=1

K∑
k=1

d̄ jckϕ(η j − ξk). (2)

Since (u, v) =
∑K

k=1 ckv(ξk) =
∑J

j=1 d̄ ju(η j), the definition of (u, v) does not depend on the chosen
representations of u and v. We have (u, u) =

∑K
j=1

∑K
k=1 c̄ jckϕ(ξ j − ξk) ≥ 0 by assumption and

(u, v) = (v, u) since ϕ is hermitian. An immediate consequence of (2) is the reproducing property

(u, ϕξ) = u(ξ) for all u ∈ H0 and ξ ∈ R (3)

which implies in particular (ϕη, ϕξ) = ϕ(ξ − η). From the Cauchy-Schwartz inequality, we have

|u(ξ)|2 = |(u, ϕξ)|2 ≤ (u, u)(ϕξ, ϕξ) = (u, u)ϕ(0) (4)
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so that (u, u) = 0 if and only if u = 0, hence the form (·, ·) is an inner product on H0. In the
pre-Hilbert space H0, we see from (4) that norm convergence implies uniform convergence on
R, thus we can adjoin all limits of Cauchy sequences to obtain a Hilbert space H of continuous
functions usually called the reproducing kernel Hilbert space associated with ϕ. As H0 is a dense
subspace of H, equations (3) and (4) remain valid in H.

Remark 4.1. Conversely, for each Hilbert space H of complex valued continuous functions on
R, norm invariant under translations and such that point evaluation functionals are continuous and
linearly independent, we can associate a unique function ϕ ∈ Ps verifying (u, ϕ(· − ξ)) = u(ξ).
Let us give the proof. Since every point evaluation δξ : u 7→ u(ξ) is continuous, by the Riesz
theorem, there exists uniquely Kξ ∈ H such that

(u,Kξ) = u(ξ) for u ∈ H.

Denote by eξ : u 7→ u(· − ξ) the translation operator on H. For every u ∈ H, the function
e−ξu = u(· + ξ) belongs to H and hence we have also (e−ξu,K0) = u(ξ). Since ||e−ξu|| = ||u|| for
u ∈ H, we see by the formula

4(u, v) = (u + v, u + v) − (u − v, u − v) + i(u + iv, u + iv) − i(u − iv, u − iv)

that (e−ξu, e−ξv) = (u, v) for u, v ∈ H. We have therefore

(u, eξK0) = (e−ξu,K0) = u(ξ) = (u,Kξ)

which shows that Kξ = eξK0. Let us write ϕ = K0 so that Kξ = eξϕ = ϕ(· − ξ). We have

(u, ϕ(· − ξ)) = (u,Kξ) = u(ξ) for u ∈ H.

Next the function ϕ is positive definite because ϕ(ξ − η) = K0(ξ − η) = Kη(ξ) = (Kη,Kξ)
which gives

K∑
j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) = (
K∑

k=1

ckKξk ,

K∑
j=1

c jKξ j ) ≥ 0.

Suppose that ϕ is not strictly positive definite. Then there exist distinct points ξ1, . . . , ξK and
coefficients c1, . . . , cK not all zero such that

K∑
j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) = 0⇔
K∑

k=1

ckKξk = 0 in H

⇔

K∑
k=1

c̄k(u,Kξk ) = 0 for every u ∈ H

⇔

K∑
k=1

c̄ku(ξk) = 0 for every u ∈ H

⇔

K∑
k=1

c̄kδξk = 0 in H′.

which shows that point evaluation functionals δξ are linearly dependent in H′ the dual space of
H.
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Let Ξ = {ξ1, . . . , ξK} be a set of distinct real numbers and z = (z1, . . . , zK) ∈ CK . We define
the linear map l : H → CK by l(v) = (v(ξ j)) j=1,...,K . Since the matrix A with entries ϕ(ξ j − ξk)
is positive definite, the function u =

∑K
k=1 ckϕξk is uniquely determined in l−1({z}) in solving

the linear system Ac = z where c = (c1, . . . , cK). The next theorem shows that this function
minimizes the norm in H under interpolation constraints.

Theorem 4.1. The function u is the unique solution of min{||v||, l(v) = z}.

Proof. From the reproducing property, the linear map l is continuous since each coordinate func-
tion is continuous. We have furthermore l−1({z}) = u + l−1({0}), hence the set l−1({z}) is a closed
affine hyperplane in H. By the projection theorem, there exists an unique solution minimiz-
ing the norm on l−1({z}). This solution is simply given by u since for all v ∈ l−1({z}), we have
(v − u, u) =

∑K
k=1 c̄k(v − u)(ξk) = 0 and hence ||v||2 = ||v − u + u||2 = ||v − u||2 + ||u||2 ≥ ||u||2. �

5. Some inequalities

We prove some inequalities which are consequences of definition 2.1. We recall that for
ϕ ∈ Ps and Ξ = {ξ1, . . . , ξK} a set of distinct real numbers, there exists a function w ∈ H0 such
that w(ξ1) = 1 and w(ξk) = 0 for any k , 1. Equivalently, if Ξ = {ξ1, . . . , ξK} is a set of (not
necessarily distinct) real numbers and ξ < Ξ, there exists a function w ∈ H0 vanishing on Ξ and
such that w(ξ) = 1.

Theorem 5.1. Let ϕ be a function in Ps. Let us consider {ξ1 < . . . < ξK} and {η1 < . . . < ηJ}

two sets of pairwise distinct real numbers, (c1, . . . , cK) and (d1, . . . , dJ) two complex vectors with
nonzero entries. Then

(i) |ϕ(ξ) − ϕ(η)|2 < 2ϕ(0)[ϕ(0) −<ϕ(ξ − η)] unless ξ = η,
(ii) |ϕ(0)ϕ(ξ + η) − ϕ(ξ)ϕ(η)|2 < [ϕ(0)2 − |ϕ(ξ)|2][ϕ(0)2 − |ϕ(η)|2] unless ξ = 0 or η = 0 or

ξ + η = 0,
(iii) |

∑K
k=1 ckϕ(−ξk)|2 < ϕ(0)

∑K
j,k=1 c̄ jckϕ(ξ j − ξk) unless K = 1 and ξ1 = 0,

(iv) |
∑J

j=1
∑K

k=1 d̄ jckϕ(η j−ξk)|2 <
(∑K

j,k=1 c̄ jckϕ(ξ j−ξk)
)(∑J

j,k=1 d̄ jdkϕ(η j−ηk)
)

unless J = K, ξk =

ηk and ck = αdk for a number α ∈ C \ {0}.

