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Percolation in a multiscale Boolean model

We consider percolation in a multiscale Boolean model. This model is defined as the union of scaled independent copies of a given Boolean model. The scale factor of the n th copy is ρ -n . We prove, under optimal integrability assumptions, that no percolation occurs in the multiscale Boolean model for large enough ρ if the rate of the Boolean model is below some critical value.

The following description may be more intuitive. Let χ denote the projection of ξ on R d . With probability one this projection is one-to-one. We can therefore write: ξ = {(c, r(c)), c ∈ χ}.

Write µ = mν where ν is a probability measure. Then, χ is a Poisson point process on R d with density m. Moreover, given χ, the sequence (r(c)) c∈χ is a sequence of independent random variable with common distribution ν. We shall not use this point of view.

Percolation in the Boolean model

Let C denote the connected component of Σ that contains the origin. We say that Σ percolates if C is unbounded with positive probability. We refer to the book by Meester and Roy [START_REF] Meester | Continuum percolation[END_REF] for background on continuum percolation. Set: λ c (µ) = inf{λ > 0 : Σ(λµ) percolates}.

One easily check that λ c (µ) is finite as soon as µ has a positive mass. In [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF] we proved that λ c (µ) is positive if and only if:

r d µ(dr) < ∞.
The only if part had been proved earlier by Hall [START_REF] Hall | On continuum percolation[END_REF]. For all A, B ⊂ R d , we write A ↔ Σ B if there exists a path in Σ from A to B. We denote by S(c, r) the Euclidean sphere or radius r centered at c :

S(c, r) = {x ∈ R d : x -c 2 = r}.
We write S(r) when c = 0.

The critical parameter λ c (µ) can also be defined as follows:

λ c (µ) = sup λ > 0 : P {0} ↔ Σ(λµ) S(r) → 0 as r → ∞ ,

We shall need two other critical parameters:

λ c (µ) = sup λ > 0 : P S(r/2) ↔ Σ(λµ) S(r) → 0 as r → ∞ , λ c (µ) = sup λ > 0 : r d P {0} ↔ Σ(λµ) S(r) → 0 as r → ∞ .

We have (see Lemma 14) :

λ c (µ) ≤ λ c (µ) ≤ λ c (µ). (1) 
When the support of µ is bounded,

P {0} ↔ Σ(λµ) S(r)
decays exponentially fast to 0 as soon as λ < λ c (µ) (see for example [START_REF] Meester | Continuum percolation[END_REF], Section 12.10 in [START_REF] Grimmett | of Grundlehren der Mathematischen Wissenschaften[END_REF] in the case of constant radii or the papers [START_REF] Meester | Nonuniversality and continuity of the critical covered volume fraction in continuum percolation[END_REF], [START_REF] Men | Coincidence of critical points in Poisson percolation models[END_REF], [START_REF] Zuev | Continuous models of percolation theory[END_REF] and [START_REF] Zuev | Continuous models of percolation theory[END_REF]). Therefore:

λ c (µ) = λ c (µ) = λ c (µ)
as soon as the support of µ is bounded.
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Remarks.

-The treshold parameter λ c (µ) is positive if and only if r d µ(dr) is finite (i.e., if and only if λ c (µ) is positive). See Lemma 15. -Using ideas of [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF], we can check that λ c (µ) is positive if and only if

x d ∞ x r d µ(dr) → 0 as x → ∞.
If we only use results stated in [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF], we can easily get the following weaker statements. Let D(λµ) denote the Euclidean diameter of the connected component of Σ(λµ) that contains the origin. Note that λ c (µ) is positive if and only if there exists λ such that:

r d P (D(λµ) ≥ r) → 0, as r → ∞. ( 3 
) If E(D(λµ) d ) is finite then (3) holds. If (3) holds then E(D(λµ) d-ε
) is finite for any small enough ε > 0. By Theorem 2.2 of [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF] we thus get the following implications:

+∞ 0 r 2d µ(dr) < ∞ implies λ c (µ) > 0 implies ∀ε > 0 : +∞ 0 r 2d-ε µ(dr) < ∞.

A multiscale Boolean model

Let ρ > 1 be a scale factor. Let (Σ n ) n≥0 be a sequence of independent copies of Σ(µ). In this paper, we are interested in percolation properties of the following multiscale Boolean model:

Σ ρ (µ) = n≥0 ρ -n Σ n . (4) 
We shall sometimes write Σ ρ to simplify the notations. As before, we say that Σ ρ percolates if the connected component of Σ ρ that contains the origin is unbounded with positive probability. This model seems to have been first introduced as a model of failure in geophysical medias in the 80 ′ . We refer to the paper by Molchanov, Pisarenko and Reznikova [START_REF] Molchanov | Multiscale models of failure and percolation[END_REF] for an account of those studies. For more recent results we refer to [START_REF] Broman | Universal behavior of connectivity properties in fractal percolation models[END_REF], [START_REF] Meester | Continuum percolation[END_REF], [START_REF] Meester | Nonuniversality and continuity of the critical covered volume fraction in continuum percolation[END_REF], [START_REF] Menshikov | On the connectivity properties of the complementary set in fractal percolation models[END_REF], [START_REF] Menshikov | On a multiscale continuous percolation model with unbounded defects[END_REF] and [START_REF] Yu | A note on percolation of Poisson sticks[END_REF].

