
HAL Id: hal-00519263
https://hal.science/hal-00519263

Submitted on 19 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering, Encoding and Diameter Computation
Algorithms for Multidimensional Data

Mugurel Ionut Andreica, Eliana-Dina Tirsa

To cite this version:
Mugurel Ionut Andreica, Eliana-Dina Tirsa. Clustering, Encoding and Diameter Computation Algo-
rithms for Multidimensional Data. Proceedings of the IEEE International Conference on Automation,
Quality and Testing, Robotics (THETA 17) (AQTR) - Student Forum, 2010. (ISBN: 978-973-662-
574-9), May 2010, Cluj-Napoca, Romania. �hal-00519263�

https://hal.science/hal-00519263
https://hal.archives-ouvertes.fr

Clustering, Encoding and Diameter Computation

Algorithms for Multidimensional Data

Mugurel Ionuţ Andreica, Eliana-Dina Tîrşa
Politehnica University of Bucharest, Computer Science Department, {mugurel.andreica, eliana.tirsa}@cs.pub.ro

Abstract-In this paper we present novel algorithms for several

multidimensional data processing problems. We consider prob-

lems related to the computation of restricted clusters and of the

diameter of a set of points using a new distance function. We also

consider two string (1D data) processing problems, regarding an

optimal encoding method and the computation of the number of

occurrences of a substring within a string generated by a gram-

mar. The algorithms have been thoroughly analyzed from a theo-

retical point of view and some of them have also been evaluated

experimentally.

I. INTRODUCTION

In this paper we consider several multidimensional data

processing problems, for which we present novel algorithmic

techniques. Two important problems in processing multidi-

mensional sets of points are: clustering and the computation of

the diameter with respect to a distance function. An efficient

clustering method has two advantages: it provides information

about the structure of the set of points and can be used for pro-

viding a more compact representation of the set of points (by

describing just the clusters and not the individual points).

Computing the diameter of a set of points is important particu-

larly in association with other metrics. It can provide relevant

information regarding the distribution of the points in space.

One-dimensional data (e.g. textual data) is a particular case

of multidimensional data which is of a high practical interest.

Computing optimal encodings and analyzing large amounts of

data (given explicitly or implicitly) are important in many prac-

tical fields. In this paper we propose a new algorithm for com-

puting an optimal encoding with respect to several rules, and a

solution for computing the number of occurrences of a sub-

string in a large string (implicitly generated by a grammar).

The rest of this paper is structured as follows. In Section II

we present related work. In Section III we discuss the problem

of covering a set of points by using at most kh (restricted) hy-

per-rectangles. A hyper-rectangle is the simplest way of repre-

senting a multi-dimensional cluster. The fact that the hyper-

rectangles need not be non-overlapping implies that the clusters

need not be disjoint. In Section IV we present a new algorithm

for computing the diameter of a set of points, using a new dis-

tance function. In Section V we discuss two string processing

problems, regarding the optimal encoding and the analysis of

text data. In Section VI we conclude and discuss future work.

II. RELATED WORK

Geometric K-center problems (related to the hyper-

rectangle covering problem from Section III) were presented

in [1]. Efficient algorithms for geometric optimization prob-

lems similar to those introduced in this paper were given in

[2]. Multidimensional data structures like the range tree or

multidimensional versions of 2D data structures like the

segment tree were presented in [3, 4, 5]. A similar model for

partitioning the dimensions into groups as the one we use in

Section III, but applied to a multidimensional range mini-

mum query problem, was mentioned in [5]. Related 2D data

structures and related problems in multiple dimensions in

the OLAP domain were considered in [6, 7].

III. HYPER-RECTANGLE COVERING

A. Problem Description and Algorithmic Solutions

We consider the following problem. We are given a set of r

points (xc(i,1), …, xc(i,d)) (1≤i≤r) in a d-dimensional space.

We want to cover all of the points with at most kh hyper-

rectangles having the following properties. A hyper-rectangle

is defined by d intervals [a1,b1], …, [ad, bd] and contains all the

points (x1, …, xd) for which ai≤xi≤bi (1≤i≤d). The side length

len(i) of a hyper-rectangle in dimension i is bi-ai. We consider

the d dimensions as being classified into e≤d groups. Let g(i)

be the group to which the dimension i belongs (1≤g(i)≤e;

1≤i≤d). The side lengths of the hyper-rectangles we want to

place in each dimension i must satisfy the constraint:

len(i)=f(i)·l(g(i)). Thus, the side lengths of each hyper-

rectangle are uniquely defined by the values l(j) (1≤j≤e).

Moreover, for each group j we have a lower bound lmin(j) and

an upper bound lmax(j), meaning that lmin(j)≤l(j)≤lmax(j).

A hyper-rectangle can be placed anywhere in space and a

point is covered by the (at most) kh hyper-rectangles if it is

contained within at least one of the hyper-rectangles. We want

to place the (at most) kh hyper-rectangles such that an aggre-

gate function aggf of their costs is minimized (e.g. aggf=+).

