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, this result is extended to a sequence of multiple Wigner integrals, in the context of free Brownian motion. The goal of the present paper is to offer an elementary, unifying proof of these two results. The only advanced, needed tool is the product formula for multiple integrals. Apart from this formula, the rest of the proof only relies on soft combinatorial arguments.

Introduction

The following surprising result, proved in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], shows that the convergence in distribution of a normalized sequence of multiple Wiener-Itô integrals towards a standard Gaussian law is equivalent to convergence of just the fourth moment to 3.

Theorem 1.1 (Nualart-Peccati) Fix an integer p 2. Let {B(t)} t∈[0,T ] be a classical Brownian motion, and let (F n ) n 1 be a sequence of multiple integrals of the form

F n = [0,T ] p
f n (t 1 , . . . , t p )dB(t 1 ) . . . dB(t p ), (1.1) where each f n ∈ L 2 ([0, T ] p ; R) is symmetric (it is not a restrictive assumption). Suppose moreover that E[F 2 n ] → 1 as n → ∞. Then, as n → ∞, the following two assertions are equivalent:

(i) The sequence (F n ) converges in distribution to B(1) ∼ N (0, 1);

(ii) E[F 4 n ] → E[B(1) 4 ] = 3.
In [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], the original proof of (ii) ⇒ (i) relies on tools from Brownian stochastic analysis. Precisely, using the symmetry of f n , one can rewrite F n as Fn , where β (n) is a classical Brownian motion and

F n = p! T 0 dB(t 1 )
F n = p! 2 T 0 dt 1 t 1 0 dB(t 2 ) . . . t p-1 0 dB(t p )f n (t 1 , . . . , t p ) 2 .
(1.2)

Therefore, to get that (i) holds true, it is now enough to prove that (ii) implies F n L 2

→ 1, which is exactly what Nualart and Peccati did in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF].

Since the publication of [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF], several researchers have been interested in understanding more deeply why Theorem 1.1 holds. Let us mention some works in this direction:

1. In [START_REF] Nualart | Central limit theorems for multiple stochastic integrals and Malliavin calculus[END_REF], Nualart and Ortiz-Latorre gave another proof of Theorem 1.1 using exclusively the tools of Malliavin calculus. The main ingredient of their proof is the identity δD = -L, where δ, D and L are basic operators in Malliavin calculus.

2. Based on the ideas developed in [START_REF] Nourdin | Stein's method on Wiener chaos[END_REF], the following bound is shown in [START_REF] Nourdin | Stein's method meets Malliavin calculus: a short survey with new estimates[END_REF]Theorem 3.6] (see also [START_REF] Nourdin | Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos[END_REF]

): if E[F 2 n ] = 1, then sup A∈B(R) P [F n ∈ A] - 1 √ 2π A e -u 2 /2 du 2 p -1 3p |E[F 4 n ] -3|. (1.3) 
Of course, with (1.3) in hand, it is totally straightforward to obtain Theorem 1.1 as a corollary. However, the proof of (1.3), albeit not that difficult, requires the knowledge of both Malliavin calculus and Stein's method.

3. By using the tools of Malliavin calculus, Peccati and I computed in [START_REF] Nourdin | Cumulants on the Wiener space[END_REF] a new expression for the cumulants of F n , in terms of the contractions of the kernels f n . As an immediate byproduct of this formula, we are able to recover Theorem 1.1, see [START_REF] Nourdin | Cumulants on the Wiener space[END_REF]Theorem 5.8] for the details. See also [START_REF] Noreddine | On the Gaussian approximation of vector-valued multiple integrals[END_REF] for an extension in the multivariate setting. [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF]. In [START_REF] Nourdin | Non-central convergence of multiple integrals[END_REF], Theorem 1.1 is extended to the case where, instead of B(1) ∼ N (0, 1) in the limit, a centered chi-square random variable, say Z, is considered. More precisely, it is proved in this latter reference that an adequably normalized sequence F n of the form (1.1) converges in distribution towards Z if and only if

E[F 4 n ] -12E[F 3 n ] → E[Z 4 ] -12E[Z 3 ].
Here again, the proof is based on the use of the basic operators of Malliavin calculus.

5.

The following result, proved in [START_REF] Kemp | Wigner chaos and the fourth moment[END_REF], is the exact analogue of Theorem 1.1, but in the situation where the classical Brownian motion B is replaced by its free counterpart S. Theorem 1.2 (Kemp-Nourdin-Peccati-Speicher) Fix an integer p 2. Let {S(t)} t∈[0,T ] be a free Brownian motion, and let (F n ) n 1 be a sequence of multiple integrals of the form

F n = [0,T ] p f n (t 1 , . . . , t p )dS(t 1 ) . . . dS(t p ),
where each

f n ∈ L 2 ([0, T ] p ; R) is mirror symmetric (that is, satisfies f n (t 1 , . . . , t p ) = f n (t p , . . . , t 1 ) for all t 1 , . . . , t p ∈ [0, 1]). Suppose moreover that E[F 2 n ] → 1 as n → ∞.
Then, as n → ∞, the following two assertions are equivalent:

(i) For all k 3, E[F k n ] → E[S(1) k ]; (ii) E[F 4 n ] → E[S(1) 4 ] = 2.
The proof of Theorem 1.2 contained in [START_REF] Kemp | Wigner chaos and the fourth moment[END_REF] is based on the use of combinatorial features related to the free probability realm, including non-crossing pairing and partitions.

