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Abstract-In this paper we present novel algorithms for several 

multidimensional data processing problems. We consider prob-

lems related to the computation of restricted clusters and of the 

diameter of a set of points using a new distance function. We also 

consider two string (1D data) processing problems, regarding an 

optimal encoding method and the computation of the number of 

occurrences of a substring within a string generated by a gram-

mar. The algorithms have been thoroughly analyzed from a theo-

retical point of view and some of them have also been evaluated 

experimentally. 

I. INTRODUCTION 

In this paper we consider several multidimensional data 

processing problems, for which we present novel algorithmic 

techniques. Two important problems in processing multidi-

mensional sets of points are: clustering and the computation of 

the diameter with respect to a distance function. An efficient 

clustering method has two advantages: it provides information 

about the structure of the set of points and can be used for pro-

viding a more compact representation of the set of points (by 

describing just the clusters and not the individual points). 

Computing the diameter of a set of points is important particu-

larly in association with other metrics. It can provide relevant 

information regarding the distribution of the points in space.  

One-dimensional data (e.g. textual data) is a particular case 

of multidimensional data which is of a high practical interest. 

Computing optimal encodings and analyzing large amounts of 

data (given explicitly or implicitly) are important in many prac-

tical fields. In this paper we propose a new algorithm for com-

puting an optimal encoding with respect to several rules, and a 

solution for computing the number of occurrences of a sub-

string in a large string (implicitly generated by a grammar). 

The rest of this paper is structured as follows. In Section II 

we present related work. In Section III we discuss the problem 

of covering a set of points by using at most kh (restricted) hy-

per-rectangles. A hyper-rectangle is the simplest way of repre-

senting a multi-dimensional cluster. The fact that the hyper-

rectangles need not be non-overlapping implies that the clusters 

need not be disjoint. In Section IV we present a new algorithm 

for computing the diameter of a set of points, using a new dis-

tance function. In Section V we discuss two string processing 

problems, regarding the optimal encoding and the analysis of 

text data. In Section VI we conclude and discuss future work. 

II. RELATED WORK 

Geometric K-center problems (related to the hyper-

rectangle covering problem from Section III) were presented 

in [1]. Efficient algorithms for geometric optimization prob-

lems similar to those introduced in this paper were given in 

[2]. Multidimensional data structures like the range tree or 

multidimensional versions of 2D data structures like the 

segment tree were presented in [3, 4, 5]. A similar model for 

partitioning the dimensions into groups as the one we use in 

Section III, but applied to a multidimensional range mini-

mum query problem, was mentioned in [5]. Related 2D data 

structures and related problems in multiple dimensions in 

the OLAP domain were considered in [6, 7]. 

III. HYPER-RECTANGLE COVERING 

A. Problem Description and Algorithmic Solutions 

We consider the following problem. We are given a set of r 

points (xc(i,1), …, xc(i,d)) (1≤i≤r) in a d-dimensional space. 

We want to cover all of the points with at most kh hyper-

rectangles having the following properties. A hyper-rectangle 

is defined by d intervals [a1,b1], …, [ad, bd] and contains all the 

points (x1, …, xd) for which ai≤xi≤bi (1≤i≤d). The side length 

len(i) of a hyper-rectangle in dimension i is bi-ai. We consider 

the d dimensions as being classified into e≤d groups. Let g(i) 

be the group to which the dimension i belongs (1≤g(i)≤e; 

1≤i≤d). The side lengths of the hyper-rectangles we want to 

place in each dimension i must satisfy the constraint: 

len(i)=f(i)·l(g(i)). Thus, the side lengths of each hyper-

rectangle are uniquely defined by the values l(j) (1≤j≤e). 

Moreover, for each group j we have a lower bound lmin(j) and 

an upper bound lmax(j), meaning that lmin(j)≤l(j)≤lmax(j). 

A hyper-rectangle can be placed anywhere in space and a 

point is covered by the (at most) kh hyper-rectangles if it is 

contained within at least one of the hyper-rectangles. We want 

to place the (at most) kh hyper-rectangles such that an aggre-

gate function aggf of their costs is minimized (e.g. aggf=+). 

The cost of a hyper-rectangle can be any non-negative value 

which depends on the side lengths of the hyper-rectangle and, 

possibly, on the points contained within it, but must not depend 

on the actual coordinates of the hyper-rectangle. The cost func-

tion should be non-decreasing with respect to each side length. 

The aggregate value must be computed using a commutative 

function of the hyper-rectangles’ costs, which must be non-

decreasing with respect to the “addition” of the cost of a new 

hyper-rectangle. 