This model is related to a discrete model introduced by Mandelbrot [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier[END_REF]. We refer to the survey by L. Chayes [START_REF] Chayes | Aspects of the fractal percolation process[END_REF] and, for more recent results, to [START_REF] Broman | Large-N limit of crossing probabilities, discontinuity, and asymptotic behavior of threshold values in Mandelbrot's fractal percolation process[END_REF], [START_REF] Orzechowski | On the phase transition to sheet percolation in random Cantor sets[END_REF] and [START_REF] White | On the value of the critical point in fractal percolation[END_REF].

In [START_REF] Menshikov | On the connectivity properties of the complementary set in fractal percolation models[END_REF], Menshikov, Popov and Vachkovskaia considered the case where the radii of the unscaled process Σ 0 equal 1. They proved the following result.

Theorem 1 ( [START_REF] Menshikov | On the connectivity properties of the complementary set in fractal percolation models[END_REF]) If λ < λ c (δ 1 ) then, for all large enough ρ, Σ ρ (λµ) does not percolate.

In [START_REF] Menshikov | On a multiscale continuous percolation model with unbounded defects[END_REF] the same authors considered the case where the radii are random and can be unbounded. They considered the following sub-autosimilarity assumption on the measure µ:

lim a→∞ sup r≥1/2 a d µ([ar, +∞[) µ([r, +∞[) = 0 (5) 
with the convention 0/0 = 0. They proved the following result.

Theorem 2 ( [START_REF] Menshikov | On a multiscale continuous percolation model with unbounded defects[END_REF]) Assume that the measure µ satisfies [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF]. Assume that λ c (µ) is positive. If λ < λ c (µ) then, for all large enough ρ, Σ ρ (λµ) does not percolate.

Note that (5) is fulfilled for any measure with bounded support. Because of (2), Theorem 2 is then a generalization of Theorem 1.

In [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] we proved the following related result in which ρ is fixed.

Theorem 3 ([5]) Let ρ > 1.
There exists λ > 0 such that Σ ρ (λµ) does not percolate if and only if:

[1,+∞[ β d ln(β)µ(dβ) < ∞. (6) 
The main result of this paper is the first item of the following theorem. The second item is easy and already contained in Theorem 3. Recall that, by Lemma 15, λ c (µ) is positive as soon as r d µ(dr) is finite and therefore as soon as (6) holds.

Theorem 4

1. Assume [START_REF] Grimmett | of Grundlehren der Mathematischen Wissenschaften[END_REF]. Then, for all λ < λ c (µ), there exists ρ(λ) > 1 such that, for all ρ ≥ ρ(λ): P S(r/2) ↔ Σ ρ (λµ) S(r) → 0 as r → ∞ [START_REF] Hall | On continuum percolation[END_REF] and therefore Σ ρ (λµ) does not percolate.

2. Assume that (6) does not hold. Then, for all λ > 0 and for all ρ > 1, Σ ρ (λµ) percolates.

The proof is given in Section 2. The ideas of its proof and the ideas of the proofs of Theorems 1 and 2 are given in Subsection 2.2.

The first item of Theorem 4 is a generalization of Theorem 2 and thus of Theorem 1. Indeed, by [START_REF] Broman | Large-N limit of crossing probabilities, discontinuity, and asymptotic behavior of threshold values in Mandelbrot's fractal percolation process[END_REF], one has λ < λ c as soon as λ < λ c . Moreover, by the second item of Theorem 4,[START_REF] Grimmett | of Grundlehren der Mathematischen Wissenschaften[END_REF] has to be a consequence of the assumptions of Theorem 2. For example, one can check that ( 6) is a consequence of (5)1 . Alternatively, one can check that ( 6) is a consequence of λ c (µ) > 0 (see the remarks at the end of Section 1.2).

Let us denote by λ c (m ρ ∞ ) and λ c (m ρ ∞ ) the λ c and λ c critical tresholds for the multiscale model with scale parameter ρ. Theorems 3 and 4 yield the following result:

1. If (6) holds then λ c (m ρ ∞ ) > 0 (and actually the proof of Theorem 3 yields λ c (m ρ ∞ ) > 0) for all ρ > 1 and λ c (m ρ ∞ ) → λ c (µ) > 0 as ρ → ∞. 2. Otherwise, λ c (m ρ ∞ ) = λ c (m ρ ∞ ) = 0 for all ρ > 1.
Let us denote by D ρ (λµ) the diameter of the connected component of Σ ρ (λµ) that contains the origin. The following result is an easy consequence of Theorem 4 above and Theorems 2.9 and 1.2 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF].

Theorem 5 Let s > 0, λ > 0 and ρ > 1. 1. If [1,+∞[ β d+s µ(dβ) < ∞ and (7) holds, then E (D ρ (λµ)) s < ∞. 2. If [1,+∞[ β d+s µ(dβ) = ∞ then E (D ρ (λµ)) s = ∞.
The proof is given is Section 3.

Superposition of Boolean models with different laws

Using the same arguments as in the proof of Theorem 4, we could prove similar results for infinite superpositions n≥0 ρ -n Σ n where the Boolean models Σ n are independent but not identically distributed. We will not give such a result here. However, we wish to give a weaker result for the superposition of two independent Boolean models at different scales. As we consider only two scales the proof is easier than the proof of Theorem 4. The proof uses Lemmas 7, 8 and 9 and is given in Section 4. The result gives some insight on the critical treshold in the case of balls of random radii. This result, in the case where the supports of ν 1 and ν 2 are bounded, is already implicit in [START_REF] Meester | Nonuniversality and continuity of the critical covered volume fraction in continuum percolation[END_REF] in their proof of non universality of critical covered volume (see (8) below). See also [START_REF] Molchanov | Multiscale models of failure and percolation[END_REF].

