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Abstract

This is the lecture notes on the interplay between optimal transport and Rieman-
nian geometry. On a Riemannian manifold, the convexity of entropy along optimal
transport in the space of probability measures characterizes lower bounds of the
Ricci curvature. We then discuss geometric properties of general metric measure
spaces satisfying this convexity condition.
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1 Introduction

This article is extended notes based on the author’s lecture series in summer school at
Université Joseph Fourier, Grenoble: ‘Optimal Transportation: Theory and Applications’.
The aim of these five lectures (corresponding to Sections 3–7) was to review the recent
impressive development on the interplay between optimal transport theory and Rieman-
nian geometry. Ricci curvature and entropy are the key ingredients. See [Lo2] for a survey
in the same spirit with a slightly different selection of topics.

Optimal transport theory is concerned with the behavior of transport between two
probability measures in a metric space. We say that such transport is optimal if it min-
imizes a certain cost function typically defined from the distance of the metric space.
Optimal transport naturally inherits the geometric structure of the underlying space,
especially Ricci curvature plays a crucial role for describing optimal transport in Rieman-
nian manifolds. In fact, optimal transport is always performed along geodesics, and we
obtain Jacobi fields as their variational vector fields. The behavior of these Jacobi fields
is controlled by the Ricci curvature as is usual in comparison geometry. In this way, a
lower Ricci curvature bound turns out to be equivalent to a certain convexity property of
entropy in the space of probability measures. The latter convexity condition is called the
curvature-dimension condition, and it can be formulated without using the differentiable
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structure. Therefore the curvature-dimension condition can be regarded as a ‘definition’
of a lower Ricci curvature bound for general metric measure spaces, and implies many
analogous properties in an interesting way.

A prerequisite is the basic knowledge of optimal transport theory and Wasserstein
geometry. Riemannian geometry is also necessary in Sections 3, 4, and is helpful for
better understanding of the other sections. We refer to [AGS], [Vi1], [Vi2] and other
articles in this proceeding for optimal transport theory, [CE], [Ch] and [Sak] for the
basics of (comparison) Riemannian geometry. We discuss Finsler geometry in Section 7,
for which we refer to [BCS], [Sh2] and [Oh5]. Besides them, main references are [CMS1],
[CMS2], [vRS], [St3], [St4], [LV2], [LV1] and [Vi2, Chapter III].

The organization of this article is as follows. After summarizing some notations we
use, Section 3 is devoted to the definition of the Ricci curvature of Riemannian manifolds
and to the classical Bishop-Gromov volume comparison theorem. In Section 4, we start
with the Brunn-Minkowski inequalities in (unweighted or weighted) Euclidean spaces,
and explain the equivalence between a lower (weighted) Ricci curvature bound for a
(weighted) Riemannian manifold and the curvature-dimension condition. In Section 5, we
give the precise definition of the curvature-dimension condition for metric measure spaces,
and see that it is stable under the measured Gromov-Hausdorff convergence. Section 6
is concerned with several geometric applications of the curvature-dimension condition
followed by related open questions. In Section 7, we verify that this kind of machinery
is useful also in Finsler geometry. We finally discuss three related topics in Section 8.
Interested readers can find more references in Further Reading at the end of each section
(except the last section).

Some subjects in this article are more comprehensively discussed in [Vi2, Part III].
Despite these inevitable overlaps with Villani’s massive book, we try to argue in a more
geometric way, and mention recent development. Analytic applications of the curvature-
dimension condition are not dealt with in these notes, for which we refer to [LV1], [LV2]
and [Vi2, Chapter III] among others.

I would like to express my gratitude to the organizers for the kind invitation to the
fascinating summer school, and to all the audience for their attendance and interest. I
also thank the referee for careful reading and valuable suggestions.

2 Notations

Throughout the article except Section 7, (M, g) is an n-dimensional, connected, complete
C∞-Riemannian manifold without boundary such that n ≥ 2, volg stands for the Rie-
mannian volume measure of g. A weighted Riemannian manifold (M, g,m) will mean a
Riemannian manifold (M, g) endowed with a conformal deformation m = e−ψ volg of volg
with ψ ∈ C∞(M). Similarly, a weighted Euclidean space (Rn, ‖ · ‖, m) will be a Euclidean
space with a measure m = e−ψ voln, where voln stands for the n-dimensional Lebesgue
measure.

A metric space is called a geodesic space if any two points x, y ∈ X can be connected
by a rectifiable curve γ : [0, 1] −→ X of length d(x, y) with γ(0) = x and γ(1) = y. Such
minimizing curves parametrized proportionally to arc length are called minimal geodesics.
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The open ball of center x and radius r will be denoted by B(x, r). We remark that, thanks
to the Hopf-Rinow theorem (cf. [Bal, Theorem 2.4]), a complete, locally compact geodesic
space is proper, i.e., every bounded closed set is compact.

In this article, we mean by a metric measure space a triple (X, d,m) consisting of a
complete, separable geodesic space (X, d) and a Borel measure m on it. Our definition
of the curvature-dimension condition will include the additional (but natural) condition
that 0 < m(B(x, r)) < ∞ holds for all x ∈ X and 0 < r < ∞. We extend m to an outer
measure in the Brunn-Minkowski inequalities (Theorems 4.1, 4.3, 6.1, see Remark 4.2 for
more details).

For a complete, separable metric space (X, d), P(X) stands for the set of Borel prob-
ability measures on X . Define P2(X) ⊂ P(X) as the set of measures of finite second
moment (i.e.,

∫

X
d(x, y)2 dµ(y) < ∞ for some (and hence all) x ∈ X). We denote by

Pb(X) ⊂ P2(X), Pc(X) ⊂ Pb(X) the sets of measures of bounded or compact support,
respectively. Given a measure m on X , denote by Pac(X,m) ⊂ P(X) the set of abso-
lutely continuous measures with respect to m. Then dW2 stands for the L2-(Kantorovich-

Rubinstein-)Wasserstein distance of P2(X). The push-forward of a measure µ by a map
F will be written as F♯µ.

As usual in comparison geometry, the following functions will frequently appear in our
discussions. For K ∈ R, N ∈ (1,∞) and 0 < r (< π

√

(N − 1)/K if K > 0), we set

sK,N(r) :=











√

(N − 1)/K sin(r
√

K/(N − 1)) if K > 0,

r if K = 0,
√

−(N − 1)/K sinh(r
√

−K/(N − 1)) if K < 0.

(2.1)

This is the solution to the differential equation

s′′K,N +
K

N − 1
sK,N = 0 (2.2)

with the initial conditions sK,N(0) = 0 and s′K,N(0) = 1. For n ∈ N with n ≥ 2, sK,n(r)
n−1

is proportional to the area of the sphere of radius r in the n-dimensional space form of
constant sectional curvature K/(n− 1) (see Theorem 3.2 and the paragraph after it). In
addition, using sK,N , we define

βtK,N(r) :=

(

sK,N(tr)

tsK,N(r)

)N−1

, βtK,∞(r) := eK(1−t2)r2/6 (2.3)

for K,N, r as above and t ∈ (0, 1). This function plays a vital role in the key infinitesimal
inequality (4.14) of the curvature-dimension condition.

3 Ricci curvature and comparison theorems

We begin with the basic concepts of curvature in Riemannian geometry and several com-
parison theorems involving lower bounds of the Ricci curvature. Instead of giving the
detailed definition, we intend to explain the geometric intuition of the sectional and Ricci
curvatures through comparison geometry.
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Curvature is one of the most important quantities in Riemannian geometry. By putting
some conditions on the value of the (sectional or Ricci) curvature, we obtain various quan-
titative and qualitative controls of distance, measure, geodesics and so forth. Comparison
geometry is specifically interested in spaces whose curvature is bounded by a constant
from above or below. In other words, we consider a space which is more positively or
negatively curved than a space form of constant curvature, and compare these spaces
from various viewpoints.

The n-dimensional (simply connected) space form Mn(k) of constant sectional cur-
vature k ∈ R is the unit sphere S

n for k = 1; the Euclidean space R
n for k = 0; and

the hyperbolic space Hn for k = −1. Scaling gives general space forms for all k ∈ R,
e.g., Mn(k) for k > 0 is the sphere of radius 1/

√
k in Rn+1 with the induced Riemannian

metric.

3.1 Sectional curvature

Given linearly independent tangent vectors v, w ∈ TxM , the sectional curvature K(v, w) ∈
R reflects the asymptotic behavior of the distance function d(γ(t), η(t)) near t = 0 between
geodesics γ(t) = expx(tv) and η(t) = expx(tw). That is to say, the asymptotic behavior
of d(t) := d(γ(t), η(t)) near t = 0 is same as the distance between geodesics, with the
same speed and angle between them, in the space form of curvature k = K(v, w). (See
Figure 1 which represents isometric embeddings of γ and η into R2 such that d(γ(t), η(t))
coincides with the Euclidean distance.)

Figure 1

K > 0

γ η

x

K = 0

γ η

x

K < 0

γ η

x

Assuming ‖v‖ = ‖w‖ = 1 for simplicity, we can compute d(t) in the space form M
n(k)

by using the spherical/Euclidean/hyperbolic law of cosines as (cf. [Sak, Section IV.1])

cos
(
√
kd(t)

)

= cos2(
√
kt) + sin2(

√
kt) cos∠(v, w) for k > 0,

d(t)2 = 2t2 − 2t2 cos∠(v, w) for k = 0,

cosh
(√

−kd(t)
)

= cosh2(
√
−kt)− sinh2(

√
−kt) cos∠(v, w) for k < 0.
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Observe that the dimension n does not appear in these formulas. The sectional curvature
K(v, w) depends only on the 2-plane (in TxM) spanned by v and w, and coincides with
the Gaussian curvature at x if n = 2.

More precise relation between curvature and geodesics can be described through Jacobi
fields. A C∞-vector field J along a geodesic γ : [0, l] −→ M is called a Jacobi field if it
solves the Jacobi equation

Dγ̇Dγ̇J(t) +R
(

J(t), γ̇(t)
)

γ̇(t) = 0 (3.1)

for all t ∈ [0, l]. Here Dγ̇ denotes the covariant derivative along γ, and R : TxM ⊗
TxM −→ T ∗

xM ⊗ TxM is the curvature tensor determined by the Riemannian metric
g. Another equivalent way of introducing a Jacobi field is to define it as the variational
vector field J(t) = (∂σ/∂s)(0, t) of some C∞-variation σ : (−ε, ε) × [0, l] −→ M such
that σ(0, t) = γ(t) and that every σs := σ(s, ·) is geodesic. (This characterization of
Jacobi fields needs only the class of geodesics, and then it is possible to regard (3.1) as
the definition of R.) For linearly independent vectors v, w ∈ TxM , the precise definition
of the sectional curvature is

K(v, w) :=
〈R(w, v)v, w〉

‖v‖2‖w‖2 − 〈v, w〉2 .

It might be helpful to compare (3.1) with (2.2).

Remark 3.1 (Alexandrov spaces) Although it is not our main subject, we briefly
comment on comparison geometry involving lower bounds of the sectional curvature. As
the sectional curvature is defined for each two-dimensional subspace in tangent spaces,
it controls the behavior of two-dimensional subsets in M , in particular, triangles. The
classical Alexandrov-Toponogov comparison theorem asserts that K ≥ k holds for some
k ∈ R if and only if every geodesic triangle in M is thicker than the triangle with
the same side lengths in M2(k). See Figure 2 for more details, where M is of K ≥ k,
and then d(x, w) ≥ d(x̃, w̃) holds between geodesic triangles with the same side lengths
(d(x, y) = d(x̃, ỹ), d(y, z) = d(ỹ, z̃), d(z, x) = d(z̃, x̃)) as well as d(y, w) = d(ỹ, w̃).

Figure 2

d(x, w) ≥ d(x̃, w̃)x

y w z

M ⊃

x̃

ỹ z̃w̃

⊂ M
2(k)
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The point is that we can forget about the dimension of M , because the sectional
curvature cares only two-dimensional subsets. The above triangle comparison property is
written by using only distance and geodesics, so that it can be formulated for metric spaces
having enough geodesics (i.e., geodesic spaces). Such spaces are called Alexandrov spaces,
and there are deep geometric and analytic theories on them (see [BGP], [OtS], [BBI,
Chapters 4, 10]). We discuss optimal transport and Wasserstein geometry on Alexandrov
spaces in Subsection 8.2.

3.2 Ricci curvature

Given a unit vector v ∈ TxM , we define the Ricci curvature of v as the trace of the
sectional curvature K(v, ·),

Ric(v) :=
n−1
∑

i=1

K(v, ei),

where {ei}n−1
i=1 ∪ {v} is an orthonormal basis of TxM . We will mean by Ric ≥ K for

K ∈ R that Ric(v) ≥ K holds for all unit vectors v ∈ TM . As we discussed in the
previous subsection, sectional curvature controls geodesics and distance. Ricci curvature
has less information since we take the trace, and naturally controls the behavior of the
measure volg.

The following is one of the most important theorems in comparison Riemannian ge-
ometry, that asserts that a lower bound of the Ricci curvature implies an upper bound
of the volume growth. The proof is done via calculations involving Jacobi fields. Recall
(2.1) for the definition of the function sK,n.