We will present several solutions for this problem, each of 

them successively improving the previous one. We will start by 

sorting the coordinates of the points in each dimension. Let 

xo(i,1)≤xo(i,2)≤…≤xo(i,r) be the order of the points in the di-

mension i. We will remove the duplicates in the ordering 

(maintaining only one coordinate with a given value) and we 

obtain the ordering: xp(i,1)<xp(i,2)<…<xp(i,m(i)), where m(i) 

is the number of distinct coordinates in the dimension i. We 



will denote by n=max{m(i)|1≤i≤d}. We will use the value of n 

when analyzing the time complexity of our solutions, because 

it will be easier than using the values m(i) explicitly. If the 

point set is sparse, then we may have n=O(r). If the point set is 

dense, then we may have n=O(r
1/d

). 

The first step in each of the presented solutions is to compute 

the minimum bounding hyper-rectangle (MBR) of the r points. 

This hyper-rectangle [xp(i,1),xp(i,m(i))] (1≤i≤d) has the mini-

mum (hyper-)volume possible and still contains all the r points 

inside. For simplicity, we will assume that the parameters of all 

the hyper-rectangles will be expressed in terms of indices into 

the sorted arrays xp(*), i.e. ai=j, bi=k means that the side of the 

hyper-rectangle is [xp(i,j), xp(i,k)]. 

The first presented solution is a generic, yet naïve, solution 

and is described in the following pseudo-code: 

hrcover(S, HRMBR, kh): 

if (|S|=0) then return 0 

if (kh=1) then { 

  xmin(j)=xp(j,HRMBR.aj) ; xmax(j)=xp(j,HRMBR.bj) (1≤j≤d) 

l(j)=lmin(j) (1≤j≤e) 

  for i=1 to d do l(g(i))=max{l(g(i)), (xmax(i)-xmin(i))/f(i)}  

  if (l(j)>lmax(j)) (for some 1≤j≤e) then return +∞ 

  xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d) 

  return cost([xmin(j),xmax(j)] (1≤j≤d), S) 

} else { 
  Cmin=+∞ 

  for each HR in generateHyperRectangles(HRMBR, kh) do { 

    U={p in S | HR.xmin(j)≤xc(p,j)≤HR.xmax(j) for every 1≤j≤d} 

    S’=S\U 

    C=cost([HR.xmin(j), HR.xmax(j)] (1≤j≤d), U) 

    MBR’=computeMBR(S’) 

    Cmin=min{Cmin, aggf(C, hrcover(S’, MBR’, kh-1))} } 

return Cmin } 

generateHyperRectangles(HRMBR, kh): 

  HRList = {} 

  for each tuple (c1, …, cd) such that HRMBR.ai≤ci≤HRMBR.bi 

(1≤i≤d) do { 

    xmin(j)=xp(j,cj) (1≤j≤d) 

    let difSet(gi)={(xp(j,a)-xp(j,cj))/f(j) | a≥cj; g(j)=gi; 1≤j≤d} 

(1≤gi≤e) 

    let difMax(gj)=max{dif | dif in difSet(gj)} (1≤gj≤e) 

    for each tuple (l(1), …, l(e)) such that lmin(j)≤l(j)≤lmax(j) 

and ((l(j) in difSet(j)) or (l(j)=lmin(j)>difMax(j))) (1≤j≤e) do { 

      xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d) 

    HRList.add([xmin(j),xmax(j)] (1≤j≤d)) }} 

  return HRList 

The parameters of the hrcover algorithm are S=the set of yet 

uncovered points, HRMBR=the minimum bounding hyper-

rectangle of the points in S (expressed in terms of indices in the 

sorted arrays xp(*)) and kh=the number of remaining hyper-

rectangles. The cost function takes as arguments the current 

hyper-rectangle and the set of points U located inside it. If the 

cost function does not depend on the set U, then it can be com-

puted in O(1) time; otherwise, its time complexity may be 

higher (depending on the actual function). We will denote by 

CC(r) the time complexity of computing the cost function 

when |U|=O(r). generateHyperRectangles(HRMBR, kh) ge-

nerates a list of possible placements for the current hyper-

rectangle. computeMBR(S’) computes the minimum bounding 

hyper-rectangle MBR’ of the points from the set S’. The pa-

rameters of MBR’ will also be expressed in terms of indices 

into the arrays xp(*). In order to compute these indices, we will 

store for each point i and dimension j the index idx(i,j)=k such 

that xp(j,k)=xc(i,j) (this index can be computed during the ini-

tial sorting of the coordinates along each dimension). Thus, 

MBR’ can be computed in O(|S’|·d) time (we will maintain the 

point with the minimum and maximum coordinate in each di-

mension and then compute the result using the values idx(*,*)). 