The cost of a hyper-rectangle can be any non-negative value

which depends on the side lengths of the hyper-rectangle and,

possibly, on the points contained within it, but must not depend

on the actual coordinates of the hyper-rectangle. The cost func-

tion should be non-decreasing with respect to each side length.

The aggregate value must be computed using a commutative

function of the hyper-rectangles’ costs, which must be non-

decreasing with respect to the “addition” of the cost of a new

hyper-rectangle.

We will present several solutions for this problem, each of

them successively improving the previous one. We will start by

sorting the coordinates of the points in each dimension. Let

xo(i,1)≤xo(i,2)≤…≤xo(i,r) be the order of the points in the di-

mension i. We will remove the duplicates in the ordering

(maintaining only one coordinate with a given value) and we

obtain the ordering: xp(i,1)<xp(i,2)<…<xp(i,m(i)), where m(i)

is the number of distinct coordinates in the dimension i. We

will denote by n=max{m(i)|1≤i≤d}. We will use the value of n

when analyzing the time complexity of our solutions, because

it will be easier than using the values m(i) explicitly. If the

point set is sparse, then we may have n=O(r). If the point set is

dense, then we may have n=O(r
1/d

).

The first step in each of the presented solutions is to compute

the minimum bounding hyper-rectangle (MBR) of the r points.

This hyper-rectangle [xp(i,1),xp(i,m(i))] (1≤i≤d) has the mini-

mum (hyper-)volume possible and still contains all the r points

inside. For simplicity, we will assume that the parameters of all

the hyper-rectangles will be expressed in terms of indices into

the sorted arrays xp(*), i.e. ai=j, bi=k means that the side of the

hyper-rectangle is [xp(i,j), xp(i,k)].

The first presented solution is a generic, yet naïve, solution

and is described in the following pseudo-code:

hrcover(S, HRMBR, kh):

if (|S|=0) then return 0

if (kh=1) then {

 xmin(j)=xp(j,HRMBR.aj) ; xmax(j)=xp(j,HRMBR.bj) (1≤j≤d)

l(j)=lmin(j) (1≤j≤e)

 for i=1 to d do l(g(i))=max{l(g(i)), (xmax(i)-xmin(i))/f(i)}

 if (l(j)>lmax(j)) (for some 1≤j≤e) then return +∞

 xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d)

 return cost([xmin(j),xmax(j)] (1≤j≤d), S)

} else {
 Cmin=+∞

 for each HR in generateHyperRectangles(HRMBR, kh) do {

 U={p in S | HR.xmin(j)≤xc(p,j)≤HR.xmax(j) for every 1≤j≤d}

 S’=S\U

 C=cost([HR.xmin(j), HR.xmax(j)] (1≤j≤d), U)

 MBR’=computeMBR(S’)

 Cmin=min{Cmin, aggf(C, hrcover(S’, MBR’, kh-1))} }

return Cmin }

generateHyperRectangles(HRMBR, kh):

 HRList = {}

 for each tuple (c1, …, cd) such that HRMBR.ai≤ci≤HRMBR.bi

(1≤i≤d) do {

 xmin(j)=xp(j,cj) (1≤j≤d)

 let difSet(gi)={(xp(j,a)-xp(j,cj))/f(j) | a≥cj; g(j)=gi; 1≤j≤d}

(1≤gi≤e)

 let difMax(gj)=max{dif | dif in difSet(gj)} (1≤gj≤e)

 for each tuple (l(1), …, l(e)) such that lmin(j)≤l(j)≤lmax(j)

and ((l(j) in difSet(j)) or (l(j)=lmin(j)>difMax(j))) (1≤j≤e) do {

 xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d)

 HRList.add([xmin(j),xmax(j)] (1≤j≤d)) }}

 return HRList

The parameters of the hrcover algorithm are S=the set of yet

uncovered points, HRMBR=the minimum bounding hyper-

rectangle of the points in S (expressed in terms of indices in the

sorted arrays xp(*)) and kh=the number of remaining hyper-

rectangles. The cost function takes as arguments the current

hyper-rectangle and the set of points U located inside it. If the

cost function does not depend on the set U, then it can be com-

puted in O(1) time; otherwise, its time complexity may be

higher (depending on the actual function). We will denote by

CC(r) the time complexity of computing the cost function

when |U|=O(r). generateHyperRectangles(HRMBR, kh) ge-

nerates a list of possible placements for the current hyper-

rectangle. computeMBR(S’) computes the minimum bounding

hyper-rectangle MBR’ of the points from the set S’. The pa-

rameters of MBR’ will also be expressed in terms of indices

into the arrays xp(*). In order to compute these indices, we will

store for each point i and dimension j the index idx(i,j)=k such

that xp(j,k)=xc(i,j) (this index can be computed during the ini-

tial sorting of the coordinates along each dimension). Thus,

MBR’ can be computed in O(|S’|·d) time (we will maintain the

point with the minimum and maximum coordinate in each di-

mension and then compute the result using the values idx(*,*)).