Thus, there is already several proofs of Theorem 1.1. Each of them has its own interest, because it allows to understand more deeply a particular aspect of this beautiful result. On the other hand, all these proofs require at some point to deal with sophisticated tools, such as stochastic Brownian analysis, Malliavin calculus or Stein's method.

The goal of this paper is to offer an elementary, unifying proof of both Theorems 1.1 and 1.2. As anticipated, the only advanced result we will need is the product formula for multiple integrals, that is, the explicit expression for the product of two multiples integrals of order p and q, say, as a linear combination of multiple integrals of order less or equal to p + q. Apart from this formula, the rest of the proof only relies on 'soft' combinatorial arguments.

The level of our paper is (hopefully) available to any good student. From our opinion however, its interest is not only to provide a new, simple proof of a known result. It is indeed noteworthy that the number of required tools has been reduced to its maximum (the product formula being essentially the only one we need), so that our approach might represent a valuable strategy to follow in order to generalize Theorem(s) 1.1 (and 1.2) in other situations. For instance, let us mention that the two works [START_REF] Nourdin | Poisson approximations on the free Wigner chaos[END_REF][START_REF] Deya | Convergence of Wigner integrals to the tetilla law[END_REF] have indeed followed our line of reasoning, and successfully extended Theorem 1.2 in the case where the limit is the free Poisson distribution and the (so-called) tetilla law respectively.

The rest of the paper is organized as follows. Section 2 deals with some preliminary results. Section 3 contains our proof of Theorem 1.2, whereas Section 4 is devoted to the proof of Theorem 1.1.

Preliminaries

Multiple integrals with respect to classical Brownian motion

In this section, our main reference is Nualart's book [START_REF] Nualart | The Malliavin calculus and related topics[END_REF]. To simplify the exposition, without loss of generality we fix the time horizon to be T = 1.

Let {B(t)} t∈[0,1] be a classical Brownian motion, that is, a stochastic process defined on a probability space (Ω, F , P ), starting from 0, with independent increments, and such that B(t) -B(s) is a centered Gaussian random variable with variance ts for all t s.

For a given real-valued kernel f belonging to L 2 ([0, 1] p ), let us quickly sketch out the construction of the multiple Wiener-Itô integral of f with respect to B, written

I p (f ) = [0,1] p f (t 1 , . . . , t p )dB(t 1 ) . . . dB(t p ) (2.4)
in the sequel. (For the full details, we refer the reader to the classical reference [START_REF] Nualart | The Malliavin calculus and related topics[END_REF].) Let D p ⊂ [0, 1] p be the collection of all diagonals, i.e.

D p = {(t 1 , . . . , t p ) ∈ [0, 1] p : t i = t j for some i = j}.

(2.5)

As a first step, when f has the form of a characteristic function ] p such that A ∩ D p = ∅, the pth multiple integral of f is defined by

f = 1 A , with A = [u 1 , v 1 ] × . . . × [u p , v p ] ⊂ [0, 1
I p (f ) = (B(v 1 ) -B(u 1 )) . . . (B(v p ) -B(u p )).
Then, this definition is extended by linearity to simple functions of the form

f = k i=1 α i 1 A i , where A i = [u i 1 , v i 1 ] × . . . × [u i p , v i p ]
are disjoint p-dimensional rectangles as above which do not meet the diagonals. Simple computations show that

E[I p (f )] = 0
(2.6)

I p (f ) = I p ( f ) (2.7) E[I p (g)I p (f )] = p! g, f L 2 ([0,1] p ) . (2.8) 
Here, f ∈ L 2 ([0, 1] p ) denotes the symmetrization of f , that is, the symmetric function canonically associated to f , given by

f (t 1 , . . . , t p ) = 1 p! π∈Sp f (t π(1) , . . . , t π(p) ). (2.9) 
Since each f ∈ L 2 ([0, 1] p ) can be approximated in L 2 -norm by simple functions, we can finally extend the definition of (2.4) to all f ∈ L 2 ([0, 1] p ). Note that, by construction, (2.6)-(2.8) is still true in this general setting. Then, one easily sees that, in addition,

E[I p (f )I q (g)] = 0 for any p = q, f ∈ L 2 ([0, 1] p ) and g ∈ L 2 ([0, 1] q ). (2.10)
Before being in position to state the product formula for two multiple integrals, we need to introduce the following quantity.