For each of the kh hyper-rectangles, the algorithm considers 

each possible value of their left and right coordinates in each 

dimension. For each assignment of the coordinates, the algo-

rithm computes the set of points outside of the hyper-rectangle 

and their minimum bounding hyper-rectangle. This takes 

O(r·d·n
2·e

) time for each of the first kh-1 hyper-rectangles. The 

final time complexity is O(r
kh-1

·d
kh-1

·n
2·e·(kh-1)

+r·d·log(r)). This 

analysis is correct only if the cost function can be computed in 

O(1) time. Otherwise, we need to include the time complexity 

of computing the cost function within the time complexity 

equation. For the general case, we will denote by T(r,n,kh)=the 

time complexity for computing an optimal cover of O(r) points 

with at most n distinct coordinates in each dimension and using 

at most kh hyper-rectangles. T(r,n,1)=O(d+CC(r)). T(r,n, 

kh≥2)=O((r·d+CC(r))·n
2·e

)·T(r,n,kh-1). We must also add the 

initial O(r·d·log(r)) factor for sorting the coordinates and com-

puting the initial minimum bounding hyper-rectangle. 

The presented algorithm can be optimized in two directions. 

First, we can generate fewer potential hyper-rectangles. Sec-

ond, we can compute in a more efficient manner the minimum 

bounding hyper-rectangle of the points not contained in any of 

the hyper-rectangles that were placed so far. 

The first optimization is based on the following observation. 

The MBR of a set of points has 2·d sides (it is defined by 2·d 

parameters). If we want to cover the points by using kh hyper-

rectangles, then some of the parameters of these hyper-

rectangles will need to coincide with the parameters of the 

MBR (or exceed them in the corresponding direction). Using 

Dirichlet’s principle, there must be at least one hyper-rectangle 

with q=2·d/kh (rounded up) common parameters with the 

MBR. This hyper-rectangle will be placed next. We will con-

sider all the combinations of q common parameters and choose 

the remaining 2·d-q parameters as before. The pseudocode of 

the optimized generateHyperRectangles function is below: 

generateHyperRectangles(HRMBR, kh): 

  HRList = {} 






 ⋅

=

kh

d
q

2  

for each subset SQ with q elements of the set {-1, -2, …, -d, 

+1, +2, …, +d} do 

    for each tuple (ha1, …, had, hb1, …, hbd) such that 

HRMBR.ai≤hai≤hbi≤HRMBR.bi (1≤i≤d) and (if -i is in SQ then 

hai=HRMBR.ai else true (1≤i≤d)) and (if +i is in SQ then 

hbi=HRMBR.bi else true (1≤i≤d)) do { 

      xmin(j)=xp(j,haj) (1≤j≤d) ; xmax(j)=xp(j,hbj) (1≤j≤d) 

    l(j)=lmin(j) (1≤j≤e) 



      for i=1 to d do l(g(i))=max{l(g(i)), (xmax(i)-xmin(i))/f(i)}  

      if (l(j)>lmax(j)) (for some 1≤j≤e) then continue 

      xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d) 

      HRList.add([xmin(j),xmax(j)] (1≤j≤d)) } 

  return HRList 

The time complexity of the algorithm using the optimized 

generateHyperRectangles function can be analyzed as follows. 

At each function call with kh≥2, C(2·d,q) sets SQ are consid-

ered (C(a,b)=combinations of a elements taken b at a time). 

For each set SQ, O(min{n
2·e

,n
2·d-q

}) hyper-rectangles are con-

sidered. Thus, the total number of hyper-rectangles considered 

at each step may decrease significantly. 

The second improvement consists of the way the MBR 

[ai’,bi’] (1≤i≤d) of the points from the set S’ is computed. So 

far, we computed the MBR in O(|S|) time. However, we can do 

even better. We will insert all the points from the set S into 

several data structures DSj,k. Then, after choosing the parame-

ters [xmin(j),xmax(j)] (1≤i≤d) of the current hyper-rectangle, 

we will proceed as follows. We need to compute 

a’i=min(Wi={idx(j, i) | j in S and (xc(j,k)<xmin(k) (for some 

value of k ; 1≤k≤d) or xc(j,k)>xmax(k) (for some value of k ; 

1≤k≤d) )}) and b’i=max(Wi) (1≤i≤d). Each possibility 

xc(j,k)<xmin(k) (xc(j,k)>xmax(k)) defines an orthogonal half-

space. We need to query DS*,* with respect to such a half-

space. This is a special case of orthogonal range query. 

We will construct d
2
 data structures DSj,k (1≤j≤d) into which 

every point i from S is inserted, with a weight equal to idx(i,k). 

Then, we need to answer orthogonal range minimum and 

maximum queries over these data structures. An orthogonal 

range min (max) query returns the minimum (maximum) 

weight of a point located in the query range. Then, 

a’i=min1≤k≤2·d(W(i,k)={idx(q,i) | j=(k+1)/2 (if k is odd) or k/2 (if 

k is even), xc(q,j)<xmin(j) (if k is odd) or xc(q,j)>xmax(j) (if k 

is even)}) and b’(i)=max1≤k≤2·d{W(i,k)}. 