Theorem 3.2 (Bishop-Gromov volume comparison) Assume that Ric ≥ K holds

for some K ∈ R. Then we have, for any x ∈ M and 0 < r < R (≤ π
√

(n− 1)/K if

K > 0),

volg(B(x,R))

volg(B(x, r))
≤

∫ R

0
sK,n(t)

n−1 dt
∫ r

0
sK,n(t)n−1 dt

. (3.2)

Proof. Given a unit vector v ∈ TxM , we fix a unit speed minimal geodesic γ : [0, l] −→ M
with γ̇(0) = v and an orthonormal basis {ei}n−1

i=1 ∪ {v} of TxM . Then we consider the
variation σi : (−ε, ε)×[0, l] −→M defined by σi(s, t) := expx(tv+stei) for i = 1, . . . , n−1,
and introduce the Jacobi fields {Ji}n−1

i=1 along γ given by

Ji(t) :=
∂σi
∂s

(0, t) = D(expx)tv(tei) ∈ Tγ(t)M

(see Figure 3, where s > 0).
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Figure 3

6
6

6
6

x γ

σi(s, ·)

Ji

Note that Ji(0) = 0, Dγ̇Ji(0) = ei, 〈Ji, γ̇〉 ≡ 0 (by the Gauss lemma) and 〈Dγ̇Ji, γ̇〉 ≡ 0
(by (3.1) and 〈R(Ji, γ̇)γ̇, γ̇〉 ≡ 0). We also remark that γ(t) is not conjugate to x for all
t ∈ (0, l) (and hence {Ji(t)}n−1

i=1 ∪{γ̇(t)} is a basis of Tγ(t)M) since γ is minimal. Hence we

find an (n− 1)× (n− 1) matrix U(t) = (uij(t))
n−1
i,j=1 such that Dγ̇Ji(t) =

∑n−1
j=1 uij(t)Jj(t)

for t ∈ (0, l). We define two more (n− 1)× (n− 1) matrices

A(t) :=
(

〈Ji(t), Jj(t)〉
)n−1

i,j=1
, R(t) :=

(

〈

R
(

Ji(t), γ̇(t)
)

γ̇(t), Jj(t)
〉

)n−1

i,j=1
.

Note that A and R are symmetric matrices. Moreover, we have tr(R(t)A(t)−1) =
Ric(γ̇(t)) as A(t) is the matrix representation of the metric g in the basis {Ji(t)}n−1

i=1

of the orthogonal complement γ̇(t)⊥ of γ̇(t). To be precise, choosing an (n− 1)× (n− 1)
matrix C = (cij)

n−1
i,j=1 such that {

∑n−1
j=1 cijJj(t)}n−1

i=1 is orthonormal, we observe In = CACt
(Ct is the transpose of C) and

Ric
(

γ̇(t)
)

=

n−1
∑

i,j,k=1

〈

R
(

cijJj(t), γ̇(t)
)

γ̇(t), cikJk(t)
〉

= tr
(

C(t)R(t)C(t)t
)

= tr
(

R(t)A(t)−1
)

.

Claim 3.3 (a) It holds that UA = AU t. In particular, we have 2U = A′A−1.

(b) The matrix U is symmetric and we have tr(U2) ≥ (trU)2/(n− 1).

Proof. (a) The first assertion easily follows from the Jacobi equation (3.1) and the sym-
metry of R, indeed,

d

dt
{〈Dγ̇Ji, Jj〉 − 〈Ji, Dγ̇Jj〉} = 〈Dγ̇Dγ̇Ji, Jj〉 − 〈Ji, Dγ̇Dγ̇Jj〉

= −〈R(Ji, γ̇)γ̇, Jj〉+ 〈Ji, R(Jj, γ̇)γ̇〉 = 0.

Thus we have A′ = UA+AU t = 2UA which shows the second assertion.
(b) Recall that

∂σi
∂t

(0, t) = γ̇(t),
∂σi
∂s

(0, t) = Ji(t)

hold for t ∈ (0, l). As [∂/∂s, ∂/∂t] = 0, we have

Dγ̇Ji(t) = Dt

(

∂σi
∂s

)

(0, t) = Ds

(

∂σi
∂t

)

(0, t).
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Now, we introduce the function

f : expx

({

tv +

n−1
∑

i=1

sitei

∣

∣

∣
t ∈ [0, l], |si| < ε

})

−→ R

so that f(expx(tv +
∑n−1

i=1 sitei)) = t. We derive from ∇f(σi(s, t)) = (∂σi/∂t)(s, t) that

Ds

(

∂σi
∂t

)

(0, t) = DJi(∇f)
(

γ(t)
)

= ∇2f
(

Ji(t)
)

,

where 〈∇2f(w), w′〉 = Hess f(w,w′). This means that U is the matrix presentation of
the symmetric form ∇2f (restricted in γ̇⊥) with respect to the basis {Ji}n−1

i=1 . Therefore
U is symmetric. By denoting the eigenvalues of U by λ1, . . . , λn−1, the Cauchy-Schwarz
inequality shows that

(trU)2 =
( n−1
∑

i=1

λi

)2

≤ (n− 1)

n−1
∑

i=1

λ2i = (n− 1) tr(U2).

♦
We calculate, by using Claim 3.3(a),

[

(detA)1/2(n−1)
]′
=

1

2(n− 1)
(detA)1/2(n−1)−1 · detA tr(A′A−1)

=
1

n− 1
(detA)1/2(n−1) trU .

Then Claim 3.3(b) yields

[

(detA)1/2(n−1)
]′′

=
1

(n− 1)2
(detA)1/2(n−1)(trU)2 + 1

n− 1
(detA)1/2(n−1) tr(U ′)

≤ 1

n− 1
(detA)1/2(n−1){tr(U2) + tr(U ′)}.

We also deduce from Claim 3.3(a) and (3.1) that

U ′ =
1

2
A′′A−1 − 1

2
(A′A−1)2 =

1

2
(−2R+ 2UAU)A−1 − 2U2 = −RA−1 − U2.

This implies the (matrix) Riccati equation

U ′ + U2 +RA−1 = 0.

Taking the trace gives
(trU)′ + tr(U2) + Ric(γ̇) = 0.

Thus we obtain from our hypothesis Ric ≥ K the differential inequality

[

(detA)1/2(n−1)
]′′ ≤ − K

n− 1
(detA)1/2(n−1). (3.3)
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This is a version of the fundamental Bishop comparison theorem which plays a prominent
role in comparison geometry. Comparing (3.3) with (2.2), we have

d

dt

{

[

(detA)1/2(n−1)
]′
sK,n − (detA)1/2(n−1)s′K,n

}

=
[

(detA)1/2(n−1)
]′′
sK,n − (detA)1/2(n−1)s′′K,n ≤ 0,

and hence (detA)1/2(n−1)/sK,n is non-increasing. Then integrating
√
detA in unit vectors

v ∈ TxM implies the area comparison theorem

areag(S(x,R))

areag(S(x, r))
≤ sK,n(R)

n−1

sK,n(r)n−1
, (3.4)

where S(x, r) := {y ∈ M | d(x, y) = r} and areag stands for the (n − 1)-dimensional
Hausdorff measure associated with g (in other words, the volume measure of the (n− 1)-
dimensional Riemannian metric of S(x, r) induced from g).

Now, we integrate (3.4) in the radial direction. Set A(t) := areag(S(x, t)) and S(t) :=
sK,n(t)

n−1, and recall that A/S is non-increasing. Hence we obtain the key inequality
∫ r

0

A dt

∫ R

r

S dt ≥ A(r)

S(r)

∫ r

0

S dt

∫ R

r

S dt ≥
∫ r

0

S dt

∫ R

r

A dt. (3.5)

From here to the desired estimate (3.2) is the easy calculation as follows

volg
(

B(x, r)
)

∫ R

0

sK,n(t)
n−1 dt =

∫ r

0

A dt

∫ R

r

S dt+

∫ r

0

A dt

∫ r

0

S dt

≥
∫ r

0

S dt

∫ R

r

A dt+

∫ r

0

A dt

∫ r

0

S dt = volg
(

B(x,R)
)

∫ r

0

sK,n(t)
n−1 dt.

2

The sphere of radius r in the space form Mn(k) has area ans(n−1)k,n(r)
n−1, where an

is the area of Sn−1, and the ball of radius r has volume an
∫ r

0
s(n−1)k,n(t)

n−1 dt. Thus the
right-hand side of (3.2) ((3.4), respectively) coincides with the ratio of the volume of balls
(the area of spheres, respectively) of radius R and r in Mn(K/(n− 1)).

Theorem 3.2 for K > 0 immediately implies a diameter bound. This ensures that the
condition R ≤ π

√

(n− 1)/K in Theorem 3.2 is natural.

Corollary 3.4 (Bonnet-Myers diameter bound) If Ric ≥ K > 0, then we have

diamM ≤ π

√

n− 1

K
. (3.6)

Proof. Put R := π
√

(n− 1)/K and assume diamM ≥ R. Given x ∈ M , Theorem 3.2
implies that

lim sup
ε↓0

volg(B(x,R) \B(x,R − ε))

volg(B(x,R))
= lim sup

ε↓0

{

1− volg(B(x,R− ε))

volg(B(x,R))

}

≤ lim sup
ε↓0

∫ R

R−ε
sK,n(t)

n−1 dt
∫ R

0
sK,n(t)n−1 dt

= 0.
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This shows areag(S(x,R)) = 0 and hence diamM ≤ R. To be precise, it follows from
areag(S(x,R)) = 0 that every point in S(x,R) must be a conjugate point of x. There-
fore any geodesic emanating from x is not minimal after passing through S(x,R), and
hence diamM = R. (A more direct proof in terms of metric geometry can be found in
Theorem 6.5(i).) 2

The bound (3.6) is sharp, and equality is achieved only by the sphere inMn(K/(n−1))
of radius

√

(n− 1)/K (compare this with Theorem 6.6).
As we mentioned in Remark 3.1, lower sectional curvature bounds are characterized

by simple triangle comparison properties involving only distance, and there is a successful
theory of metric spaces satisfying them. Then it is natural to ask the following question.

Question 3.5 How to characterize lower Ricci curvature bounds without using differen-

tiable structure?

This had been a long standing important question, and we will see an answer in the
next section (Theorem 4.6). Such a condition naturally involves measure and dimension
besides distance, and should be preserved under the convergence of metric measure spaces
(see Section 5).

Further Reading See, for instances, [CE], [Ch] and [Sak] for the fundamentals of Rie-
mannian geometry and comparison theorems. A property corresponding to the Bishop
comparison theorem (3.3) was proposed as a lower Ricci curvature bound for metric mea-
sure spaces by Cheeger and Colding [CC] (as well as Gromov [Gr]), and used to study the
limit spaces of Riemannian manifolds with uniform lower Ricci curvature bounds. The
deep theory of such limit spaces is one of the main motivations for asking Question 3.5,
so that the stability deserves a particular interest (see Section 5 for more details). The
systematic investigation of (3.3) in metric measure spaces has not been done until [Oh1]
and [St4] where we call this property the measure contraction property. We will revisit
this in Subsection 8.3. Here we only remark that the measure contraction property is
strictly weaker than the curvature-dimension condition.

4 A characterization of lower Ricci curvature bound

via optimal transport

The Bishop-Gromov volume comparison theorem (Theorem 3.2) can be regarded as a
concavity estimate of vol1/ng along the contraction of the ball B(x,R) to its center x.
This is generalized to optimal transport between pairs of uniform distributions (the
Brunn-Minkowski inequality) and, moreover, pairs of probability measures (the curvature-
dimension condition). Figure 4 represents the difference between contraction and trans-
port (see also Figures 5, 8).
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Figure 4
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The main theorem in this section is Theorem 4.6 which asserts that, on a weighted
Riemannian manifold, the curvature-dimension condition is equivalent to a lower bound
of the corresponding weighted Ricci curvature. In order to avoid lengthy calculations,
we begin with Euclidean spaces with or without weight, and see the relation between
the Brunn-Minkowski inequality and the weighted Ricci curvature. Then the general
Riemannian situation is only briefly explained. We hope that our simplified argument
will help the readers to catch the idea of the curvature-dimension condition.

4.1 Brunn-Minkowski inequalities in Euclidean spaces

For later convenience, we explain fundamental facts of optimal transport theory on Eu-
clidean spaces. Given µ0, µ1 ∈ Pc(Rn) with µ0 ∈ Pac(Rn, voln), there is a convex function
f : Rn −→ R such that the map

Ft(x) := (1− t)x+ t∇f(x), t ∈ [0, 1],

gives the unique optimal transport from µ0 to µ1 (Brenier’s theorem, [Br]). Precisely,
t 7−→ µt := (Ft)♯µ0 is the unique minimal geodesic from µ0 to µ1 with respect to the
L2-Wasserstein distance. We remark that the convex function f is twice differentiable
a.e. (Alexandrov’s theorem, cf. [Vi2, Chapter 14]). Thus ∇f makes sense and Ft is
differentiable a.e. Moreover, the Monge-Ampère equation

ρ1
(

F1(x)
)

det
(

DF1(x)
)

= ρ0(x) (4.1)

holds for µ0-a.e. x.
Now, we are ready for proving the classical Brunn-Minkowski inequality in the (un-

weighted) Euclidean space (Rn, ‖ · ‖, voln). Briefly speaking, it asserts that vol1/nn is
concave. We shall give a proof based on optimal transport theory. Given two (nonempty)
sets A,B ⊂ R

n and t ∈ [0, 1], we set

(1− t)A+ tB := {(1− t)x+ ty | x ∈ A, y ∈ B}.

(See Figure 5, where (1/2)A+ (1/2)B has much more measure than A and B.)
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Figure 5

A

(1/2)A+ (1/2)B

B

Theorem 4.1 (Brunn-Minkowski inequality) For any measurable sets A,B ⊂ Rn

and t ∈ [0, 1], we have

voln
(

(1− t)A+ tB
)1/n ≥ (1− t) voln(A)

1/n + t voln(B)1/n. (4.2)

Proof. We can assume that both A and B are bounded and of positive measure. The
case of voln(A) = 0 is easily checked by choosing a point x ∈ A, as we have

voln
(

(1− t)A + tB
)1/n ≥ voln

(

(1− t){x} + tB
)1/n

= t voln(B)1/n.

If either A or B is unbounded, then applying (4.2) to bounded sets yields

voln
(

(1− t){A ∩ B(0, R)}+ t{B ∩B(0, R)}
)1/n

≥ (1− t) voln
(

A ∩ B(0, R)
)1/n

+ t voln
(

B ∩B(0, R)
)1/n

.

We take the limit as R go to infinity and obtain

voln
(

(1− t)A+ tB
)1/n ≥ (1− t) voln(A)

1/n + t voln(B)1/n.