Proof. Let u =
∑K

k=1 ckϕξk and v =
∑J

j=1 d jϕη j be two functions in the reproducing kernel Hilbert
space H associated with ϕ. Then we have by the Cauchy-Schwartz inequality

|(u, v)|2 ≤ ||u||2||v||2 ⇐⇒ |
J∑

j=1

K∑
k=1

d̄ jckϕ(η j − ξk)|2 ≤
( K∑

j,k=1

c̄ jckϕ(ξ j − ξk)
)( J∑

j,k=1

d̄ jdkϕ(η j − ηk)
)

and equality holds if and only u and v are linearly dependent that is, u = αv for a complex number
α , 0 since u and v are different from 0. But this is equivalent to say that

K∑
k=1

ckw(ξk) =

J∑
j=1

(αd j)w(η j) for w ∈ H0.

Suppose there exists ξk0 in {ξ1, . . . , ξK} but not in {η1, . . . , ηJ} and pick up a function w ∈ H0
vanishing on {ξ1, . . . , ξK , η1, . . . , ηJ} \ {ξk0 } and such that w(ξk0 ) = 1. This leads us to the con-
tradiction ck0 = 0. Similarly, if there exists η j0 in {η1, . . . , ηJ} but not in {ξ1, . . . , ξK}, we would
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obtain αd j0 = 0 and hence d j0 = 0. We thus have {ξ1 < . . . < ξK} = {η1 < . . . < ηJ} which shows
that

K∑
k=1

ckw(ξk) =

K∑
k=1

αdkw(ξk) for w ∈ H0.

Choosing w ∈ H0 vanishing on {ξ1, . . . , ξK} \ {ξk} and such that w(ξk) = 1, we conclude that
ck = αdk for any k = 1, . . . ,K.

Setting J = 1, η1 = 0, d1 = 1 in (iv), we get (iii). The inequality (i) follows from (iii) by
setting K = 2, ξ1 = −ξ, ξ2 = −η, c1 = 1, c2 = −1.

To prove (ii) we first remark that if a matrix of the form1 a b
ā 1 c
b̄ c̄ 1


is positive definite then its determinant is positive. Computing this determinant we obtain 1 +

ab̄c + ābc̄ > |a|2 + |b|2 + |c|2 or, equivalently |c − āb|2 < (1 − |a|2)(1 − |b|2). Assume first that
ϕ(0) = 1. Applying this last inequality to the matrix

(ϕ(ξ j − ξk))3
j,k=1 =

 1 ϕ(−ξ) ϕ(η)
ϕ(ξ) 1 ϕ(ξ + η)
ϕ(−η) ϕ(−ξ − η) 1


where ξ1 = 0, ξ2 = ξ and ξ3 = −η are pairwise distinct, we obtain (ii). The case ϕ(0) , 1 can be
reduced to the case ϕ(0) = 1 by considering ϕ/ϕ(0).

�

6. Sufficient conditions

6.1. Fourier transform of a nonnegative finite continuous measure

Proposition 6.1. If ϕ = µ̂ ∈ P and supp µ is not a discrete set then ϕ ∈ Ps.

Proof. If t ∈ T vanishes on supp µ which contains an accumulation point, it must vanish identi-
cally as an analytic function on R. �

We recall that a measure µ ∈ M+ is called atomic if µ =
∑

anδxn (an ≥ 0 and
∑

an < +∞) and
continuous if µ(X) = 0 for every countable set X ⊂ R. Every measure µ ∈ M+ can be uniquely
decomposed to a sum µ = µc + µat where µc is continuous and µat is atomic.

Corollary 6.1. If µ ∈ M+ is not atomic then µ̂ ∈ Ps.

Proof. It is enough to show that X = supp µ is not a discrete set. Let µc , 0 be the continuous
part and suppose on the contrary that X is discrete. Since X is countable we have µ(X) = 0 and
therefore µc(R) = µc(X) + µc(R \ X) = 0 i.e. µc = 0, a contradiction. �

Theorem 6.1. Let ϕ = µ̂ ∈ P. Then ϕ ∈ AP(R) if and only if µ is atomic.
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Proof. If µ =
∑

anδxn , then µ̂(ξ) =
∑

aneiξxn is almost periodic. Conversely, suppose that ϕ ∈
AP(R) is almost periodic and let use the decomposition µ = µc + µat. It results that µ̂c = ϕ − µ̂at

is also almost periodic. From the inversion formula, we have

lim
T→+∞

1
2T

∫ T

−T
e−ixξµ̂c(ξ) dξ = µc({x}) = 0 for x ∈ R

which shows that µ̂c = 0 and hence µc = 0. �

Corollary 6.2. If ϕ = µ̂ ∈ P is not almost periodic, in particular if lim sup|ξ|→+∞ |ϕ(ξ)| < ϕ(0),
then ϕ ∈ Ps.

6.2. Derivatives
Theorem 6.2. Let ϕ = µ̂ and ψ = ν̂ with µ, ν ∈ M+. Suppose there exists a point x0 such that
supp µ \ {x0} ⊂ supp ν. Then ϕ ∈ Ps =⇒ ψ ∈ Ps.

Proof. For t ∈ T , we have also t(·) sin(· − x0) ∈ T and therefore

t = 0 on supp ν =⇒ t = 0 on supp µ \ {x0} =⇒ t(·) sin(· − x0) = 0 on supp µ
=⇒ t(·) sin(· − x0) = 0 =⇒ t = 0.

�

Corollary 6.3. Let ϕ = µ̂ ∈ P.

(i) If supp µ ⊂ [0,+∞) and xµ ∈ M+, then ϕ ∈ Ps ⇐⇒ iϕ′ ∈ Ps.
(ii) If x2µ ∈ M+, then ϕ ∈ Ps ⇐⇒ −ϕ′′ ∈ Ps

Proof. By the hypothesis on the moment of the measure µ, it follows that ϕ ∈ C1 with iϕ′ = x̂µ
in the first case and ϕ ∈ C2 with −ϕ′′ = x̂2µ in the second case. It suffices now to apply theorem
6.2 firstly with ν = xµ and secondly with ν = x2µ since in both cases, we have supp µ \ {0} ⊂
supp ν ⊂ supp µ. �

Remark 6.1. In fact, it is well known that x2µ ∈ M+ is equivalent to ϕ ∈ C2 [11, p. 21–22].

For a function φ ∈ Cn, n ≥ 1, its Maclaurin series of degree n − 1 with integral remainder is
given by

φ(ξ) =

n−1∑
k=0

ξk

k!
ϕ(k)(0) +

ξn

(n − 1)!

∫ 1

0
ϕ(n)(ξx)(1 − x)n−1 dx.

We can therefore define the continuous function Tnϕ by the formula

Tnϕ(ξ) =


φ(ξ) −

∑n−1
k=0

ξk

k!ϕ
(k)(0)

ξn if ξ , 0,

ϕ(n)(0)
n!

if ξ = 0.