Let r’=|S|. The DSj,k data structure simply sorts the points 

according to their xc(*,j) coordinates, obtaining an ordering 

xc(pj,k(1),j)≤…≤xc(pj,k(r’),j). We will also have xc(pj,k(0)=0,j)=-

∞ and xc(pj,k(r’+1)=r+1,j)=+∞. Then, we compute a prefix 

minimum pminj,k and a prefix maximum pmaxj,k. pminj,k(0)=+∞ 

and pmaxj,k(0)=-∞. For 1≤i≤r’, pminj,k(i)=min{idx(pj,k(i),k), 

pminj,k(i-1)} and pmaxj,k(i)=max{idx(pj,k(i),k), pmaxj,k(i-1)}. 

Similarly, we compute a suffix minimum and a suffix maxi-

mum, sminj,k and smaxj,k. sminj,k(r’+1)=+∞ and smaxj,k(r’+1)= 

-∞. For 1≤i≤r’, sminj,k(i)=min{idx(pj,k(i),k), sminj,k(i+1)} and 

smaxj,k(i)=max{idx(pj,k(i),k), smaxj,k(i+1)}. The queries for the 

minimum (maximum) value idx(q,k) from the half-space 

xc(q,j)<xmin(j) [xc(q,j)>xmax(j)] are answered by using the 

data structure DSj,k. We binary search the maximum position 

pos (0≤pos≤r’) such that xc(pj,k(pos),j)<xmin(j) [the minimum 

position pos (1≤pos≤r’+1) such that xc(pj,k(pos),j)>xmax(j)] 

and return pminj,k(pos) (pmaxj,k(pos)) [ sminj,k(pos) 

(smaxj,k(pos)) ]. If the values xmin(j) (xmax(j)) which can be 

used as query parameters are known in advance and their num-

ber is not too large, then we can sort all the possible values 

and, for each such value, precompute the corresponding value 

pos: we traverse the set of sorted values in ascending (descend-

ing) order and, when searching for the corresponding value 

pos, we start from the value pos found for the previously con-

sidered value and increase (decrease) it as long as the required 

condition holds; for the first considered value we start with 

pos=0 (pos=r’+1). Then, we insert into a hash table Ha (Hb) 

each possible value xmin(j) (xmax(j)) together with its corre-

sponding pos value and, when a query with parameter xmin(j) 

(xmax(j)) is asked, we simply retrieve the value pos from the 

hash table in O(1) time. 

Answering such queries takes O(log(|S|)) time per query (or 

O(1) if we can use the hash tables). Thus, computing the MBR 

takes O(d
2
·log(|S|)) time (or only O(d

2
) time). Constructing the 

data structures takes O(d
2
·r·log(r)) time overall. However, 

since the points can be sorted in the beginning according to 

each dimension, we can construct each data structure in O(d
2
·r) 

time (by considering the corresponding sorted order and main-

taining only those points which are still in S). 

If the set of points is dense, then the number of distinct coor-

dinates in each dimension is small. In this case, we can sort the 

points according to each dimension j using a variation of count-

sort. For each possible value q of the coordinates in dimension 

j, we maintain a list Lj(q) in which all the points o with the co-

ordinate xc(o,j)=q are inserted (each insertion is performed in 

O(1) time). Then, in order to obtain the final order of the points 

according to the dimension j, we simply concatenate the lists 

Lj(q) in increasing order of the coordinate values q. This way, 

the sorting of the points in the dimension j takes O(n+r) time. 

We can use the same procedure for sorting the possible query 

parameters xmin(j) (xmax(j)) of the data structures DSj,* when 

they are known in advance and their number is not too large. 

The improvement regarding the use of data structures makes 

sense mostly when kh=2, because in this case we do not need 

to also compute the set S’ (since the obtained MBR is used 

directly at kh=1). If we also need to compute the set S’, then 

we will first compute the set S’ and only afterwards will we 

compute the MBR, in O(|S’|) time, by considering every point 

from S’ (i.e. in the normal manner). However, if |S’| is signifi-

cantly smaller than |S|, we could proceed as follows. We could 

insert (initially) all the points from S into a range tree RT. 

Then, the set S’ can be computed by reporting (rather than 

counting) all the points from RT which are within a union of 

orthogonal query ranges. There are 3
d
-1 such ranges. The inter-

val of each dimension j is split into 3 ranges: [-∞, HR.xmin(j)), 

[HR.xmin(j), HR.xmax(j)] and (HR.xmax(j), +∞], thus obtain-

ing a division of the space into 3
d
 disjoint orthogonal regions. 

The only region we are not interested in is the “middle” region 

(i.e. the one corresponding to the current hyper-rectangle: 

[HR.xmin(j), HR.xmax(j)] (1≤j≤d)). With these improvements, 

the time complexity of the algorithm decreases significantly. 