Consider the uniform distributions on A and B,

µ0 = ρ0 voln :=
χA

voln(A)
voln, µ1 = ρ1 voln :=

χB
voln(B)

voln,

where χA stands for the characteristic function of A. As µ0 is absolutely continuous, there
is a convex function f : Rn −→ R such that the map F1 = (1 − t) IdRn +t∇f , t ∈ [0, 1],
is the unique optimal transport from µ0 to µ1. Between the uniform distributions µ0 and
µ1, the Monge-Ampère equation (4.1) simply means that

det(DF1) =
voln(B)

voln(A)

µ0-a.e.
Note that DF1 = Hess f is symmetric and positive definite µ0-a.e., since f is convex

and det(DF1) > 0. We shall estimate det(DFt) = det((1 − t)In + tDF1) from above
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and below. To do so, we denote the eigenvalues of DF1 by λ1, . . . , λn > 0 and apply the
inequality of arithmetic and geometric means to see

{

(1− t)n

det((1− t)In + tDF1)

}1/n

+

{

tndet(DF1)

det((1− t)In + tDF1)

}1/n

=

{ n
∏

i=1

1− t

(1− t) + tλi

}1/n

+

{ n
∏

i=1

tλi
(1− t) + tλi

}1/n

≤ 1

n

n
∑

i=1

{

1− t

(1− t) + tλi
+

tλi
(1− t) + tλi

}

= 1.

Thus we have, on the one hand,

det(DFt)
1/n ≥ (1− t) + tdet(DF1)

1/n = (1− t) + t

{

voln(B)

voln(A)

}1/n

. (4.3)

On the other hand, the Hölder inequality and the change of variables formula yield

∫

A

det(DFt)
1/n dµ0 ≤

(
∫

A

det(DFt) dµ0

)1/n

=

(

1

voln(A)

∫

Ft(A)

d voln

)1/n

.

Therefore we obtain

∫

A

det(DFt)
1/n dµ0 ≤

{

voln(Ft(A))

voln(A)

}1/n

≤
{

voln((1− t)A + tB)

voln(A)

}1/n

.

Combining these, we complete the proof of (4.2). 2

Remark 4.2 We remark that the set (1− t)A+ tB is not necessarily measurable (regard-
less the measurability of A and B). Hence, to be precise, voln((1− t)A+ tB) is considered
as an outer measure given by infW voln(W ), where W ⊂ Rn runs over all measurable sets
containing (1− t)A+ tB. The same remark is applied to Theorems 4.3, 6.1 below.

Next we treat the weighted case (Rn, ‖ · ‖, m), where m = e−ψ voln with ψ ∈ C∞(Rn).
Then we need to replace 1/n in (4.2) with 1/N for some N ∈ (n,∞), and the analogue
of (4.2) leads us to an important condition on ψ.

Theorem 4.3 (Brunn-Minkowski inequality with weight) Take N ∈ (n,∞). A

weighted Euclidean space (Rn, ‖ · ‖, m) with m = e−ψ voln, ψ ∈ C∞(Rn), satisfies

m
(

(1− t)A + tB
)1/N ≥ (1− t)m(A)1/N + tm(B)1/N (4.4)

for all measurable sets A,B ⊂ Rn and all t ∈ [0, 1] if and only if

Hessψ(v, v)− 〈∇ψ(x), v〉2
N − n

≥ 0 (4.5)

holds for all unit vectors v ∈ TxR
n.
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Proof. We first prove that (4.5) implies (4.4). Similarly to Theorem 4.1, we assume that
A and B are bounded and of positive measure, and set

µ0 :=
χA
m(A)

m, µ1 :=
χB
m(B)

m.

We again find a convex function f : Rn −→ R such that µt := (Ft)♯µ0 is the minimal
geodesic from µ0 to µ1, where Ft := (1− t) IdRn +t∇f . Instead of det(DFt), we consider

detm
(

DFt(x)
)

:= eψ(x)−ψ(Ft(x))det
(

DFt(x)
)

.

The coefficient eψ(x)−ψ(Ft(x)) represents the ratio of the weights at x and Ft(x). As in The-
orem 4.1 (see, especially, (4.3)), it is sufficient to show the concavity of detm(DFt(x))

1/N

to derive the desired inequality (4.4). Fix x ∈ A and put

γ(t) := Ft(x), Φm(t) := detm
(

DFt(x)
)1/N

, Φ(t) := det
(

DFt(x)
)1/n

.

On the one hand, it is proved in (4.3) that Φ(t) ≥ (1 − t)Φ(0) + tΦ(1). On the other
hand, the assumption (4.5) implies that e−ψ(Ft(x))/(N−n) is a concave function in t. These
together imply (4.4) via the Hölder inequality. To be precise, we have

Φm(t) = e{ψ(x)−ψ(Ft(x))}/NΦ(t)n/N

≥ eψ(x)/N
{

(1− t)e−ψ(x)/(N−n) + te−ψ(F1(x))/(N−n)
}(N−n)/N{

(1− t)Φ(0) + tΦ(1)
}n/N

,

and then the Hölder inequality yields

Φm(t) ≥ eψ(x)/N
{

(1− t)e−ψ(x)/NΦ(0)n/N + te−ψ(F1(x))/NΦ(1)n/N
}

= (1− t)Φm(0) + tΦm(1).

To see the converse, we fix an arbitrary unit vector v ∈ TxR
n and set γ(t) := x+ tv for

t ∈ R and a := 〈∇ψ(x), v〉/(N − n). Given ε > 0 and δ ∈ R with ε, |δ| ≪ 1, we consider
two open balls (see Figure 6 where aδ > 0)

A+ := B
(

γ(δ), ε(1− aδ)
)

, A− := B
(

γ(−δ), ε(1 + aδ)
)

.

Figure 6

A− = B(γ(−δ), ε(1 + aδ))

B(x, ε)
A+ = B(γ(δ), ε(1− aδ))
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Note that A+ = A− = B(x, ε) for δ = 0 and that (1/2)A− + (1/2)A+ = B(x, ε). We
also observe that

m(A±) = e−ψ(γ(±δ))cnε
n(1∓ aδ)n +O(εn+1),

where cn = voln(B(0, 1)) and O(εn+1) is independent of δ. Applying (4.4) to A± with
t = 1/2, we obtain

m
(

B(x, ε)
)

≥ 1

2N
{m(A−)

1/N +m(A+)
1/N}N . (4.6)

We know that m(B(x, ε)) = e−ψ(x)cnε
n + O(εn+1). In order to estimate the right-hand

side, we calculate

∂2

∂δ2

[

e−ψ(γ(δ))/N (1− aδ)n/N
]
∣

∣

∣

δ=0

=

{

− Hessψ(v, v)

N
+

〈∇ψ, v〉2
N2

+ 2
〈∇ψ, v〉
N

n

N
a +

n

N

(

n

N
− 1

)

a2
}

e−ψ(x)/N

=

{

− Hessψ(v, v) +
〈∇ψ, v〉2
N − n

− n

N(N − n)

(

(N − n)a− 〈∇ψ, v〉
)2
}

e−ψ(x)/N

N
.

Due to the choice of a = 〈∇ψ(x), v〉/(N − n) (as the maximizer), we have

∂2

∂δ2

[

e−ψ(γ(δ))/N (1− aδ)n/N
]
∣

∣

∣

δ=0
=

{〈∇ψ(x), v〉2
N − n

− Hessψ(v, v)

}

e−ψ(x)/N

N
.

Thus we find, by the Taylor expansion of e−ψ(γ(δ))/N (1− aδ)n/N at δ = 0,

m(A−)
1/N +m(A+)

1/N

(cnεn)1/N

= 2e−ψ(x)/N −
{

Hessψ(v, v)− 〈∇ψ, v〉2
N − n

}

e−ψ(x)/N

N
δ2 +O(δ4) +O(ε).

Hence we obtain by letting ε go to zero in (4.6) that

e−ψ(x) ≥ 1

2N

[

2e−ψ(x)/N −
{

Hessψ(v, v)− 〈∇ψ, v〉2
N − n

}

e−ψ(x)/N

N
δ2 +O(δ4)

]N

= e−ψ(x)
[

1− 1

2

{

Hessψ(v, v)− 〈∇ψ, v〉2
N − n

}

δ2
]

+O(δ4).

Therefore we conclude

Hessψ(v, v)− 〈∇ψ(x), v〉2
N − n

≥ 0.

2

Applying (4.4) to A = {x}, B = B(x,R) and t = r/R implies

m(B(x,R))

m(B(x, r))
≤

(

R

r

)N

(4.7)

for all x ∈ Rn and 0 < r < R. Thus, compared with Theorem 3.2, (Rn, ‖ · ‖, m) sat-
isfying (4.5) behaves like an ‘N -dimensional’ space of nonnegative Ricci curvature (see
Theorem 6.3 for more general theorem in terms of the curvature-dimension condition).
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4.2 Characterizing lower Ricci curvature bounds

Now we switch to the weighted Riemannian situation (M, g,m), where m = e−ψ volg with
ψ ∈ C∞(M). Ricci curvature controls voln as we saw in Section 3, and Theorem 4.3
suggests that the quantity

Hessψ(v, v)− 〈∇ψ, v〉2
N − n

has an essential information in controlling the effect of the weight. Their combination
indeed gives the weighted Ricci curvature as follows (cf. [BE], [Qi], [Lo1]).

Definition 4.4 (Weighted Ricci curvature) Given a unit tangent vector v ∈ TxM
and N ∈ [n,∞], the weighted Ricci curvature RicN(v) is defined by

(1) Ricn(v) :=

{

Ric(v) + Hessψ(v, v) if 〈∇ψ(x), v〉 = 0,
−∞ otherwise;

(2) RicN(v) := Ric(v) + Hessψ(v, v)− 〈∇ψ(x), v〉2
N − n

for N ∈ (n,∞);

(3) Ric∞(v) := Ric(v) + Hessψ(v, v).

We say that RicN ≥ K holds for K ∈ R if RicN(v) ≥ K holds for all unit vectors v ∈ TM .

Note that RicN ≤ RicN ′ holds for n ≤ N ≤ N ′ < ∞. Ric∞ is also called the Bakry-

Émery tensor. If the weight is trivial in the sense that ψ is constant, then RicN coincides
with Ric for all N ∈ [n,∞]. One of the most important examples possessing nontrivial
weight is the following.

Example 4.5 (Euclidean spaces with log-concave measures) Consider a weighted
Euclidean space (Rn, ‖ · ‖, m) with m = e−ψ voln, ψ ∈ C∞(Rn). Then clearly Ric∞(v) =
Hessψ(v, v), thus Ric∞ ≥ 0 if ψ is convex. The most typical and important example
satisfying Ric∞ ≥ K > 0 is the Gausssian measure

m =

(

K

2π

)n/2

e−K‖x‖2/2 voln, ψ(x) =
K

2
‖x‖2 + n

2
log

(

2π

K

)

.

Note that Hessψ ≥ K holds independently of the dimension n.

Before stating the main theorem of the section, we mention that optimal transport
in a Riemannian manifold is described in the same manner as the Euclidean spaces (due
to [Mc2], [CMS1]). Given µ0, µ1 ∈ Pc(M) with µ0 = ρ0 voln ∈ Pac(M, voln), there is a
(d2/2)-convex function f :M −→ R such that µt := (Ft)♯µ0 with Ft(x) := expx[t∇f(x)],
t ∈ [0, 1], gives the unique minimal geodesic from µ0 to µ1. We do not give the definition
of (d2/2)-convex functions, but only remark that they are twice differentiable a.e. Fur-
thermore, the absolute continuity of µ0 implies that µt is absolutely continuous for all
t ∈ [0, 1), so that we can set µt = ρtm. Since Ft is differentiable µ0-a.e., we can consider
the Jacobian ‖(DFt)x‖ (with respect to voln) which satisfies the Monge-Ampère equation

ρ0(x) = ρt
(

Ft(x)
)

‖(DFt)x‖ (4.8)
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for µ0-a.e. x.
We next introduce two entropy functionals. Given N ∈ [n,∞) and an absolutely

continuous probability measure µ = ρm ∈ Pac(M,m), we define the Rényi entropy as

SN(µ) := −
∫

M

ρ1−1/N dm. (4.9)

We also define the relative entropy with respect to the reference measure m by

Entm(µ) :=

∫

M

ρ log ρ dm. (4.10)

Note that Entm has the opposite sign to the Boltzmann entropy. The domain of these
functionals will be extended in the next section ((5.1), (5.2)) to probability measures
possibly with nontrivial singular part. In this section, however, we consider only absolutely
continuous measures for the sake of simplicity. As any two points in Pac

c (M,m) are
connected by a unique minimal geodesic contained in Pac

c (M,m), the convexity of SN and
Entm in Pac

c (M,m) makes sense.
Recall (2.3) for the definition of the function βtK,N . The following theorem is due to

von Renesse, Sturm and many others, see Further Reading for more details.

Theorem 4.6 (A characterization of Ricci curvature bound) For a weighted Rie-

mannian manifold (M, g,m) with m = e−ψ volg, ψ ∈ C∞(M), we have RicN ≥ K for

some K ∈ R and N ∈ [n,∞) if and only if any pair of measures µ0 = ρ0m,µ1 = ρ1m ∈
Pac
c (M,m) satisfies

SN(µt) ≤ −(1 − t)

∫

M×M

β1−t
K,N

(

d(x, y)
)1/N

ρ0(x)
−1/N dπ(x, y)

− t

∫

M×M

βtK,N
(

d(x, y)
)1/N

ρ1(y)
−1/N dπ(x, y) (4.11)

for all t ∈ (0, 1), where (µt)t∈[0,1] ⊂ Pac
c (M,m) is the unique minimal geodesic from µ0 to

µ1 in the L2-Wasserstein space (P2(M), dW2 ), and π is the unique optimal coupling of µ0

and µ1.

Similarly, Ric∞ ≥ K is equivalent to

Entm(µt) ≤ (1− t) Entm(µ0) + tEntm(µ1)−
K

2
(1− t)tdW2 (µ0, µ1)

2. (4.12)

Outline of proof. We give a sketch of the proof for N < ∞ along the lines of [St4] and
[LV1]. The case of N = ∞ goes along the essentially same line.