Corollary 6.4. Let ϕ = µ̂ be a nonconstant function in P and n a positive integer.

(i) If supp µ ⊂ [0,+∞) and x2n−1µ ∈ M+, then (−1)n−1iT2n−1ϕ ∈ P
s.
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(ii) If x2nµ ∈ M+, then (−1)nT2nϕ ∈ P
s.

Proof. Let us prove the first item, the same reasoning is valid for the second one. We have
ϕ ∈ C2n−1 and ϕ(2n−1) = (−i)2n−1 x̂2n−1µ, hence the function (−1)n−1iϕ(2n−1) is in P. Furthermore
this function is noncontant otherwise ϕ should be a polynomial and hence a constant function
since it is bounded. With the help of corollary 6.6, the proof is done.

�

The same proof with ϕ′ in place of ϕ gives the next result.

Corollary 6.5. Let ϕ = µ̂ be a nonconstant function in P and n a positive integer.

(i) If x2nµ ∈ M+, then (−1)nT2n−1ϕ
′ ∈ Ps.

(ii) If supp µ ⊂ [0,+∞) and x2n+1µ ∈ M+, then (−1)n−1iT2nϕ
′ ∈ Ps.

6.3. Integration against a nonnegative measure
Theorem 6.3. Let ψ ∈ Ps and µ ∈ M+ such that µ(R \ {0}) > 0. Then the function ϕ given by

ϕ(ξ) =

∫
R
ψ(ξx) dµ(x)

is in Ps.

Proof. We remark that the integral is well defined since the function ψ is bounded. For an
arbitrary vector c = (c1, . . . , cK) ∈ CK and arbitrary real numbers ξ1, . . . , ξK , we have

K∑
j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) =

∫
R

K∑
j=1

K∑
k=1

c̄ jckψ((ξ j − ξk)x) dµ(x).

This integral is nonnegative since ψ is positive definite. If it vanishes, the integrand equals 0 on
supp µ by lemma 2.1 and hence there exists an a , 0 such that

∑K
j=1

∑K
k=1 c̄ jckψ((ξ j − ξk)a) = 0

which implies c = 0 since the function ψ(a·) is in Ps by theorem 3.2. �

As an application we give two important classes of strictly positive definite functions. Let
µ ∈ M+ be a measure not concentrated at 0.

(i) The function ψ(ξ) = e−ξ
2

is in Ps since

e−ξ
2

=
1

2
√
π

∫
R

e−x2/4e−iξx dx,

hence the function

ϕ(ξ) =

∫ +∞

0
e−ξ

2 x2
dµ(x)

is strictly positive definite. By Bernstein–Widder theorem [17, Th. 12a, p. 160], a function
admits such an integral representation if and only if ϕ(

√
·) is not constant and completely

monotone on [0,+∞) meaning that ϕ ∈ C[0,∞) ∩ C∞(0,∞) and (−1)kϕ(k)(
√
ξ) ≥ 0 for all

k ∈ N0 and all ξ > 0.
9



(ii) We consider now the function ψ(ξ) = (1− |ξ|)+ where x+ denotes the greater of x and 0. As
before the function

ϕ(ξ) =

∫ +∞

0
(1 − |ξx|)+ dµ(x)

is strictly positive definite since we have

(1 − |ξ|)+ =
1

2π

∫
R

sinc 2(x/2)e−iξx dx.

In this case, we describe the class of even continuous functions which are nonconstant,
nonnegative, bounded and convex on (0,+∞) (see [11, p. 87]).

Corollary 6.6. Let ψ be a nonconstant function in P and µ ∈ M+ such that µ̂ ∈ Ps. Then the
function

ϕ(ξ) =

∫
R
ψ(ξx) dµ(x)

is in Ps.

Proof. By assumption on ψ there exists ν ∈ M+ such that ψ = ν̂ and ν(R \ {0}) > 0. The Fubini’s
theorem gives next

ϕ(ξ) =

∫
R
ν̂(ξx) dµ(x) =

∫
R

∫
R

e−iξxy dν(y)dµ(x) =

∫
R

∫
R

e−iξyx dµ(x)dν(y) =

∫
R
µ̂(ξy) dν(y),

hence the proof is done by theorem 6.3. �

Corollary 6.7. Let ψ be a nonconstant function in Ps and α > 0 a real number. The function

ϕ(ξ) =
α

ξα

∫ ξ

0
ψ(x)xα−1 dx

is in Ps.

Proof. The corollary follows by putting dµ(x) = αxα−1χ(0,1)(x)dx in corollary 6.6. �

6.4. Limit at infinity

Theorem 6.4. Let ϕ = µ̂ ∈ P. If lim|ξ|→+∞ ϕ(ξ) = a in C, then a ≥ 0 and ϕ−a ∈ P. Furthermore,
we have a < ϕ(0) ⇐⇒ ϕ ∈ Ps ⇐⇒ ϕ − a ∈ Ps.

Proof. From the inversion formula [11, p. 35], we have for every real x

µ({x}) = lim
T→+∞

1
2T

∫ T

−T
ϕ(ξ)eixξ dξ.

From the hypothesis lim|ξ|→+∞ ϕ(ξ) = a, we obtain

µ({x}) =

a if x = 0,
0 if x , 0.

10



Hence we have a ≥ 0 and µ = aδ0 + µc where µc is a continuous measure in M+. This shows that
ϕ − a = µ̂c is positive definite. In particular, we have |ϕ − a| ≤ ϕ(0) − a, hence

ϕ(0) = a ⇐⇒ ϕ = a ⇐⇒ µc = 0

or equivalently
a < ϕ(0) ⇐⇒ µc , 0.

This is clearly equivalent to ϕ ∈ Ps or ϕ − a ∈ Ps. �

6.5. Integrable positive definite functions
Theorem 6.5. If ϕ ∈ P ∩ Lp \ {0} with 0 < p < +∞ then ϕ ∈ Ps.

Proof. It is sufficient to show that ϕ ∈ C0. Let α > 0 and consider the closed set Fα = {ξ ∈
R; |ϕ(ξ)| ≥ 2α}. Since ϕ is uniformly continuous, there exists a neighbourhood Vα of 0 such that
|ϕ(ξ)| ≥ α for every ξ ∈ Fα + Vα. If ϕ ∈ Lp, the Chebyshev’s inequality

λ({ξ ∈ R; |ϕ(ξ)| ≥ α}) ≤ α−p||ϕ||
p
p

ensures that the set Fα + Vα has a finite Lebesgue measure. Hence Fα is bounded otherwise there
would exist a sequence (ξn) ∈ Fα such that {ξn + Vα} ∩ {ξn+1 + Vα} , and we would have the
contradiction

λ(Fα + Vα) ≥
∑

n

λ(ξn + Vα) =
∑

n

λ(Vα) = +∞.