For each of the kh hyper-rectangles, the algorithm considers

each possible value of their left and right coordinates in each

dimension. For each assignment of the coordinates, the algo-

rithm computes the set of points outside of the hyper-rectangle

and their minimum bounding hyper-rectangle. This takes

O(r·d·n
2·e

) time for each of the first kh-1 hyper-rectangles. The

final time complexity is O(r
kh-1

·d
kh-1

·n
2·e·(kh-1)

+r·d·log(r)). This

analysis is correct only if the cost function can be computed in

O(1) time. Otherwise, we need to include the time complexity

of computing the cost function within the time complexity

equation. For the general case, we will denote by T(r,n,kh)=the

time complexity for computing an optimal cover of O(r) points

with at most n distinct coordinates in each dimension and using

at most kh hyper-rectangles. T(r,n,1)=O(d+CC(r)). T(r,n,

kh≥2)=O((r·d+CC(r))·n
2·e

)·T(r,n,kh-1). We must also add the

initial O(r·d·log(r)) factor for sorting the coordinates and com-

puting the initial minimum bounding hyper-rectangle.

The presented algorithm can be optimized in two directions.

First, we can generate fewer potential hyper-rectangles. Sec-

ond, we can compute in a more efficient manner the minimum

bounding hyper-rectangle of the points not contained in any of

the hyper-rectangles that were placed so far.

The first optimization is based on the following observation.

The MBR of a set of points has 2·d sides (it is defined by 2·d

parameters). If we want to cover the points by using kh hyper-

rectangles, then some of the parameters of these hyper-

rectangles will need to coincide with the parameters of the

MBR (or exceed them in the corresponding direction). Using

Dirichlet’s principle, there must be at least one hyper-rectangle

with q=2·d/kh (rounded up) common parameters with the

MBR. This hyper-rectangle will be placed next. We will con-

sider all the combinations of q common parameters and choose

the remaining 2·d-q parameters as before. The pseudocode of

the optimized generateHyperRectangles function is below:

generateHyperRectangles(HRMBR, kh):

 HRList = {}






 ⋅

=

kh

d
q

2

for each subset SQ with q elements of the set {-1, -2, …, -d,

+1, +2, …, +d} do

 for each tuple (ha1, …, had, hb1, …, hbd) such that

HRMBR.ai≤hai≤hbi≤HRMBR.bi (1≤i≤d) and (if -i is in SQ then

hai=HRMBR.ai else true (1≤i≤d)) and (if +i is in SQ then

hbi=HRMBR.bi else true (1≤i≤d)) do {

 xmin(j)=xp(j,haj) (1≤j≤d) ; xmax(j)=xp(j,hbj) (1≤j≤d)

 l(j)=lmin(j) (1≤j≤e)

 for i=1 to d do l(g(i))=max{l(g(i)), (xmax(i)-xmin(i))/f(i)}

 if (l(j)>lmax(j)) (for some 1≤j≤e) then continue

 xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d)

 HRList.add([xmin(j),xmax(j)] (1≤j≤d)) }

 return HRList

The time complexity of the algorithm using the optimized

generateHyperRectangles function can be analyzed as follows.

At each function call with kh≥2, C(2·d,q) sets SQ are consid-

ered (C(a,b)=combinations of a elements taken b at a time).

For each set SQ, O(min{n
2·e

,n
2·d-q

}) hyper-rectangles are con-

sidered. Thus, the total number of hyper-rectangles considered

at each step may decrease significantly.

The second improvement consists of the way the MBR

[ai’,bi’] (1≤i≤d) of the points from the set S’ is computed. So

far, we computed the MBR in O(|S|) time. However, we can do

even better. We will insert all the points from the set S into

several data structures DSj,k. Then, after choosing the parame-

ters [xmin(j),xmax(j)] (1≤i≤d) of the current hyper-rectangle,

we will proceed as follows. We need to compute

a’i=min(Wi={idx(j, i) | j in S and (xc(j,k)<xmin(k) (for some

value of k ; 1≤k≤d) or xc(j,k)>xmax(k) (for some value of k ;

1≤k≤d))}) and b’i=max(Wi) (1≤i≤d). Each possibility

xc(j,k)<xmin(k) (xc(j,k)>xmax(k)) defines an orthogonal half-

space. We need to query DS*,* with respect to such a half-

space. This is a special case of orthogonal range query.

We will construct d
2
 data structures DSj,k (1≤j≤d) into which

every point i from S is inserted, with a weight equal to idx(i,k).

Then, we need to answer orthogonal range minimum and

maximum queries over these data structures. An orthogonal

range min (max) query returns the minimum (maximum)

weight of a point located in the query range. Then,

a’i=min1≤k≤2·d(W(i,k)={idx(q,i) | j=(k+1)/2 (if k is odd) or k/2 (if

k is even), xc(q,j)<xmin(j) (if k is odd) or xc(q,j)>xmax(j) (if k

is even)}) and b’(i)=max1≤k≤2·d{W(i,k)}.