Note that the idea of dividing the space into 3
d
 regions can 

also be used for computing the MBR. Instead of the DS*,* data 

structures, we will use d d-dimensional range trees RTDSk 

(1≤k≤d). In each range tree RTDSk we will insert all the points i 

from S, and we associate to them a weight equal to idx(i,k) 

(1≤k≤d). Then, when computing the MBR, we need the follow-

ing values: a’k=min{RTDSk.rangeMin(reg) | reg is one of the 

3
d
-1 regions (i.e. not the middle region)} and 

RTDSk.rangeMin(reg) returns the minimum weight of a point 



located in the (orthogonal) region reg (1≤k≤d). Similarly, we 

have b’k=max{RTDSk.rangeMax(reg) | reg is one of the 3
d
-1 

regions (i.e. not the middle region)} and RTDSk.rangeMax(reg) 

returns the maximum weight of a point located in the (orthogo-

nal) region reg (1≤k≤d). In this case, computing the MBR takes 

O(d·3
d
·log

d
(|S|)) time, which is worse than the previous solu-

tion based on the DS*,* data structures. 

hrcoverOpt(S, HRMBR, kh): 
if (|S|=0) then return 0 

if (kh=1) then { 

  xmin(j)=xp(j,HRMBR.aj); xmax(j)=xp(j,HRMBR.bj) (1≤j≤d) 

  l(j)=max{lmin(j), max{(xmax(i)-xmin(i))/f(i) | g(i)=j, 1≤i≤d}} 

(1≤j≤e) 

  if (l(j)>lmax(j)) (for some 1≤j≤e) then return +∞ 

  xmax(j)=xmin(j)+f(j)·l(g(j)) (1≤j≤d) 

  return cost([xmin(j),xmax(j)] (1≤j≤d), S) 

} else { 

  Cmin=+∞ 

  insert all the points from S in a d-dimensional range tree RT 

  construct the DS*,* data structures 

  for each HR in generateHyperRectangles(HRMBR, kh) do { 

    if the cost function does not depend on the points located 

inside the hyper-rectangle then { 

      if (kh>2) then construct S’ as the union of 3
d
-1 range re-

porting queries in RT (*) 

      else S’=any non-empty set of points (e.g. with just 1 point) 

      C=cost([HR.xmin(j), HR.xmax(j)] (1≤j≤d), -) 

    } else { 

      U={p in S|HR.xmin(j)≤xc(p,j)≤HR.xmax(j) for every 1≤j≤d} 

      S’=S\U 

      C=cost([HR.xmin(j), HR.xmax(j)] (1≤j≤d), U) } 

    MBR’=compute the MBR of the set S’ using the data struc-

tures DS*,*  (*) 

    Cmin=min{Cmin, aggf(C, hrcoverOpt(S’, MBR’, kh-1))} } 

  return Cmin } 

The lines marked with (*) could be replaced by their “nor-

mal” counter-parts (i.e. the range tree RT could be ignored, in 

which case the set S’ would be constructed as in the previous 

two solutions, or the MBR could be computed in O(|S’|) time). 

We may first count the number of points in S’ (by summing the 

answers to the range count queries in RT for each of the 3
d
-1 

regions) in order to decide how S’ should be computed. 

The two types of improvements we presented (fixing q of the 

parameters of the current hyper-rectangle to be identical to the 

MBR of the uncovered points and efficiently computing the 

MBR of the remaining uncovered points) are orthogonal to 

each other and can be used together or separately. 

B. Experimental Evaluation 

We randomly generated 80 dense point sets with d=3: 40 of 

them had n=14, and 40 of them had n=40. The number of 

points r varied from 0.1% to 10% of the value n
3
. We consid-

ered kh=2, each dimension belonged to a separate group and 

we considered no bounds on the side lengths in each dimen-

sion. The cost function was the volume of a hyper-rectangle. 

We evaluated four algorithms: A-unoptimized hyper-rectangle 

generation and unoptimized MBR computation ; B-optimized 

hyper-rectangle generation and unoptimized MBR computation 

; C-unoptimized hyper-rectangle generation and optimized 

MBR computation ; D-optimized hyper-rectangle generation 

and optimized MBR computation. The theoretical time com-

plexities (for our test settings) of the four algorithms are: A-

O(n
9
), B-O(n

6
), C-O(n

6
), D-O(n

3
). The algorithms were imple-

mented in C++, compiled using the Visual Studio 2008 C++ 

compiler and were run on a 2 GHz processor running Windows 

Vista. The sums of running times (over the 40 test cases with 

the same value of n) are presented in Table I. 
TABLE I 

SUMS OF RUNNING TIMES FOR THE FOUR ALGORITHMS 

 A B C D 

n=14 205 sec 8.12 sec 2.22 sec 0.13 sec 

n=40 > 86400 sec 4684 sec 954 sec 2.72 sec 

IV. DISTRIBUTION OF NODES IN A GEOMETRIC SPACE 

In this section we make a proposal for a peer-to-peer mes-

sage routing system, whose node identifiers are mapped into a 

metric space. Each node q of the system has an identifier which 

is a point (x(q,1), …, x(q,d)) in a d-dimensional Euclidean 

space and is connected to at most 2·k·d other peers (for each 

dimension i, 1≤i≤d, the peer q is connected to the k peers q’ 