Finally we have proved that for any α > 0, there is a compact set such that |ϕ| < 2α on its
complement which means that ϕ ∈ C0. �

Theorem 6.6. Let ϕ ∈ C ∩ L1. Then ϕ ∈ Ps ⇐⇒ ϕ̂ ≥ 0 and ϕ , 0.

Proof. Suppose that ϕ = µ̂ ∈ Ps. We have evidently ϕ , 0 and the Riemann–Lebesgue lemma
tells us that ϕ̂ ∈ C0. For every test function u in the Schwartz space S, we have∫

R
ϕ̂(−x)u(x) dx =

∫
R
ϕ(−ξ)û(ξ) dξ

=

∫
R

∫
R

eixξ dµ(x)û(ξ) dξ

=

∫
R

∫
R

eixξû(ξ) dξdµ(x)

= 2π
∫
R

u(x) dµ(x).

Since µ is nonnegative, the last integral is nonnegative for every u ≥ 0 in S which permits to
conclude that ϕ̂ ≥ 0. As µ is nonnegative, we conclude that ϕ̂ ≥ 0. Inversely, if ϕ is integrable
and continuous with a nonnegative Fourier transform, then ϕ̂ ∈ L1 and we have the inversion
formula [14, p. 15]

ϕ(x) =
1

2π

∫
R
ϕ̂(ξ)eixξ dξ.

This shows that ϕ ∈ P. From the hypothesis ϕ ∈ L1, we conclude that ϕ ∈ Ps provided that
ϕ , 0. �
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Remark 6.2. In the necessary part of the proof, we have also ϕ̂ ∈ L1 and the equality∫
R
ϕ̂(−x)u(x) dx = 2π

∫
R

u(x) dµ(x)

remains valid for every function u ∈ C0 by a density argument. It follows by the Riesz uniqueness
theorem that dµ(x) = (2π)−1ϕ̂(−x)dx, hence µ is absolutely continuous.

Before stating a result about convolution of positive definite functions, we give some lemma.

Lemma 6.1. If ϕ ∈ P and ρ ∈ D then ϕ ∗ ρ ∗ ρ̃ ∈ P ∩C∞.

Proof. The regularity of the convolution product is standart. Moreover it is known that a con-
tinuous function ϕ is positive definite if and only if 〈ϕ̌, u ∗ ũ〉 ≥ 0 for every u ∈ D. For such a
function u, we have

〈(ϕ ∗ ρ ∗ ρ̃) ,̌ u ∗ ũ〉 = 〈ϕ̌, ρ ∗ ρ̃ ∗ u ∗ ũ〉 = 〈ϕ̌, ρ ∗ u ∗ (ρ ∗ u)˜〉 ≥ 0.

�

Lemma 6.2. Let ϕ ∈ P ∩ Lp, 1 ≤ p < +∞. There exists a sequence (ϕn) in P∩S which tends to
ϕ in Lp.

Proof. Suppose before that ϕ ∈ C∞. Then the function ϕn(x) = ϕ(x)e−x2/n is in P as the product
of two positive definite functions and belongs toS since ϕ is bounded and infinitely differentiable.
By the dominated convergence theorem, the conclusion holds.
In the general case, let us prove that the function ϕ is the limit in Lp of a sequence belonging to
P∩ Lp ∩C∞. Let u a function inD such that u ≥ 0 and

∫
R u = 1. Then ρ = u ∗ ũ shares the same

properties as u and the sequence (ρn) defined by ρn(x) = nρ(nx) is then an approximate identity.
By the preceding lemma, we have ϕn = ϕ ∗ ρn ∈ P ∩C∞ and it is well known that ϕn → ϕ in Lp.

�

Theorem 6.7. Let ϕ ∈ P ∩ Lp and ψ ∈ P ∩ Lq with 1 < p, q < +∞ and 1
p + 1

q = 1. Then
ϕ ? ψ ∈ Ps if ϕ ? ψ , 0.

Proof. It is known that ϕ ? ψ ∈ C0 and we have the Young’s inequality ||ϕ ? ψ||∞ ≤ ||ϕ||p||ψ||q.
From theorem 6.4 it is enough to prove that ϕ ? ψ ∈ P.
Suppose first that ϕ, ψ ∈ S. Then ϕ ? ψ ∈ S and it is clearly in P since ϕ̂ ? ψ = ϕ̂ψ̂ ≥ 0.
Now if ϕ ∈ Lp and ψ ∈ Lq, 1 < p, q < +∞, lemma 6.2 tells us that there exists some sequences
(ϕn) and (ψn) in P ∩ S such that ϕn → ϕ in Lp and ψn → ψ in Lq. But we know from above that
ϕn ? ψn ∈ P ∩ S. The Young’s inequality says that the bilinear application (ϕ, ψ) 7→ ϕ ? ψ from
Lp × Lq → L∞ is continuous and so ϕn ? ψn → ϕ ? ψ uniformly. From definition 2.1, we see
easily that the uniform limit belongs to P. �

Recall that a function ϕ ∈ Lp ∩ Lq, 1 ≤ p ≤ q ≤ +∞, belongs to Lr for p ≤ r ≤ q. This
elementary fact permits to give a more general result.

Corollary 6.8. Let ϕ ∈ P ∩ Lp and ψ ∈ P ∩ Lq with 1 ≤ p, q < +∞ and 1
p + 1

q ≥ 1. Then
ϕ ? ψ ∈ Ps if ϕ ? ψ , 0.

Proof. We know that a positive definite function is bounded then ϕ ∈ Lp′ and ψ ∈ Lq′ with p′ ≥ p
and q′ ≥ q. It is easy to verify that we can take in particular 1

p′ = 1
2

(
1+ 1

p−
1
q

)
and 1

q′ = 1
2

(
1+ 1

q−
1
p

)
so that the two exponents are conjugate and we can therefore apply the preceding theorem. �
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7. Unicity sets

From corollary 6.1 we can restrict the problem of strict positive definiteness on atomic mea-
sures µat ∈ M+ and we obtain by proposition 2.1 that µ̂at ∈ P

s if and only if every trigonometric
polynomial vanishing on the countable set X = supp µat vanishes identically on R.

In the following we call such a set X a unicity set and we denote byU the class of all unicity
sets.

Proposition 7.1. Let X ∈ U and Y be a countable set. We have then

(i) αX + β ∈ U for α, β ∈ R such that α , 0,
(ii) X ⊂ Y implies Y ∈ U (hence X ∪ Y ∈ U),

(iii) X + Y ∈ U.

Proof.

(i) Let t ∈ T and consider the transformation ψ(x) = αx + β from R to itself. It is clear that
t ◦ ψ ∈ T . So we have t ◦ ψ(X) = {0} =⇒ t ◦ ψ = 0 and hence t = 0 since ψ is onto.

