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Percolation in a multiscale Boolean model

Jean-Baptiste Gouéré ∗

Abstract

We consider percolation in a multiscale Boolean model. This model is defined as

the union of scaled independent copies of a given Boolean model. The scale factor

of the n
th copy is ρ−n. Under optimal integrability assumptions, we prove that no

percolation occurs in the multiscale Boolean model for large enough ρ if the rate of

the Boolean model is below some critical value.

1 Introduction and statement of the main result

1.1 The Boolean model

Let d ≥ 2. Let µ be a finite measure on ]0,+∞[. We assume that the mass of µ is
positive. Let ξ be a Poisson point process on R

d×]0,+∞[ whose intensity is the product
of the Lebesgue measure on R

d by µ. With ξ we associate a random set Σ(µ) defined as
follows:

Σ(µ) =
⋃

(c,r)∈ξ

B(c, r)

where B(c, r) is the open Euclidean ball of radius r centered at c. The random set Σ(µ)
is the Boolean model with parameter µ. When shall sometimes write Σ to simplify the
notations.

The following description may be more intuitive. Let χ denote the projection of ξ on
R

d. With probability one this projection is one-to-one. We can therefore write:

ξ = {(c, r(c)), c ∈ χ}.

Write µ = mν where ν is a probability measure. Then, χ is a Poisson point process on R
d

with density m. Moreover, given χ, the sequence (r(c))c∈χ is a sequence of independent
random variable with common distribution ν. We shall not use this point of view.

1.2 Percolation in the Boolean model

Let C denote the connected component of Σ that contains the origin. We say that Σ
percolates if C is unbounded with positive probability. We refer to the book by Meester
and Roy [9] for background on continuum percolation. Set:

λc(µ) = inf{λ > 0 : Σ(λµ) percolates}.

∗
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One easily check that λc(µ) is finite as soon as µ has a positive mass. In [4] we proved
that λc(µ) is positive if and only if:

∫
rdµ(dr) < ∞.

The only if part had been proved earlier by Hall [7]. For all A,B ⊂ R
d, we write A ↔Σ B

if there exists a path in Σ from A to B. We denote by S(c, r) the Euclidean sphere or
radius r centered at the c :

S(c, r) = {x ∈ R
d : ‖x− c‖2 = r}.

We write S(r) when c = 0.
The critical parameter λc(µ) can also be defined as follows:

λc(µ) = sup
{
λ > 0 : P

(
{0} ↔Σ(λµ) S(r)

)
→ 0 as r → ∞

}
,

We shall need two other critical parameters:

λ̂c(µ) = sup
{
λ > 0 : P

(
S(r/2) ↔Σ(λµ) S(r)

)
→ 0 as r → ∞

}
,

λ̃c(µ) = sup
{
λ > 0 : rdP

(
{0} ↔Σ(λµ) S(r)

)
→ 0 as r → ∞

}
.

We have (see Lemma 10) :

λ̃c(µ) ≤ λ̂c(µ) ≤ λc(µ). (1)

When the support of µ is bounded,

P
(
{0} ↔Σ(λµ) S(r)

)

decays exponentially fast to 0 as soon as λ < λc(µ) (see for example [9], Section 12.10 in
[6] when R = 1 or the papers [10], [13], [18] and [19]). Therefore:

λ̃c(µ) = λ̂c(µ) = λc(µ) as soon as the support of µ is bounded. (2)

Remark. By results and ideas of [4], we can prove:

– λ̂c(µ) is positive if and only if
∫
xdµ(dx) is finite (i.e., if and only if λc(µ) is positive).

– λ̃c(µ) is positive if and only if rd
∫∞

r
xdµ(dx) → 0 as r → ∞.

1.3 A multiscale Boolean model

Let ρ > 1 be a scale factor. Let (Σn)n≥0 be a sequence of independent copies of
Σ(µ). In this paper, we are interested in percolation properties of the following multiscale
Boolean model:

Σρ(µ) =
⋃

n≥0

ρ−nΣn. (3)

We shall sometimes write Σρ to simplify the notations. As before, we say that Σρ per-
colates if the connected component of Σρ that contains the origin is unbounded with
positive probability.
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This model seems to have been first introduced as a model of failure in geophysical
medias in the 80′. We refer to the paper by Molchanov, Pisarenko and Reznikova [14] for
an account of those studies. For more recent results we refer to [2], [9], [10], [11], [12] and
[16].