with the smallest i-coordinates x(q’,i) larger than or equal to 

x(q,i) and the k peers with the largest i-coordinates smaller than 

x(q,i)). In order to route a message from a source s to a destina-

tion d, the peers use the distance of the metric space of their 

identifiers and they forward the message to a neighboring peer 

which decreases the distance from the current peer to d (or 

minimizes it). Such a system poses many challenges which 

have to be analyzed, like scalability, fault tolerance, resistance 

to churn and appropriate distribution of the node identifiers in 

the metric space. We will consider the distribution problem in 

this section, using the following “distance” function: 

dist((x(p,1),…,x(p,d)), (x(q,1), …, x(q,d)))=min{|x(p,i)-x(q,i)| 

1≤i≤d}. We want to compute the largest distance between any 

pair of points, which offers important information about the 

distribution of points in the metric space. Because the number 

of nodes in a peer-to-peer system can be quite large, we need 

an efficient solution (better than the trivial O(n
2
) solution 

which considers every pair of points). 

We will binary search the maximum distance and we will 

perform a feasibility test on every candidate value Dcand chosen 

by the binary search. If Dcand is feasible, we will test a larger 

distance; otherwise, we will test a smaller one. For each point i 

(x(i,1),…, x(i,d)), we will compute the number of points np(i) 

located at distance at most Dcand from it (including point i it-

self). If np(i)<n for some i, Dcand is a feasible distance. We will 

preprocess the points into a d-dimensional range tree which can 

answer orthogonal range counting queries in O(log
d-1

(n)) time 

(using fractional cascading). The number of points located at a 

distance d≤Dcand from a point i is obtained by using the inclu-

sion-exclusion principle on the answers to 2
d
-1 range count 

queries. A query rcount(p,S) is defined by a set S of dimen-

sions for which the range is not unbounded (i.e. [-∞, +∞]); for 

each dimension i in S, the range is [x(p,i)-Dcand, x(p,i)+Dcand] 

and for the other dimensions not in S the range is unbounded. 

There are 2
d
-1 sets S (we exclude the empty set). np(i) is equal 

to the sum of (-1)
|S|-1

·rcount(i,S) (rcount(i,S) is the answer to 



the range query defined by the set S and the point i). For d=2, 

np(i)=count([-∞, x(i,2)-Dcand], [+∞, x(i,2)+Dcand]) + 

count([x(i,1)-Dcand,-∞], [x(i,1)+Dcand,+∞]) - count([x(i,1)-

Dcand, x(i,2)-Dcand], [x(i,1)+Dcand, x(i,2)+Dcand]). 

count([xa,ya],[xb,yb]) returns the number of points (xj,yj) with 

xa≤xj≤xb and ya≤yj≤yb. Thus, we can perform the feasibility 

test in O(n·log
d-1

(n)) time. The overall memory consumption of 

the range tree is O(n·log
d-1

(n)). 

We can also use the following algorithm, which we will de-

note by Sol(d), where d is the number of dimensions of the 

space. If d=1 then we only need to sort all the points according 

to their first (and only) coordinate and obtain an ordering 

x(p(1),1)≤…≤x(p(n),1). Then, we can compute the value 

rcount(i,{1}) either by binary searching the values x(i,1)-Dcand 

and x(i,1)+Dcand around the position pos(i) of the point i in the 

sorted order (i.e. p(pos(i))=i), or by using a sweeping technique 

which will be described next for the more general case. 

For d≥2 we will proceed as follows. Let’s notice first that the 

values rcount(*, S={j}) can be computed by sorting all the 

points according to their coordinates in the dimension j and 

then using the solution proposed for the case d=1, but consid-

ering that the only existing dimension is the dimension j 

(1≤j≤d). 

We will sort the points according to their d
th

 coordinate and 

sweep them with a (d-1)-dimensional slab of infinite size in 

each dimension 1≤j≤d-1 and width 2·Dcand in the d
th

 dimension. 

The position of the slab is denoted by its rightmost coordinate 

xr in dimension d. We will have three types of events for each 

point i: 

1. the point i enters the slab; this event occurs when 

xr=x(i,d) 

2. the point i is at the middle of the slab; this event occurs 

when xr=x(i,d)+Dcand 

3. the point i leaves the slab; this event occurs when 

xr=x(i,d)+2·Dcand 

The 3·n events will be sorted in ascending order of the value 

of xr when the event occurs and are then processed in this or-

der. If multiple events occur at the same value of xr, then enter-

ing events take precedence over middle events, which take 

precedence over leaving events. When a point i enters the slab, 

we add (x(i,1),…,x(i,d-1)) to a (d-1)-dimensional range tree RT 

constructed on the coordinates of the points in dimensions 

1,…,d-1 (which is initially empty). When a point i leaves the 

slab, we remove (x(i,1),…,x(i,d-1)) from the range tree. When a 

point i is exactly at the middle of the slab, we will compute the 

range count values corresponding to the point i for all the sets S 

containing the dimension d in them (there are 2
d-1

 such sets), 

using only the points from the (d-1)-dimensional range tree RT. 