(ii) For t ∈ T we have t(X) ⊂ t(Y) and hence t(Y) = {0} =⇒ t(X) = {0} =⇒ t = 0.
(iii) We can suppose Y nonempty otherwise the result is trivial. For y ∈ Y we have X + y ∈ U

by (i) and since X + y is a subset of the countable set X + Y then X + Y ∈ U by (ii).

�

Proposition 7.2. X ∪ Y ∈ U implies X ∈ U or Y ∈ U.

Proof. If X∪Y is countable so are X and Y . Suppose that X and Y are not inU. Then there exists
t1, t2 ∈ P\{0} such that t1(X) = t2(Y) = 0. Hence t = t1t2 ∈ P\{0} and t(X∪Y) = t(X)∪t(Y) = {0}
which lead to X ∪ Y < U. �

Since the ring of trigonometric polynomials is an integral domain, we can easily construct
unicity sets from knowing one.

Proposition 7.3. Let X = {xn, n ∈ N} ∈ U and α, β ∈ R such that α , 0. Then the set
Y = {yn, n ∈ N} where yn ∈ {xn, αxn + β} is also of unicity.

Proof. Let t ∈ T such that t(Y) = {0} i.e. t(xn) = 0 or t(αxn + β) = 0. The trigonometric
polynomial t · t ◦ψ where ψ(x) = αx + β vanishes on X ∈ U and hence on R. We have then t = 0
or t ◦ ψ = 0 which means that t = 0. �

We give now trivial sets which are not of unicity for T .

Proposition 7.4.

(i) If Xk = αkZ + βk where αk, βk ∈ R then
⋃n

k=1 Xk < U,
(ii) Any finite set F is not inU.

Proof.

(i) Since sin(πZ) = 0 then Z < U and hence α1Z+β1 < U by proposition 7.1. The conclusion
follows inductively by proposition 7.2.
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(ii) Any finite set F is a subset of
⋃
α∈F αZ which is not inU, therefore F < U.

�

Corollary 7.1. X \ F ∈ U whenever X ∈ U and F is finite.

Proof. Write X = X \ F ∪ F and use propositions 7.2 and 7.4. �

If X is a set of reals numbers, we denote by {X} the subset {{x}, x ∈ X} of [0, 1) where {x} is
the fractional part of x.

Corollary 7.2. If X ∈ U then for every α , 0 the set {αX} has an accumulation point in [0, 1].

Proof. It is enough to consider α = 1 since X ∈ U =⇒ αX ∈ U for every α , 0. If it is not the
case, ({X}) is a finite set F and we have then X ⊂

⋃
β∈F Z + β which is not in U by proposition

7.4. �

Remark 7.1. The set X = N ∪ πN is such that {αX} is dense in [0, 1] for every α , 0 but is
manifestly not inU.

8. Thick set, syndetic set, Hartman sequences

Definition 8.1. Let E be a set in N.

(i) E is called thick if it contains arbitrarily long intervals i.e. for every k ∈ N, there exists
n ∈ E such that [n, n + k] ⊂ E,

(ii) E is called syndetic if it has bounded gaps i.e. there exists k ∈ N such that E∩ [n, n+k] , ∅
for every n ∈ N

Let us now define the notion of Hartman sequences.

Definition 8.2. A sequence (xn) in R is Hartman-uniformly distributed (H-u.d.) in R if

lim
N→∞

1
N

N∑
n=1

e2πitxn = 0 for every t , 0.

A sequence (xn) in Z is Hartman-uniformly distributed (H-u.d.) in Z if

lim
N→∞

1
N

N∑
n=1

e2πitxn = 0 for every t ∈ R \ Z.

Similarly, we can define the notion of Hartman-well distributed (H-w.d.) sequence by requiring
that the limit in the summation

∑N+M
n=1+M is uniform in M ∈ N.

Remark 8.1. By using the Weyl criterion [8, Theorem 2.1, p. 7], we observe that a sequence
(xn) is H-u.d. in R if and only if the sequence (txn) is uniformly distributed modulo 1 for every
real t , 0.
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Let G denote the group R or Z. If f is an almost periodic (a.p.) function on G, it admits a
mean value denoted by M( f ). For G = R, we have

M( f ) = lim
T→∞

1
T

∫ a+T

a
f (x) dx uniformly in a ∈ R,

whereas for G = Z, the following identity holds

M( f ) = lim
N→∞

1
N

n+N∑
k=n+1

f (k) uniformly in n ∈ Z.

The following result gives rise to an interesting relation between H-u.d. sequences and almost
periodic functions on G [8, p. 298].

Theorem 8.1. A sequence (xn) is H-u.d. in G if and only if for every a.p. function f on G, we
have

lim
N→∞

1
N

N∑
n=1

f (xn) = M( f ).

Similarly, a sequence (xn) is H-w.d. in G if and only if for every a.p. function f on G, we have

lim
N→∞

1
N

N+M∑
n=1+M

f (xn) = M( f ) uniformly in M ∈ N.

Corollary 8.1. Let f be an a.p. function on G and E a thick set in N which contains intervals
IN with card IN → +∞. Then f vanishes identically on G whenever one of the two following
conditions is satisfied

(i) (xn) is H-u.d. in G and lim
N→∞

1
N

N∑
n=1

| f (xn)| = 0,

(ii) (xn) is H-w.d. in G and lim
N→∞

1
card IN

∑
n∈IN

| f (xn)| = 0.

Proof. It is enough to use the fact that M(| f |) = 0 implies f = 0. �

Example 8.1. The following sequences are Hartman-u.d. in R [8] :
(i) (nα logβ n)n≥2 with α ∈ R+ \ N0 and β ∈ R; (ii) (nk logβ n)n≥2 with k ∈ N and β , 0; (iii)

(logβ n) with β > 1; (iv) (nk log log n)n≥2 with k ≥ 1.

The following theorem provides many examples of H-u.d. sequences in Z [12, Theorem 1].

Theorem 8.2. If (xn) is H-u.d. in R then the sequence ([xn]) of integral parts is H-u.d. in Z.

Example 8.2. Let p(x) = a0 + a1x + · · · + ak xk be a polynomial over R of degree at least 2 and
suppose that a1, · · · ak do not lie in a singly generated additive subgroup of the reals. Then the
sequence (p(n)) is H-w.d. in R [8, Ch. 4, Example 5.4] and the sequence ([p(n)]) is H-w.d. in Z
[15]
Let us notice that the sequence (p(n)) is proved to be H-u.d. in [8] but it is even H-w.d. as a
consequence of a result of Lawton [9].
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9. Some unicity sets

We will use a primarily result in the sequel.