Proposition 6 Let ν 1 and ν 2 be two finite measures on ]0, +∞[. We assume that the masses of ν 1 and ν 2 are positive. Let 0 < α < 1. Then, for all ρ > 1,

λ c (αν 1 + (1 -α)H ρ ν 2 ) ≤ min λ c (αν 1 ), λ c ((1 -α)H ρ ν 2 ) = min λ c (ν 1 ) α , λ c (ν 2 ) 1 -α .
Moreover,

λ c (αν 1 + (1 -α)H ρ ν 2 ) → min λ c (ν 1 ) α , λ c (ν 2 ) 1 -α as ρ → ∞.
The above convergence is uniform in α.

We now make some remarks about this result and about some related numerical results. For a finite measure µ on ]0, +∞[, we denote by φ c (µ) the critical covered volume:

φ c (µ) = P 0 ∈ Σ(λ c (µ)µ) = 1 -exp -λ c (µ) v d r d µ(dr) (8) 
where v d is the volume of the unit Euclidean ball in R d . This is the mean volume occupied by the critical Boolean model and this is scale invariant. Let us assume that

ν 1 = ν 2 = δ 1 .
By [START_REF] Broman | Universal behavior of connectivity properties in fractal percolation models[END_REF], by Proposition 6 and with the above notation we have:

φ c (αδ 1 + (1 -α)H ρ δ 1 ) → 1 -exp -v d λ c (δ 1 ) min 1 α , 1 1 -α . (9) 
There are several numerical studies of the above critical covered volume when d = 2 and d = 3. To the best of our knowledge, the most acccurate values when d = 2 are given in [START_REF] Quintanilla | Asymmetry in the percolation thresholds of fully penetrable disks with two different radii[END_REF]. Let us assume henceforth that d = 2. In [START_REF] Quintanilla | Asymmetry in the percolation thresholds of fully penetrable disks with two different radii[END_REF], the authors give:

φ c (δ 1 ) = 1 -exp(-v 2 λ c (δ 1 )) ≈ 0.6763475(6). ( 10 
)
In Figure 1 we reproduce the graph of critical covered volume φ(α, ρ) as a function of α when ρ = 2, ρ = 5 and ρ = 10 (see [START_REF] Quintanilla | Asymmetry in the percolation thresholds of fully penetrable disks with two different radii[END_REF] for more results). We also represent the graph of the right-hand side of ( 9), that we denote by φ(α, ∞), as a function of α. We use [START_REF] Meester | Nonuniversality and continuity of the critical covered volume fraction in continuum percolation[END_REF] to get an approximate value of v 2 λ c (δ 1 ).

Remarks

-When ρ → ∞, the critical covered volume φ(•, ρ) converges to φ(•, ∞) which is symmetric: φ(α, ∞) = φ(1 -α, ∞).
When ρ is finite, the critical covered volume may also look symmetric but Quintanilla and Ziff showed, based on their numerical simulations and statistical analysis, that this was not the case. -When ρ is finite, the critical covered volume looks concave as a function of α.

However φ(•, ∞) is not concave as soon as φ c (δ 1 ) < 1exp(-2). Based on [START_REF] Meester | Nonuniversality and continuity of the critical covered volume fraction in continuum percolation[END_REF], φ(•, ∞) is therefore not concave. As a consequence, at least for large enough ρ, φ(•, ρ) is not concave. -The numerical results suggests that the minimum of the critical covered fraction is reached when all the disks have the same radius. (Equivalently, for all ρ and all α, φ(α, ρ) ≥ φ(0, ρ) = φ(1, ρ) = φ c (δ 1 ).) However there is neither a proof nor a disproof of such a result. -The numerical results also suggest some monotonicity in ρ. This has not been proven nor disproven. 2 Proof of Theorem 4

Some notations

In the whole of Section 2, we make the following assumptions: -µ satisfies (6). -1 < λ c (µ). For all η > 0, we denote by T η µ the measure defined by T η µ(A) = µ(Aη). In other words, we can built Σ(T η µ) from Σ(µ) by adding η to each radius.

For all ρ > 1, we denote by H ρ µ the measure defined by H ρ µ(A) = ρ d µ(ρA). With this definition, ρ -1 Σ(µ) is a Boolean model driven by the measure H ρ µ. For all n ≥ 0, we let:

m ρ n = n k=0 H ρ k µ.
With this definition and the notations of (4),

n k=0 ρ -k Σ k
is a Boolean model driven by m ρ n . We also let:

m ρ ∞ = k≥0 H ρ k µ.
So, Σ ρ (µ) is a Boolean model driven by the locally finite measure m ρ ∞ . Let p(a, µ) denote the probability of existence of a path from S(a/2) to S(a) in Σ(µ): p(a, µ) = P (S(a/2) ↔ Σ(µ) S(a)).

We aim at proving that, for large enough ρ, p(a, m ρ ∞ ) → 0 as a tends to infinity and Σ ρ (µ) does not percolate. The first item of Theorem 4 follows by applying this result to the measure λµ. Recall that the second item of Theorem 4 is contained in Theorem 3.