When computing the value rcount(i,S), we will consider only 

the query ranges for the dimensions 1,…,d-1 (because all the 

points in the range [x(i,d)-Dcand, x(i,d)+Dcand] are already in 

RT. Since the range tree needs to be dynamic (i.e. support point 

insertions and deletions), we cannot use the fractional cascad-

ing technique anymore. Thus, a range count query in this range 

tree will take O(log
d-1

(n)) time. 

If d=2 then RT may, in fact, be just a segment tree [3]. If 

d=1 then RT is just a counter: RT is initially 0, it is incremented 

by 1 when a point enters the slab, it is decremented by 1 when 

a point leaves the slab, and its (current) value is the answer for 

each rcount(i,{1}) query. The memory consumed by RT is 

O(n·log
d-2

(n)) (or O(1) if d=1) and the overall time complexity 

of the sweeping algorithm is O(n·log
d-1

(n)+n·log(n)). Then, if 

d>1 we will call the algorithm Sol(d-1) in order to compute the 

values rcount(*,S) for the sets S not containing the dimension 

d. Thus, the overall time complexity of the algorithm Sol(d) is 

O(n·(log
d-1

(n)+log
d-2

(n)+…+log(n)))= O(n·log
d-1

(n)). 

The overall time complexity of the algorithms described 

above is computed by multiplying the time complexity of the 

feasibility test by that of performing the binary search. Thus, 

we obtain O(n·log
max{1,d-1}

(n)·log(Dcand)) algorithms. 

However, the time complexity of the feasibility tests can be 

improved. First, we notice that we can sort the points according 

to their coordinates in every dimension j before binary search-

ing Dcand. Thus, we will store d arrays of sorted points. So far, 

this only improves the time complexity of the feasibility test in 

the case d=1 (from O(n·log(n)) to O(n)). Next, during the fea-

sibility test we will sweep the points like before, using the 

same slab as before (with bounded size in the dimension d). 

We will maintain a (d-1)-dimensional data structure DS con-

taining all the points which have already left the slab (DS is 

initially empty). When a point i leaves the slab, we add the 

point (x(i,1), …, x(i,d-1)) to DS. When a point i is at the middle 

of the slab, we query DS to check if: 

1. DS contains any point j with x(j,k)>x(i,k)+Dcand (for 

every 1≤k≤d-1) 

2. DS contains any point j with x(j,k)<x(i,k)-Dcand (for 

every 1≤k≤d-1) 

If any of the conditions (1 or 2) is met for some point i, then 

Dcand is a feasible distance. If none of the conditions is met for 

any point i, then Dcand is not a feasible distance. 

DS can easily be implemented as a range tree, but there are 

other data structures which support this type of range queries 

(in which the query range is unbounded either towards +∞ or 

towards -∞) more efficiently. In particular, for d=2, DS only 

needs to store the maximum (xmax) and minimum (xmin) values 

of the coordinates x(j,1) of the points j which left the slab. 

Then, if xmax>x(i,1)+Dcand then the condition 1 is met for the 

point i, and if xmin<x(i,1)-Dcand then the condition 2 is met for 

the point i. xmax is initially -∞ and xmin is initially +∞. When-

ever a point i leaves the slab we update xmin and xmax 

(xmin=min{xmin, x(i,1)}, xmax=max{xmax, x(i,1)}). Thus, the time 

complexity of the feasibility test becomes O(n) for d=2 (as the 

points were sorted before starting the binary search). 

V. STRING PROCESSING PROBLEMS 

A. Optimal Encoding using Consecutive Repetitions 

We consider a string S composed of N characters: S(1), …, 

S(N). We want to encode the string S by using the consecutive 

contiguous repetitions that occur within S. The only operation 

that we can perform is to replace a sequence of consecutive 

characters from S, of the type u
k
 (i.e. which is composed of the 

string u repeated k times) by the sequence Codif1(k)· 

u·Codif2(k), where by A·B we denote the concatenation of A 

and B. Codif1(k) and Codif2(k) are two strings marking the be-



ginning and the end of the encoded sequence and they do not 

contain characters which exist in S initially. For instance, the 

sequence “abcabcabc” could be replaced by „3(abc)”, if 

Codif1(3)=”3(„ and Codif2(3)=”)”. The operation of replacing 

a contiguous subsequence of S can be applied repeatedly, in-

cluding upon some sequences containing previously encoded 

subsequences; however, a previously encoded subsequence 

must be fully included in one of the sequences u of the u
k
 sub-

sequence being replaced. We want to find a minimum length 

encoding of S. 