Let r’=|S|. The DSj,k data structure simply sorts the points

according to their xc(*,j) coordinates, obtaining an ordering

xc(pj,k(1),j)≤…≤xc(pj,k(r’),j). We will also have xc(pj,k(0)=0,j)=-

∞ and xc(pj,k(r’+1)=r+1,j)=+∞. Then, we compute a prefix

minimum pminj,k and a prefix maximum pmaxj,k. pminj,k(0)=+∞

and pmaxj,k(0)=-∞. For 1≤i≤r’, pminj,k(i)=min{idx(pj,k(i),k),

pminj,k(i-1)} and pmaxj,k(i)=max{idx(pj,k(i),k), pmaxj,k(i-1)}.

Similarly, we compute a suffix minimum and a suffix maxi-

mum, sminj,k and smaxj,k. sminj,k(r’+1)=+∞ and smaxj,k(r’+1)=

-∞. For 1≤i≤r’, sminj,k(i)=min{idx(pj,k(i),k), sminj,k(i+1)} and

smaxj,k(i)=max{idx(pj,k(i),k), smaxj,k(i+1)}. The queries for the

minimum (maximum) value idx(q,k) from the half-space

xc(q,j)<xmin(j) [xc(q,j)>xmax(j)] are answered by using the

data structure DSj,k. We binary search the maximum position

pos (0≤pos≤r’) such that xc(pj,k(pos),j)<xmin(j) [the minimum

position pos (1≤pos≤r’+1) such that xc(pj,k(pos),j)>xmax(j)]

and return pminj,k(pos) (pmaxj,k(pos)) [sminj,k(pos)

(smaxj,k(pos))]. If the values xmin(j) (xmax(j)) which can be

used as query parameters are known in advance and their num-

ber is not too large, then we can sort all the possible values

and, for each such value, precompute the corresponding value

pos: we traverse the set of sorted values in ascending (descend-

ing) order and, when searching for the corresponding value

pos, we start from the value pos found for the previously con-

sidered value and increase (decrease) it as long as the required

condition holds; for the first considered value we start with

pos=0 (pos=r’+1). Then, we insert into a hash table Ha (Hb)

each possible value xmin(j) (xmax(j)) together with its corre-

sponding pos value and, when a query with parameter xmin(j)

(xmax(j)) is asked, we simply retrieve the value pos from the

hash table in O(1) time.

Answering such queries takes O(log(|S|)) time per query (or

O(1) if we can use the hash tables). Thus, computing the MBR

takes O(d
2
·log(|S|)) time (or only O(d

2
) time). Constructing the

data structures takes O(d
2
·r·log(r)) time overall. However,

since the points can be sorted in the beginning according to

each dimension, we can construct each data structure in O(d
2
·r)

time (by considering the corresponding sorted order and main-

taining only those points which are still in S).

If the set of points is dense, then the number of distinct coor-

dinates in each dimension is small. In this case, we can sort the

points according to each dimension j using a variation of count-

sort. For each possible value q of the coordinates in dimension

j, we maintain a list Lj(q) in which all the points o with the co-

ordinate xc(o,j)=q are inserted (each insertion is performed in

O(1) time). Then, in order to obtain the final order of the points

according to the dimension j, we simply concatenate the lists

Lj(q) in increasing order of the coordinate values q. This way,

the sorting of the points in the dimension j takes O(n+r) time.

We can use the same procedure for sorting the possible query

parameters xmin(j) (xmax(j)) of the data structures DSj,* when

they are known in advance and their number is not too large.

The improvement regarding the use of data structures makes

sense mostly when kh=2, because in this case we do not need

to also compute the set S’ (since the obtained MBR is used

directly at kh=1). If we also need to compute the set S’, then

we will first compute the set S’ and only afterwards will we

compute the MBR, in O(|S’|) time, by considering every point

from S’ (i.e. in the normal manner). However, if |S’| is signifi-

cantly smaller than |S|, we could proceed as follows. We could

insert (initially) all the points from S into a range tree RT.

Then, the set S’ can be computed by reporting (rather than

counting) all the points from RT which are within a union of

orthogonal query ranges. There are 3
d
-1 such ranges. The inter-

val of each dimension j is split into 3 ranges: [-∞, HR.xmin(j)),

[HR.xmin(j), HR.xmax(j)] and (HR.xmax(j), +∞], thus obtain-

ing a division of the space into 3
d
 disjoint orthogonal regions.

The only region we are not interested in is the “middle” region

(i.e. the one corresponding to the current hyper-rectangle:

[HR.xmin(j), HR.xmax(j)] (1≤j≤d)). With these improvements,

the time complexity of the algorithm decreases significantly.