Lemma 9.1. Let α be a real number, f ∈ AP(R) and ψ ∈ APR(R). Then the function g defined
by g(y) = f (αy + ψ(y)) belongs to AP(R).

Proof. The function eiψ is a.p. since eiz is uniformly continuous on every compact subset of C
and ψ is bounded [5, Th. 1.7]. Hence the function ei(αy+ψ(y)) is a.p. as a product of two a.p.
functions. If t(y) =

∑K
k=1 ckeixky ∈ T then t(αy + ψ(y)) =

∑K
k=1 ckeixk(αy+ψ(y)) is a.p. as a finite sum

of a.p. functions. But f being a.p. is the uniform limit of trigonometric polynomials (tn). Hence
g is also a.p. as the uniform limit of the sequences of a.p. functions (tn(αy + ψ(y)). �

We give first some results for H-u.d. sequences in R.

Theorem 9.1. Let α ∈ R\{0}, ψ ∈ APR(R), (yn) a H-u.d. sequence in R and (εn) a real sequence
such that limN→∞

1
N

∑N
n=1 |εn| = 0. Then X = {xn = αyn + ψ(yn) + εn, n ∈ N} is inU.

Proof. We assume α > 0 without loss of generality. Let t ∈ T such that t(X) = 0 and set
zn = αyn + ψ(yn). We have

0 = t(xn) = t(zn + εn) = t(zn) + t′(θn)εn with θn ∈ R.

Since t′ is bounded, we get

lim
N→∞

1
N

N∑
n=1

|t(zn)| = 0,

i.e. lim
N→∞

1
N

N∑
n=1

|g(yn)| = 0 where g(y) = t(αy + ψ(y)).

Since the function g(y) = t(αy + ψ(y)) is a.p. we deduce from corollary 8.1 that g vanishes
identically on R. As the function h(y) = αy + ψ(y) is continuous on R, h(−∞) = −∞ and
h(+∞) = +∞, we have h(R) = R and hence t = 0 �

Remark 9.1. We can take n in a thick set E provided that (yn) is H-w.d. and limn→∞,n∈E εn = 0.

We now give results for H-u.d. sequences in G = Z or R.

Theorem 9.2. Let α ∈ R, ψ ∈ APR(G), (yn) a Hartman sequence in G and (εn) a real sequence
such that εn , 0 and limN→∞

1
N

∑N
n=1 |εn| = 0. Then X = {xn = αyn + ψ(yn) + εn, n ∈ N} is inU.

Proof. Let t ∈ T such that t(X) = 0 and set zn = αyn + ψ(yn). We have

0 = t(xn) = t(zn + εn) = t(zn) + t′(θn)εn with θn ∈ R.

Since t′ is bounded, we get

lim
N→∞

1
N

N∑
n=1

|t(zn)| = 0,
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i.e. lim
N→∞

1
N

N∑
n=1

|g(yn)| = 0 where g(y) = t(αy + ψ(y)), y ∈ G.

Since the function g is a.p. on G, we deduce from corollary 8.1 that t(αy + ψ(y)) = 0 for any
y ∈ G. In particular, we have t(zn) = 0 for any n ∈ N. Let us now suppose that t(l)(αy + ψ(y)) = 0
for y ∈ G and 0 ≤ l ≤ L. The Taylor formula gives

0 = t(xn) =
t(L+1)(zn)
(L + 1)!

εL+1
n +

t(L+2)(θn)
(L + 2)!

εL+2
n

with θn ∈ R and dividing by εL+1
n , 0, we get

0 =
t(L+1)(zn)
(L + 1)!

+
t(L+2)(θn)
(L + 2)!

εn.

Since the function t(L+2) is bounded, it follows that

lim
N→∞

1
N

N∑
n=1

|t(L+1)(zn)| = 0,

i.e. lim
N→∞

1
N

N∑
n=1

|g(yn)| = 0 where g(y) = t(L+1)(αy + ψ(y)), y ∈ G.

The function g being a.p. on G, we obtain from corollary 8.1 that t(L+1)(αy + ψ(y)) = 0 for any
y ∈ G. We conclude that t(l)(αy + ψ(y)) = 0 for any y ∈ G and l ∈ N0, hence t = 0 as t is analytic.

�

Remark 9.2. We have the same remark as before.

It is easy to show that the sequence (n2) is not H-u.d. in Z. In the following, we will give a
result for polynomials.

The following result is classic in diophantine approximation [6, p. 31].

Lemma 9.2. Let p1, . . . , pK be real polynomials. For every ε > 0, the set of positive integers n
such that

max
1≤k≤K

|eipk(n) − eipk(0)| < ε

is syndetic.

Lemma 9.3. Let ε > 0, f ∈ AP(R) and p a real polynomial. For every n0 ∈ N, the set of positive
integers n such that

| f (p(n)) − f (p(n0))| < ε

is syndetic.

Proof. Let n0 ∈ N and ε > 0.
(i) By lemma 9.2 the set

E = {n ∈ N : max
1≤k≤K

|eipk(n+n0) − eipk(n0)| < ε}

is syndetic and so is the set

E + n0 = {n ∈ N : max
1≤k≤K

|eipk(n) − eipk(n0)| < ε}.
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(ii) Let t(x) =
∑K

k=1 ckeiλk x ∈ T . Setting C =
∑K

k=1 |ck |, we have

|t(p(n)) − t(p(n0))| = |
K∑

k=1

ckeiλk p(n) −

K∑
k=1

ckeiλk p(n0)| ≤ C max
1≤k≤K

|eiλk p(n) − eiλk p(n0)|.

Hence the set {n ∈ N : |t(p(n)) − t(p(n0))| < ε} contains the syndetic set

{n ∈ N : C max
1≤k≤K

|eiλk p(n) − eiλk p(n0)| < ε}.

(iii) Let t ∈ T such that | f (x) − t(x)| < ε
3 for every x ∈ R. We have

| f (p(n)) − f (p(n0))| ≤ | f (p(n)) − t(p(n))| + |t(p(n)) − t(p(n0))| + |t(p(n0)) − f (p(n0))|

<
ε

3
+ |t(p(n)) − t(p(n0))| +

ε

3
.

Hence the set {n ∈ N : | f (p(n))− f (p(n0))| < ε} contains the set {n ∈ N : |t(p(n))−t(p(n0))| <
ε
3 } which is syndetic.

�

Lemma 9.4. Let f ∈ AP(R) and p a real polynomial such that limn→∞,n∈E f (p(n)) = 0 where E
is a thick set of N. Then f ◦ p vanishes on N.

Proof. Let ε > 0 and n0 ∈ N. There exists N ∈ N such that

| f (p(n))| <
ε

2
for every n ∈ E′ = {n ∈ E : n > N}

and a syndetic set E′′ such that

| f (p(n)) − f (p(n0))| <
ε

2
for every n ∈ E′′.