This model is related to a discrete model introduced by Mandelbrot [8]. We refer to
the survey by L. Chayes [3] and, for more recent results, to [1], [15] and [17].

In [11], Menshikov, Popov and Vachkovskaia considered the case where the radii of
the unscaled process Σ0 equal 1. They proved the following result.

Theorem 1 ([11]) If λ < λc(δ1) then, for all large enough ρ, Σρ(λµ) does not percolate.

In [12] the same authors considered the case where the radii are random and can be
unbounded. They considered the following sub-autosimilarity assumption on the measure
µ:

lim
a→∞

sup
r≥1/2

adµ([ar,+∞[)

µ([r,+∞[)
= 0 (4)

with the convention 0/0 = 0. They proved the following result.

Theorem 2 ([12]) Assume that the measure µ satisfies (4). If λ < λ̃c(µ) then, for all
large enough ρ, Σρ(λµ) does not percolate.

Note that (4) is fulfilled for any measure with bounded support. Because of (2),
Theorem 2 is then a generalization of Theorem 1.

In this paper, we prove the following result.

Theorem 3 Assume: ∫

[1,+∞[

βd ln(β)µ(dβ) < ∞. (5)

If λ < λ̂c(µ), then for all large enough ρ, Σρ(λµ) does not percolate.

Condition (5) is a neccesary condition, as shown by the following result from [5].

Theorem 4 Let ρ > 1. There exists λ > 0 such that Σρ(λµ) does not percolate if and
only if (5) holds.

Theorem 3 is a generalization of Theorem 2 and thus of Theorem 1. Indeed, by (1),

one has λ < λ̂c as soon as λ < λ̃c. Moreover, (5) is implicitly assumed in the statement
of Theorem 2. This can be seen as a consequence of Theorem 4. Alternatively, one can
check that (5) is a consequence of λ̃c(µ) > 0 or of (4).

2 Proof

2.1 Some notations

In the whole of Section 2, we make the following assumptions:
– µ satisfies (5).

– 1 < λ̂c(µ).
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We aim at proving that, for large enough ρ, Σρ(µ) does not percolate. Theorem 3 follows
by applying this result to the measure λµ.

For all η > 0, we denote by Tηµ the measure defined by Tηµ(A) = µ(A− η). In other
words, we can built Σ(Tηµ) from Σ(µ) by adding η to each radius.

For all ρ > 1, we denote by Hρµ the measure defined by Hρµ(A) = ρdµ(ρA). With
this definition, ρ−1Σ(µ) is a Boolean model driven by the measure Hρµ. For all n ≥ 0,
we let:

mρ
n =

n∑

k=0

Hρkµ.

With this definition and the notations of (3),

n⋃

k=0

ρ−kΣk

is a Boolean model driven by mρ
n. We also let:

mρ
∞ =

∑

k≥0

Hρkµ.

So, Σρ(µ) is a Boolean model driven by the locally finite measure mρ
∞.

Let p(a, µ) denote the probability of existence of a path from S(a/2) to S(a) in Σ(µ):

p(a, µ) = P (S(a/2) ↔Σ(µ) S(a)).

2.2 Ideas

In this subsection we first sketch the proof of the existence of ρ and a such that
p(a,mρ

∞) is small. This gives the main ingredients of the proof of Theorem 3. A full
proof is given in Subsection 2.3. We then give the ideas of the proof of Theorems 1
and 2 by Menshikov, Popov and Vachkovskaia. Thier basic strategy is similar but the
implementation of the proof is different.

Sketch of the proof of Theorem 3

Consider a small ε1 > 0. Fix a small η > 0 and a large a such that (see Lemma 5):

p(a, Tηµ) ≤ ε1/2. (6)

For all n ≥ 1, write:
mρ

n = Hρmρ
n−1 + µ.