Ideas

In this subsection we first sketch the proof of the existence of ρ and a such that p(a, m ρ ∞ ) is small. This gives the main ingredients of the proof of the first item of Theorem 4. A full proof is given in Subsection 2.3. We then give the ideas of the proof of Theorems 1 and 2 by Menshikov, Popov and Vachkovskaia. Their basic strategy is similar but the implementation of the proofs are different.

Sketch of the proof of the first item of Theorem 4

Consider a small ε 1 > 0. Fix a small η > 0 and a large a such that (see Lemma 7):

p(a, T η µ) ≤ ε 1 /2. ( 11 
)
For all n ≥ 1, write:

m ρ n = H ρ m ρ n-1 + µ. If the event {S(a/2) ↔ Σ(m ρ n ) S(a)
} occurs, then either the event {S(a/2) ↔ Tηµ S(a)} occurs (with a natural coupling between the Boolean models) either in Σ(H ρ m ρ n-1 )∩B(a) one can find a component of diameter at least η. We use this observation through its following crude consequence (see Lemma 8):

p(a, m ρ n ) ≤ p(a, T η µ) + Ca d η -d p(η/2, H ρ m ρ n-1 ).
By scaling and by [START_REF] Menshikov | On the connectivity properties of the complementary set in fractal percolation models[END_REF], this yields:

p(a, m ρ n ) ≤ ε 1 /2 + Ca d η -d p(ρη/2, m ρ n-1 ). ( 12 
)
But for any ε 2 , any small enough ε 1 and any large enough a we can find τ such that (see Lemmas 9 and 10):

p(τ a, m ρ n-1 ) ≤ ε 2 as soon as p(a, m ρ n-1 ) ≤ ε 1 . (13) 
An important fact is that τ does not depends on n nor on ρ, provided ρ ≥ ρ 0 where ρ 0 is an arbitrary constant strictly larger than 1. Here we use assumption [START_REF] Grimmett | of Grundlehren der Mathematischen Wissenschaften[END_REF] to bound error terms due to the existence of large balls.

We choose ε 2 such that:

Ca d η -d ε 2 = ε 1 /2.
We set ρ = 2τ a/η. Then, ( 12) and ( 13) can be rewritten as follows:

p(a, m ρ n ) ≤ ε 1 /2 + Ca d η -d p(τ a, m ρ n-1 ) (14) Ca d η -d p(τ a, m ρ n-1 ) ≤ ε 1 /2 as soon as p(a, m ρ n-1 ) ≤ ε 1 . (15) 
As moreover [START_REF] Menshikov | On the connectivity properties of the complementary set in fractal percolation models[END_REF] implies p(a, m ρ 0 ) ≤ ε 1 we get, by induction and then sending n to infinity (see Lemma 11):

p(a, m ρ ∞ ) ≤ ε 1 . The convergence of p(a, m ρ ∞ ) to 0 is then extracted from the above result for a small enough ε 2 and from arguments behind [START_REF] Men | Coincidence of critical points in Poisson percolation models[END_REF] applied to m ρ ∞ and other ε.

Sketch of the proofs of Theorems 1 and 2 by Menshikov, Popov and Vachkovskaia

Let us quickly describe the ideas of the proofs of Menshikov, Popov and Vachkovskaia. Those ideas are used in their papers [START_REF] Menshikov | On the connectivity properties of the complementary set in fractal percolation models[END_REF] and [START_REF] Menshikov | On a multiscale continuous percolation model with unbounded defects[END_REF] through a discretization of space ; we describe them in a slightly more geometric way. For simplicity we only consider two scales: ρ -1 Σ 1 and Σ 0 . For simplicity, we also assume that the radius is one in the unscaled model (µ = λδ 1 ). We assume that the scale factor ρ is large enough. Assume that C is a connected component of ρ -1 Σ 1 ∪ Σ 0 whose diameter is a least α (it can be much larger) for a small enough constant α > 0. Then, C is included in the union of the following kind of sets:

1. connected components of ρ -1 Σ 1 whose diameter is at least α ; 2. balls of Σ 0 enlarged by α (same centers but the radii are 1 + α instead of 1).

Then, they show that the union of all those sets is stochastically dominated by a Boolean model similar to Σ 0 but with radii enlarged by a factor α and with density of centers 1 + α ′ times the corresponding density for Σ 0 for a suitable α ′ > 0. This part uses λ < λ c . In some sense, one can therefore control percolation in the union of two models by percolation in one model. Iterating the argument with some care in the constants α and α ′ , one sees that -for large enough ρ -one can control percolation in the multiscale model by percolation in a subcritical model. This yields the result.

Proof of Theorem 4

As 1 < λ c (µ), we know that p(a, µ) tends to 0 as a tends to infinity. We need the following slightly stronger consequence.

Lemma 7 There exists η > 0 such that p(a, T η µ) tends to 0.

Proof. Let ε > 0 and x > 0. We have:

H 1+ε T ε 2 µ([x, +∞[) = (1 + ε) d T ε 2 µ([x(1 + ε), +∞[) = (1 + ε) d µ([x(1 + ε) -ε 2 , +∞[) ≤ κ(ε)(1 + ε) d µ([x, +∞[) (16) 
where

κ(ε) = µ(]0, +∞[) µ([ε, +∞[) .
The inequality is proven as follows

. If x ≥ ε, then [x(1 + ε) -ε 2 , +∞[⊂ [
x, +∞[ and the result follows from κ(ε) ≥ 1. If, on the contrary, x < ε, then the left hand side is bounded above by (1 + ε) d µ(]0, +∞[) which is itself bounded above by the right hand side. Note that κ(ε)(1 + ε) d tends to 1 as ε tends to 0. Let us say that a measure ν is subcritical if λ c (ν) > 1. As µ is subcritical, we get that κ(ε)(1 + ε) d µ is subcritical for small enough ε. We fix such an ε. By [START_REF] Yu | A note on percolation of Poisson sticks[END_REF] we can couple a Boolean model driven by H 1+ε T ε 2 µ and a Boolean model driven by κ(ε)(1 + ε) d µ in such a way that the first one is contained in the second one. Therefore the first one is subcritical. By scaling, a Boolean model driven by T ε 2 µ is then subcritical. We take η = ε 2 .