Note that the idea of dividing the space into 3
d
 regions can

also be used for computing the MBR. Instead of the DS*,* data

structures, we will use d d-dimensional range trees RTDSk

(1≤k≤d). In each range tree RTDSk we will insert all the points i

from S, and we associate to them a weight equal to idx(i,k)

(1≤k≤d). Then, when computing the MBR, we need the follow-

ing values: a’k=min{RTDSk.rangeMin(reg) | reg is one of the

3
d
-1 regions (i.e. not the middle region)} and

RTDSk.rangeMin(reg) returns the minimum weight of a point

located in the (orthogonal) region reg (1≤k≤d). Similarly, we

have b’k=max{RTDSk.rangeMax(reg) | reg is one of the 3
d
-1

regions (i.e. not the middle region)} and RTDSk.rangeMax(reg)

returns the maximum weight of a point located in the (orthogo-

nal) region reg (1≤k≤d). In this case, computing the MBR takes

O(d·3
d
·log

d
(|S|)) time, which is worse than the previous solu-

tion based on the DS*,* data structures.

hrcoverOpt(S, HRMBR, kh):
if (|S|=0) then return 0

if (kh=1) then {

 xmin(j)=xp(j,HRMBR.aj); xmax(j)=xp(j,HRMBR.bj) (1≤j≤d)

 l(j)=max{lmin(j), max{(xmax(i)-xmin(i))/f(i) | g(i)=j, 1≤i≤d}}

(1≤j≤e)

 if (l(j)>lmax(j)) (for some 1≤j≤e) then return +∞

 xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d)

 return cost([xmin(j),xmax(j)] (1≤j≤d), S)

} else {

 Cmin=+∞

 insert all the points from S in a d-dimensional range tree RT

 construct the DS*,* data structures

 for each HR in generateHyperRectangles(HRMBR, kh) do {

 if the cost function does not depend on the points located

inside the hyper-rectangle then {

 if (kh>2) then construct S’ as the union of 3
d
-1 range re-

porting queries in RT (*)

 else S’=any non-empty set of points (e.g. with just 1 point)

 C=cost([HR.xmin(j), HR.xmax(j)] (1≤j≤d), -)

 } else {

 U={p in S|HR.xmin(j)≤xc(p,j)≤HR.xmax(j) for every 1≤j≤d}

 S’=S\U

 C=cost([HR.xmin(j), HR.xmax(j)] (1≤j≤d), U) }

 MBR’=compute the MBR of the set S’ using the data struc-

tures DS*,* (*)

 Cmin=min{Cmin, aggf(C, hrcoverOpt(S’, MBR’, kh-1))} }

 return Cmin }

The lines marked with (*) could be replaced by their “nor-

mal” counter-parts (i.e. the range tree RT could be ignored, in

which case the set S’ would be constructed as in the previous

two solutions, or the MBR could be computed in O(|S’|) time).

We may first count the number of points in S’ (by summing the

answers to the range count queries in RT for each of the 3
d
-1

regions) in order to decide how S’ should be computed.

The two types of improvements we presented (fixing q of the

parameters of the current hyper-rectangle to be identical to the

MBR of the uncovered points and efficiently computing the

MBR of the remaining uncovered points) are orthogonal to

each other and can be used together or separately.

B. Experimental Evaluation

We randomly generated 80 dense point sets with d=3: 40 of

them had n=14, and 40 of them had n=40. The number of

points r varied from 0.1% to 10% of the value n
3
. We consid-

ered kh=2, each dimension belonged to a separate group and

we considered no bounds on the side lengths in each dimen-

sion. The cost function was the volume of a hyper-rectangle.

We evaluated four algorithms: A-unoptimized hyper-rectangle

generation and unoptimized MBR computation ; B-optimized

hyper-rectangle generation and unoptimized MBR computation

; C-unoptimized hyper-rectangle generation and optimized

MBR computation ; D-optimized hyper-rectangle generation

and optimized MBR computation. The theoretical time com-

plexities (for our test settings) of the four algorithms are: A-

O(n
9
), B-O(n

6
), C-O(n

6
), D-O(n

3
). The algorithms were imple-

mented in C++, compiled using the Visual Studio 2008 C++

compiler and were run on a 2 GHz processor running Windows

Vista. The sums of running times (over the 40 test cases with

the same value of n) are presented in Table I.
TABLE I

SUMS OF RUNNING TIMES FOR THE FOUR ALGORITHMS

 A B C D

n=14 205 sec 8.12 sec 2.22 sec 0.13 sec

n=40 > 86400 sec 4684 sec 954 sec 2.72 sec

IV. DISTRIBUTION OF NODES IN A GEOMETRIC SPACE

In this section we make a proposal for a peer-to-peer mes-

sage routing system, whose node identifiers are mapped into a

metric space. Each node q of the system has an identifier which

is a point (x(q,1), …, x(q,d)) in a d-dimensional Euclidean

space and is connected to at most 2·k·d other peers (for each

dimension i, 1≤i≤d, the peer q is connected to the k peers q’

with the smallest i-coordinates x(q’,i) larger than or equal to

x(q,i) and the k peers with the largest i-coordinates smaller than

x(q,i)). In order to route a message from a source s to a destina-

tion d, the peers use the distance of the metric space of their

identifiers and they forward the message to a neighboring peer

which decreases the distance from the current peer to d (or

minimizes it). Such a system poses many challenges which

have to be analyzed, like scalability, fault tolerance, resistance

to churn and appropriate distribution of the node identifiers in

the metric space. We will consider the distribution problem in

this section, using the following “distance” function:

dist((x(p,1),…,x(p,d)), (x(q,1), …, x(q,d)))=min{|x(p,i)-x(q,i)|

1≤i≤d}. We want to compute the largest distance between any

pair of points, which offers important information about the

distribution of points in the metric space. Because the number

of nodes in a peer-to-peer system can be quite large, we need

an efficient solution (better than the trivial O(n
2
) solution

which considers every pair of points).