If the event S(a/2) ↔Σ(mρ
n) S(a) occurs, then either the event S(a/2) ↔Tηµ S(a) occurs

(with a natural coupling between the Boolean models) either in Σ(Hρmρ
n−1) ∩ B(a) one

can find a component of diameter at least η. We use this observation through its following
crude consequence (see Lemma 6):

p(a,mρ
n) ≤ p(a, Tηµ) + Cadη−dp(η/2, Hρmρ

n−1).
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By scaling and by (6), this yields:

p(a,mρ
n) ≤ ε1/2 + Cadη−dp(ρη/2, mρ

n−1). (7)

But for any ε2, any small enough ε1 and any large enough a we can find τ such that
(see Lemmas 7 and 8):

p(τa,mρ
n−1) ≤ ε2 as soon as p(a,mρ

n−1) ≤ ε1. (8)

An important fact is that τ does not depends on n nor on ρ, provided ρ ≥ ρ0 where ρ0 is
an arbitrary constant strictly larger than 1. Here we use assumption (5) to bound error
terms due to the existence of large balls.

We choose ε2 such that:
Cadη−dε2 = ε1/2.

We set ρ = 2τa/η. Then, (7) and (8) can be rewritten as follows:

p(a,mρ
n) ≤ ε1/2 + Cadη−dp(τa,mρ

n−1) (9)

Cadη−dp(τa,mρ
n−1) ≤ ε1/2 as soon as p(a,mρ

n−1) ≤ ε1. (10)

As moreover (6) implies p(a,mρ
0) ≤ ε1 we get, by induction and then sending n to infinity

(see Lemma 9):
p(a,mρ

∞) ≤ ε1.

Sketch of the proofs of Theorems 1 and 2 by Menshikov, Popov and Vachkovskaia

Let us quickly describe the ideas of the proofs of Menshikov, Popov and Vachkovskaia.
Those ideas are used in their papers [11] and [12] through a discretization of space ; we
describe them in a slightly more geometric way. For simplicity we only consider two
scales: ρ−1Σ1 and Σ0. Assume that C is a connected component of ρ−1Σ1 ∪ Σ0 whose
diameter is a least α (it can be much larger) for a small enough constant α > 0. Then,
C is included in the union of the following kind of sets:

1. connected components of ρ−1Σ1 whose diameter is at least α ;

2. balls of Σ0 enlarged by the factor 1 +α (same centers but the radii are 1 +α times
the radii of Σ0).

Then, they show that the union of all those sets is stochastically dominated by a Boolean
model similar to Σ0 but with radii enlarged by a factor 1 +α and with density of centers
1 + α′ times the corresponding density for Σ0 for a suitable α′ > 0. This part uses
λ < λ̂c. In some sense, one can therefore control percolation in the union of two models
by percolation in one model. Iterating the argument with some care in the constants α
and α′, one sees that – for large enough ρ – one can control percolation in the multiscale
model by percolation in a subcritical model. This yields the result.

2.3 Proof

As 1 < λ̂c(µ), we know that p(a, µ) tends to 0 as a tends to infinity. We need the
following slightly stronger consequence.
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Lemma 5 There exists η > 0 such that p(a, Tηµ) tends to 0.

Proof. Let ε > 0 and x > 0. We have:

H1+εTε2µ([x,+∞[) = (1 + ε)dTε2µ([x(1 + ε),+∞[)

= (1 + ε)dµ([x(1 + ε)− ε2,+∞[)

≤ κ(ε)(1 + ε)dµ([x,+∞[) (11)

where

κ(ε) =
µ(]0,+∞[)

µ([ε,+∞[)
.

The inequality is proven as follows. If x ≥ ε, then [x(1 + ε)− ε2,+∞[⊂ [x,+∞[ and the
result follows from κ(ε) ≥ 1. If, on the contrary, x < ε, then the left hand side is bounded
above by (1 + ε)dµ(]0,+∞[) which is itself bounded above by the right hand side.