First, we assume RicN ≥ K. Fix µ0 = ρ0m,µ1 = ρ1m ∈ Pac
c (M,m) and take a

(d2/2)-convex function f :M −→ R such that Ft(x) := expx[t∇f(x)], t ∈ [0, 1], provides
the unique minimal geodesic µt = ρtm = (Ft)♯µ0 from µ0 to µ1. Taking the weight e−ψ

into account, we introduce the Jacobian Jψt (x) := eψ(x)−ψ(Ft(x))‖(DFt)x‖ with respect to
m (like detm in Theorem 4.3). Then it follows from the Monge-Ampère equation (4.8)
with respect to voln that

ρ0(x) = ρt
(

Ft(x)
)

Jψt (x) (4.13)
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for µ0-a.e. x (i.e., the Monge-Ampère equation with respect to m).
Now, the essential point is that optimal transport is performed along geodesics t 7−→

expx[t∇f(x)] = Ft(x). Therefore its variational vector fields are Jacobi fields (recall (3.1)),
and controlled by Ricci curvature. Together with the weight control as in Theorem 4.3,
calculations somewhat similar to (but more involved than) Theorem 3.2 shows our key
inequality

Jψt (x)
1/N ≥ (1− t)β1−t

K,N

(

d(x,F1(x))
)1/N

+ tβtK,N
(

d(x,F1(x))
)1/N

Jψ1 (x)
1/N . (4.14)

This inequality can be thought of as an infinitesimal version of the Brunn-Minkowski
inequality (see (4.4) and Theorem 6.1(i) as well). As the change of variables formula and
the Monge-Ampère equation (4.13) yield

SN(µt) = −
∫

M

ρt(Ft)
1−1/NJψt dm = −

∫

M

(

Jψt
ρ0

)1/N

dµ0,

we obtain from (4.14) (and (4.13) again) that

SN(µt) ≤ −(1 − t)

∫

M

β1−t
K,N(d(x,F1(x)))

1/N

ρ0(x)1/N
dµ0(x)

− t

∫

M

βtK,N(d(x,F1(x)))
1/N

ρ1(F1(x))1/N
dµ0(x).

This is the desired inequality (4.11), for π = (IdM ×F1)♯µ0.
Second, we assume (4.11). Then applying it to uniform distributions on balls (as

in the proof of Theorem 4.3) shows RicN ≥ K. More precisely, we use the generalized
Brunn-Minkowski inequality (Theorem 6.1) instead of (4.4). 2

As βt0,N ≡ 1, the inequality (4.11) is simplified into the convexity of SN

SN(µt) ≤ (1− t)SN(µ0) + tSN (µ1)

when K = 0. For K 6= 0, however, the K-convexity of SN

SN (µt) ≤ (1− t)SN(µ0) + tSN(µ1)−
K

2
(1− t)tdW2 (µ0, µ1)

2

turns out uninteresting (see [St2, Theorem 1.3]). This is a reason why we need to consider
a more subtle inequality like (4.11).

Theorem 4.6 gives an answer to Question 3.5, for the conditions (4.11), (4.12) are
written in terms of only distance and measure, without using the differentiable structure.
Then it is interesting to consider these conditions for general metric measure spaces as
‘synthetic Ricci curvature bounds’, and we should verify the stability. We discuss them
in the next section.

Further Reading We refer to [AGS], [Vi1] and [Vi2, Part I] for the basics of optimal
transport theory and Wasserstein geometry. McCann’s [Mc2] fundamental result on the
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shape of optimal transport maps is generalized to not necessarily compactly supported
measures in [FF] and [FG] (see also [Vi2, Chapter 10]).

See [Ga] and [Le, Section 2.2] for the Brunn-Minkowski inequality and related topics.
The Bakry-Émery tensor Ric∞ was introduced in [BE], and its generalization RicN is due
to Qian [Qi]. See also [Lo1] for geometric and topological applications, [Mo, Chapter 18]
and the references therein for minimal surface theory in weighted manifolds (which are
called manifolds with density there).

After McCann’s [Mc1] pinoneering work on the convexity of the relative entropy along
geodesics in the Wasserstein space (called the displacement convexity) over Euclidean
spaces, Cordero-Erausquin, McCann and Schmuckenschläger [CMS1] first showed that
Ric ≥ 0 implies (4.12) with K = 0 in unweighted Riemannian manifolds. They [CMS2]
further proved that Ric∞ ≥ K implies (4.12) in the weighted situation. Then Theo-
rem 4.6 is due to von Renesse and Sturm [vRS], [St2] for N = ∞, and independently to
Sturm [St3], [St4] and Lott and Villani [LV2], [LV1] for N <∞.

We comment on recent work on a variant of (4.11). Studied in [BaS1] is the following
inequality (called the reduced curvature-dimension condition)

SN(µt) ≤ −(1 − t)

∫

M×M

β1−t
K,N+1

(

d(x, y)
)1/N

ρ0(x)
−1/N dπ(x, y)

− t

∫

M×M

βtK,N+1

(

d(x, y)
)1/N

ρ1(y)
−1/N dπ(x, y). (4.15)

Note the difference between

tβtK,N(r)
1/N = t1/N

(

sK,N(tr)

sK,N(r)

)1−1/N

, tβtK,N+1(r)
1/N =

sK,N+1(tr)

sK,N+1(r)
.

We remark that (4.15) coincides with (4.11) when K = 0, and is weaker than (4.11) for
general K 6= 0. The condition (4.15) is also equivalent to RicN ≥ K for Riemannian man-
ifolds. In the setting of metric measure spaces, (4.15) has some advantages such as the
tensorization and the localization properties (see Subsection 8.3 for more details). One
drawback is that, as it is weaker than (4.11), (4.15) derives slightly worse estimates than
(4.11) (in the Bishop-Gromov volume comparison (Theorem 6.3), the Bonnet-Myers diam-
eter bound (Theorem 6.5), the Lichnerowicz inequality (Theorem 6.7) etc.). Nevertheless,
such weaker estimates are sufficient for several topological applications.

See also [St2] and [OT] for the K-convexity of generalized entropies (or free energies)
and its characterization and applications. It is discussed in [St2, Theorem 1.7] that there
is a class of functionals whose K-convexity is equivalent to Ric ≥ K and dim ≤ N for
unweighted Riemannian manifolds. The choice of a functional is by no means unique, and
it is unclear how this observation relates to the curvature-dimension condition.

5 The curvature-dimension condition and stability

Motivated by Theorem 4.6, we introduce the curvature-dimension condition for metric
measure spaces and show that it is stable under the measured Gromov-Hausdorff conver-
gence. In this and the next sections, (X, d,m) will always be a metric measure space in
the sense of Section 2.
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5.1 The curvature-dimension condition

We can regard the conditions (4.11), (4.12) as convexity estimates of the functionals SN
and Entm. For the sake of consistency with the monotonicity of RicN in N (RicN ≤ RicN ′

for N ≤ N ′), we introduce important classes of functionals (due to McCann [Mc1])
including SN and Entm.

For N ∈ [1,∞), denote by DCN (displacement convexity class) the set of continuous
convex functions U : [0,∞) −→ R such that U(0) = 0 and that the function ϕ(s) =
sNU(s−N ) is convex on (0,∞). Similarly, define DC∞ as the set of continuous convex
functions U : [0,∞) −→ R such that U(0) = 0 and that ϕ(s) = esU(e−s) is convex
on R. In both cases, the convexity of U implies that ϕ is non-increasing. Observe the
monotonicity, DCN ′ ⊂ DCN holds for 1 ≤ N ≤ N ′ ≤ ∞.

For µ ∈ P(X), using its Lebesgue decomposition µ = ρm+ µs into absolutely contin-
uous and singular parts, we set

Um(µ) :=

∫

X

U(ρ) dm+ U ′(∞)µs(X), U ′(∞) := lim
r→∞

U(r)

r
.

Note that U ′(∞) indeed exists as U(r)/r is non-decreasing. In the case where U ′(∞) = ∞,
we set ∞ · 0 := 0 by convention. The most important element of DCN is the function
U(r) = Nr(1− r−1/N ) which induces the Rényi entropy (4.9) in a slightly deformed form
as

Um(µ) = N

∫

X

ρ(1 − ρ−1/N ) dm+Nµs(X) = N

(

1−
∫

X

ρ1−1/N dm

)

. (5.1)

This extends (4.9) to whole P(X). Letting N go to infinity, we have U(r) = r log r ∈ DC∞

as well as the relative entropy (extending (4.10))

Um(µ) =

∫

X

ρ log ρ dm+∞ · µs(X). (5.2)

Let us denote by Γ(X) the set of minimal geodesics γ : [0, 1] −→ X endowed with the
distance

dΓ(X)(γ1, γ2) := sup
t∈[0,1]

dX
(

γ1(t), γ2(t)
)

.

Define the evaluation map et : Γ(X) −→ X for t ∈ [0, 1] as et(γ) := γ(t), and note
that this is 1-Lipschitz. A probability measure Π ∈ P(Γ(X)) is called a dynamical op-

timal transference plan if the curve α(t) := (et)♯Π, t ∈ [0, 1], is a minimal geodesic in
(P2(X), dW2 ). Then π := (e0 × e1)♯Π is an optimal coupling of α(0) and α(1). We remark
that Π is not uniquely determined by α and π, that is to say, different plans Π and Π′

could generate the same minimal geodesic α and optimal coupling π. If (X, d) is locally
compact (and hence proper), then any minimal geodesic in P2(X) is associated with a
(not necessarily unique) dynamical optimal transference plan ([LV2, Proposition 2.10],
[Vi2, Corollary 7.22]).

Now we are ready to present the precise definition of the curvature-dimension condition
in the form due to Lott and Villani (after Sturm and others, see Further Reading of this
and the previous sections).
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Definition 5.1 (The curvature-dimension condition) Suppose that m(B(x, r)) ∈
(0,∞) holds for all x ∈ X and r ∈ (0,∞). For K ∈ R and N ∈ (1,∞], we say that
a metric measure space (X, d,m) satisfies the curvature-dimension condition CD(K,N)
if, for any µ0 = ρ0m+µs0, µ1 = ρ1m+µs1 ∈ Pb(X), there exists a dynamical optimal trans-
ference plan Π ∈ P(Γ(X)) associated with a minimal geodesic α(t) = (et)♯Π, t ∈ [0, 1],
from µ0 to µ1 and an optimal coupling π = (e0 × e1)♯Π of µ0 and µ1 such that we have

Um
(

α(t)
)

≤ (1− t)

∫

X×X

β1−t
K,N

(

d(x, y)
)

U

(

ρ0(x)

β1−t
K,N(d(x, y))

)

dπx(y)dm(x)

+ t

∫

X×X

βtK,N
(

d(x, y)
)

U

(

ρ1(y)

βtK,N(d(x, y))

)

dπy(x)dm(y)

+ U ′(∞){(1− t)µs0(X) + tµs1(X)} (5.3)

for all U ∈ DCN and t ∈ (0, 1), where πx and πy denote disintegrations of π by µ0 and µ1,
i.e., dπ(x, y) = dπx(y)dµ0(x) = dπy(x)dµ1(y).

In the special case of K = 0, as βt0,N ≡ 1, the inequality (5.3) means the convexity of
Um

Um
(

α(t)
)

≤ (1− t)Um(µ0) + tUm(µ1),

without referring to the optimal coupling π. In the case where both µ0 and µ1 are
absolutely continuous, we have dπ(x, y) = ρ0(x)dπx(y)dm(x) = ρ1(y)dπy(x)dm(y) and
hence (5.3) is rewritten in a more symmetric form as

Um
(

α(t)
)

≤ (1− t)

∫

X×X

β1−t
K,N(d(x, y))

ρ0(x)
U

(

ρ0(x)

β1−t
K,N(d(x, y))

)

dπ(x, y)

+ t

∫

X×X

βtK,N(d(x, y))

ρ1(y)
U

(

ρ1(y)

βtK,N(d(x, y))

)

dπ(x, y). (5.4)

Note that choosing U(r) = Nr(1− r−1/N) and U(r) = r log r in (5.4) reduce to (4.11) and
(4.12), respectively. We summarize remark on and the background of Definition 5.1.

Remark 5.2 (a) It is easily checked that, if (X, d,m) satisfies CD(K,N), then the scaled
metric measure space (X, cd, c′m) for c, c′ > 0 satisfies CD(K/c2, N).

(b) In Definition 5.1, to be precise, we need to impose the condition

m
(

X \B(x, π
√

(N − 1)/K)
)

= 0

for all x ∈ X if K > 0 and N < ∞, in order to stay inside the domain of βtK,N .
Nevertheless, this is always the case by virtue of the generalized Bonnet-Myers theorem
(Theorem 6.5) below.

(c) Recall that U(r)/r is non-decreasing, and observe that βtK,N(r) is increasing in K
and decreasing in N . Combining this with the monotonicity DCN ′ ⊂ DCN for N ≤ N ′

(and (b) above), we see that CD(K,N) implies CD(K ′, N ′) for all K ′ ≤ K and N ′ ≥ N .
Therefore, in the condition CD(K,N), K represents a lower bound of the Ricci curvature
and N represents an upper bound of the dimension.
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(d) The validity of (5.3) along only ‘some’ geodesic is essential to establish the stability.
In fact, if we impose it for all geodesics between µ0 and µ1, then it is not stable under
convergence (in the sense of Theorem 5.6). This is because, when a sequence {(Xi, di)}i∈N
converges to the limit space (X, d), there may be a geodesic in X which can not be
represented as the limit of a sequence of geodesics in Xi. Therefore the convexity along
geodesics in Xi does not necessarily imply the convexity along all geodesics in X . One
typical example is a sequence of ℓnp -spaces as p goes to 1 or ∞. Only straight lines are
geodesics in ℓnp with 1 < p <∞, while ℓn1 and ℓn∞ have much more geodesics. (See Figure 7,
where γi for all i = 0, . . . , 3 are geodesic for ℓ2∞, while only the straight line segment γ0 is
geodesic for ℓ2p with 1 < p <∞.) In fact, ℓnp equipped with the Lebesgue measure satisfies
CD(0, n) for all 1 < p <∞ (Example 7.4(a)), but ℓn1 and ℓn∞ do not satisfy CD(0, n).