Since E′ is thick, the set E′ ∩ E′′ is nonempty i.e. there exists an integer n which verifies
| f (p(n0))| ≤ | f (p(n))| + | f (p(n)) − f (p(n0))| < ε. Hence f (p(n0)) = 0 since ε is arbitrary.
�

Theorem 9.3. Let α ∈ R, ψ ∈ APR(R), p a real polynomial and (εn) a real sequence such
that εn , 0, n ∈ E and limn→∞,n∈E εn = 0 where E is a thick set of N. Then X = {xn =

αp(n) + ψ(p(n)) + εn, n ∈ E} is inU.

Proof. Let t ∈ T such that t(X) = 0 and set zn = αp(n) + ψ(p(n)), n ∈ E. We have for n ∈ E,

0 = t(xn) = t(zn + εn) = t(zn) + t′(θn)εn with θn ∈ R.

Since t′ is bounded, we get
lim

n→∞,n∈E
t(zn) = 0,

i.e. lim
n→∞,n∈E

g(p(n)) = 0 where g(y) = t(αy + ψ(y)), y ∈ R.
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Since the function g is a.p. on R, we have from lemma 9.4 that g ◦ p = 0 on N i.e. t(αp(n) +

ψ(p(n)) = 0 for any n ∈ N and in particular t(zn) = 0 for any n ∈ E.
Let us now suppose that t(l)(zn) = 0 for n ∈ N and 0 ≤ l ≤ L. The Taylor formula gives

0 = t(xn) =
t(L+1)(zn)
(L + 1)!

εL+1
n +

t(L+2)(θn)
(L + 2)!

εL+2
n

with θn ∈ R and dividing by εL+1
n , 0, we get

0 =
t(L+1)(zn)
(L + 1)!

+
t(L+2)(θn)
(L + 2)!

εn.

Since the function t(L+2) is bounded, it follows that

lim
n→∞,n∈E

|t(L+1)(zn)| = 0,

i.e. lim
n→∞,n∈E

g(p(n)) = 0 where g(y) = t(L+1)(αy + ψ(y)), y ∈ R.

The function g being a.p. on R, we have from lemma 9.4 that g ◦ p = 0 on N i.e. t(L+1)(αp(n) +

ψ(p(n)) = 0 for any n ∈ N and in particular t(L+1)(zn) = 0 for any n ∈ E. We conclude that
t(l)(zn) = 0 for any n ∈ E and l ∈ N0, hence t = 0 as t is analytic. �

Krein and Levin [10] gave a nice result about the repartition of the real part of the zeros of a
trigonometric polynomial.

Theorem 9.4. Consider a nonzero trigonometric polynomial with at least one zero in C. Then
the real part of its complex zeros forms a nondecreasing sequence (an)∞−∞ given by

an = λn + ψ(n)

where λ > 0 and ψ ∈ APR(Z).

From this theorem we obtain the following corollary.

Corollary 9.1. If t ∈ P \ {0} then its number of zeros N(x) occurring in the interval [x− 1, x + 1]
is bounded by some constant not depending on x.

Proof. Let (an)∞−∞ denote the sequence of the real part of its complex zeros as given in theorem
9.4. Since ψ is a almost periodic, there exists some constant M such that |ψ| < M − 1 and we
have therefore

N(x) ≤ card {n ∈ Z : x − 1 ≤ an ≤ x + 1}

≤ card {n ∈ Z : x − M <
π

∆
n < x + M}

≤
2∆M
π

�

Corollary 9.2. Let X be a countable subset of reals such that supk∈Z card (X ∩ [k, k + 1]) = +∞.
Then X ∈ U.
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In the following, we will prove that the gap between two consecutive distinct zeros of a
nonzero trigonometric polynomial can not goes to 0 along certain subsets of R.

Proposition 9.1. Let L be a natural number and (mk), (nk) two sequences of integers verifying

mk + 1 ≤ nk ≤ mk + L for any k ∈ N.

Suppose that for any ψ ∈ AP(Z) such that limk→∞ψ(mk) = 0, we have ψ(mk) = 0 for every k ∈ N.
Then there exists k ∈ N such that ϕ(nk) = 0 whenever ϕ ∈ AP(Z) and limk→∞ϕ(nk) = 0.

Proof. Suppose on the contrary that ϕ(nk) , 0 for any k ∈ N. Without loss of generality we can
also suppose that |ϕ| ≤ 1. Let us set Ak = [mk + 1,mk + L], k ∈ N. The function

ψ(n) =

L∏
j=1

ϕ(n + j)

is in AP(Z) as the product of almost periodic functions. We have furthermore

|ψ(mk)| ≤ |ϕ(nk)|

and so limk→∞ ψ(mk) = 0 which implies that ψ(mk) = 0 for any k ∈ N. Hence there exists at
least one point nk,1 ∈ Ak such that ϕ(nk,1) = 0. Suppose now that we have found l distinct points
nk,1, . . . , nk,l ∈ Ak where ϕ vanishes (0 < l < L − 1). We form all the products

ψi1,...,il (n) =

L∏
j=1, j<{i1,...,il}

ϕ(n + j) where 1 ≤ i1 < . . . < il ≤ L

which are again functions in AP(Z). We have

|ψi1,...,il (mk)| ≤ |ϕ(nk)|

since the set ∪L
j=1, j<{i1,...,il}

{mk + j} contains L − l points i.e. at least one point among the l + 1
distinct points nk, nk,1, . . . , nk,l. We deduce that limk→∞ ψi1,...,il (mk) = 0 and so ψi1,...,il (mk) = 0 for
any k ∈ N. In particular, we have

L∏
j=1,mk+ j<{nk,1,...,nk,l}

ϕ(mk + j) = 0

which implies that there exists nk,l+1 ∈ Ak \ {nk, nk,1, . . . , nk,l} such that ϕ(nk,l+1) = 0. We conclude
that ϕ(n) = 0 for any n ∈ Ak \ {nk}. Let us consider now the almost periodic function

ψ(n) =

L∑
j=1

ϕ(n + j).

We have ψ(mk) =
∑L

j=1 ϕ(mk + j) = ϕ(nk) → 0 as k → ∞. Hence for any k ∈ N, ψ(mk) = 0 i.e.
ϕ(nk) = 0 which contradicts the hypothesis. �

The next result is proved in [7, Prop. 14’].
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Proposition 9.2. Let p be a real polynomial. There exists some real θ(p) ∈ (0, 1) such that for
any ε > 0, n0 ∈ N and f ∈ AP(Z), the set

{n ∈ N : | f ([p(n) − θ]) − f ([p(n0) − θ])| < ε

is syndetic.

As in lemma 9.4, we deduce the next result.