We will binary search the maximum distance and we will

perform a feasibility test on every candidate value Dcand chosen

by the binary search. If Dcand is feasible, we will test a larger

distance; otherwise, we will test a smaller one. For each point i

(x(i,1),…, x(i,d)), we will compute the number of points np(i)

located at distance at most Dcand from it (including point i it-

self). If np(i)<n for some i, Dcand is a feasible distance. We will

preprocess the points into a d-dimensional range tree which can

answer orthogonal range counting queries in O(log
d-1

(n)) time

(using fractional cascading). The number of points located at a

distance d≤Dcand from a point i is obtained by using the inclu-

sion-exclusion principle on the answers to 2
d
-1 range count

queries. A query rcount(p,S) is defined by a set S of dimen-

sions for which the range is not unbounded (i.e. [-∞, +∞]); for

each dimension i in S, the range is [x(p,i)-Dcand, x(p,i)+Dcand]

and for the other dimensions not in S the range is unbounded.

There are 2
d
-1 sets S (we exclude the empty set). np(i) is equal

to the sum of (-1)
|S|-1

·rcount(i,S) (rcount(i,S) is the answer to

the range query defined by the set S and the point i). For d=2,

np(i)=count([-∞, x(i,2)-Dcand], [+∞, x(i,2)+Dcand]) +

count([x(i,1)-Dcand,-∞], [x(i,1)+Dcand,+∞]) - count([x(i,1)-

Dcand, x(i,2)-Dcand], [x(i,1)+Dcand, x(i,2)+Dcand]).

count([xa,ya],[xb,yb]) returns the number of points (xj,yj) with

xa≤xj≤xb and ya≤yj≤yb. Thus, we can perform the feasibility

test in O(n·log
d-1

(n)) time. The overall memory consumption of

the range tree is O(n·log
d-1

(n)).

We can also use the following algorithm, which we will de-

note by Sol(d), where d is the number of dimensions of the

space. If d=1 then we only need to sort all the points according

to their first (and only) coordinate and obtain an ordering

x(p(1),1)≤…≤x(p(n),1). Then, we can compute the value

rcount(i,{1}) either by binary searching the values x(i,1)-Dcand

and x(i,1)+Dcand around the position pos(i) of the point i in the

sorted order (i.e. p(pos(i))=i), or by using a sweeping technique

which will be described next for the more general case.

For d≥2 we will proceed as follows. Let’s notice first that the

values rcount(*, S={j}) can be computed by sorting all the

points according to their coordinates in the dimension j and

then using the solution proposed for the case d=1, but consid-

ering that the only existing dimension is the dimension j

(1≤j≤d).

We will sort the points according to their d
th

 coordinate and

sweep them with a (d-1)-dimensional slab of infinite size in

each dimension 1≤j≤d-1 and width 2·Dcand in the d
th

 dimension.

The position of the slab is denoted by its rightmost coordinate

xr in dimension d. We will have three types of events for each

point i:

1. the point i enters the slab; this event occurs when

xr=x(i,d)

2. the point i is at the middle of the slab; this event occurs

when xr=x(i,d)+Dcand

3. the point i leaves the slab; this event occurs when

xr=x(i,d)+2·Dcand

The 3·n events will be sorted in ascending order of the value

of xr when the event occurs and are then processed in this or-

der. If multiple events occur at the same value of xr, then enter-

ing events take precedence over middle events, which take

precedence over leaving events. When a point i enters the slab,

we add (x(i,1),…,x(i,d-1)) to a (d-1)-dimensional range tree RT

constructed on the coordinates of the points in dimensions

1,…,d-1 (which is initially empty). When a point i leaves the

slab, we remove (x(i,1),…,x(i,d-1)) from the range tree. When a

point i is exactly at the middle of the slab, we will compute the

range count values corresponding to the point i for all the sets S

containing the dimension d in them (there are 2
d-1

 such sets),

using only the points from the (d-1)-dimensional range tree RT.

When computing the value rcount(i,S), we will consider only

the query ranges for the dimensions 1,…,d-1 (because all the

points in the range [x(i,d)-Dcand, x(i,d)+Dcand] are already in

RT. Since the range tree needs to be dynamic (i.e. support point

insertions and deletions), we cannot use the fractional cascad-

ing technique anymore. Thus, a range count query in this range

tree will take O(log
d-1

(n)) time.