Definition 2.1 For symmetric functions f ∈ L 2 ([0, 1] p ) and g ∈ L 2 ([0, 1] q ), the contractions f ⊗ r g ∈ L 2 ([0, 1] p+q-2r ) (0 r min(p, q))
are the (not necessarily symmetric) functions given by

f ⊗ r g(t 1 , . . . , t p+q-2r ) := [0,1] r f (t 1 , . . . , t p-r , s 1 , . . . , s r )g(t p-r+1 , . . . , t p+q-2r , s 1 , . . . , s r )ds 1 . . . ds r .
By convention, we set f ⊗ 0 g = f ⊗ g, the tensor product of f and g.

The symmetrization of f ⊗ r g is written f ⊗ r g. Observe that f ⊗ p g = f ⊗ p g = f, g L 2 ([0,1] p )
whenever p = q. Also, using Cauchy-Schwarz inequality, it is immediate to prove that

f ⊗ r g L 2 ([0,1] p+q-2r ) f L 2 ([0,1] p ) g L 2 ([0,1] q )
for all r = 0, . . . , min(p, q). (It is actually an equality for r = 0.) Moreover, a simple application of the triangle inequality leads to

f ⊗ r g L 2 ([0,1] p+q-2r ) f ⊗ r g L 2 ([0,1] p+q-2r ) .
We can now state the product formula, which is the main ingredient of our proof of Theorem 1.1. By taking the expectation in (2.11), observe that we recover both (2.8) and (2.10).

Theorem 2.2 For symmetric functions f ∈ L 2 ([0, 1] p ) and g ∈ L 2 ([0, 1] q ), we have

I p (f )I q (g) = min(p,q) r=0 r! p r q r I p+q-2r (f ⊗ r g).
(2.11)

Multiple integrals with respect to free Brownian motion

In this section, our main references are: (i) the monograph [START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF] by Nica and Speicher for the generalities about free probability; (ii) the paper [START_REF] Biane | Stochastic calculus with respect to free Brownian motion and analysis on Wigner space[END_REF] by Biane and Speicher for the free stochastic analysis. We refer the reader to them for any unexplained notion or result.

Let {S(t)} t∈[0,1] be a free Brownian motion, that is, a stochastic process defined on a noncommutative probability space (A , E), starting from 0, with freely independent increments, and such that S(t) -S(s) is a centered semicircular random variable with variance ts for all t s. We may think of free Brownian motion as 'infinite-dimensional matrix-valued Brownian motion'. For more details about the construction and features of S, see [1, Section 1.1] and the references therein.

When

f ∈ L 2 ([0, 1] p ) is real-valued, we write f * to indicate the function of L 2 ([0, 1] p )
given by f * (t 1 , . . . , t p ) = f (t p , . . . , t 1 ). (Hence, to say that f n is mirror-symmetric in Theorem 1.2 means that f n = f * n .) We quickly sketch out the construction of the multiple Wigner integral of f with respect to S. Let D p ⊂ [0, 1] p be the collection of all diagonals, see (2.5). For a characteristic function

f = 1 A , where A ⊂ [0, 1] p has the form A = [u 1 , v 1 ] × . . . × [u p , v p ] with A ∩ D p = ∅, the pth multiple Wigner integral of f , written I p (f ) = [0,1] p f (t 1 , . . . , t p )dS(t 1 ) . . . dS(t p ),
is defined by

I p (f ) = (S(v 1 ) -S(u 1 )) . . . (S(v p ) -S(u p )).
Then, as in the previous section we extend this definition by linearity to simple functions of the

form f = k i=1 α i 1 A i , where A i = [u i 1 , v i 1 ] × . . . × [u i p , v i p ]
are disjoint p-dimensional rectangles as above which do not meet the diagonals. Simple computations show that

E[I p (f )] = 0
(2.12)

E[I p (f )I p (g)] = f, g * L 2 ([0,1] p ) . (2.13)
By approximation, the definition of I p (f ) is extended to all f ∈ L 2 ([0, 1] p ), and (2.12)-(2.13) continue to hold true in this more general setting. It turns out that

E[I p (f )I q (g)] = 0 for p = q, f ∈ L 2 ([0, 1] p ) and g ∈ L 2 ([0, 1] q ). (2.14)
Before giving the product formula in the free context, we need to introduce the analogue for Definition 2.1.

Definition 2.3 For functions f ∈ L 2 ([0, 1] p ) and g ∈ L 2 ([0, 1] q ), the contractions f r ⌢ g ∈ L 2 ([0, 1] p+q-2r ) (0 r min(p, q))
are the functions given by f r ⌢ g(t 1 , . . . , t p+q-2r ) := [0,1] r f (t 1 , . . . , t p-r , s 1 , . . . , s r )g(s r , . . . , s 1 , t p-r+1 , . . . , t p+q-2r )ds 1 . . . ds r .