Note that κ(ε)(1 + ε)d tends to 1 as ε tends to 0. Let us say that a measure ν is

subcritical if λ̂c(ν) > 1. As µ is subcritical, we get that κ(ε)(1 + ε)dµ is subcritical for
small enough ε. We fix such an ε. By (11) we can couple a Boolean model driven by
H1+εTε2µ and a Boolean model driven by κ(ε)(1+ ε)dµ in such a way that the first one is
contained in the second one. Therefore the first one is subcritical. By scaling, a Boolean
model driven by Tε2µ is then subcritical. We take η = ε2. �

Lemma 6 Let ν1 and ν2 be two finite measures on ]0,+∞[. One has, for all η > 0 and
a ≥ 4η:

p(a, ν1 + ν2) ≤ p(a, Tην1) + C1a
dη−dp(η/2, ν2)

where C1 = C1(d) > 0 depends only on the dimension d.

Proof. Let (xi)i∈I be a family of points such that :
– The balls B(xi, η/4), i ≤ I, cover B(a).
– There are at most C1a

dη−d points in the family where C1 = C1(d) depends only on
the dimension d.

We couple the different Boolean model as follows. Let Σ(ν1) be a Boolean model
driven by ν1. Let Σ(ν2) be a Boolean model driven by ν2. Assume that Σ(ν1) and Σ(ν2)
are independent. Then Σ(ν1) ∪ Σ(ν2) is a Boolean model driven by ν1 + ν2. We set
Σ(ν1 + ν2) = Σ(ν1) ∪ Σ(ν2). We also consider Σ(Tην1), the Boolean model obtained by
adding η to the radius of each ball of Σ(ν1). Thus Σ(Tην1) is driven by Tην1.

Let us prove the following property:

{S(a/2) ↔Σ(ν1+ν2) S(a)} ⊂ {S(a/2) ↔Σ(Tην1) S(a)}∪
⋃

i∈I

{S(xi, η/4) ↔Σ(ν2) S(xi, η/2)}.

(12)
Assume that Σ(ν1 + ν2) = Σ(ν1) ∪ Σ(ν2) connects S(a/2) with S(a). Recall a ≥ 4η.

If the diameter of all connected components of Σ(ν2) ∩ B(a) are less or equal to η, then
Σ(Tην1) connects S(a/2) with S(a). Otherwise, let C be a connected component of
Σ(ν2) ∩ B(a) with diameter at least η. Let x, y be two points of C such that ‖x− y‖ >
η. The point x belongs to a ball B(xi, η/4). As y does not belong to B(xi, η/2), the
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component C connects S(xi, η/4) to S(xi, η/2). Therefore, Σ(ν2) connects S(xi, η/4) to
S(xi, η/2). We have proven (12). The lemma follows. �

The following lemma is essentially the first item of Proposition 3.1 in [4]. For the sake
of completeness we nevertheless provide a proof.

Lemma 7 Let ν be a finite measure on ]0,+∞[. There exists a constant C2 = C2(d) > 0
such that, for all a > 0:

p(10a, ν) ≤ C2p(a, ν)
2 + C2

∫

[a,+∞[

rdν(dr).

Proof. Let K be a finite subset of S(5) such that K + B(1/2) covers S(5). Let L be a
finite subset of S(10) such that L + B(1/2) covers S(10). Let A be the following event:
there exists a random ball B(c, r) of Σ(ν) such that r ≥ a and B(c, r) ∩ B(10a) is non
empty. We have:

{S(5a) ↔Σ(ν) S(10a)} \ A ⊂ {S(5a) ↔≤a
Σ(ν) S(10a)}

where, in the last event, we ask for a path using only balls of Σ(ν) of radius at most a.
Let us prove the following:

{S(5a) ↔Σ(ν) S(10a)} \ A

⊂
⋃

k∈K,l∈L

{S(ak, a/2) ↔≤a
Σ(ν) S(ak, a)} ∩ {S(al, a/2) ↔≤a

Σ(ν) S(al, a)}. (13)

Assume that the event on the left hand side occurs. Then, by the previous remark, there
exists a path from a point x ∈ S(5a) to a point y ∈ S(10a) that is contained in balls of
Σ(ν) of radius at most a. As Ka +B(a/2) covers S(5a), there exists k ∈ K such that x
belongs to B(ka, a/2). Using the previous path, one gets that the event

{S(ak, a/2) ↔≤a
Σ(ν) S(ak, a)}

occurs. By a similar arguments involving y we get (13).
Observe that, for all k ∈ K and l ∈ L, the events