Figure 7

6

-

x

y

γ0

γ1

γ2

γ3

(e) In Riemannian manifolds or, more generally, non-branching proper metric measure
spaces, we can reduce (5.3) to a special case from two aspects as follows. If (5.4) holds
for U(r) = Nr(1 − r−1/N ) (or U(r) = r log r if N = ∞) and all measures in Pac

b (X,m)
(and hence in Pac

c (X,m)) with continuous densities, then (5.3) holds for all U ∈ DCN and
all measures in Pb(X) ([St4, Proposition 4.2], [LV2, Proposition 3.21, Lemma 3.24]). In
this sense, (4.11) and (4.12) are essential among the class of inequalities (5.3). A geodesic
space is said to be non-branching if geodesics in it do not branch (see Subsection 8.1 for
the precise definition).

(f) In Riemannian manifolds, (4.14) implies (5.4) for all U ∈ DCN . Indeed, α(t) = ρtm
is absolutely continuous and the change of variables formula and the Monge-Ampère
equation (4.13) imply

Um
(

α(t)
)

=

∫

M

U(ρt) dm =

∫

M

U
(

ρt(Ft)
)

Jψt dm =

∫

M

U

(

ρ0

Jψt

)

Jψt
ρ0

dµ0.

For N <∞, as ϕ(s) = sNU(s−N) is non-increasing and convex, (4.14) yields

Um
(

α(t)
)

≤
∫

M

ϕ

(

(1− t)
β1−t
K,N(d(x,F1(x)))

1/N

ρ0(x)1/N
+ t

βtK,N(d(x,F1(x)))
1/N

ρ1(F1(x))1/N

)

dµ0(x)

≤
∫

M

{

(1− t)ϕ

(

β1−t
K,N(d(x,F1(x)))

1/N

ρ0(x)1/N

)

+ tϕ

(

βtK,N(d(x,F1(x)))
1/N

ρ1(F1(x))1/N

)}

dµ0(x).
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The case of N = ∞ is similar. This means that the infinitesimal expression of CD(K,N)
is always (4.14) whatever U is, and various ways of integration give rise to the definition
of CD(K,N) involving DCN .

Although Jψt relies on the differentiable structure of M , it is possible to rewrite (4.14)
through (4.13) as

ρt
(

Ft(x)
)−1/N ≥ (1− t)β1−t

K,N

(

d(x,F1(x))
)1/N

ρ0(x)
−1/N

+ tβtK,N
(

d(x,F1(x))
)1/N

ρ1
(

F1(x)
)−1/N

(see [St4, Proposition 4.2(iv)]). This makes sense in metric measure spaces, however, the
integrated inequalities (i.e., (5.3), (5.4)) are more convenient for verifying the stability.

(g) The role of the dynamical optimal transference plan Π may seem unclear in Defi-
nition 5.1, as only α and π appear in (5.3). We use only α and π also in applications in
Section 6. As we shall see in Theorem 5.6, it is the stability in which Π plays a crucial
role.

5.2 Stability and geometric background

As we mentioned in Remark 3.1, one geometric motivation behind the curvature-dimension
condition is the theory of Alexandrov spaces. That is to say, we would like to find a way
of formulating and investigating singular spaces of Ricci curvature bounded below in
some sense (recall Question 3.5). Then, what kind of singular spaces should we consider?
Here comes into play another deep theory of the precompactness with respect to the
convergence of metric (measure) spaces. Briefly speaking, the precompactness ensures
that a sequence of Riemannian manifolds with a uniform lower Ricci curvature bound
contains a convergent subsequence. Such a limit space is not a manifold any more, but
should inherits some properties. In order to make use of the curvature-dimension condition
in the limit, we need to establish that it is preserved under the convergence (actually, the
limit of Alexandrov spaces is again an Alexandrov space.)

We say that a map ϕ : Y −→ X between metric spaces is ε-approximating for ε > 0 if

∣

∣dX
(

ϕ(y), ϕ(z)
)

− dY (y, z)
∣

∣ ≤ ε

holds for all y, z ∈ Y and if B(ϕ(Y ), ε) = X .

Definition 5.3 (Measured Gromov-Hausdorff convergence) Consider a sequence
of metric measure spaces {(Xi, di, mi)}i∈N and another metric measure space (X, d,m).

(1) (Compact case) Assume that (Xi, di) for all i ∈ N and (X, d) are compact. We say
that {(Xi, di, mi)}i∈N converges to (X, d,m) in the sense of the measured Gromov-

Hausdorff convergence if there are sequences of positive numbers {εi}i∈N and Borel
maps {ϕi : Xi −→ X}i∈N such that limi→∞ εi = 0, ϕi is an εi-approximating map,
and that (ϕi)♯mi weakly converges to m.

(2) (Noncompact case) Assume that (Xi, di) for all i ∈ N and (X, d) are proper, and
fix base points xi ∈ Xi and x ∈ X . We say that {(Xi, di, mi, xi)}i∈N converges to
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(X, d,m, x) in the sense of the pointed measured Gromov-Hausdorff convergence if,
for all R > 0, {(B(xi, R), di, mi)}i∈N converges to (B(x,R), d,m) in the sense of the
measured Gromov-Hausdorff convergence (as in (1) above).

If we consider only distance structures (Xi, di) and (X, d) and remove the weak conver-
gence condition on ϕi, then it is the (pointed) Gromov-Hausdorff convergence under which
the lower sectional curvature bound in the sense of Alexandrov is known to be preserved.
The following observation ([LV2, Proposition 4.1]) says that the Gromov-Hausdorff con-
vergence of a sequence of metric spaces is propagated to the Wasserstein spaces over
them.

Proposition 5.4 If a sequence of compact metric spaces {(Xi, di)}i∈N converges to a

compact metric space (X, d) in the sense of the Gromov-Hausdorff convergence, then so

does the sequence of Wasserstein spaces {(P(Xi), d
W
2 )}i∈N to (P(X), dW2 ).

More precisely, εi-approximating maps ϕi : Xi −→ X give rise to θ(εi)-approximating

maps (ϕi)♯ : P(Xi) −→ P(X) such that θ is a universal function satisfying limε↓0 θ(ε) = 0.

In the noncompact case, the pointed Gromov-Hausdorff convergence of {(Xi, di, xi)}i∈N
to (X, d, x) similarly implies the Gromov-Hausdorff convergence of {(P(B(xi, R)), d

W
2 )}i∈N

to (P(B(x,R)), dW2 ) for all R > 0 (instead of the convergence of (B(δxi , R), d
W
2 ) to

(B(δx, R), d
W
2 )).

The following inspiring precompactness theorem is established by Gromov [Gr, Sec-
tion 5.A] for the Gromov-Hausdorff convergence, and extended by Fukaya [Fu] to the
measured case.

Theorem 5.5 (Gromov-Fukaya precompactness) Let {(Mi, gi, volgi , xi)}i∈N be a se-

quence of pointed Riemannian manifolds such that

Ricgi ≥ K, dimMi ≤ N

uniformly hold for some K ∈ R and N ∈ N. Then it contains a subsequence which is

convergent to some pointed proper metric measure space (X, d,m, x) in the sense of the

pointed measured Gromov-Hausdorff convergence.

To be more precise, we choose a complete space as the limit, and then the properness
follows from our hypotheses Ric ≥ K and dim ≤ N . The key ingredient of the proof is the
Bishop-Gromov volume comparison (Theorem 3.2) from which we derive an upper bound
of the doubling constant supx∈M, r≤R volg(B(x, 2r))/ volg(B(x, r)) for each R ∈ (0,∞).

By virtue of Theorem 5.5, starting from a sequence of Riemannian manifolds with a
uniform lower Ricci curvature bound, we find the limit space of some subsequence. Such
a limit space is not a manifold any more, but should have some inherited properties.
The stability of the curvature-dimension condition ensures that we can use it for the
investigation of these limit spaces.

We remark that the measures of balls volgi(B(xi, R)) for i ∈ N have a uniform upper
bound depending only on K,N and R thanks to Theorem 3.2. However, it could tend
to zero, and then we can not obtain any information on (X, d,m). Therefore we should
take a scaling ci volgi with some appropriate constant ci > 1. It does not change anything
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because the weighted Ricci curvature is invariant under scalings of the measure (the weight
function of m̃ = cm is ψm̃ = ψm − log c). By the same reasoning, it is natural to assume
that any bounded open ball has a finite positive measure in the next theorem (see also
Remark 5.2(a)).

Theorem 5.6 (Stability) Assume that a sequence of pointed proper metric measure

spaces {(Xi, di, mi, xi)}i∈N uniformly satisfies CD(K,N) for some K ∈ R and N ∈ (1,∞]
and that it converges to a pointed proper metric measure space (X, d,m, x) in the sense of

the pointed measured Gromov-Hausdorff convergence. If, moreover, 0 < m(B(x, r)) < ∞
holds for all x ∈ X and r ∈ (0,∞), then (X, d,m) satisfies CD(K,N).

Outline of proof. The proof of stability goes as follows (along the lines of [LV2], [LV1]).
First of all, as we consider only measures with bounded (and hence compact) support in
Definition 5.1, we can restrict ourselves to measures with continuous density and compact
support. Indeed, it implies by approximation the general case ([LV2, Proposition 3.21,
Lemma 3.24], see also Remark 5.2(e)). Given continuous measures µ = ρm, ν = σm ∈
Pac
c (X,m) and εi-approximating maps ϕi : Xi −→ X as in Definition 5.3, we consider

µi =
ρ ◦ ϕi

∫

Xi
ρ ◦ ϕi dmi

·mi, νi =
σ ◦ ϕi

∫

Xi
σ ◦ ϕi dmi

·mi ∈ Pac
c (Xi, mi)

and take a dynamical optimal transference plan Πi ∈ P(Γ(Xi)) from µi to νi satisfying
(5.4). Note that (ϕi)♯µi and (ϕi)♯νi weakly converge to µ and ν, respectively, thanks to
the continuity of ρ and σ.

By a compactness argument ([LV1, Theorem A.45]), extracting a subsequence if nec-
essary, Πi converges to some dynamical transference plan Π ∈ P(Γ(X)) from µ to ν such
that, setting

αi(t) := (et)♯Πi, α(t) := (et)♯Π, πi := (e0 × e1)♯Πi, π := (e0 × e1)♯Π,

(ϕi)♯αi and (ϕi × ϕi)♯πi weakly converge to α and π, respectively. Then it follows from
Proposition 5.4 that α is a minimal geodesic from µ to ν and that π is an optimal coupling
of µ and ν.

On the one hand, the right-hand side of (5.4) for πi converges to that for π by virtue
of the continuous densities. On the other hand, the monotonicity

U(ϕi)♯mi

(

(ϕi)♯[αi(t)]
)

≤ Umi

(

αi(t)
)

and the lower semi-continuity

Um(α(t)) ≤ lim inf
i→∞

U(ϕi)♯mi

(

(ϕi)♯[αi(t)]
)

hold true in general ([LV2, Theorem B.33]). Therefore we obtain (5.4) for Π and complete
the proof. 2

Further Reading The definition of the curvature-dimension condition is much indebted
to McCann’s influential work [Mc1] introducing the important class of functions DCN as
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well as the displacement convexity along geodesics in the Wasserstein space (see Fur-
ther Reading in Section 4). Otto and Villani’s work [OV] on the relation between such
convexity of the entropy and several functional inequalities was also inspiring.

The term ‘curvature-dimension condition’ is used by Sturm [St3], [St4] (and also in
[Vi2]) following Bakry and Émery’s celebrated work [BE]. Sturm’s condition requires that
(5.3) is satisfied for all absolutely continuous measures and U = SN ′ for all N ′ ∈ [N,∞].
Lott and Villani [LV2], [LV1], independently of Sturm, introduced the condition as in
Definition 4.6 and call it N-Ricci curvature bounded from below by K. These conditions
are equivalent in non-branching spaces (see Remark 5.2(e) and Subsection 8.1). In lo-
cally compact non-branching spaces, it is also possible to extend (5.3) from compactly
supported measures to not necessarily compactly supported measures (see [FV]).

See [Fu], [Gr, Chapter 3, Section 5.A] and [BBI, Chapters 7, 8] for the basics of (mea-
sured) Gromov-Hausdorff convergence and for precompactness theorems. The stability
under the measured Gromov-Hausdorff convergence we presented above is due to Lott
and Villani [LV2], [LV1]. Sturm [St3], [St4] also proved the stability with respect to a dif-
ferent, his own notion of convegence induced from his D-distance between metric measure
spaces. Roughly speaking, the D-distance takes couplings not only for measures, but also
for distances (see [St3] for more details).

We also refer to celebrated work of Cheeger and Colding [CC] (mentioned in Fur-
ther Reading of Section 3) for related geometric approach toward the investigation of
limit spaces of Riemannian manifolds of Ricci curvature bounded below. Their strategy
is to fully use the fact that it is the limit of Riemannian manifolds. They reveal the
detailed local structure of such limit spaces, however, it also turns out that the limit
spaces can have highly wild structures (see a survey [We] and the references therein). We
can not directly extend Cheeger and Colding’s theory to metric measure spaces with the
curvature-dimension condition. Their key tool is the Cheeger-Gromoll type splitting the-
orem, but Banach spaces prevent us to apply it under the curvature-dimension condition
(see Subsection 6.3(C) for more details).

6 Geometric applications

Metric measure spaces satisfying the curvature-dimension condition CD(K,N) enjoy many
properties common to ‘spaces of dimension ≤ N and Ricci curvature ≥ K’. To be more
precise, though N ∈ (1,∞] is not necessarily an integer, we will obtain estimates numer-
ically extended to non-integer N . Proofs based on optimal transport theory themselves
are interesting and inspiring. Although we concentrate on geometric applications in this
article, there are also many analytic applications including the Talagrand inequality, log-
arithmic Sobolev inequality (and hence the normal concentration of measures), global
Poincaré inequality and so forth (see [LV2], [LV1]).