Lemma 8 Let ν 1 and ν 2 be two finite measures on ]0, +∞[. One has, for all η > 0 and a ≥ 4η:

p(a, ν 1 + ν 2 ) ≤ p(a, T η ν 1 ) + C 1 a d η -d p(η/2, ν 2 )
where C 1 = C 1 (d) > 0 depends only on the dimension d.

Proof. Let (x i ) i∈I be a family of points such that :

-The balls B(x i , η/4), i ≤ I, cover B(a).

-There are at most C 1 a d η -d points in the family where C 1 = C 1 (d) depends only on the dimension d. We couple the different Boolean model as follows. Let Σ(ν 1 ) be a Boolean model driven by ν 1 . Let Σ(ν 2 ) be a Boolean model driven by ν 2 . Assume that Σ(ν 1 ) and Σ(ν 2 ) are independent. Then Σ(ν 1 ) ∪ Σ(ν 2 ) is a Boolean model driven by ν 1 + ν 2 . We set Σ(ν 1 + ν 2 ) = Σ(ν 1 ) ∪ Σ(ν 2 ). We also consider Σ(T η ν 1 ), the Boolean model obtained by adding η to the radius of each ball of Σ(ν 1 ). Thus Σ(T η ν 1 ) is driven by T η ν 1 .

Let us prove the following property:

{S(a/2) ↔ Σ(ν 1 +ν 2 ) S(a)} ⊂ {S(a/2) ↔ Σ(Tην 1 ) S(a)}∪ i∈I {S(x i , η/4) ↔ Σ(ν 2 ) S(x i , η/2)}. (17) Assume that Σ(ν 1 + ν 2 ) = Σ(ν 1 ) ∪ Σ(ν 2 ) connects S(a/2) with S(a). Recall a ≥ 4η.
If the diameter of all connected components of Σ(ν 2 ) ∩ B(a) are less or equal to η, then Σ(T η ν 1 ) connects S(a/2) with S(a). Otherwise, let C be a connected component of Σ(ν 2 ) ∩ B(a) with diameter at least η. Let x, y be two points of C such that xy > η. The point x belongs to a ball B(x i , η/4). As y does not belong to B(x i , η/2), the component C connects S(x i , η/4) to S(x i , η/2). Therefore, Σ(ν 2 ) connects S(x i , η/4) to S(x i , η/2). We have proven [START_REF] Quintanilla | Asymmetry in the percolation thresholds of fully penetrable disks with two different radii[END_REF]. The lemma follows.

The following lemma is essentially the first item of Proposition 3.1 in [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF]. For the sake of completeness we nevertheless provide a proof.

Lemma 9 Let ν be a finite measure on ]0, +∞[. There exists a constant C 2 = C 2 (d) > 0 such that, for all a > 0:

p(10a, ν) ≤ C 2 p(a, ν) 2 + C 2 [a,+∞[ r d ν(dr).
Proof. Let K be a finite subset of S(5) such that K + B(1/2) covers S(5). Let L be a finite subset of S(10) such that L + B(1/2) covers S [START_REF] Meester | Nonuniversality and continuity of the critical covered volume fraction in continuum percolation[END_REF]. Let A be the following event: there exists a random ball B(c, r) of Σ(ν) such that r ≥ a and B(c, r) ∩ B(10a) is non empty. We have:

{S(5a) ↔ Σ(ν) S(10a)} \ A ⊂ {S(5a) ↔ ≤a Σ(ν) S(10a)}
where, in the last event, we ask for a path using only balls of Σ(ν) of radius at most a. Let us prove the following:

{S(5a) ↔ Σ(ν) S(10a)} \ A ⊂ k∈K,l∈L {S(ak, a/2) ↔ ≤a Σ(ν) S(ak, a)} ∩ {S(al, a/2) ↔ ≤a Σ(ν) S(al, a)}. ( 18 
)
Assume that the event on the left hand side occurs. Then, by the previous remark, there exists a path from a point x ∈ S(5a) to a point y ∈ S(10a) that is contained in balls of Σ(ν) of radius at most a. As Ka + B(a/2) covers S(5a), there exists k ∈ K such that x belongs to B(ka, a/2). Using the previous path, one gets that the event {S(ak, a/2) ↔ ≤a Σ(ν) S(ak, a)} occurs. By a similar arguments involving y we get [START_REF] White | On the value of the critical point in fractal percolation[END_REF].

Observe that, for all k ∈ K and l ∈ L, the events {S(ak, a/2) ↔ ≤a Σ(ν) S(ak, a)} and {S(al, a/2) ↔ ≤a Σ(ν) S(al, a)} are independent. Indeed, the first one depends only on balls with centers in B(ak, 2a), the second one depends only on balls with centers in B(al, 2a), and ak -al ≥ 5a. Using this independence, stationarity and (18), we then get: P ({S(5a) ↔ Σ(ν) S(10a)}) ≤ CP (S(a/2) ↔ ≤a Σ(ν) S(a)}) 2 + P (A) where C is the product of the cardinality of K by the cardinality of L. The probability P (A) is bounded above by standard computations.