If d=2 then RT may, in fact, be just a segment tree [3]. If

d=1 then RT is just a counter: RT is initially 0, it is incremented

by 1 when a point enters the slab, it is decremented by 1 when

a point leaves the slab, and its (current) value is the answer for

each rcount(i,{1}) query. The memory consumed by RT is

O(n·log
d-2

(n)) (or O(1) if d=1) and the overall time complexity

of the sweeping algorithm is O(n·log
d-1

(n)+n·log(n)). Then, if

d>1 we will call the algorithm Sol(d-1) in order to compute the

values rcount(*,S) for the sets S not containing the dimension

d. Thus, the overall time complexity of the algorithm Sol(d) is

O(n·(log
d-1

(n)+log
d-2

(n)+…+log(n)))= O(n·log
d-1

(n)).

The overall time complexity of the algorithms described

above is computed by multiplying the time complexity of the

feasibility test by that of performing the binary search. Thus,

we obtain O(n·log
max{1,d-1}

(n)·log(Dcand)) algorithms.

However, the time complexity of the feasibility tests can be

improved. First, we notice that we can sort the points according

to their coordinates in every dimension j before binary search-

ing Dcand. Thus, we will store d arrays of sorted points. So far,

this only improves the time complexity of the feasibility test in

the case d=1 (from O(n·log(n)) to O(n)). Next, during the fea-

sibility test we will sweep the points like before, using the

same slab as before (with bounded size in the dimension d).

We will maintain a (d-1)-dimensional data structure DS con-

taining all the points which have already left the slab (DS is

initially empty). When a point i leaves the slab, we add the

point (x(i,1), …, x(i,d-1)) to DS. When a point i is at the middle

of the slab, we query DS to check if:

1. DS contains any point j with x(j,k)>x(i,k)+Dcand (for

every 1≤k≤d-1)

2. DS contains any point j with x(j,k)<x(i,k)-Dcand (for

every 1≤k≤d-1)

If any of the conditions (1 or 2) is met for some point i, then

Dcand is a feasible distance. If none of the conditions is met for

any point i, then Dcand is not a feasible distance.

DS can easily be implemented as a range tree, but there are

other data structures which support this type of range queries

(in which the query range is unbounded either towards +∞ or

towards -∞) more efficiently. In particular, for d=2, DS only

needs to store the maximum (xmax) and minimum (xmin) values

of the coordinates x(j,1) of the points j which left the slab.

Then, if xmax>x(i,1)+Dcand then the condition 1 is met for the

point i, and if xmin<x(i,1)-Dcand then the condition 2 is met for

the point i. xmax is initially -∞ and xmin is initially +∞. When-

ever a point i leaves the slab we update xmin and xmax

(xmin=min{xmin, x(i,1)}, xmax=max{xmax, x(i,1)}). Thus, the time

complexity of the feasibility test becomes O(n) for d=2 (as the

points were sorted before starting the binary search).

V. STRING PROCESSING PROBLEMS

A. Optimal Encoding using Consecutive Repetitions

We consider a string S composed of N characters: S(1), …,

S(N). We want to encode the string S by using the consecutive

contiguous repetitions that occur within S. The only operation

that we can perform is to replace a sequence of consecutive

characters from S, of the type u
k
 (i.e. which is composed of the

string u repeated k times) by the sequence Codif1(k)·

u·Codif2(k), where by A·B we denote the concatenation of A

and B. Codif1(k) and Codif2(k) are two strings marking the be-

ginning and the end of the encoded sequence and they do not

contain characters which exist in S initially. For instance, the

sequence “abcabcabc” could be replaced by „3(abc)”, if

Codif1(3)=”3(„ and Codif2(3)=”)”. The operation of replacing

a contiguous subsequence of S can be applied repeatedly, in-

cluding upon some sequences containing previously encoded

subsequences; however, a previously encoded subsequence

must be fully included in one of the sequences u of the u
k
 sub-

sequence being replaced. We want to find a minimum length

encoding of S.

In order to solve the problem we will use a dynamic pro-

gramming approach. We will compute a table Lmin(i,j)=the

minimum length of encoding the contiguous subsequence of S

starting at the position i and ending at the position j. We will

compute the values Lmin(i,j) in ascending order of the length

of the subsequence (i.e. in increasing order of j-i+1). We have

Lmin(i,i)=1. Then, we iterate with a variable L from 2 to N and,

for every value of L, we will first compute all the divisors of L

and then we will consider every possible value of i (1≤i≤N-

L+1). Once we considered the value i, the value of j is equal to

i+L-1. We will initialize Lmin(i,j)=j-i+1. Then, we will con-

sider all the divisors k of L and we will verify if the contiguous

subsequence S(i)S(i+1)...S(j) has the structure u
k
. The verifica-

tion can be performed in linear time: we will consider every

position p from i+L/k to j and, if S(p)≠S(p-L/k) (for at least one

position p), then the considered subsequence does not have the

structure u
k
; otherwise, it has this structure. If the subsequence

has the desired structure, then we will set

Lmin(i,j)=min{Lmin(i,j), len(Codif1(k)) + len(Codif2(k)) +

Lmin(i,i+L/k-1)}. The overall time complexity is O(N
3.5

).

B. Counting the Number of Occurrences of a Substring in a

String Generated by a Grammar

We consider a grammar consisting of a set of terminal sym-

bols T and N non-terminal symbols, numbered from 1 to N.