By convention, we set f 0 ⌢ g = f ⊗ g, the tensor product of f and g.

Observe that

f p ⌢ g = f, g * L 2 ([0,1] p ) whenever p = q. Also, using Cauchy-Schwarz, it is immedi- ate to prove that f r ⌢ g L 2 ([0,1] p+q-2r ) f L 2 ([0,1] p ) g L 2 ([0,1] q )
for all r = 0, . . . , min(p, q). (It is actually an equality for r = 0.)

We can now state the product formula in the free context, which turns out to be simpler compared to the classical case (Theorem 2.2).

Theorem 2.4 For functions f ∈ L 2 ([0, 1] p ) and g ∈ L 2 ([0, 1] q ), we have

I p (f )I q (g) = min(p,q) r=0 I p+q-2r (f r ⌢ g).
(2.15)

3 Proof of Theorem 1.2

Let the notation and assumptions of Theorem 1.2 prevail. Without loss of generality, we may assume that

E[F 2 n ] = 1 for all n (instead of E[F 2 n ] → 1 as n → ∞). Moreover, because f n = f * n , observe that f n 2 L 2 ([0,1] p ) = E[F 2 n ] = 1. It is trivial that (i) implies (ii).
Conversely, assume that (ii) is in order, and let us prove that (i) holds. Fix an integer k 3. Iterative applications of the product formula (2.15) leads to

F k n = I p (f n ) k = (r 1 ,...,r k-1 )∈A k I kp-2r 1 -...-2r k-1 f n r 1 ⌢ . . . r k-1 ⌢ f n , (3.16) 
where

A k = (r 1 , . . . , r k-1 ) ∈ {0, 1, . . . , p} k-1 : r 2 2p -2r 1 , r 3 3p -2r 1 -2r 2 , . . . , r k-1 (k -1)p -2r 1 -. . . -2r k-2 .
In order to simplify the exposition, note that we have removed the brackets in the writing of

f n r 1 ⌢ . . . r k-1
⌢ f n . We use the implicit convention that these quantities are always defined iteratively from the left to the right. For instance,

f n r 1 ⌢ f n r 2 ⌢ f n r 3 ⌢ f n actually stands for ((f n r 1 ⌢ f n ) r 2 ⌢ f n ) r 3 ⌢ f n .
By taking the expectation in (3.16), we deduce that

E[F k n ] = (r 1 ,...,r k-1 )∈B k f n r 1 ⌢ . . . r k-1 ⌢ f n , (3.17) 
with

B k = (r 1 , . . . , r k-1 ) ∈ A k : 2r 1 + . . . + 2r k-1 = kp . We decompose B k as C k ∪ E k , with C k = B k ∩ {0, p} k-1 and E k = B k \ C k .
We then have, for all k 3, 

E[F k n ] = (r 1 ,...,r k-1 )∈C k f n r 1 ⌢ . . . r k-1 ⌢ f n + (r 1 ,...,r k-1 )∈E k f n r 1 ⌢ . . . r k-1 ⌢ f n . ( 3 
⌢ f n L 2 ([0,1] 2p-2r
) → 0 for all r = 1, . . . , p -1. Hence, the second sum in (3.18) must converge to zero by Lemma 3.5. Thus, (i) is in order, and the proof of the theorem is concluded.

2 Lemma 3.1 We have E[F 4 n ] = 2 + p-1 r=1 f n r ⌢ f n 2 L 2 ([0,1] 2p-2r ) .
Proof. The product formula (2.15) yields Proof. By dividing all the r i 's by p, one get that

F 2 n = p r=0 I 2p-2r (f n r ⌢ f n ). Using (2.13)-(2.14), we infer E[F 4 n ] = f n ⊗ f n 2 L 2 ([0,1] 2p ) + f n 2 L 2 ([0,1] p ) 2 + p-1 r=1 f n r ⌢ f n , (f n r ⌢ f n ) * L 2 ([0,1] 2p-2r ) = 2 f n 4 L 2 ([0,1] p ) + p-1 r=1 f n r ⌢ f n 2 L 2 ([0,1] 2p-2r ) = 2 + p-1 r=1 f n r ⌢ f n 2 L 2 ([0,1] 2p-2r ) , since f n 2 L 2 ([0,1] p ) =
C k bij. ≡ C k := (r 1 , . . . , r k-1 ) ∈ {0, 1} k-1 : r 2 2 -2r 1 , r 3 3 -2r 1 -2r 2 , . . . , r k-1 k -1 -2r 1 -. . . -2r k-2 , 2r 1 + . . . + 2r k-1 = k .
On the other hand, consider the representation S(1) = I 1 (1 [0,1] ). As above, iterative applications of the product formula (2.15) leads to