From the previous lemma, we deduce the following result.

Lemma 10 Let ε > 0. There exists C 3 = C 3 (d) > 0, a 0 = a 0 (d, µ) and k 0 = k 0 (d, µ, ε) such that, for all N, all ρ ≥ 2 and all a ≥ a 0 : if p(a, m ρ N ) ≤ C 3 then for all k ≥ k 0 , p(a10 k , m ρ N ) ≤ ε.

Proof. For all ρ ≥ 2 and all a ≥ 1 we have: Therefore, for all ρ ≥ 2, all N, all a ∈ [a 1 , 10a 1 ] and all η ∈ [η 1 , 10η 1 ]:

[a,+∞[ r d m ρ ∞ (dr) = k≥0 ρ kd ]0,+∞[ 1 [a,+∞[ (rρ -k )(rρ -k ) d µ(dr) = ]0,+∞[ k≥0
C 1 a d η -d p(a10 k , m ρ N ) ≤ C 3 2 for all k ≥ k 0 as soon as p(a, m ρ N ) ≤ C 3 . Fix k ≥ k 0 , a ∈ [a 1 , 10a 1 ] and η ∈ [η 1 , 10η 1 ]. Set: ρ = 2a10 k η -1 .
Note ρ ≥ 8 ≥ 2 as a ≥ a 1 ≥ 40η 1 ≥ 4η. By Lemma 8 we have, for all N:

p(a, m ρ N +1 ) ≤ p(a, T η µ) + C 1 a d η -d p(η/2, m ρ N +1 -µ) = p(a, T η µ) + C 1 a d η -d p(η/2, H ρ m ρ N )
. By definition of a 1 , by a 1 ≤ a, by η ≤ 10η 1 , by scaling and by definition of ρ we get, for all N:

p(a, m ρ N +1 ) ≤ C 3 2 + C 1 a d η -d p(ρη/2, m ρ N ) = C 3 2 + C 1 a d η -d p(a10 k , m ρ N ).
Combining this inequality with the property defining k 0 , we get that p(a, m ρ

N ) ≤ C 3 implies p(a, m ρ N +1 ) ≤ C 3 . As p(a, m ρ 0 ) = p(a, µ) ≤ p(a, T 10η 1 µ) ≤ C 3 /2 we get p(a, m ρ N ) ≤ C 3 for all integer N.
Let ε > 0. Using again Lemma 10 we get the existence of an integer k ′ 0 such that p(a10 k ′ , m ρ N ) ≤ ε for all k ′ ≥ k ′ 0 as soon as p(a, m ρ N ) ≤ C 3 . But we have proven the latter property. Therefore p(a10 k ′ , m ρ N ) ≤ ε for all N and all k ′ ≥ k ′ 0 . By Lemma 11, we get p(a10 k ′ , m ρ ∞ ) ≤ ε for all k ′ ≥ k ′ 0 . Using the freedom on the choice of k ≥ k 0 and η ∈ [η 1 , 10η 1 ], we get that the previous result holds for all ρ ≥ 2a10 k 0 -1 η -1 1 and then for all ρ ≥ 2a 1 10 k 0 η -1 1 . Moreover, using the freedom on the choice of a ∈ [a 1 , 10a 1 ] and k ′ ≥ k ′ 0 , we get: p(r, m ρ ∞ ) ≤ ε for all r ≥ a 1 10 k ′ 0 and all ρ ≥ 2a 1 10 k 0 η -1 1 . Therefore, p(r, m ρ ∞ ) tends to 0 as r tends to infinity. As a consequence, Σ ρ (µ) does not percolate for any ρ ≥ 2a 1 10 k 0 η -1 1 .

3 Proof of Theorem 5 Lemma 12 Let s > 0 and ρ > 1. The following assumptions are equivalent:

1. ]0,+∞[ r d+s µ(dr) < ∞.

[1,+∞

[ r d+s m ρ ∞ (dr) < ∞.
Proof. We have:

[1,+∞[ r d+s m ρ ∞ (dr) = k≥0 ρ kd ]0,+∞[ 1 [1,+∞[ (rρ -k )(rρ -k ) d+s µ(dr) = [1,+∞[ k≥0 1 [1,+∞[ (rρ -k )ρ -ks r d+s µ(dr). Now, let 0 < α < 1 and let λ = min λ c (ν 1 )(1 -ε) α , λ c (ν 2 )(1 -ε) 1 -α .
By (26), ( 29), ( 27) and (28) we get that Assumptions 1 , 2 and 3 of Lemma 13 are fulfilled for the measures αλν 1 and (1α)λν 2 and for ρ ≥ ρ 0 . Therefore, we get

λ c (αλν 1 + (1 -α)λH ρ ν 2 ) ≥ 1
and thus:

λ c (αν 1 + (1 -α)H ρ ν 2 ) ≥ λ = (1 -ε) min λ c (ν 1 ) α , λ c (ν 2 ) 1 -α .
Therefore, as soon as ρ ≥ ρ 0 , we have:

0 ≤ min λ c (ν 1 ) α , λ c (ν 2 ) 1 -α -λ c (αν 1 + (1 -α)H ρ ν 2 ) ≤ ε min λ c (ν 1 ) α , λ c (ν 2 ) 1 -α ≤ ε max(2 λ c (ν 1 ), 2 λ c (ν 2 )).
This yields the proposition.