Each non-terminal symbol X is specified as a sequence consist-

ing of L(X) symbols: R(X,1), ..., R(X,L(X)). Each symbol is

either a terminal symbol or a non-terminal symbol Y (1≤Y≤X-

1). Let’s consider the string Exp(N), obtained by expanding the

non-terminal N (i.e. a string consisting of terminal symbols

only). We are given a string S and we want to compute the

number of occurrences of S in Exp(N). Two occurrences of S

may partially overlap.

Computing the string Exp(N) and then searching for the

string S in Exp(N) (in O(|Exp(N)|) time) is not possible, be-

cause the string Exp(N) may be exponentially large. Instead,

we need an approach which does not compute Exp(N).

We will start by computing the (KMP) prefix function for

the string S. Let S(1), …, S(LS) be the characters of the string S

(LS=the length of the string S). Let P(i) be the prefix function

value for the prefix 1, …, i. We can compute the prefix func-

tion in O(LS) time. Then, we define by Pexp(i,k)=the string

obtained by expanding the sequence composed of the symbols

R(i,k), …, R(i,L(i)) (1≤i≤N; 1≤k≤L(i)+1). We will compute the

values C(i,j,k)=the number of occurrences of S in Pexp(i,k), if

we consider that the first j characters of S are already

“matched” before starting Pexp(i,k). Thus, when Pexp(i,k) be-

gins, the prefix of length j of the string S is already matched

over the j characters which are located right before Pexp(i,k) in

the final string. We will also compute Suf(i,j,k)=the longest

(incomplete) prefix of S which matches the end of the string

Pexp(i,k), under the same conditions as above (i.e. the first j

characters of S match the j characters located right before the

start of Pexp(i,k)).

We will consider the non-terminal symbols in increasing or-

der: i=1,...,N. We have C(i,j,L(i)+1)=0 and Suf(i,j,L(i)+1)=j

(0≤j≤LS-1). We will then consider the positions k, in decreas-

ing order, starting from L(i) and ending with the position 1

(k=L(i), L(i)-1, ..., 1). If R(i,k)=q, where q is a non-terminal

symbol, then we will proceed as follows: (1) we initialize

ne=Suf(q,j,1); (2) we set C(i,j,k)=C(q,j,1)+C(i,ne,k+1); (3)

Suf(i,j,k)=Suf(i,ne,k+1). If R(i,k) is a terminal symbol, then let

ne=j. While (ne>0) and (S(ne+1)≠R(i,k)) we set ne=P(ne). At

the exit of the while loop, if S(ne+1)=R(i,k), then we increment

ne by 1. If ne=LS, then we set caux=1 and ne=P(ne); other-

wise, we set caux=0. Then we will have

C(i,j,k)=caux+C(i,ne,k+1) and Suf(i,j,k)=Suf(i,ne,k+1). The

final answer is C(N,0,1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented novel algorithmic techniques for

several multidimensional (and 1D) data processing problems,

related to clustering, encoding and the computation of the di-

ameter using a new distance function. All the presented algo-

rithms were thoroughly analyzed from a theoretical point of

view, and some of them even from a practical point of view.

All the presented problems are interesting from the point of

view of multidimensional data analysis, while some of them

have applications in the field of distributed computing (e.g. the

problem presented in Section III).

As future work, we intend to implement and evaluate all the

proposed solutions (so far, only some of them have full imple-

mentations) and continue the study of multidimensional data

processing problems in need of novel efficient algorithmic

techniques.

REFERENCES

[1] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive Server Selection for Large

Scale Interactive Online Games”, Computer Networks, vol. 49 (1), pp.

84-102, 2005.

[2] M. I. Andreica, E.-D. Tirsa, C. T. Andreica, R. Andreica, and M. A.

Ungureanu, “Optimal Geometric Partitions, Covers and K-Centers”, Proc.

of the 9th WSEAS Intl. Conf. on Mathematics and Computers in Business

and Economics, pp. 173-178, 2008.

[3] M. I. Andreica and N. Ţăpuş, “Efficient Data Structures for Online QoS-

Constrained Data Transfer Scheduling”, Proc. of the IEEE Intl. Symp. on

Par. and Distrib. Comp., pp. 285-292, 2008.

[4] J. L. Bentley and J. H. Friedman, „Data Structures for Range Searching”,

ACM Computing Surveys, vol. 11, no. 4, pp. 397-409, 1979.

[5] M. E. Andreica, M. I. Andreica and N. Cătăniciu, “Multidimensional

Data Structures and Techniques for Efficient Decision Making”, Proc. of

the 10th WSEAS Intl. Conf. on Mathematics and Computers in Business

and Economics, pp. 249-254, 2009.

[6] C.-T. Ho, R. Agrawal, N. Megiddo and R. Srikant, “Range Queries in

OLAP Data Cubes”, ACM SIGMOD Record, vol. 26, no. 2, pp. 73-88,

1997.

[7] P. M. Fenwick, “A New Data Structure for Cumulative Frequency Ta-

bles”, Software – Practice and Experience, vol. 24, no. 3, pp. 327-336,

1994.