6.1 Generalized Brunn-Minkowski inequality and applications

Our first application is a generalization of the Brunn-Minkowski inequality (4.2), (4.4) to
curved spaces. This follows from the curvature-dimension condition (5.4) applied to SN
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and Entm (i.e., (4.11) and (4.12)) between uniform distributions on two measurable sets.
In the particular case of K = 0, we obtain the concavity of m1/N or logm as in (4.2),
(4.4). Given two sets A,B ⊂ X and t ∈ (0, 1), we denote by Zt(A,B) the set of points
γ(t) such that γ : [0, 1] −→ X is a minimal geodesic with γ(0) ∈ A and γ(1) ∈ B. We
remark that Zt(A,B) is not necessarily measurable regardless the measurability of A and
B, however, it is not a problem because m is regular (see Remark 4.2).

The following theorem is essentially contained in von Renesse and Sturm [vRS] for
N = ∞, and due to Sturm [St4] for N < ∞. Again we will be implicitly indebted
to Theorem 6.5 that guarantees that diamX ≤ π

√

(N − 1)/K if K > 0 and N < ∞
(see Remark 5.2(b)). Figure 8 represents rough image of the theorem, Z1/2(A,B) has
more measure in a positively curved space, and less measure in a negatively curved space
(compare this with Figure 1).

Figure 8

Ric > 0 Ric < 0

A BZ1/2(A,B) A B

Z1/2(A,B)

Theorem 6.1 (Generalized Brunn-Minkowski inequality) Take a metric measure

space (X, d,m) satisfying CD(K,N) and two measurable sets A,B ⊂ X.

(i) If N ∈ (1,∞), then we have

m
(

Zt(A,B)
)1/N ≥ (1− t) inf

x∈A,y∈B
β1−t
K,N

(

d(x, y)
)1/N ·m(A)1/N

+ t inf
x∈A, y∈B

βtK,N
(

d(x, y)
)1/N ·m(B)1/N

for all t ∈ (0, 1).

(ii) If N = ∞ and 0 < m(A), m(B) <∞, then we have

logm
(

Zt(A,B)
)

≥ (1− t) logm(A) + t logm(B) +
K

2
(1− t)tdW2

(

χA
m(A)

m,
χB
m(B)

m

)2

for all t ∈ (0, 1).
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Proof. Similarly to Theorem 4.1, we can assume that A and B are bounded and of
positive measure. Set

µ0 :=
χA
m(A)

·m, µ1 :=
χB
m(B)

·m, β̂t := inf
x∈A, y∈B

βtK,N
(

d(x, y)
)

.

(i) We consider U(r) = Nr(1− r−1/N) and recall from (5.1) that, for µ = ρm+ µs,

Um(µ) = N

(

1−
∫

X

ρ1−1/N dm

)

.

Hence it follows from CD(K,N) that there is a minimal geodesic α : [0, 1] −→ P(X) from
µ0 to µ1 as well as an optimal coupling π such that, for all t ∈ (0, 1),

−
∫

X

ρ
1−1/N
t dm ≤ −(1 − t)

∫

X×X

{

m(A)β1−t
K,N

(

d(x, y)
)}1/N

dπ(x, y)

− t

∫

X×X

{

m(B)βtK,N
(

d(x, y)
)}1/N

dπ(x, y)

≤ −(1 − t)(β̂1−t)1/Nm(A)1/N − t(β̂t)1/Nm(B)1/N ,

where we set α(t) = ρtm+ µst . Then the Hölder inequality yields

∫

X

ρ
−1/N
t · ρt dm ≤

(
∫

supp ρt

ρ−1
t · ρt dm

)1/N

= m(supp ρt)
1/N ≤ m

(

Zt(A,B)
)1/N

.

This completes the proof for N <∞.
(ii) We argue similarly and obtain from (4.12) that

Entm
(

α(t)
)

≤ −(1 − t) logm(A)− t logm(B)− K

2
(1− t)tdW2 (µ0, µ1)

2.

Note that, since Entm(α(t)) <∞, α(t) is absolutely continuous and written as α(t) = ρtm.
Furthermore, Jensen’s inequality applied to the convex function s 7−→ s log s shows

Ent
(

α(t)
)

= m(supp ρt)

∫

supp ρt

ρt log ρt
dm

m(supp ρt)

≥ m(supp ρt)

∫

supp ρt

ρt
dm

m(supp ρt)
· log

(
∫

supp ρt

ρt
dm

m(supp ρt)

)

= − logm(supp ρt) ≥ − logm
(

Zt(A,B)
)

.

We complete the proof. 2

As a corollary, we find that m has no atom unless X consists of a single point.

Corollary 6.2 If (X, d,m) contains more than two points and if it satisfies CD(K,N)
with some K ∈ R and N ∈ (1,∞], then any one point set {x} ⊂ X has null measure.

28



Proof. It is sufficient to show the case of N = ∞ (due to Remark 5.2(c)). Put A = {x}
and assume that m({x}) > 0 holds. Take r > 0 with m(B(x, 2r) \B(x, r)) > 0 (it is the
case for small r > 0), and note that

Zt
(

{x}, B(x, 2r) \B(x, r))
)

⊂ B(x, 2tr) \B(x, tr)

for all t ∈ (0, 1). Thus we apply Theorem 6.1(ii) with t = 2−k, k ∈ N, and find

logm
(

B(x, 21−kr) \B(x, 2−kr)
)

≥ (1− 2−k) log
(

m({x})
)

+ 2−k log
(

m(B(x, 2r) \B(x, r))
)

− |K|
2

(1− 2−k)2−k(2r)2.

Summing this up in k ∈ N, we observe

∞
∑

k=1

logm
(

B(x, 21−kr) \B(x, 2−kr)
)

= ∞.

This is a contradiction since we have

∞
∑

k=1

logm
(

B(x, 21−kr) \B(x, 2−kr)
)

≤
∞
∑

k=1

m
(

B(x, 21−kr) \B(x, 2−kr)
)

= m
(

B(x, 2r) \ {x}
)

<∞.

2

Under CD(K,N) of the finite dimension N < ∞, applying Theorem 6.1(i) to thin
annuli shows a generalization of the Bishop-Gromov volume comparison theorem (Theo-
rem 3.2, see also (4.7)).

Theorem 6.3 (Generalized Bishop-Gromov volume comparison) Suppose that a

metric measure space (X, d,m) satisfies CD(K,N) with K ∈ R and N ∈ (1,∞). Then

we have
m(B(x,R))

m(B(x, r))
≤

∫ R

0
sK,N(t)

N−1 dt
∫ r

0
sK,N(t)N−1 dt

for all x ∈ X and 0 < r < R (≤ π
√

(N − 1)/K if K > 0).

Proof. The proof is essentially the same as the Riemannian case. We apply Theo-
rem 6.1(i) to concentric thin annuli and obtain an estimate corresponding to the Bishop
area comparison of concentric spheres (3.4). Then we take the sum and the limit (instead
of integration), and obtain the theorem.

We give more detailed calculation for thoroughness. For any annulus B(x, r2)\B(x, r1)
and t ∈ (0, 1), Theorem 6.1(i) and Corollary 6.2 yield that

m
(

B(x, tr2) \B(x, tr1)
)

≥ tN inf
d∈[r1,r2]

(

sK,N(td)

tsK,N(d)

)N−1

m
(

B(x, r2) \B(x, r1)
)

≥ t · infd∈[r1,r2] sK,N(td)
N−1

supd∈[r1,r2] sK,N(d)
N−1

m
(

B(x, r2) \B(x, r1)
)

. (6.1)
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This corresponds to (3.4) in the Riemannian case. Set h(t) := sK,N(t)
N−1 for brevity, and

put tL := (r/R)1/L < 1 for L ∈ N. Applying (6.1) to r1 = tLr, r2 = r and t = tl−1
L for

l ∈ N, we have

m
(

B(x, r)
)

=

∞
∑

l=1

m
(

B(x, tl−1
L r) \B(x, tlLr)

)

≥
{ ∞
∑

l=1

tl−1
L

infd∈[tLr,r] h(t
l−1
L d)

supd∈[tLr,r] h(d)

}

m
(

B(x, r) \B(x, tLr)
)

.

We similarly deduce from (6.1) with r1 = tl−LL r, r2 = tl−1−L
L r and t = tL−l+1

L for l =
1, . . . , L that

m
(

B(x, r) \B(x, tLr)
)

L
∑

l=1

tl−1
L sup

d∈[tl−L
L r,tl−1−L

L r]

h(d)

≥ tLL inf
d∈[tLr,r]

h(d)
L
∑

l=1

m
(

B(x, tl−1−L
L r) \B(x, tl−LL r)

)

=
r

R
inf

d∈[tLr,r]
h(d) ·m

(

B(x,R) \B(x, r)
)

.

Combining these, we obtain

m
(

B(x, r)
)

·
L
∑

l=1

(tl−1
L − tlL)R sup

d∈[tLR,R]

h(tl−1
L d)

= (1− tL)R ·m
(

B(x, r)
)

·
L
∑

l=1

tl−1
L sup

d∈[tl−L
L r,tl−1−L

L r]

h(d)

≥ (1− tL)R ·
{ ∞
∑

l=1

tl−1
L

infd∈[tLr,r] h(t
l−1
L d)

supd∈[tLr,r] h(d)

}

· r
R

inf
d∈[tLr,r]

h(d) ·m
(

B(x,R) \B(x, r)
)

≥ m
(

B(x,R) \B(x, r)
)

· infd∈[tLr,r] h(d)
supd∈[tLr,r] h(d)

∞
∑

l=1

(tl−1
L − tlL)r inf

d∈[tLr,r]
h(tl−1

L d).

Letting L diverge to infinity shows

m
(

B(x, r)
)

∫ R

r

sK,N(t)
N−1 dt ≥ m

(

B(x,R) \B(x, r)
)

∫ r

0

sK,N(t)
N−1 dt. (6.2)

This corresponds to (3.5) in the Riemannian case, and the same calculation as the last
step of the proof of Theorem 3.2 completes the proof. 2

Theorem 6.3 shows that the doubling constant supx∈X, r≤Rm(B(x, 2r))/m(B(x, r)) is
bounded for each R ∈ (0,∞), therefore X is proper (see also the paragraph following
Theorem 5.5).

Corollary 6.4 Assume that (X, d,m) satisfies CD(K,N) for some K ∈ R and N ∈
(1,∞). Then (X, d) is proper.
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Next we generalize the Bonnet-Myers diameter bound (Corollary 3.4). We remark
that the proof below uses Theorem 6.1(i) only for pairs of a point A = {x} and a set
B ⊂ B(x, π

√

(N − 1)/K), so that it is consistent with Remark 5.2(b). The following
proof is due to [Oh1].

Theorem 6.5 (Generalized Bonnet-Myers diameter bound) Suppose that a met-

ric measure space (X, d,m) satisfies CD(K,N) with K > 0 and N ∈ (1,∞). Then we

have the following:

(i) It holds that diamX ≤ π
√

(N − 1)/K.

(ii) Each x ∈ X has at most one point of distance π
√

(N − 1)/K from x.

Proof. It is enough to consider the case K = N − 1 thanks to the scaling property
Remark 5.2(a).

(i) Suppose that there is a pair of points x, y ∈ X with d(x, y) > π, set δ := d(x, y)−
π > 0 and take a minimal geodesic γ : [0, π + δ] −→ X from x to y. Choosing a different
point on γ if necessary, we can assume δ < π/2. For ε ∈ (0, δ), we apply Theorem 6.1(i)
between {γ(δ + ε)} and B(y, ε) with t = (π − δ − ε)/π and obtain

m(Zt({γ(δ + ε)}, B(y, ε)))

m(B(y, ε))
≥ tN inf

r∈(π−2ε,π)

(

sin(tr)

t sin r

)N−1

= t

(

sin(t(π − 2ε))

sin(π − 2ε)

)N−1

.

Then it follows from t(π − 2ε) ≤ tπ = π − δ − ε that

m(Zt({γ(δ + ε)}, B(y, ε)))

m(B(y, ε))
≥ π − δ − ε

π

(

sin(δ + ε)

sin 2ε

)N−1

→ ∞ (6.3)

as ε tends to zero. Given z ∈ B(y, ε), we take a minimal geodesic η : [0, 1] −→ X from
γ(δ + ε) to z (see Figure 9), and derive from the triangle inequality that

d
(

γ(δ + ε), η(t)
)

= td
(

γ(δ + ε), z
)

< t
{

d
(

γ(δ + ε), y
)

+ ε
}

= π − δ − ε.

Moreover, we deduce from d(γ(δ + ε), z) < π that

d
(

x, η(t)
)

≥ d(x, z)− d
(

z, η(t)
)

> π + δ − ε− (1− t)d
(

γ(δ + ε), z
)

> π + δ − ε− (1− t)π = π − 2ε.

Thus we have

Zt
(

{γ(δ + ε)}, B(y, ε)
)

⊂ B
(

γ(δ + ε), π − δ − ε
)

\B(x, π − 2ε)

⊂ B(x, π) \B(x, π − 2ε).

Combining this with (6.3), we conclude

lim
ε↓0

m(B(x, π) \B(x, π − 2ε))

m(B(y, ε))
= ∞.
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Figure 9

x
γ(δ + ε) γ

η

S(x, π − 2ε)

S(γ(δ + ε), π − δ − ε)

B(y, ε)

z
η(t)

Furthermore, (6.2) and Theorem 6.3 show that

m
(

B(x, π) \B(x, π − 2ε)
)

≤
∫ π

π−2ε
sinN−1 r dr

∫ π−2ε

0
sinN−1 r dr

m
(

B(x, π − 2ε)
)

=

∫ 2ε

0
sinN−1 r dr

∫ π−2ε

0
sinN−1 r dr

m
(

B(x, π − 2ε)
)

≤ m
(

B(x, 2ε)
)

.