{S(ak, a/2) ↔≤a
Σ(ν) S(ak, a)} and {S(al, a/2) ↔≤a

Σ(ν) S(al, a)}

are independent. Indeed, the first one depends only on balls with centers in B(ak, 2a),
the second one depends only on balls with centers in B(al, 2a), and ‖ak−al‖ ≥ 5a. Using
this independence, stationarity and (13), we then get:

P ({S(5a) ↔Σ(ν) S(10a)}) ≤ CP (S(a/2) ↔≤a
Σ(ν) S(a)})2 + P (A)

where C is the product of the cardinality of K by the cardinality of L. The probability
P (A) is bounded above by standard computations. �

From the previous lemma, we deduce the following result.
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Lemma 8 Let ε > 0. There exists C3 = C3(d) > 0, a0 = a0(d, µ) and k0 = k0(d, µ, ε)
such that, for all N , all ρ ≥ 2 and all a ≥ a0: if p(a,mρ

N) ≤ C3 then for all k ≥ k0,
p(a10k, mρ

N ) ≤ ε.

Proof. For all ρ ≥ 2 and all a ≥ 1 we have:

∫

[a,+∞[

rdmρ
∞(dr) =

∑

k≥0

ρkd
∫

]0,+∞[

1[a,+∞[(rρ
−k)(rρ−k)dµ(dr)

=

∫

]0,+∞[

∑

k≥0

1[a,+∞[(rρ
−k)rdµ(dr)

=

∫

[a,+∞[

( ⌊
ln(r/a) ln(ρ)−1

⌋
+ 1

)
rdµ(dr)

≤

∫

[a,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr).

Let C2 be the constant given by Lemma 7. By (5) we can chose a0 = a0(d, µ) ≥ 1
such that

C2
2

∫

[a0,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr) ≤
1

4
. (14)

Let C3 = (2C2)
−1. Let N , ρ and a be as in the statement of the lemma. From Lemma 7

we get:

C2p(10a,m
ρ
N) ≤ (C2p(a,m

ρ
N))

2 + C2
2

∫

[a,+∞[

rdmρ
N(dr) (15)

≤ (C2p(a,m
ρ
N))

2 + C2
2

∫

[a,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr) (16)

Let (uk) be a sequence defined by u0 = 1/2 and, for all k ≥ 0:

uk+1 = u2
k + C2

2

∫

[a010k,+∞[

(ln(r) ln(2)−1 + 1)rdµ(dr). (17)

Note that the sequence (uk) only depends on d and µ.
Assume that p(a,mρ

N) ≤ C3. We then have C2p(a,m
ρ
N) ≤ u0. Using a ≥ a0 and

(16), we then get C2p(a10
k, mρ

N) ≤ uk for all k. Therefore, it sufficies to show that the
sequence (uk) tends to 0.

Using (17), (14) and u0 = 1/2 we get 0 ≤ uk ≤ 1/2 for all k. Therefore, 0 ≤
lim sup uk ≤ 1/2. By (17) and by the convergence of the integrale we also get lim sup uk ≤
(lim sup uk)

2. As a consequence, lim sup uk = 0 and the lemma is proven. �

Lemma 9 For all a > 0 and ρ > 1 the following convergence holds:

p(a,mρ
∞) = lim

N→∞
p(a,mρ

N).
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Proof. The sequence of events

AN = {S(a/2) ↔Σ(mρ
N
) S(a)}

is increasing (we use the natural coupling between our Boolean models). Therefore, it
suffices to show that the union of the previous events is

A = {S(a/2) ↔Σ(mρ
∞) S(a)}.

If A occurs, then there is is path from S(a/2) to S(a) that is contained in Σ(mρ
∞).

By a compactness argument, this path is included in a finite union of ball of Σ(mρ
∞).