A Critical parameters

Lemma 14 λ c (µ) ≤ λ c (µ) ≤ λ c (µ).

Proof. The second inequality is a consequence of the following inclusion:

{{0} ↔ Σ S(r)} ⊂ {S(r/2) ↔ Σ S(r)}.

The first inequality can be proven as follows. Let r ≥ 1. By the FKG inequality, we get: The first inequality stated in the lemma follows.

P ({0} ↔ Σ S(

Lemma 15

The treshold parameter λ c (µ) is positive if and only if r d µ(dr) is finite.

Proof. If λ c (µ) is positive, then there exists λ > 0 such that Σ(λµ) does not percolate. By Theorem 2.1 of [START_REF] Gouéré | Subcritical regimes in the Poisson Boolean model of continuum percolation[END_REF] this implies that r d µ(dr) is finite.

Let us assume now that r d µ(dr) is finite. We need to prove the existence of λ > 0 such that p(a, λµ) tends to 0. This is proven, as an intermediate result, in the proof of Theorem 1.1 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF]. As the result is an easy consequence of Lemma 9, we find it more convenient to provide a proof here. Let C 2 be the constant given by Lemma 9. For all a > 0 and λ > 0 we have: 
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  Introduction and statement of the main result 1.1 The Boolean model Let d ≥ 2. Let µ be a finite measure on ]0, +∞[. We assume that the mass of µ is positive. Let ξ be a Poisson point process on R d ×]0, +∞[ whose intensity is the product of the Lebesgue measure on R d by µ. With ξ we associate a random set Σ(µ) defined as follows: Σ(µ) = (c,r)∈ξ B(c, r) where B(c, r) is the open Euclidean ball of radius r centered at c. The random set Σ(µ) is the Boolean model with parameter µ. When shall sometimes write Σ to simplify the notations.

Figure 1 :

 1 Figure 1: Critical covered volume as a function of α for different values of ρ. From bottom to top: ρ = 2, ρ = 5, ρ = 10 and the limit as ρ → ∞.
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  [a,+∞[ (rρ -k )r d µ(dr) = [a,+∞[ ln(r/a) ln(ρ) -1 + 1 r d µ(dr) ≤ [a,+∞[ (ln(r) ln(2) -1 + 1)r d µ(dr).

  r)) ≥ P (B(0, 1) ⊂ Σ and S(1) ↔ Σ S(r)) ≥ CP (S(1) ↔ Σ S(r))where C = P (B(0, 1) ⊂ Σ) > 0 does not depend on r. For all large enough r, we can cover S(2r) by at most C ′ r d balls B(x i , 1) where C ′ only depends on the dimension d. If there is a path in Σ from S(2r) to S(4r), then there exists i and a path in Σ from S(x i , 1) to S(x i , r). (Consider the ball B(x i , 1) that contains the initial point of the path.) By stationarity and by the previous inequality we thus get:P (S(2r) ↔ Σ S(4r)) ≤ C ′ r d P (S(1) ↔ Σ S(r))≤ C ′ C -1 r d P ({0} ↔ Σ S(r)).

C 2 pr

 2 (10a, λµ) ≤ (C 2 p(a, λµ)) 2 + λC 2 2 [a,+∞[ r d µ(dr).(30)For all 0 < a ≤ 1 we have, by standard computations:C 2 p(a, λµ) ≤ C 2 P (a ball of Σ(λµ) touches B(a)) ≤ C 2 v d λ ]0,+∞[ (1 + r) d µ(dr)where v d is the volume of the unit Euclidean ball. As r d µ(dr) is finite, we can therefore fix λ > 0 such that: d µ(dr) ≤ 1/4 for all a > 0 and C 2 p(a, λµ) ≤ 1/2 for all 0 < a ≤ 1. (31) By (30), (31) and by induction we get C 2 p(a, λµ) ≤ 1/2 for all a > 0. Therefore, we have 0 ≤ lim sup C 2 p(a, λµ) ≤ 1/2. But (30) also yields the inequality lim sup C 2 p(a, λµ) ≤ (lim sup C 2 p(a, λµ))2 . As a consequence we must have lim sup C 2 p(a, λµ) = 0 and then p(a, λµ) → 0.

From[START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] one gets the existence of a > 1 such that, for all r ≥ a, one has µ([r, +∞[) ≤ 2 -1 a -d µ([r/a, +∞[). By induction and standard computations this yields, for all r ≥ a, µ([r, +∞[) ≤ Ar -ln(2)/ ln(a)-d . Therefore, for a small enough η > 0, one has r d+η µ(dr) < ∞.

Let C 2 be the constant given by Lemma 9. By [START_REF] Grimmett | of Grundlehren der Mathematischen Wissenschaften[END_REF] we can chose a 0 = a 0 (d, µ) ≥ 1 such that C 2 2 [a 0 ,+∞[ (ln(r) ln(2) -1 + 1)r d µ(dr) ≤ 1 4 .

Let C 3 = (2C 2 ) -1 . Let N, ρ and a be as in the statement of the lemma. From Lemma 9 we get:

Let (u k ) be a sequence defined by u 0 = 1/2 and, for all k ≥ 0:

Note that the sequence (u k ) only depends on d and µ.