S(1) k = I 1 (1 [0,1] ) k = (r 1 ,...,r k-1 )∈ A k I k-2r 1 -...-2r k-1 1 [0,1] r 1 ⌢ . . . r k-1 ⌢ 1 [0,1] ,
where

A k = (r 1 , . . . , r k-1 ) ∈ {0, 1} k-1 : r 2 2 -2r 1 , r 3 3 -2r 1 -2r 2 , . . . , r k-1 k -1 -2r 1 -. . . -2r k-2 .
By taking the expectation, we deduce that 1) k ] is given by Cat k/2 , the Catalan number of order k/2. There is many combinatorial ways to define this number. One of them is to see it at the number of paths in the lattice Z 2 which start at (0, 0), end at (k, 0), make steps of the form (1, 1) or (1, -1), and never lies below the x-axis, i.e., all their points are of the form (i, j) with j 0.

E[S(1) k ] = (r 1 ,...,r k-1 )∈ C k 1 [0,1] r 1 ⌢ . . . r k-1 ⌢ 1 [0,1] = (r 1 ,...,r k-1 )∈ C k 1 = # C k = #C k . 2 Remark 3.3 When k is even, it is well-known that E[S(
Let the notation of the proof of Lemma 3.2 prevail. Set

s i = 1 -2r i . Then C k bij. ≡ (s 1 , . . . , s k-1 ) ∈ {-1, 1} k-1 : 1 + s 1 1 2 (1 -s 2 ), 1 + s 1 + s 2 1 2 (1 -s 3 ), . . . , 1 + s 1 + . . . + s k-2 1 2 (1 -s k-1 ), 1 + s 1 + . . . + s k-1 = 0 .
It turns out that the set of conditions    Proof. It is evident, using the identities

s j ∈ {-1, 1}, j = 1, . . . , k -1 1 + s 1 + . . . + s j 1 2 (1 -s j+1 ), j = 1, . . . , k -2 1 + s 1 + . . . + s k-1 = 0, (3.19) is equivalent to    s j ∈ {-1, 1}, j = 1, . . . , k -1 1 + s 1 + . . . + s j 0, j = 1, . . . , k -2 1 + s 1 + . . . + s k-1 = 0. ( 3 
+ . . . + s j 1 2 (1 -s j+1 ) when 1 + s 1 + . . . + s j 1. If 1 + s 1 + . . . + s j = 0 then, because 1 + s 1 + . . . + s j+1 0 (even if j = k -2), one has s j+1 = 1, implying in turn 1 + s 1 + . . . + s j 1 2 (1 -s j+1 ) = 0. Thus C k bij. ≡ (s 1 , . . . , s k-1 ) ∈ {-1, 1} k-1 : 1 + s 1 0, 1 + s 1 + s 2 0, . . . , 1 + s 1 + . . . + s k-2 0, 1 + s 1 + . . . + s k-1 = 0 ,
f n 0 ⌢ f n = f n ⊗ f n and f n p ⌢ f n = [0,1] p f n (t 1 , . . . , t p )f n (t p , . . . , t 1 )dt 1 . . . dt p = f n 2 L 2 ([0,1] p ) = 1. 2 Lemma 3.5 As n → ∞, assume that f n r ⌢ f n L 2 ([0,1] 2p-2r ) → 0 for all r = 1, . . . , p -1. Then, as n → ∞ we have f n r 1 ⌢ . . . r k-1
⌢ f n → 0 for all k 3 and all (r 1 , . . . , r k-1 ) ∈ E k .

Proof. Fix (r 1 , . . . , r k-1 ) ∈ E k , and let j ∈ {1, . . . , k -1} be the smallest integer such that We follow the same route as in the proof of Theorem 1.2, that is, we utilize the method of moments. (It is well-known that the N (0, 1) law is uniquely determined by its moments.) Let the notation and assumptions of Theorem 1.1 prevail. Without loss of generality, we may assume that E[F

r j ∈ {1, . . . , p -1}. Recall that f n 0 ⌢ f n = f n ⊗ f n . Then f n r 1 ⌢ . . . r k-1 ⌢ f n = f n r 1 ⌢ . . . r j-1 ⌢ f n r j ⌢ f n r j+1 ⌢ . . . r k-1 ⌢ f n = (f n ⊗ . . . ⊗ f n ) r j ⌢ f n r j+1 ⌢ . . . r k-1 ⌢ f n (using f n p ⌢ f n = 1) (f n ⊗ . . . ⊗ f n ) ⊗ (f n r j ⌢ f n ) L 2 ([0,1] q ) f n k-j-1 L 2 ([0,1] p ) (by Cauchy-Schwarz, for a certain q) = f n r j ⌢ f n (because f n 2 L 2 ([0,1] p ) = 1) -→ 0 as n → ∞.
2 n ] = 1 for all n (instead of E[F 2 n ] → 1 as n → ∞). Moreover, observe that p! f n 2 L 2 ([0,1] p ) = E[F 2 n ] = 1.
Fix an integer k 3. Iterative applications of the product formula (2.11) leads to

F k n = I p (f n ) k = (r 1 ,...,r k-1 )∈A k I kp-2r 1 -...-2r k-1 f n ⊗ r 1 . . . ⊗ r k-1 f n (4.21) × k-1 j=1 r j ! p r j jp -2r 1 -. . . -2r j-1 r j ,
where

A k = (r 1 , . . . , r k-1 ) ∈ {0, 1, . . . , p} k-1 : r 2 2p -2r 1 , r 3 3p -2r 1 -2r 2 , . . . , r k-1 (k -1)p -2r 1 -. . . -2r k-2 .
In order to simplify the exposition, note that we have removed all the brackets in the writing of

f n ⊗ r 1 . . . ⊗ r k-1 f n .
We use the implicit convention that these quantities are always defined iteratively from the left to the right. For instance,

f n ⊗ r 1 f n ⊗ r 2 f n ⊗ r 3 f n stands for ((f n ⊗ r 1 f n ) ⊗ r 2 f n ) ⊗ r 3 f n .
By taking the expectation in (4.21), we deduce that

E[F k n ] = (r 1 ,...,r k-1 )∈B k f n ⊗ r 1 . . . ⊗ r k-1 f n × k-1 j=1 r j ! p r j jp -2r 1 -. . . -2r j-1 r j , (4.22) 
with B k = (r 1 , . . . , r k-1 ) ∈ A k : 2r 1 + . . . + 2r k-1 = kp . Combining (4.22) with the crude bound (consequence of Cauchy-Schwarz)

f n ⊗ r f n L 2 ([0,1] 2p-2r ) f n 2 L 2 ([0,1] p ) = 1/p! 1,
we have that E[F k n ] #B k , that is, for every k the kth moment of F n is uniformly bounded. Assume that (i) is in order. Because of the uniform boundedness of the moments, standard arguments implies that

E[F 4 n ] → E[B(1) 4 ].
Conversely, assume that (ii) is in order and let us prove that, for all k 1,

E[F k n ] → E[B(1) k ] as n → ∞. (4.23) 
The cases k = 1 and k = 2 being immediate, assume that k 3 is given. We decompose B k as

C k ∪ E k , with C k = B k ∩ {0, p} k-1 and E k = B k \ C k . We have E[F k n ] = (r 1 ,...,r k-1 )∈C k f n ⊗ r 1 . . . ⊗ r k-1 f n × k-1 j=1 r j ! jp -2r 1 -. . . -2r j-1 r j (4.24) 
+ (r 1 ,...,r k-1 )∈E k f n ⊗ r 1 . . . ⊗ r k-1 f n × k-1 j=1 r j ! p r j jp -2r 1 -. . . -2r j-1 r j .
By Lemma 4.1 together with assumption (ii), we have that f n ⊗ r f n L 2 ([0,1] 2p-2r ) (as well as

f n ⊗ r f n L 2 ([0,1] 2p-2r
) ) tends to zero for any r = 1, . . . , p -1. Lemmas 4.2 and 4.3 imply together that the first sum in (4.24) converges to E[B(1) k ], whereas the second sum converges to zero by Lemma 4.4. Thus, (4.23) is in order, and the proof of the theorem is concluded.

2 Lemma 4.1 We have E[F 4 n ] = 3+ p-1 r=1 p r 2 (p!) 2 f n ⊗ r f n 2 L 2 ([0,1] 2p-2r ) + (r!) 2 p r 2 (2p -2r)! f n ⊗ r f n 2 L 2 ([0,1] 2p-2r ) .
Proof (following [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]). 

f n ⊗ r f n (x 1 , . . . , x 2p-2r ) 2 dx 1 . . . dx 2p-2r = f n ⊗ r f n 2 L 2 ([0,1] 2p-2r ) . (4.25)
Then, for all k 3 and all (r 1 , . . . , r k-1 ) ∈ C k , we have

f n ⊗ r 1 . . . ⊗ r k-1 f n → k-1 j=1 j-2r 1 /p-...-2r j-1 /p r j /p (r j )! jp-2r 1 -...-2r j-1 r j
as n → ∞.

Proof. In all the proof, for sake of conciseness we write f ⊗d n instead of where, here and in the rest of the proof, we use the notation h n ≈ g n (for h n and g n two functions of, say, q arguments) to mean that h ng n tends to zero in L 2 ([0, 1] q ). Because a permutation π of A dp is completely characterized by the choice of the smallest index j for which {π(jp-p+1), . . . , π(jp)} = {dp-p+1, . . . , dp} as well as two permutations τ ∈ S p and σ ∈ S pd-p , and using moreover that

d
f n ⊗ p f n = f n 2 L 2 ([0,1] p ) = 1 p! and that f n is symmetric, we deduce that f ⊗d n ⊗ p f n (t 1 , . . . , t dp-p ) ≈ d (dp)! σ∈S dp-p f n (t σ(1) , . . . , t σ(d) ) . . . f n (t σ(dp-2p+1) , . . . , t σ(dp-p) ) ≈ d p! dp p f ⊗(d-1) n (t 1 , . . . , t dp-p ) = d p! dp p f ⊗(d-1) n (t 1 , . . . , t dp-p ).
(4.28)

Because the right-hand side of (4.28) is a symmetric function, we eventually get that

f ⊗d n ⊗ p f n ≈ d p! dp p f ⊗(d-1) n ,
with the convention that f ⊗0 n = 1. On the other hand, we have

f ⊗d n ⊗ 0 f n = f ⊗d n ⊗f n = f ⊗(d+1) n
by the very definition of f ⊗d n . We can summarize these two last identities by writing that, for any r ∈ {0, p}, 

f ⊗d n ⊗ r f n ≈ d r/p r! dp r f ⊗(d+1-2r/p) n . ( 4 
f n ⊗ r 1 f n = ( 1 r 1 /p ) (r 1 )!( p r 1 ) f ⊗(2-2r 1 /p) n , f n ⊗ r 1 f n ⊗ r 2 f n ≈ 1 r 1 /p 2-2r 1 /p r 2 /p (r 1 )! p r 1 (r 2 )! 2p-2r 1 r 2 f ⊗(3-2r 1 /p-2r 2 /p) n ,
and so on. Iterating this procedure leads eventually to

f n ⊗ r 1 . . . ⊗ r k-1 f n ≈ k-1 j=1 j-2r 1 /p-...-2r j-1 /p r j /p (r j )! jp-2r 1 -...-2r j-1 r j , (4.30) 
which is exactly the desired formula. The proof of the lemma is done. 2 Proof. Fix k 3 and (r 1 , . . . , r k-1 ) ∈ E k , and let j ∈ {1, . . . , k -1} be the smallest integer such that r j ∈ {1, . . . , p -1}. As in the proof of Lemma 4.2, when h n and g n are functions of q arguments let us write h n ≈ g n to indicate that h ng n tends to zero in L 2 ([0, 1] q ). Recall from 

t 1 0dB(t 2 )

 12 . . .

t p- 1 0

 1 dB(t p )f n (t 1 , . . . , t p ),and then make use of the Dambis-Dubins-Schwarz theorem to transform it into F n = β (n)

1 ⌢

 1 and we recover the result of Lemma 3.2 when k is even. (The case where k is odd is trivial.) Lemma 3.[START_REF] Nica | Lectures on the Combinatorics of Free Probability[END_REF] We have f n r . . .

r k- 1 ⌢

 1 f n = 1 for all k 3 and all (r 1 , . . . , r k-1 ) ∈ C k .

2 4

 2 Proof of Theorem 1.1

  .29) Now, let k 3 and (r 1 , . . . , r k-1 ) ∈ C k . Thanks to (4.29), we have

Lemma 4 . 3 1 j=1jj -2r 1 - 2 . 1 j=1j -2r 1 - 1 j=1j -2r 1 - 1 j=1j 2 Lemma 4 . 4

 4311211111244 For all k 3, we have E[B(1) k ] = (r 1 ,...,r k-1 )∈C k k--2r 1 /p -. . . -2r j-1 /p r j /p .Proof. The identity is clear when k is an odd integer, because C k = ∅ in this case. Assume now that k is even. Consider the representation B(1) = I 1 (1 [0,1]). Iterative applications of the product formula (2.11) leads toB(1) k = I 1 (1 [0,1] ) k = (r 1 ,...,r k-1 )∈ A k I k-2r 1 -...-2r k-1 1 [0,1] ⊗ r 1 . . . ⊗ r k-1 1 [0,1] . . . -2r j-1 r j ,whereA k = (r 1 , . . . , r k-1 ) ∈ {0, 1} k-1 : r 2 2 -2r 1 , r 3 3 -2r 1 -2r 2 , . . . , r k-1 k -1 -2r 1 -. . . -2r k-By taking the expectation, we deduce thatE[B(1) k ] = (r 1 ,...,r k-1 )∈ C k 1 [0,1] ⊗ r 1 . . . ⊗ r k-1 1 [0,1] × k-. . . -2r j-1 r j , with C k = (r 1 , . . . , r k-1 ) ∈ {0, 1} k-1 : r 2 2 -2r 1 , r 3 3 -2r 1 -2r 2 , . . . , r k-1 k -1 -2r 1 -. . . -2r k-2 , 2r 1 + . . . + 2r k-1 = k . It is readily checked that 1 [0,1] ⊗ r 1 . . . ⊗ r k-1 1 [0,1] = 1 [0,1] ⊗ r 1 . . .⊗ r k-1 1 [0,1] = 1 for all (r 1 , . . . , r k-1 ) ∈ C k . Hence E[B(1) k ] = (r 1 ,...,r k-1 )∈ C k k-. . . -2r j-1 r j = (r 1 ,...,r k-1 )∈C k k--2r 1 /p -. . . -2r j-1 /p r j /p , which is the desired conclusion. As n → ∞, assume that f n ⊗ r f n L 2 ([0,1] 2p-2r) → 0 for all r = 1, . . . , p -1. Then, as n → ∞ we have f n ⊗ r 1 . . . ⊗ r k-1 f n → 0 for all k 3 and all (r 1 , . . . , r k-1 ) ∈ E k .

( 4 . 1 L 2 (f n 2 L 2 (

 41222 29) that f ⊗d n ⊗ p f n ≈ d pn ⊗ r 1 . . . ⊗ r k-1 f n = f n ⊗ r 1 . . . ⊗ r j-1 f n ⊗ r j f n ⊗ r j+1 . . . ⊗ r k-1 f n ≈ c (f n ⊗ . . . ⊗f n ) ⊗ r j f n ⊗ r j+1 . . . ⊗ r k-1 f n (for some constant c > 0 independent of n) c (f n ⊗ . . . ⊗f n ) ⊗(f n ⊗ r j f n ) L 2 ([0,1] q ) f n k-j-[0,1] p ) (by Cauchy-Schwarz, for a certain q) c f n ⊗ r j f n (because [0,1] p ) = 1 p!1) -→ 0 as n → ∞.

2

 2 

  Let π ∈ S 2p . If r ∈ {0, . . . , p} denotes the cardinality of {π(1), . . . , π(p)} ∩ {1, . . . , p} then it is readily checked that r is also the cardinality of {π(p + 1), . . . , π(2p)} ∩ {p + 1, . . . , 2p} and that[0,1] 2pf n (t 1 , . . . , t p )f n (t π(1) , . . . , t π(p) )f n (t p+1 , . . . , t 2p )f n (t π(p+1) , . . . , t π(2p) )dt 1 . . . dt 2p

	=
	[0,1] 2p-2r

  times f n ⊗ . . . ⊗f n . (Here, "d times" just means that f n appears d times in the expression.) It is readily checked thatf ⊗d n = f ⊗d π∈S dp [0,1] p f n (t π(1) , . . . , t π(d) ) . . . f n (t π(dp-p+1) , . . . , t π(dp) )×f n (t dp-p+1 , . . . , t dp )dt dp-d+1 . . . dt dp .Let π ∈ S dp . When {π(jpp + 1), . . . , π(jp)} = {dpp + 1, . . . , dp} for all j = 1, . . . , d, it is readily checked, using (4.27) as well as Cauchy-Schwarz, that the function

		n
	so that, according to (2.9),	
	f ⊗d n ⊗ p f n (t 1 , . . . , t dp-p ) =	1 (dp)! 1
		(dp)! π∈A dp [0,1]

(t 1 , . . . , t dp-p ) → [0,1] p f n (t π(1) , . . . , t π(d) ) . . . f n (t π(dp-p+1) , . . . , t π(dp) )

×f n (t dp-p+1 , . . . , t dp )dt dp-d+1 . . . dt dp tends to zero in L 2 ([0, 1] dp-p ). Let A dp be the set of permutations π ∈ S dp for which there exists (at least one) j ∈ {1, . . . , d} such that {π(jpp + 1), . . . , π(jp)} = {dpp + 1, . . . , dp}. We then have

f ⊗d n ⊗ p f n (

t 1 , . . . , t dp-p ) ≈ p f n (t π(1) , . . . , t π(d) ) . . . f n (t π(dp-p+1) , . . . , t π(dp) ) ×f n (t dp-p+1 , . . . , t dp )dt dp-d+1 . . . dt dp ,
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Moreover, for any fixed r ∈ {0, . . . , p}, there are p r 2 (p!) 2 permutations π ∈ S 2p such that #{π(1), . . . , π(p)} ∩ {1, . . . , p} = r. (Indeed, such a permutation is completely determined by the choice of: (a) r distinct elements x 1 , . . . , x r of {1, . . . , p}; (b) pr distinct elements x r+1 , . . . , x p of {p + 1, . . . , 2p}; (c) a bijection between {1, . . . , p} and {x 1 , . . . , x p }; (d) a bijection between {p + 1, . . . , 2p} and {1, . . . , 2p} \ {x 1 , . . . , x p }.) Now, recall from (2.9) that the symmetrization of f n ⊗ f n is given by

Therefore,

Hence, using (4.25), we deduce that

(4.26)

The product formula (2.11) leads to

By inserting (4.26) in the previous identity, we get the desired result.