In order to solve the problem we will use a dynamic pro-

gramming approach. We will compute a table Lmin(i,j)=the 

minimum length of encoding the contiguous subsequence of S 

starting at the position i and ending at the position j. We will 

compute the values Lmin(i,j) in ascending order of the length 

of the subsequence (i.e. in increasing order of j-i+1). We have 

Lmin(i,i)=1. Then, we iterate with a variable L from 2 to N and, 

for every value of L, we will first compute all the divisors of L 

and then we will consider every possible value of i (1≤i≤N-

L+1). Once we considered the value i, the value of j is equal to 

i+L-1. We will initialize Lmin(i,j)=j-i+1. Then, we will con-

sider all the divisors k of L and we will verify if the contiguous 

subsequence S(i)S(i+1)...S(j) has the structure u
k
. The verifica-

tion can be performed in linear time: we will consider every 

position p from i+L/k to j and, if S(p)≠S(p-L/k) (for at least one 

position p), then the considered subsequence does not have the 

structure u
k
; otherwise, it has this structure. If the subsequence 

has the desired structure, then we will set 

Lmin(i,j)=min{Lmin(i,j), len(Codif1(k)) + len(Codif2(k)) + 

Lmin(i,i+L/k-1)}. The overall time complexity is O(N
3.5

). 

B. Counting the Number of Occurrences of a Substring in a 

String Generated by a Grammar 

We consider a grammar consisting of a set of terminal sym-

bols T and N non-terminal symbols, numbered from 1 to N. 

Each non-terminal symbol X is specified as a sequence consist-

ing of L(X) symbols: R(X,1), ..., R(X,L(X)). Each symbol is 

either a terminal symbol or a non-terminal symbol Y (1≤Y≤X-

1). Let’s consider the string Exp(N), obtained by expanding the 

non-terminal N (i.e. a string consisting of terminal symbols 

only). We are given a string S and we want to compute the 

number of occurrences of S in Exp(N). Two occurrences of S 

may partially overlap. 

Computing the string Exp(N) and then searching for the 

string S in Exp(N) (in O(|Exp(N)|) time) is not possible, be-

cause the string Exp(N) may be exponentially large. Instead, 

we need an approach which does not compute Exp(N). 

We will start by computing the (KMP) prefix function for 

the string S. Let S(1), …, S(LS) be the characters of the string S 

(LS=the length of the string S). Let P(i) be the prefix function 

value for the prefix 1, …, i. We can compute the prefix func-

tion in O(LS) time. Then, we define by Pexp(i,k)=the string 

obtained by expanding the sequence composed of the symbols 

R(i,k), …, R(i,L(i)) (1≤i≤N; 1≤k≤L(i)+1). We will compute the 

values C(i,j,k)=the number of occurrences of S in Pexp(i,k), if 

we consider that the first j characters of S are already 

“matched” before starting Pexp(i,k). Thus, when Pexp(i,k) be-

gins, the prefix of length j of the string S is already matched 

over the j characters which are located right before Pexp(i,k) in 

the final string. We will also compute Suf(i,j,k)=the longest 

(incomplete) prefix of S which matches the end of the string 

Pexp(i,k), under the same conditions as above (i.e. the first j  

characters of S match the j characters located right before the 

start of Pexp(i,k)). 

We will consider the non-terminal symbols in increasing or-

der: i=1,...,N. We have C(i,j,L(i)+1)=0 and Suf(i,j,L(i)+1)=j 

(0≤j≤LS-1). We will then consider the positions k, in decreas-

ing order, starting from L(i) and ending with the position 1 

(k=L(i), L(i)-1, ..., 1). If R(i,k)=q, where q is a non-terminal 

symbol, then we will proceed as follows: (1) we initialize 

ne=Suf(q,j,1); (2) we set C(i,j,k)=C(q,j,1)+C(i,ne,k+1); (3) 

Suf(i,j,k)=Suf(i,ne,k+1). If R(i,k) is a terminal symbol, then let 

ne=j. While (ne>0) and (S(ne+1)≠R(i,k)) we set ne=P(ne). At 

the exit of the while loop, if S(ne+1)=R(i,k), then we increment 

ne by 1. If ne=LS, then we set caux=1 and ne=P(ne); other-

wise, we set caux=0. Then we will have 

C(i,j,k)=caux+C(i,ne,k+1) and Suf(i,j,k)=Suf(i,ne,k+1). The 

final answer is C(N,0,1). 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper we presented novel algorithmic techniques for 

several multidimensional (and 1D) data processing problems, 

related to clustering, encoding and the computation of the di-

ameter using a new distance function. All the presented algo-

rithms were thoroughly analyzed from a theoretical point of 

view, and some of them even from a practical point of view. 

All the presented problems are interesting from the point of 

view of multidimensional data analysis, while some of them 

have applications in the field of distributed computing (e.g. the 

problem presented in Section III). 

As future work, we intend to implement and evaluate all the 

proposed solutions (so far, only some of them have full imple-

mentations) and continue the study of multidimensional data 

processing problems in need of novel efficient algorithmic 

techniques. 
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