Therefore, there exists N such that the path is included in Σ(mρ
N ) and AN occurs. This

proves A ⊂ ∪AN . The other inclusion is straightforward. �

Proof of Theorem 3. By Lemma 5, we can fix η1 > 0 such that p(a, T10η1µ) tends to
0 as a tends to ∞. Let C1 be given by Lemma 6. Let a0 and C3 be as given by Lemma
8. Fix a1 ≥ max(40η1, a0, 1) such that p(a, T10η1µ) ≤ C3/2 for all a ≥ a1. Let k0 be given
by Lemma 8 with the choice:

ε = C−1
1 (10a1)

−dηd1C3/2.

Therefore, for all ρ ≥ 2, all N , all a ∈ [a1, 10a1] and all η ∈ [η1, 10η1]:

C1a
dη−dp(a10k, mρ

N ) ≤
C3

2
for all k ≥ k0 as soon as p(a,mρ

N) ≤ C3.

Fix k ≥ k0, a ∈ [a1, 10a1] and η ∈ [η1, 10η1]. Set:

ρ = 2a10kη−1.

Note ρ ≥ 8 ≥ 2 as a ≥ a1 ≥ 40η1 ≥ 4η. By Lemma 6 we have, for all N :

p(a,mρ
N+1) ≤ p(a, Tηµ) + C1a

dη−dp(η/2, mρ
N+1 − µ)

= p(a, Tηµ) + C1a
dη−dp(η/2, Hρmρ

N ).

By definition of a1, by a1 ≤ a, by η ≤ 10η1, by scaling and by definition of ρ we get, for
all N :

p(a,mρ
N+1) ≤

C3

2
+ C1a

dη−dp(ρη/2, mρ
N)

=
C3

2
+ C1a

dη−dp(a10k, mρ
N ).

Combining this inequality with the property defining k0, we get that p(a,mρ
N) ≤ C3

implies p(a,mρ
N+1) ≤ C3. As p(a,m

ρ
0) = p(a, µ) ≤ p(a, T10η1µ) ≤ C3/2 we get p(a,mρ

N ) ≤
C3 for all integer N .

Let ε > 0. Using again Lemma 8 we get the existence of an integer k′
0 such that

p(a10k
′

, mρ
N) ≤ ε for all k′ ≥ k′

0 as soon as p(a,mρ
N ) ≤ C3. But we have proven the

latter property. Therefore p(a10k
′

, mρ
N) ≤ ε for all N and all k′ ≥ k′

0. By Lemma 9, we
get p(a10k

′

, mρ
∞) ≤ ε for all k′ ≥ k′

0. Using the freeness on the choice of k ≥ k0 and
η ∈ [η1, 10η1], we get that the previous result holds for all ρ ≥ 2a10k0η−1

1 and then for all
ρ ≥ 20a110

k0η−1
1 . Moreover, using the freeness on the choice of a ∈ [a1, 10a1] and k′ ≥ k′

0,
we get:

p(r,mρ
∞) ≤ ε for all r ≥ a110

k′
0.

Therefore, p(r,mρ
∞) tends to 0 as r tends to infinity. As a consequence, Σρ(µ) does not

percolate for any ρ ≥ 20a110
k0η−1

1 . �
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A Critical parameters

Lemma 10
λ̃c(µ) ≤ λ̂c(µ) ≤ λc(µ).

Proof. The second inequality is a consequence of the following inclusion:

{{0} ↔Σ S(r)} ⊂ {S(r/2) ↔Σ S(r)}.

The first inequality can be proven as follows. Let r ≥ 1. By the FKG inequality, we get:

P ({0} ↔Σ S(r)) ≥ P (B(0, 1) ⊂ Σ and S(1) ↔Σ S(r))

≥ CP (S(1) ↔Σ S(r))

where C = P (B(0, 1) ⊂ Σ) > 0 does not depend on r. For all large enough r, we can
cover S(2r) by at most C ′rd balls B(xi, 1) where C ′ only depends on the dimension d. If
there is a path in Σ from S(2r) to S(4r), then there exists i and a path in Σ from S(xi, 1)
to S(xi, r). (Consider the ball B(xi, 1) that contains the initial point of the path.) By
stationarity and by the previous inequality we thus get:

P (S(2r) ↔Σ S(4r)) ≤ C ′rdP (S(1) ↔Σ S(r))

≤ C ′C−1rdP ({0} ↔Σ S(r)).

The first inequality stated in the lemma follows. �
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