Hence we have, again due to Theorem 6.3 (with K = 0),

m
(

B(x, π) \B(x, π − 2ε)
)

≤ m
(

B(x, 2ε)
)

≤ 2Nm
(

B(x, ε)
)

. (6.4)

Therefore we obtain limε↓0m(B(x, ε))/m(B(y, ε)) = ∞. This is a contradiction because
we can exchange the roles of x and y.

(ii) We first see that m(S(x, π)) = 0, where S(x, π) := {y ∈ X | d(x, y) = π}. Given
small ε > 0, take {xi}ki=1 ⊂ S(x, 2ε) such that S(x, 2ε) ⊂

⋃k
i=1B(xi, 2ε) and d(xi, xj) ≥ 2ε

holds if i 6= j. Then, for any y ∈ S(x, π), there is some xi so that d(y, xi) < (π−2ε)+2ε =
π, while d(y, xi) ≥ π − 2ε holds in general. Thus we have

m
(

S(x, π)
)

≤ m

( k
⋃

i=1

B(xi, π) \B(xi, π − 2ε)

)

≤
k

∑

i=1

m
(

B(xi, π) \B(xi, π − 2ε)
)

.

Then it follows from (6.4) that

m
(

S(x, π)
)

≤
k

∑

i=1

m
(

B(xi, 2ε)
)

≤ 2N
k

∑

i=1

m
(

B(xi, ε)
)

= 2Nm

( k
⋃

i=1

B(xi, ε)

)

≤ 2Nm
(

B(x, 3ε)
)

.
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Letting ε go to zero shows m(S(x, π)) = 0.
Now we suppose that there are two mutually distinct points y, z ∈ X such that

d(x, y) = d(x, z) = π. On the one hand, we derive from (6.4) that

m
(

B(x, r)
)

≥ m(B(x, π) \B
(

x, π − r)
)

for r ∈ (0, π/2). On the other hand, as B(y, r) ⊂ X \B(x, π− r) and m(S(x, π)) = 0, we
find

m
(

B(y, r)
)

≤ m
(

B(x, π) \B(x, π − r)
)

.

Hence we obtain m(B(x, r)) ≥ m(B(y, r)) and similarly m(B(y, r)) ≥ m(B(x, r)). This
implies

m
(

B(x, r)
)

= m
(

B(y, r)
)

= m
(

B(z, r)
)

= m
(

B(x, π) \B(x, π − r)
)

.

Then we have, for ε < d(y, z)/2,

2m
(

B(x, ε)
)

= m
(

B(y, ε)
)

+m
(

B(z, ε)
)

= m
(

B(y, ε) ∪ B(z, ε)
)

≤ m
(

B(x, π) \B(x, π − ε)
)

= m
(

B(x, ε)
)

.

This is obviously a contradiction. 2

For (X, d,m) satisfying CD(K,∞) with K > 0, though X is not necessarily bounded
(see Example 4.5), we can verify that m(X) is finite ([St3, Theorem 4.26]).

6.2 Maximal diameter

In Riemannian geometry, it is well known that the maximal diameter π among (un-
weighted) Riemannian manifolds of Ricci curvature ≥ n− 1 is achieved only by the unit
sphere Sn. In our case, however, orbifolds Sn/Γ can also have the maximal diameter.
Hence what we can expect is a decomposition into a spherical suspension (in some sense).
Due to the scaling property (Remark 5.2(a)), we consider only the case of K = N−1 > 0.
See [Oh2] for more precise discussion of the following theorem, and Subsection 8.1 for the
definition of the non-branching property.

Theorem 6.6 Assume that (X, d,m) is non-branching and satisfies CD(N − 1, N) for

some N ∈ (1,∞) as well as diamX = π. Then (X,m) is the spherical suspension of

some topological measure space.

Outline of proof. Fix xN , xS ∈ X with d(xN , xS) = π. Then it follows from (6.4) that

m
(

B(xN , r)
)

+m
(

B(xS, π − r)
)

= m(X)

for all r ∈ (0, π). This together with the non-branching property shows that, for any
z ∈ X \ {xN , xS}, there exists a unique minimal geodesic from xN to xS passing through
z.
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Now we introduce the set Y consisting of unit speed minimal geodesics from xN to
xS, and equip it with the distance

dY (γ1, γ2) := sup
0≤t≤π

dX
(

γ1(t), γ2(t)
)

.

We consider SY := (Y × [0, π])/ ∼, where (γ1, t1) ∼ (γ2, t2) holds if t1 = t2 = 0 or
t1 = t2 = π. We equip SY with the topology naturally induced from dY . Then the map
Ψ : SY ∋ (γ, t) 7−→ γ(t) ∈ X is well-defined and continuous. Define the mesures ν on Y
and ω on SY by

ν(W ) :=

{
∫ π

0

sinN−1 t dt

}−1

m
(

Ψ(W × [0, π])
)

,

dω := dν × (sinN−1 t dt).

Then one can prove that (SY, ω) is regarded as the spherical suspension of (Y, ν) as topo-
logical measure spaces, and that Ψ : (SY, ω) −→ (X,m) is homeomorphic and measure-
preserving. We use the non-branching property for the continuity of Ψ−1. 2

6.3 Open questions

We close the section with a list of open questions.
(A) (Beyond Theorem 6.6) There is room for improvement of Theorem 6.6: Is the

non-branching property necessary? Can one say anything about the relation between the
distances of SY and X? Does (Y, dY , ν) satisfy CD(N − 2, N − 1)?

If X is an n-dimensional Alexandrov space of curvature ≥ 1 with diamX = π, then
it is isometric to the spherical suspension of some (n− 1)-dimensional Alexandrov space
of curvature ≥ 1. It is generally difficult to derive something about distance from the
curvature-dimension condition. We also do not know any counterexample.

(B) (Extremal case of Lichnerowicz inequality) Related to Theorem 6.5, we know the
following ([LV1, Theorem 5.34]).

Theorem 6.7 (Generalized Lichnerowicz inequality) Assume that (X, d,m) satis-

fies CD(K,N) for some K > 0 and N ∈ (1,∞). Then we have

∫

X

f 2 dm ≤ N − 1

KN

∫

X

|∇−f |2 dm (6.5)

for any Lipschitz function f : X −→ R with
∫

X
f dm = 0.

Here |∇−f | is the generalized gradient of f defined by

|∇−f |(x) := lim sup
y→x

max{f(x)− f(y), 0}
d(x, y)

.

The proof is done via careful calculation using (5.4) for SN between m(X)−1 ·m and its
perturbation (1 + εf)m(X)−1 · m. The inequality (6.5) means that the lowest positive
eigenvalue of the Laplacian is larger than or equal to KN/(N − 1). The constant (N −
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1)/KN in (6.5) is sharp. Moreover, in Riemannian geometry, it is known that the best
constant with N = dimM is achieved only by spheres.

In our general setting, it is not known whether the best constant is achieved only
by spaces of maximal diameter π

√

(N − 1)/K. If so, then Theorem 6.6 provides us a
decomposition into a spherical suspension (for non-branching spaces).

(C) (Splitting) In Riemannian geometry, Cheeger and Gromoll’s [CG] celebrated the-
orem asserts that, if a complete Riemannian manifold of nonnegative Ricci curvature
admits an isometric embedding of the real line R →֒ M , then M isometrically splits off
R, namely M is isometric to a product space M ′ × R, where M ′ again has the nonneg-
ative Ricci curvature. We can repeat this procedure if M ′ contains a line. This is an
extremely deep theorem, and its generalization is a key tool of Cheeger and Colding’s
seminal work [CC] (see Further Reading of Section 5).

Kuwae and Shioya [KS3] consider (weighted) Alexandrov spaces of curvature ≥ −1
with nonnegative Ricci curvature in terms of the measure contraction property (see Sub-
section 8.3). They show that, if such an Alexandrov space contains an isometric copy
of the real line, then it splits off R as topological measure spaces (compare this with
Theorem 6.6). This is recently strengthened into an isometric splitting by [ZZ] under a
slightly stronger notion of Ricci curvature bound in terms of Petrunin’s second variation
formula ([Pe1]).

For general metric measure spaces satisfying CD(0, N), the isometric splitting is false
because n-dimensional Banach spaces satisfy CD(0, n) (Theorem 7.3) and do not split in
general. The homeomorphic, measure-preserving splitting could be true, but it is open
even for non-branching spaces.

(D) (Lévy-Gromov isoperimetric inequality) Another challenging problem is to show
(some appropriate variant of) the Lévy-Gromov isoperimetric inequality using optimal
transport. Most known proofs in the Riemannian case appeal to the deep existence and
regularity theory of minimal surfaces which can not be expected in singular spaces.

For instance, let us consider the isoperimetric profile IM : (0, m(M)) −→ (0,∞) of
a weighted Riemannian manifold (M, g,m) with m = e−ψ volg, i.e., IM(V ) is the least
perimeter of sets with volume V . Bayle [Bay] shows that the differential inequality

(I
N/(N−1)
M )′′ ≤ − KN

N − 1
I
1/(N−1)−1
M (6.6)

holds if RicN ≥ K, which immediately implies the corresponding Lévy-Gromov isoperi-

metric inequality
IM(t ·m(M))

m(M)
≥ IK,N(t)

for t ∈ [0, 1], where IK,N is the isoperimetric profile of the N -dimensional space form of
constant sectional curvature K/(N−1) equipped with the normalized measure (extended
to non-integer N numerically). The concavity estimate (6.6) seems to be related to the
Brunn-Minkowski inequality, however, Bayle’s proof of (6.6) is based on the variational
formulas of minimal surfaces (see also [Mo, Chapter 18]). More analytic approach could
work in metric measure spaces, but we need a new idea for it.

Further Reading The generalized Brunn-Minkowski inequality (Theorem 6.1) is essen-
tially contained in the proof of [vRS, Theorem 1.1] for N = ∞, and due to Sturm [St4]
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for N < ∞ (also the Brascamp-Lieb inequality in [CMS1] implies it in the unweighted
Riemannian situation with N = n). It is used as a key tool in the proof of the derivation
of the Ricci curvature bound from the curvature-dimension condition (see Theorem 4.6).
Some more related interpolation inequalities can be found in [CMS1], these all were new
even for Riemannian manifolds.

The relation between CD(K,∞) and functional inequalities such as the Talagrand,
logarithmic Sobolev and the global Poincaré inequalities are studied by Otto and Villani
[OV] and Lott and Villani [LV2, Section 6]. We refer to [Ol], [BoS] for related work on
discrete spaces (see also Subsection 7.3(B)), and to [St2], [Vi2, Chapter 25], [OT] for the
relation between variants of these functional inequalities and the displacement convexity
of generalized entropies. Theorems 6.5 and 6.6 are due to [Oh1] and [Oh2], where the
proof is given in terms of the measure contraction property (see Subsection 8.3).

7 The curvature-dimension condition in Finsler ge-

ometry

In this section, we demonstrate that almost everything so far works well also in the
Finsler setting. In fact, the equivalence between RicN ≥ K and CD(K,N) is extended by
introducing an appropriate notion of the weighted Ricci curvature. Then we explain why
this is significant and discuss two potential applications. We refer to [BCS] and [Sh2] for
the fundamentals of Finsler geometry, and the main reference of the section is [Oh5].

7.1 A brief introduction to Finsler geometry

Let M be an n-dimensional connected C∞-manifold. Given a local coordinate (xi)ni=1 on
an open set U ⊂M , we always consider the coordinate (xi, vi)ni=1 on TU given by

v =

n
∑

i=1

vi
∂

∂xi

∣

∣

∣

x
∈ TxM.

Definition 7.1 (Finsler structures) A C∞-Finsler structure is a nonnegative function
F : TM −→ [0,∞) satisfying the following three conditions:

(1) (Regularity) F is C∞ on TM \ 0, where 0 stands for the zero section;

(2) (Positive homogeneity) F (λv) = λF (v) holds for all v ∈ TM and λ ≥ 0;

(3) (Strong convexity) Given a local coordinate (xi)ni=1 on U ⊂M , the n× n matrix

(

gij(v)
)n

i,j=1
:=

(

1

2

∂2(F 2)

∂vi∂vj
(v)

)n

i,j=1

(7.1)

is positive-definite for all v ∈ TxM \ 0, x ∈ U .
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In other words, each F |TxM is a C∞-Minkowski norm (see Example 7.4(a) below for the
precise definition) and it varies C∞-smoothly also in the horizontal direction. We remark
that the homogeneity (2) is imposed only in the positive direction, so that F (−v) 6=
F (v) is allowed. The positive-definite symmetric matrix (gij(v))

n
i,j=1 in (7.1) defines the

Riemannian structure gv on TxM through

gv

( n
∑

i=1

vi1
∂

∂xi

∣

∣

∣

x
,

n
∑

j=1

vj2
∂

∂xj

∣

∣

∣

x

)

:=

n
∑

i,j=1

gij(v)v
i
1v
j
2. (7.2)

Note that F (v)2 = gv(v, v). If F is coming from a Riemannian structure, then gv always
coincides with the original Riemannian metric. In general, the inner product gv is regarded
as the best approximation of F in the direction v. More precisely, the unit spheres of F
and gv are tangent to each other at v/F (v) up to the second order (that is possible thanks
to the strong convexity, see Figure 10).

Figure 10

6

--v/F (v)

gv(·, ·) = 1

F (·) = 1

The distance between x, y ∈M is naturally defined by

d(x, y) := inf

{
∫ 1

0

F (γ̇) dt
∣

∣

∣
γ : [0, 1] −→ M, C1, γ(0) = x, γ(1) = y

}

.

One remark is that the nonsymmetry d(x, y) 6= d(y, x) may come up as F is only positively
homogeneous. Thus it is not totally correct to call d a distance, it might be called cost
or action as F is a sort of Lagrangian cost function. Another remark is that the function
d(x, ·)2 is C2 at the origin x if and only if F |TxM is Riemannian. Indeed, the squared
norm | · |2 of a Banach (or Minkowski) space (Rn, | · |) is C2 at 0 if and only if it is an
inner product.