Corollary 9.3. Let p be a real polynomial, f ∈ AP(Z) and E a thick set of N. With θ(p) ∈
(0, 1) chosen as in proposition 9.2, we have f ([p(n) − θ]) = 0 for any n ∈ N provided that
limn→∞,n∈E f ([p(n) − θ]) = 0.

Theorem 9.5. Let (xn) and (εn) be two real sequences such that (xn) is increasing and εn > 0
for any n ∈ N, p a real polynomial and E a thick set in N. We suppose that

(i) limn→+∞,n∈E εn = 0,
(ii) there exists T > 0 such that p(n) ≤ xn ≤ p(n) + T for any n ∈ E.

Then the set X = {xn, xn + εn : n ∈ E} is inU.

Proof. Let us assume there exists t ∈ T \ {0} such that t(X) = 0. By theorem 9.4, (xn)n∈E is a
subsequence of a sequence (an) of the form an = λn + ψ(n) where λ > 0 and ψ ∈ APR(Z) i.e.
xk = an′k for any k ∈ E. We can clearly take n′k = max{n|an = xk}. We remark now that the gap
s(n) = an+1 − an = λ + ψ(n + 1) − ψ(n) is an almost periodic function on Z which verifies

0 < s(n′k) = an′k+1 − an′k ≤ xk + εk − xk for any k ∈ E.

From assumption (i), we have then

lim
k→+∞,k∈E

s(n′k) = 0

and from (ii), we have for any k ∈ E

p(k) ≤ xk = λn′k + ψ(n′k) ≤ p(k) + T.

If M = supx∈R |ψ(x)|, we get
q(k) + 1 ≤ n′k ≤ q(k) + L − 2

where q(k) =
p(k) − M

λ
− 1 and L =

[
2M + T

λ

]
+ 4.

Let θ ∈ (0, 1) and set m′k(θ) = [q(k) − θ]. We have

q(k) − θ + 1 ≤ n′k ≤ q(k) − θ + 1 + L − 2,

and hence
m′k(θ) + 1 ≤ n′k ≤ m′k(θ) + L.

From corollary 9.3, we can choose θ such that for any f ∈ AP(Z)

lim
k→∞,k∈E

f (m′k(θ)) = 0 =⇒ f (m′k(θ)) = 0 for any k ∈ E.
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With such a θ fixed, we write for simplicity m′k instead of m′k(θ). Since E is countably infinite,
there exits an increasing bijection χ : N→ E. We define now the sequences (mk) and (nk) by

mk = m′χ(k) and nk = n′χ(k) for any k ∈ N.

These two sequences verify the assumption of proposition 9.1 and since

lim
k→∞

s(nk) = lim
k→+∞,k∈E

s(n′k) = 0,

we conclude that s(nk) = 0 for some k ∈ N i.e. s(n′k) = 0 for some k ∈ E.

�

10. Generalization to conditionally positive definite functions

In this section, we show that the problem of determining whether a conditionally positive
definite function is in fact strictly conditionally positive definite reduces to the problem of know-
ing whether the support of a measure is in the zero set of a nonzero trigonometric polynomial.
Therefore we can apply the preceding results.

Definition 10.1. A continuous function ϕ is said conditionally positive definite (resp. strictly
positive definite) of order m on R if for every set of distinct real numbers Ξ = {ξ1, . . . , ξK} and
every vector (c1, . . . , cK) ∈ CK \ {0} satisfying

K∑
j=1

c jxl
j = 0 for all integer l ≤ m − 1, (5)

we have
K∑

j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) ≥ 0 (resp. > 0). (6)

We denote by Pm (resp. Ps
m) the class of such functions.

In [13], Sun gives a complete characterization of all conditionally positive definite functions
of a given order m. We state here his result.

Theorem 10.1. Let ϕ ∈ C. In order for ϕ to be conditionally positive definite of order m it is
necessary and sufficient that ϕ has the following integral representation

ϕ(ξ) =

∫
R\{0}

(
e−iξx − κ(x)

2m−1∑
l=0

(−iξ)l

l!

)
dµ(x) +

2m∑
l=0

al
(−iξ)l

l!
,

where µ is a nonnegative Borel measure on R \ {0} satisfying∫
0<|x|≤1

x2m dµ(x) < ∞ and
∫
|x|≥1

dµ(x) < ∞.

The function κ is an analytic function in S such that κ− 1 has a zero of order 2m + 1 at the origin
and the complex numbers al are such that a2m is nonnegative.

22



Lemma 10.1. Let l ≤ 2m − 1. For every set of real numbers Ξ = {ξ1, . . . , ξK} and every vector
(c1, . . . , cK) ∈ CK satisfying

K∑
j=1

c jxl
j = 0 for all integer l ≤ m − 1,

we have
K∑

j=1

K∑
k=1

c̄ jck(ξ j − ξk)l = 0. (7)

Proof. From Leibniz formula, we have

K∑
j=1

K∑
k=1

c̄ jck(ξ j − ξk)l =

l∑
n=0

(−1)n
(
l
n

) K∑
j=1

c̄ jξ
l−n
j

K∑
k=1

ckξ
n
k .

Since l ≤ 2m − 1, we have either l − n ≤ m − 1 or n ≤ m − 1 for every integer n ≤ l, hence the
sum vanishes. �

Proposition 10.1. Let ϕ a function with the integral representation as in theorem 10.1. Then
ϕ ∈ Ps

m if and only if there does not exist t ∈ T \ {0} vanishing on supp µ.

Proof. Let ξ1, . . . , ξK be distinct points in R and c1, . . . , cK be complex numbers not all zero,
satisfying the condition 5. Then we have by lemma 10.1

K∑
j=1

K∑
k=1

c̄ jckϕ(ξ j − ξk) =

K∑
j=1

K∑
k=1

c̄ jck

∫
R

e−i(ξ j−ξk)x dµ(x) + (−1)m a2m

(2m)!

K∑
j=1

K∑
k=1

c̄ jck(ξ j − ξk)2m

=

∫
R

∣∣∣∣∣ K∑
k=1

ckeiξk x
∣∣∣∣∣2 dµ(x) +

a2m

(m!)2

∣∣∣∣∣ K∑
k=1

ckξ
m
k

∣∣∣∣∣2
=

∫
R
|t(x)|2 dµ(x) +

a2m

(m!)2 |t
(m)(0)|2,

where we set t(x) =
∑K

k=1 ckeiξk x.
From lemma 2.1, we have ϕ < Ps

m if and only if there exists a nonzero trigonometric polynomial
t vanishing on supp µ and such that t(m)(0) = 0. But the last condition is vacuous. It suffices
to see that if t ∈ T vanishes on supp µ then the trigonometric polynomial q(x) = sinm+1(x)t(x)
equals 0 on supp µ and we have furthermore q(m)(0) = 0. �
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