Assume that p(a, m ρ N ) ≤ C 3 . We then have C 2 p(a, m ρ N ) ≤ u 0 . Using a ≥ a 0 and (21), we then get C 2 p(a10 k , m ρ N ) ≤ u k for all k. Therefore, it sufficies to show that the sequence (u k ) tends to 0.

Using ( 22), [START_REF] Zuev | Continuous models of percolation theory[END_REF] and u 0 = 1/2 we get 0 ≤ u k ≤ 1/2 for all k. Therefore, 0 ≤ lim sup u k ≤ 1/2. By (22) and by the convergence of the integrale we also get lim sup u k ≤ (lim sup u k ) 2 . As a consequence, lim sup u k = 0 and the lemma is proven.

Lemma 11 For all a > 0 and ρ > 1 the following convergence holds:

Proof. The sequence of events

} is increasing (we use the natural coupling between our Boolean models). Therefore, it suffices to show that the union of the previous events is

. By a compactness argument, this path is included in a finite union of ball of Σ(m ρ ∞ ). Therefore, there exists N such that the path is included in Σ(m ρ N ) and A N occurs. This proves A ⊂ ∪A N . The other inclusion is straightforward.

Proof of the second item of Theorem 4. By Lemma 7, we can fix η 1 > 0 such that p(a, T 10η 1 µ) tends to 0 as a tends to ∞. Let C 1 be given by Lemma 8. Let a 0 and C 3 be as given by Lemma 10. Fix a 1 ≥ max(40η 1 , a 0 , 1) such that p(a, T 10η 1 µ) ≤ C 3 /2 for all a ≥ a 1 . Let k 0 be given by Lemma 10 with the choice:

Therefore:

This yields the result.

Proof of the first item of Theorem 5. By the discussion at the beginning of Section 1.5 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF], Σ ρ (λµ) is driven by a a Poisson point process whose intensity is the product of the Lebesgue measure by the locally finite measure λm ρ ∞ . Let us check the three items of Theorem 2.9 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] with ρ = 10 (ρ is not use in the same way in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF]). We refer to Section 2.1 of [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] for definitions.

1. The first item is fulfilled thanks to [START_REF] Hall | On continuum percolation[END_REF] 2. For all β > 0 and all x ∈ R d , the event G(x, 0, β) only depends on balls B(c, r) ∈ Σ ρ (λµ) such that c belongs to B(x, 3β). By the independance property of Poisson point processes, we then get that G(0, 0, β) and G(x, 0, β) are independent whenever x ≥ 10β. Therefore I(10, 0, β) = 0 and the second item of Theorem 2.9 is fulfilled.

3. The third item (note that µ in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] is m ρ ∞ in this paper) is fulfilled thanks to Lemma 12 Theorem 2.9 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] yields the result.

Proof of the second item of Theorem 5.

If r d µ(dr) is infinite then, Σ(λµ) percolates for all λ > 0 (see the dicussion of Section 1.2). Therefore Σ ρ (λµ) percolates for all ρ > 1 and λ > 0. Therefore D ρ (λµ) = ∞ with positive probability for all ρ > 1 and λ > 0. Now, assume that r d µ(dr) is finite. Then, by the discussion at the beginning of Section 1.5 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF], Σ ρ (λµ) is driven by a a Poisson point process whose intensity is the product of the Lebesgue measure by the locally finite measure λm ρ ∞ . We can therefore apply Theorem 1.2 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF]. By Lemma 12, assumption (A3) of Theorem 1.2 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] is not fulfilled (note that µ in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] is m ρ ∞ in this paper). Theorem 1.2 in [START_REF] Gouéré | Subcritical regimes in some models of continuum percolation[END_REF] then yields the result.

Proof of Proposition 6

We first need a lemma, which is a consequence of Lemmas 8 and 9.

Lemma 13 Let ν 1 and ν 2 be two finite measures on ]0, +∞[. Let η > 0 and a 0 ≥ 4η. Let ρ > 1. There exists

) ≥ 1 as soon as the following conditions hold:

For all a ∈ [a 0 , 10a 0 ] we have, by Lemma 8 applied to ν 1 and H ρ (ν 2 ), by scaling and by the assumptions of the lemma:

But for all a ≥ a 0 we have, by Lemma 9 and by the assumptions of the lemma:

By ( 23) and (25) we get C 2 p(a, ν) ≤ 1/2 for all a ≥ a 0 and therefore 0 ≤ lim sup C 2 p(a, ν) ≤ 1/2. By (24) and the third assumption of the lemma, we get lim sup C 2 p(a, ν) ≤ (lim sup C 2 p(a, ν)) 2 . Therefore, we must have lim sup C 2 p(a, ν) = 0 and the lemma is proven.

Proof of Proposition 6. The inequality is straightforward. To prove the inequality, we note that, by scaling, λ c (H ρ ν 2 ) = λ c (ν 2 ). Let us prove the convergence. We can assume λ c (ν 1 ) > 0 and λ c (ν 2 ) > 0, otherwise the convergence is obvious. Therefore, by Lemma 15, the integrals r d ν 1 (dr) and r d ν 2 (dr) are finite.

Let C 4 be the constant given by Lemma 13. Let 0 < ε < 1. Note:

Therefore, by Lemma 7 (in which ( 6) is not used), we can fix η > 0 such that p(a, T η (1ε) λ c (ν 1 )ν 1 ) → 0.

We can then fix a 0 ≥ 4η such that: