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We consider vaccination control of the spread of an epidemy in a classical SIR model. Our approach aims at controlling the number infected at the peak. It differs from the widespread stationary vaccination control strategies, based upon having control reproductive number stricly less than one to ensure convergence, and also from cost minimization optimal control ones. Indeed, instead of aiming at an equilibrium or optimizing, we look for policies able to maintain the number of infected individuals below a threshold for all times. Thus doing, we focus both on transitories and on asymptotics, in a robust way. We provide a formulation of an epidemy management as a dynamic control under constraint problem, for which the constraint to maintain the number of infected individuals below a threshold for all times has to be achieved by a time-dependent vaccination strategy. The so-called viability kernel is the set of initial states for which such a vaccination policy exists. We give an expression of the viability kernel, and characterize viable policies. We exhibit policies that are both viable and asymptotic, in that they both control the maximum number infected at the peak and asymptotically drive the number of infected to zero.

Introduction

We consider vaccination control of the spread of an epidemy in a classical SIR model. Our approach aims at controlling the number infected at the peak. It differs from the widespread stationary vaccination control strategies, based upon having control reproductive number stricly less than one to ensure convergence, and also from cost minimization optimal control ones.

In the SIR model (and in many other models), a significant quantity is the "basic reproductive number" R 0 which depends on parameters such as the transmission rate, the death and birth rate, etc. Numerous works (see references in [START_REF] Hethcote | The mathematics of infectious diseases[END_REF][START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases[END_REF]) exhibit conditions on R 0 such that the number of infected individuals tends towards zero. With this tool, different management strategies of the propagation of the infection -quaranteen, vaccination, etc. -are compared with respect to how they modify R 0 . Thus, strategies are compared as to their capacity to drive the number of infected towards zero, focusing on asymptotics rather than on the transitory phase.

Other works deal with the whole trajectory, as in dynamic optimization where strategies are compared with respect to intertemporal costs and benefits [START_REF] Hethcote | Optimal vaccination schedules in a deterministic epidemic model[END_REF], [START_REF] Longini | An optimization model for influenza A epidemics[END_REF], [START_REF] Hethcote | Optimal ages of vaccination for measles[END_REF], [START_REF] Kirschner | Optimal control of the chemotherapy of HIV[END_REF], [START_REF] Culshaw | Optimal HIV treatment by maximising immune response[END_REF], etc. More recently, [START_REF] Hansen | Optimal control of epidemics with limited resources[END_REF] studies controls that minimize the outbreak size (or infectious burden) under the assumption that there are limited control resources.

Our approach focuses both on transitories and asymptotics, in a robust way. Instead of aiming at an equilibrium or optimizing, we look for policies able to maintain the number of infected individuals below a threshold for all times. To our knowledge, this approach is new. We have only found it mentioned in passing in [START_REF] Hethcote | Optimal vaccination schedules in a deterministic epidemic model[END_REF] as a constraintbounding above the maximum number infected at the peak -in a dynamic optimization problem, solved numerically.

In this paper, we provide a formulation of an epidemy management as a dynamic control under constraint problem, for which the constraint to maintain the number of infected individuals below a threshold for all times has to be achieved by a timedependent vaccination strategy.

Dynamic control under constraints problems refers to viability [START_REF] Aubin | Viability Theory[END_REF] or invariance [START_REF] Clarke | Qualitative properties of trajectories of control systems: a survey[END_REF] frameworks. In the control theory literature, problems of constrained control lead to the study of positively invariant sets, particularly ellipsoidal and polyhedral ones for linear systems (see [START_REF] Bitsoris | On the positive invariance of polyhedral sets for discrete-time systems[END_REF], [START_REF] Gilbert | Linear systems with state and control constraints: the theory and application of maximal output admissible sets[END_REF], [START_REF] Gutman | Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states[END_REF] and the survey paper [START_REF] Blanchini | Set invariance in control (survey paper)[END_REF]); reachability of target sets or tubes for nonlinear discrete time dynamics is examined in [START_REF] Bertsekas | On the minimax reachability of target sets and target tubes[END_REF]. Such a viability approach has been applied to models related to the sustainable management of fisheries [START_REF] Béné | A viability analysis for a bio-economic model[END_REF], [START_REF] Béné | Storage and viability of a fishery with resource and market dephased seasonnalities[END_REF], [START_REF] Cury | Viability theory for an ecosystem approach to fisheries[END_REF], [START_REF] Mullon | Viability model of trophic interactions in marine ecosystems[END_REF], [START_REF] Doyen | Sustainability of exploited marine ecosystems through protected areas: a viability model and a coral reef case study[END_REF], to viable strategies to ensure survival of some species [START_REF] Bonneuil | Population viability in three trophic-level food chains[END_REF], to secure the prey predator system [START_REF] Bonneuil | Viable populations in a prey-predator system[END_REF], to value the contribution of biodiversity to ecosystem performance [START_REF] Béné | Contribution values of biodiversity to ecosystem performances: A viability perspective[END_REF], to forest management [START_REF] Rapaport | Sustainable management of renewable resource: a viability approach[END_REF], to livestock management [START_REF] Tichit | A viability model to assess the sustainability of mixed herd under climatic uncertainty[END_REF], or to monetary policy control [START_REF] Krawczyk | Satisficing solutions to a monetary policy problem: a viability theory approach[END_REF]. Different examples may be found in [START_REF] De Lara | Sustainable Management of Natural Resources[END_REF] for sustainable management applications.

In Section 2, we present a classical SIR model with vaccination, then formulate a control problem with constraint on the infected population abundance. In Section 3, we define and give the expression of the so-called viability kernel. This is the set of initial states for which exists a vaccination policy such that the solution of the SIR model satisfies the viability constraint consisting in maintaining the number of infected individuals below a threshold for all times. We discuss the implications of our results. Proofs are relegated in the Appendix.

Bounding up infected population with vaccination control

We present a classical SIR model with vaccination, then formulate a control problem with constraint on the infected population abundance. Our aim consists in identifying conditions under which a vaccination strategy (time-varying newborn vaccination rate) exists, making in sort that this constraint is satisfied for all times.

We consider a population subdivided in four groups:

-S the number of susceptibles, -I the number of infected, -R the number of removed individuals, -V the number of vaccinated.

We shall suppose that the total population

N = S + I + R + V is constant.
We consider the classical SIR model with newborn vacccination (see [START_REF] Hethcote | Three basic epidemiological models[END_REF][START_REF] Edelstein-Keshet | Mathematical Models in Biology. Birkhäuser mathematics series[END_REF] and the references there in), where t denotes time:

dS dt = -βIS + δN (1 -p) -δS , dI dt = βIS -νI -δI , dR dt = νI -δR , dV dt = δN p -δV .
In the above equations, β is the transmission rate, δ the birth and death rate, ν the recovery rate, and p the newborn vaccination rate.

Notice that the two variables S t and I t satisfy a coupled controlled dynamical system:

dS t dt = -βI t S t + δN (1 -p t ) -δS t , (2a) 
dI t dt = βI t S t -νI t -δI t . (2b) 
From now on, the state variable is the couple (S, I), while the variable p, newborn vaccination rate, is the control variable varying in [0, 1]. Let 0 < Imax ≤ N . Our aim consists in finding, if it exists, a piecewise continuous function t → p t (vaccination rate policy), such that the following so-called viability constraint is satisfied:

I t < Imax , ∀t ≥ t 0 . (3) 
The existence of such a vaccination rate policy depends crucially on the initial state (S t0 , I t0 ) at initial time t 0 . We shall now study the set of such initial states, also called the viability kernel [START_REF] Aubin | Viability Theory[END_REF].

Viability kernel and viable vaccination policies for the control of infected

We shall now define and give the expression of the viability kernel. Then, we shall provide viable policies, examine viable equilibria, and study how the viability kernel varies with the parameters. Doing this, we are going to cross a well known quantity, the basic reproductive number R 0 (without vaccination):

R 0 := β δ + ν N . (4) 
Fig. 1 The state constraints set V 0 (in gray)

The so-called control reproductive number for a stationary vaccination rate p is (1p)R 0 .

Expression of the viability kernel

Definition 1 The viability kernel V(Imax) is the set of initial states (S t0 , I t0 ) at initial time t 0 for which exists a vaccination rate policy t → p t ∈ [0, 1], such that the solution of the dynamical system (2a)-(2b) satisfies the viability constraint (3).

First, let us recall that our study domain without constraints is the positively invariant set {(S, I) | S ≥ 0, I ≥ 0, S + I ≤ N }. Second, the viability kernel V(Imax) is necessarily included in the rectangle [0, N ] × [0, Imax[, because the initial point must satisfy the viability constraint (3). The so-called state constraints set is their intersection (see Figure 2)

V 0 := {(S, I) | S ≥ 0, Imax > I ≥ 0, S + I ≤ N } . (5) 
We put

Smax := N R 0 = δ + ν β . (6) 
Theorem 1 The viability kernel V(Imax) is either the whole state constraint set V 0 or is strictly smaller (see Figure 1) depending on whether the upper bound Imax on the number of infected is high or low.

-When Imax + Smax ≥ N , then V(Imax) = V 0 is the whole state constraint set.

-When Imax + Smax < N , then (see Figure 2)

V(Imax) = V 0 ∩ {(S, I) | Smax ≤ S ≤ N and I < I(S)} (7) 
Fig. 2 The viability kernel V(Imax) when Imax + Smax < N is the domain of the whole state constraint set V 0 below the vaccination barrier

B := {(S, I(S)) | Smax ≤ S ≤ N } . ( 8 
)
This latter is given by the solution S ∈ [Smax, N ] → I(S) to the differential equation:

0 = S(βI(S) + δ)I ′ (S) + βI(S)(S -Smax) , (9a) 
I(Smax) = Imax . (9b) 
Any policy exhibiting maximal vaccination rate p t = 1 in the neighbourhood of the upper frontier [0, Smax] × {Imax} and of the vaccination barrier B = {(S, I(S)) | Smax ≤ S ≤ N } is viable.

Description of the vaccination barrier

The differential equation (9a) may be solved by separation of variables, giving

(βI + δ) I dI = -βS + δ + ν S dS ,
and therefore the vaccination barrier B is also described by

βI + δ log I + βS -(δ + ν) log S = βImax + δ log Imax + βSmax -(δ + ν) log Smax .
Notice that the differential equation (9a)-(9b) is the solution of the dynamical system (2a)-(2b) starting from the initial state (Smax, Imax) and with stationary control p t = 1 (this is a well known result in viability theory [START_REF] Quincampoix | Frontières de domaines d'invariance et de viabilité pour des inclusions différentielles avec contraintes[END_REF][START_REF] Aubin | Viability Theory[END_REF]).

Maximum number infected at the peak in the stationary case

Our approach fixes first an infected threshold Imax, then looks for initial states such that the maximum number infected at the peak can remain below Imax by means of a non-stationary strategy. In [START_REF] Hethcote | Optimal vaccination schedules in a deterministic epidemic model[END_REF], the opposite is done: one starts from a given initial state, applies a stationary vaccination rate p t ≡ p, then identifies the maximum number infected at the peak. As shown below, it happens that both methods rely upon close differential equations, but with different initial conditions. For fixed vaccination rate p, suppose that the following differential equation is well defined for all S ∈ [0, N ]:

0 = `δN (1 -p) + S(βIp(S) + δ) ´I′ p (S) + βIp(S)(S -Smax) , (10a) 
Ip(S t0 ) = I t0 . ( 10b 
)
Starting from the initial state (S t0 , I t0 ), we can show that the maximum number infected at the peak is given by max t≥t0 I t = Ip(Smax). This is because the orbit of the dynamical system (2a)-(2b) starting from (S t0 , I t0 ) is included in the 0-level set of the (Lyapunov) function Lp(S, I) = I -Ip(S). Indeed, with classical notations, we put

Lp(S, I) = ∂Lp ∂I (S, I, p) `β(S -Smax) -I ′ p (S) ´+ ∂Lp ∂S (S, I) `-βIS -δS + δN (1 -p) = Iβ(S -Smax) -I ′ p (S) `-βIS -δS + δN (1 -p)
´, and we deduce that Lp(S, Ip(S)) = 0 by (10a). Now, we know that the peak is achieved when dI dt changes its sign, hence at S = Smax by (2b). Thus, given an initial state (S t0 , I t0 ), the maximum number infected at the peak is given by max t≥t0 I t = Ip(Smax).

Notice that, by a comparison theorem [START_REF] Arnold | Équations différentielles ordinaires[END_REF], one can prove that Ip(S) is increasing with p. Therefore, the maximum number infected at the peak increases with vaccination rate, as suggested by intuition.

Relation with stationary vaccination control

We shall now compare our "non-stationary maximum peak" approach with the more traditional "stationary asymptotic" one.

For fixed vaccination rate p, the control reproductive number [START_REF] Edelstein-Keshet | Mathematical Models in Biology. Birkhäuser mathematics series[END_REF][START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases[END_REF][START_REF] Hethcote | Qualitative analyses of communicable disease models[END_REF] is R 0 (1-p). It is well known that, if R 0 (1 -p) < 1, the equilibrium ((1 -p)N, 0) is globally asymptotically stable, and the epidemy asympotically dies; on the contrary, if R 0 (1p) > 1, susceptibles and infectives approach constant levels (see [START_REF] Hethcote | Three basic epidemiological models[END_REF] for more details). Asymptotic control goes as follows [START_REF] Anderson | Infectious Diseases of Humans[END_REF][START_REF] Edelstein-Keshet | Mathematical Models in Biology. Birkhäuser mathematics series[END_REF]. For fixed vaccination rate p strictly above the critical proportion of the population to be immunized

pc := 1 - 1 R 0 , (11) 
one has R 0 (1 -p) < 1. Therefore, stationary vaccination control p t ≡ p > pc ensures that the number of infected I t will tend to zero as time t goes on.

Our approach is different. We are not looking for a stationary vaccination rate policy to asymptotically achieve a steady state without infected. We first fix an infected threshold Imax, then look whether exist non-stationary vaccination rate policies such 

Viable and asymptotic non-stationary vaccination control strategies

We suggest the following vaccination control strategy aiming both at controlling the maximum number infected at the peak and at asymptotically driving the number of infected to zero. Assuming the initial state (S t0 , I t0 ) to belong to the viability kernel V(Imax), -apply maximal vaccination rate control p t = 1 in the vicinity of the upper frontier [0, Smax]×{Imax} and of the vaccination barrier B = {(S, I(S)) | Smax ≤ S ≤ N }, -apply fixed vaccination rate p t = p where p > pc elsewhere within the viability kernel.

For example, one can use a strategy of the form

p t = max{e -λ(I(St)-It) , κpc + 1 -κ} (12) 
where λ > 0 and 0 < κ < 1. An illustration is given in Figure 3.

Viable equilibria for fixed vaccination rate p

We here check that viable equilibria, namely those equilibria which respect the viability constraint (3), belong to the viability kernel V(Imax), as is well known [START_REF] Aubin | Viability Theory[END_REF]. For fixed vaccination rate p, the dynamical system (2a)-(2b) has the two following equilibria [START_REF] Daley | Epidemic Modelling[END_REF][START_REF] Edelstein-Keshet | Mathematical Models in Biology. Birkhäuser mathematics series[END_REF][START_REF] Hethcote | Qualitative analyses of communicable disease models[END_REF] (when the following quantities are nonnegative):

(Smax, (δ + ν)(N (1 -p) -Smax) βSmax + ν ) and (N (1 -p), 0) . (13) 
Now, we let vaccination rate p vary to obtain all the viable equilibria.

-If Smax > N , i.e. R 0 < 1, the viable equilibria are the horizontal straight line ] when this latter upper bound is strictly less than Imax, or the vertical straight line {Smax} × [0, Imax[ else.

[0, N ] × {0}. -if Smax ≤ N , i.e.
One can check that these viable equilibria indeed belong to the viability kernel V(Imax).

Sensitivity analysis

We examine now the shape of the vaccination barrier B = {(S, I(S))|Smax ≤ S ≤ N }. We show in the Appendix that (9a) is equivalent to

I ′ (S) = -1 + δS + I(S)(δ + ν) (βI(S) + δ)S . (14) 
Observing that I ′ (S) > -1, we conclude that the vaccination barrier is above the straight line {(S, I) | S + I = Smax + Imax}, which has slope -1 and passes by (Smax, Imax).

-As the transmission rate β decreases, the slope of I increases, which results in an increase of the viability kernel by a comparison theorem [START_REF] Arnold | Équations différentielles ordinaires[END_REF]. Indeed, the smaller β, the less contagious the infection, so that it is easier to contain infected below a threshold if the spread of the disease is slow and weak. -As the recovery rate ν increases, the slope of I increases, hence the viability kernel increases. Indeed, the larger ν, the less infection. -The influence of the birth and death rate δ is ambiguous.

-The influence of R 0 on the shape of the viability kernel is not clear. When R 0 decreases, Smax increases and the rectangular left part of the viability kernel increases. However, we do not know how the curved right part moves since the vaccination barrier B depends both on R 0 and on δ/β. Assuming that δ/β is fixed (only ν/β varies), we see that the vaccination barrier goes down when R 0 decreases.

Conclusion

After having first fixed an infected threshold Imax, we have identified all initial states such that the maximum number infected at the peak can remain below Imax by means of a non-stationary strategy. We have also identified viable strategies, and given examples of strategies aiming both at controlling the maximum number infected at the peak and at asymptotically driving the number of infected to zero.

To our knowledge, this approach is new. The viable point of view in mathematical epidemiology seems not to have ever been studied before. We have presented the basic idea with a simple SIR model with vaccination rate as control. Nevertheless, on the one hand, our model can be made more realistic by putting an upper bound pmax < 1 on the control, avoiding full vaccination rate which is impossible or highly costly. This changes the vaccination barrier with a new frontier given by inf p∈[0,pmax] H(S, I(S), -I ′ (S), 1, p) = 0 (where the Hamiltonian H is introduced in the proof in the Appendix) On the other hand, this approach can be extended to other models with other controls, such as isolation or quarantine.

A Appendix: simulations parameter values

Simulations are made with data from [15, p.44]: N = 100 , β = 0.00 028 , ν = 0.005 , δ = 0.01 .

B Appendix: proof of Theorem 1

We suppose that Imax < R 0 -1 R 0 N , i. e. Imax + Smax < N . Otherwise, the proof is easy and left to the reader.

The proof will consist of three Lemmas. It makes use of a geometric characterization of viable sets. A subset V of the state constraint set V 0 in ( 5) is said to be a viable set if there exists t → pt ∈ [0, 1], such that the solution to the dynamical system (2a)-(2b) starting from any initial state (St 0 , It 0 ) ∈ V at initial time t 0 , remains within V for all times t ≥ t 0 . It may easily be seen that a union of viable sets still is a viable set. A Theorem by Aubin [START_REF] Aubin | Viability Theory[END_REF] states that the viability kernel is the largest viable set, that is, the union of all viable sets.

To the controlled dynamical system (2a)-(2b), we associate the controlled vector field g given by its two components: 

g S (S, I, p) = -βIS + δN (1 -p) -δS , (15a) 
Lemma 1 There exists a unique solution S ∈ [Smax, N ] → I(S) to the differential equation (9a)-(9b). This solution I is decreasing and strictly positive.

Proof Notice that Imax + Smax < N ⇒ Smax < N .

In the neighbourhood of Smax > 0 and I(Smax) = Imax > 0, the expression (βI(S) + δ)S is strictly positive. Thus, we can write (9a) as

I ′ (S) = - I(S)(S -Smax) (I(S) + δ/β)S . (17) 
This differential equation has separable variables. We shall not follow the path to solve it this way, but we shall directly study the solution properties.

-By the Cauchy Lipschitz theorem applied to [START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases[END_REF], there exists a local solution I of (9a) and ( 17) around Smax > 0.

-We shall now prove that the above local solution I is such that I(S) > 0. Indeed, suppose that there exists S 0 ≥ Smax such that I(S 0 ) = 0. In the neighbourhood of S 0 > 0, the expression (βI(S) + δ)S is strictly positive so that (9a) and ( 17) are locally equivalent. Now, around S 0 > 0, we have two solutions, S → I(S) and S → 0, as can be checked on formulas (9a) or [START_REF] Diekmann | Mathematical Epidemiology of Infectious Diseases[END_REF]. By the Cauchy Lipschitz theorem, this may not happen by uniqueness. Therefore, no such S 0 ≥ Smax may exist, and thus I(S) > 0 for all S such that the solution is well defined. -Finally, we shall prove that the above local solution I is decreasing. Indeed, by examining (9a) or ( 17), we see that I ′ (S) < 0. -To conclude, the above unique local solution I of (9a) is decreasing and bounded below by 0. Therefore, it can be defined for all S Smax. Now, we shall prove that the intersection set

V := V 0 ∩ {(S, I) | Smax ≤ S ≤ N and I < I(S)} (18) 
introduced in Theorem 1 is a viable domain.

Lemma 2

The set V is a viable domain.

Proof The proof consists in writing V as the union of viable domains Vǫ for all ǫ > 0.

For this, we shall consider the following slightly modified version of the differential equation (9a)-(9b), where ǫ > 0 is small enough:

-ǫIǫ(S) = S(βIǫ(S) + δ)I ′ ǫ (S) + βIǫ(S)(S -Smax) , (19a) 
Iǫ(Smax -ǫ) = Imax -ǫ . (19b) 
By the same proof as in Lemma 1, we can show that the above differential equation has a unique solution S ∈ [Smax -ǫ, N ] → Iǫ(S), strictly positive and strictly decreasing. We put

Vǫ := V 0 ∩ {(S, I) | Smax -ǫ ≤ S ≤ N and I < Iǫ(S)} . (20) 
By a comparison theorem [START_REF] Arnold | Équations différentielles ordinaires[END_REF], it can straightforwardly be seen that the solution Iǫ of (19a)-(19b) is below the solution I of (9a)-(9b). Hence Vǫ ⊂ V. By a continuity argument, V is the union of all Vǫ for ǫ > 0. Now, we prove that any Vǫ is a viable domain. Since the state constraint set V 0 is strongly invariant, we can focus upon the frontier line {(S, Imax -ǫ) | 0 ≤ S < Smax -ǫ} and upon the frontier curve {(S, Iǫ(S))|Smax -ǫ ≤ S ≤ N }. By examining the scalar product of the controlled vector field g with the normal vector at these two frontier curves, we shall prove the existence of a control p ∈ [0, 1] such that the controlled vector field g is inward to the domain Vǫ.

- We have I ′ ǫ (S) < 0, so that inf

p∈[0,1]
H(S, Iǫ(S), n S , n I , p) = -I ′ ǫ (S)(-βIǫ(S)S-δS)+βIǫ(S)(S-Smax) = -ǫIǫ(S) < 0 , because Iǫ is solution of (19a) and Iǫ(S) > 0. Therefore, the control p = 1 at the frontier {(S, Iǫ(S))|Smax -ǫ ≤ S ≤ N } is such that the controlled vector field g is inward to the domain Vǫ.

-At the common extremity (Smax-ǫ, Imax-ǫ), the normal cone is

" n S n I « = a " -I ′ ǫ (Smax -ǫ) 1 « + b " 0 1 
« , with a ≥ 0 and b ≥ 0 and a + b > 0. Therefore, the Hamiltonian ( 16) evaluated for such normal vectors at this common extremity (Smax -ǫ, Imax -ǫ) is given by

H(Smax -ǫ, Imax -ǫ, n S , n I , p) = -aI ′ ǫ (Smax -ǫ) `-β(Imax -ǫ)(Smax -ǫ) + δN (1 -p) -δ(Smax -ǫ) -βǫ(a + b)(Imax -ǫ) .
Since I ′ ǫ (S) < 0 and a ≥ 0, we obtain that inf

p∈[0,1] H(Smax -ǫ, Imax -ǫ, n S , n I , p) = -aI ′ ǫ (Smax -ǫ) `-β(Imax -ǫ)(Smax -ǫ) -δ(Smax -ǫ) ´-βǫ(a + b)(Imax -ǫ) < 0 ,
because a+b > 0. Therefore, the control p = 1 at the common extremity (Smax-ǫ, Imax-ǫ) is such that the controlled vector field g is inward to the domain Vǫ.

-At (N, Iǫ(N )) the normal cone is

" n S n I « = a " -I ′ ǫ (N ) 1 « + b " 1 0 
« with a ≥ 0 and b ≥ 0, not both equal to 0. Therefore, the Hamiltonian ( 16) evaluated for such normal vectors at (N, Iǫ(N )) is given by

H(N, Iǫ(N ), n S , n I , p) = (b -aI ′ ǫ (N ))(-βIǫ(N )N -δpN ) + aβIǫ(N )(N -Smax) . Since I ′ ǫ (N ) < 0 and a ≥ 0, b ≥ 0, we obtain that inf p∈[0,1] H(N, Iǫ(N ), n S , n I , p) = (b -aI ′ ǫ (N ))(-βIǫ(N )N -δN ) + aβIǫ(N )(N -Smax) = b(-βIǫ(N )N -δN ) + a(N (βIǫ(N ) + δ)I ′ ǫ (N ) + βIǫ(N )(N -Smax)) = b(-βIǫ(N )N -δN ) -aǫIǫ(N ) < 0 ,
since Iǫ is a solution of (19a) and Iǫ > 0. Therefore, the control p = 1 at (N, Iǫ(N )) is such that the controlled vector field g is inward to the domain Vǫ.

To conclude, we have shown that the control p = 1 applied all along the boundary of the set Vǫ is such that the controlled vector field g is inward to the domain Vǫ. Thus, Vǫ is a viable set. Second, we shall prove that the constraint (3) is necessarily violated. Indeed, suppose the contrary: It < Imax for all t ≥ t 0 . We put Lt 0 = L(St 0 , It 0 ) > 0. We have L(St, It) ≥ L(St 0 , It 0 ) ⇒ I(St) < It -Lt 0 < Imax -Lt 0 = I(Smax) -Lt 0 , which implies that St > I -1 (I(Smax)-Lt 0 ). Therefore, St-Smax > κ, where κ = I -1 (I(Smax)-Lt 0 )-Smax > 0 does not depend on time t. Now, according to (2b), İ = βI(St -Smax) > βIκ, and thus It ≥ It 0 e κ(t-t 0 ) . Since κ > 0, this contradicts the initial assumption that It < Imax for all t ≥ t 0 . Therefore, the constraint (3) is necessarily violated.

To conclude, we have proved, on the one hand, that the set V defined in ( 18) is a viable set and, on the other hand, that any trajectory starting from an initial state outside V violates the constraint (3) after a finite time. Therefore, this set V is the viability kernel V(Imax).

Fig. 3

 3 Fig. 3 Converging trajectory with controlled maximum peak

  R 0 ≥ 1, the viable equilibria are the horizontal straight line [0, N ] × {0} and the vertical straight line {Smax} × [0, (δ+ν)(N -Smax) βSmax+ν

g

  I (S, I, p) = βIS -νI -δI . (15b) The scalar product of the controlled vector field g with a vector n = " n S n I « is the so-called Hamiltonian [31] H(S, I, n S , n I , p) := g S (S, I, p)n S + g I (S, I, p)n I with expression H(S, I, n S , n I , p) = (-βIS + δN (1 -p) -δS)n S + βI(S -Smax)n I .

1 «

 1 All along the segment {(S, Imax -ǫ) | 0 ≤ S < Smax -ǫ}, we haveH(S, Imax-ǫ, n S , n I , p) = (-β(Imax-ǫ)S+δN (1-p)-δS)n S +β(Imax-ǫ)Imax(S-Smax)n I .The outward normal cone to the segment is made of vectors" Imax -ǫ, n S , n I , p) = β(Imax -ǫ)(S -Smax)n I ≤ -βǫ(Imax -ǫ)n I < 0 because S < Smax -ǫ.Therefore, the control p = 1 at the frontier {(S, Imax -ǫ) | 0 ≤ S < Smax -ǫ} is such that the controlled vector field g is inward to the domain Vǫ.-Along the frontier curve {(S, Iǫ(S))|Smax -ǫ ≤ S ≤ N }, an outgoing normal vector is " . Therefore, the Hamiltonian (16) evaluated for this outgoing normal vector along this curve is given by H(S, Iǫ(S), -I ′ ǫ (S), 1, p) = -I ′ ǫ (S)(-βIǫ(S)S + δN (1 -p) -δS) + βIǫ(S)(S -Smax) .

Lemma 3 22 )Fig. 4 A

 3224 Fig. 4 A trajectory starting from outside the viability kernel, and violating the constraint
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