A C∞-curve γ : [0, l] −→ M is called a geodesic if it has constant speed (F (γ̇) ≡ c ∈
[0,∞)) and is locally minimizing (with respect to d). The reverse curve γ̄(t) := γ(l − t)
is not necessarily a geodesic. We say that (M,F ) is forward complete if any geodesic
γ : [0, ε] −→ M is extended to a geodesic γ : [0,∞) −→ M . Then any two points
x, y ∈M are connected by a minimal geodesic from x to y.
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7.2 Weighted Ricci curvature and the curvature-dimension con-
dition

We introduced distance and geodesics in a natural (metric geometric) way, but the def-
inition of curvature is more subtle. The flag and Ricci curvatures on Finsler manifolds,
corresponding to the sectional and Ricci curvatures in Riemannian geometry, are defined
via some connection as in the Riemannian case. The choice of connection is not unique
in the Finsler setting, nevertheless, all connections are known to give rise to the same
curvature. In these notes, however, we shall follow Shen’s idea [Sh2, Chapter 6] of in-
troducing the flag curvature using vector fields and corresponding Riemannian structures
(via (7.2)). This intuitive description is not only geometrically understandable, but also
useful and inspiring.

Fix a unit vector v ∈ TxM ∩ F−1(1), and extend it to a C∞-vector field V on an
open neighborhood U of x in such a way that every integral curve of V is geodesic. In
particular, V (γ(t)) = γ̇(t) along the geodesic γ : (−ε, ε) −→ M with γ̇(0) = v. Using
(7.2), we equip U with the Riemannian structure gV . Then the flag curvature K(v, w) of
v and a linearly independent vector w ∈ TxM coincides with the sectional curvature with
respect to gV of the 2-plane v ∧ w spanned by v and w. Similarly, the Ricci curvature

Ric(v) of v (with respect to F ) coincides with the Ricci curvature of v with respect to gV .
This contains the fact that K(v, w) is independent of the choice of the extension V of v.
We remark that K(v, w) depends not only on the flag v ∧w, but also on the choice of the
flagpole v in the flag v ∧ w. In particular, K(v, w) 6= K(w, v) may happen.

As for measure, on Finsler manifolds, there is no constructive measure as good as the
Riemannian volume measure. Therefore, as the theory of weighted Riemannian manifolds,
we equip (M,F ) with an arbitrary positive C∞-measurem onM . Now, the weighted Ricci
curvature is defined as follows ([Oh5]). We extend given a unit vector v ∈ TxM to a C∞-
vector field V on a neighborhood U ∋ x such that every integral curve is geodesic (or it
is sufficient to consider only the tangent vector field γ̇ of the geodesic γ : (−ε, ε) −→ M
with γ̇(0) = v), and decompose m as m = e−Ψ(V ) volgV on U . We remark that the weight
Ψ is not a function on M , but a function on the unit tangent sphere bundle SM ⊂ TM .
For simplicity, we set

∂vΨ :=
d(Ψ ◦ γ̇)

dt
(0), ∂2vΨ :=

d2(Ψ ◦ γ̇)
dt2

(0). (7.3)

Definition 7.2 (Weighted Ricci curvature of Finsler manifolds) For N ∈ [n,∞]
and a unit vector v ∈ TxM , we define

(1) Ricn(v) :=

{

Ric(v) + ∂2vΨ if ∂vΨ = 0,
−∞ otherwise;

(2) RicN(v) := Ric(v) + ∂2vΨ− (∂vΨ)2

N − n
for N ∈ (n,∞);

(3) Ric∞(v) := Ric(v) + ∂2vΨ.

In other words, RicN(v) of F is RicN(v) of gV (recall Definition 4.4), so that this
curvature coincides with RicN in weighted Riemannian manifolds. We remark that the
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quantity ∂vΨ coincides with Shen’s S-curvature (also called the mean covariance or mean

tangent curvature, see [Sh1], [Sh2], [Sh3]). Therefore bounding Ricn from below makes
sense only when the S-curvature vanishes everywhere. This curvature enables us to extend
Theorem 4.6 to the Finsler setting ([Oh5]). Therefore all results in the theory of curvature-
dimension condition are applicable to general Finsler manifolds.

Theorem 7.3 A forward complete Finsler manifold (M,F,m) equipped with a positive

C∞-measure m satisfies CD(K,N) for some K ∈ R and N ∈ [n,∞] if and only if

RicN(v) ≥ K holds for all unit vectors v ∈ TM .

We remark that, in the above theorem, the curvature-dimension condition is appro-
priately extended to nonsymmetric distances. The proof of Theorem 7.3 follows the same
line as the Riemannian case, however, we should be careful about nonsymmetric distance
and need some more extra discussion due to the fact that the squared distance function
d(x, ·)2 is only C1 at x.

We present several examples of Finsler manifolds. The flag and Ricci curvatures are
calculated in a number of situations, while the weighted Ricci curvature is still relatively
much less investigated.

Example 7.4 (a) (Banach/Minkowski spaces with Lebesgue measures) A Minkowski

norm | · | on Rn is a nonsymmetric generalization of usual norms. That is to say, | · | is
a nonnegative function on Rn satisfying the positive homogeneity |λv| = λ|v| for v ∈ Rn

and λ > 0; the convexity |v + w| ≤ |v|+ |w| for v, w ∈ R
n; and the positivity |v| > 0 for

v 6= 0. Note that the unit ball of | · | is a convex (but not necessarily symmetric to the
origin) domain containing the origin in its interior (see Figure 10, where F is a Minkowski
norm).

A Banach or Minkowski norm | · | which is C∞ on Rn \ {0} induces a Finsler structure
in a natural way through the identification between TxR

n and Rn. Then (Rn, | · |, voln)
has the flat flag curvature. Hence a Banach or Minkowski space (Rn, | · |, voln) satisfies
CD(0, n) by Theorem 7.3 for C∞-norms, and by Theorem 5.6 via approximations for
general norms.

(b) (Banach/Minkowski spaces with log-concave measures) A Banach or Minkowski
space (Rn, | · |, m) equipped with a measure m = e−ψ voln such that ψ is K-convex with
respect to | · | satisfies CD(K,∞). Here the K-convexity means that

ψ
(

(1− t)x+ ty
)

≤ (1− t)ψ(x) + tψ(y)− K

2
(1− t)t|x− y|2

holds for all x, y ∈ Rn and t ∈ [0, 1]. This is equivalent to ∂2vψ ≥ K (in the sense of (7.3))
if | · | and ψ are C∞ (on R

n \ {0} and R
n, respectively). Hence CD(K,∞) again follows

from Theorem 7.3 together with Theorem 5.6.
In particular, a Gaussian type space (Rn, | · |, e−|·|2/2 voln) satisfies CD(0,∞) indepen-

dently of n. It also satisfies CD(K,∞) for some K > 0 if (and only if) it is 2-uniformly

convex in the sense that | · |2/2 is C−2-convex for some C ≥ 1 (see [BCL] and [Oh4]),
and then K = C−2. For instance, ℓp-spaces with p ∈ (1, 2] are 2-uniformly convex with
C = 1/

√
p− 1, and hence satisfies CD(p− 1,∞). Compare this with Example 4.5.
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(c) (Randers spaces) A Randers space (M,F ) is a special kind of Finsler manifold such
that

F (v) =
√

g(v, v) + β(v)

for some Riemannian metric g and a one-form β. We suppose that |β(v)|2 < g(v, v)
unless v = 0, then F is indeed a Finsler structure. Randers spaces are important in
applications and reasonable for concrete calculations. In fact, we can see by calculation
that S(v) = ∂vΨ ≡ 0 holds if and only if β is a Killing form of constant length as well
as m is the Busemann-Hausdorff measure (see [Oh7], [Sh2, Section 7.3] for more details).
This means that there are many Finsler manifolds which do not admit any measures of
Ricn ≥ K > −∞, and then we must consider RicN for N > n.

(d) (Hilbert geometry) Let D ⊂ Rn be a bounded open set with smooth boundary
such that its closure D is strictly convex. Then the associated Hilbert distance is defined
by

d(x1, x2) := log

(‖x1 − x′2‖ · ‖x2 − x′1‖
‖x1 − x′1‖ · ‖x2 − x′2‖

)

for distinct x1, x2 ∈ D, where ‖ · ‖ is the standard Euclidean norm and x′1, x
′
2 are in-

tersections of ∂D and the line passing through x1, x2 such that x′i is on the side of xi.
Hilbert geometry is known to be realized by a Finsler structure with constant negative
flag curvature. However, it is still unclear if it carries a (natural) measure for which the
curvature-dimension condition holds.

(e) (Teichmüller space) Teichmüller metric on Teichmüller space is one of the most
famous Finsler structures in differential geometry. It is known to be complete, while the
Weil-Petersson metric is incomplete and Riemannian. The author does not know any
investigation concerned with the curvature-dimension condition of Teichmüller space.

7.3 Remarks and potential applications

Due to celebrated work of Cheeger and Colding [CC], we know that a (non-Hilbert) Banach
space can not be the limit space of a sequence of Riemannian manifolds (with respect to the
measured Gromov-Hausdorff convergence) with a uniform lower Ricci curvature bound.
Therefore the fact that Finsler manifolds satisfy the curvature-dimension condition means
that it is too weak to characterize limit spaces of Riemannian manifolds. This should be
compared with the following facts.

(I) A Banach space can be an Alexandrov space only if it happens to be a Hilbert
space (and then it has the nonnegative curvature);

(II) It is not known if all Alexandrov spaces X of curvature ≥ k can be approximated
by a sequence of Riemannian manifolds {Mi}i∈N of curvature ≥ k′.

We know that there are counterexamples to (II) if we impose the non-collapsing
condition dimMi ≡ dimX (see [Ka]), but the general situation admitting collapsing
(dimMi > dimX) is still open and is one of the most important and challenging ques-
tions in Alexandrov geometry. Thus the curvature-dimension condition is not as good
as the Alexandrov-Toponogov triangle comparison condition from the purely Riemannian
geometric viewpoint.
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From a different viewpoint, Cheeger and Colding’s observation means that the family
of Finsler spaces is properly much wider than the family of Riemannian spaces. Therefore
the validity of the curvature-dimension condition for Finsler manifolds opens the door to
broader applications. Here we mention two of them.

(A) (The geometry of Banach spaces) Although their interested spaces are common to
some extent, there is almost no connection between the geometry of Banach spaces and
Finsler geometry (as far as the author knows). We believe that our differential geometric
technique would be useful in the geometry of Banach spaces. For instance, Theorem 7.3
(together with Theorem 5.6) could recover and generalize Gromov and Milman’s normal
concentration of unit spheres in 2-uniformly convex Banach spaces (see [GM2] and [Le,
Section 2.2]). To be precise, as an application of Theorem 7.3, we know the normal
concentration of Finsler manifolds such that Ric∞ goes to infinity (see [Oh5], and [GM1],
[Le, Section 2.2] for the Riemannian case). This seems to imply the concentration of unit
spheres mentioned above.

(B) (Approximations of graphs) Generally speaking, Finsler spaces give much better
approximations of graphs than Riemannian spaces, when we impose a lower Ricci curva-
ture bound. For instance, Riemannian spaces into which the Zn-lattice is nearly isometri-
cally embedded should have very negative curvature, while the Zn-lattice is isometrically
embedded in flat ℓn1 . This kind of technique seems useful for investigating graphs with
Ricci curvature bounded below (in some sense), and provides a different point of view on
variants of the curvature-dimension condition for discrete spaces (see, e.g., [Ol], [BoS]).

Further Reading We refer to [BCS] and [Sh2] for the fundamentals of Finsler geometry
and important examples. The interpretation of the flag curvature using vector fields
can be found in [Sh2, Chapter 6]. We also refer to [Sh1] and [Sh3] for the S-curvature
and its applications including a volume comparison theorem different from Theorem 6.3
(which has some topological applications). The S-curvature of Randers spaces and the
characterization of its vanishing (Example 7.4(c)) are studied in [Sh2, Section 7.3] and
[Oh7].

Definition 7.2 and Theorem 7.3 are due to [Oh5], while the weight function Ψ on SM
has already been considered in the definition of S-curvature. See also [OhS] for related
work concerning heat flow on Finsler manifolds, and [Oh6] for a survey on these subjects.
The curvature-dimension condition CD(0, n) of Banach spaces (Example 7.4(a)) is first
demonstrated by Cordero-Erausquin (see [Vi2, page 908]).

8 Related topics

We briefly comment on further related topics.

8.1 Non-branching spaces

We say that a geodesic space (X, d) is non-branching if geodesics do not branch in the
sense that each quadruple of points z, x0, x1, x2 ∈ X with d(x0, x1) = d(x0, x2) = 2d(z, xi)
(i = 0, 1, 2) must satisfy x1 = x2. This is a quite useful property. For instance, in such
a space satisfying CD(K,N) for some K and N , a.e. x ∈ X has unique minimal geodesic
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from x to a.e. y ∈ X ([St4, Lemma 4.1]). Therefore we can localize the inequality (5.3),
and then (5.3) for single U = SN implies that for all U ∈ DCN (see Remark 5.2(e), (f),
[St4, Proposition 4.2]). There are some more results known only in non-branching spaces
(see, e.g., [St4, Section 4], [FV] and also Subsection 8.3 below).

Riemannian (or Finsler) manifolds and Alexandrov spaces are clearly non-branching.
However, as n-dimensional Banach and Minkowski spaces satisfy CD(0, n), the curvature-
dimension condition does not prevent the branching phenomenon. One big open problem
after Cheeger and Colding’s work [CC] is whether any limit space of Riemannian manifolds
with a uniform lower Ricci curvature bound is non-branching or not.

8.2 Alexandrov spaces

As was mentioned in Remark 3.1, Alexandrov spaces are metric spaces whose sectional
curvature is bounded from below in terms of the triangle comparison property (see [BGP],
[OtS], [BBI, Chapters 4, 10] for more details). One interesting fact is that a compact
geodesic space (X, d) is an Alexandrov space of nonnegative curvature if and only if so is
the Wasserstein space (P(X), dW2 ) over it ([St3, Proposition 2.10], [LV2, Theorem A.8]).
This is a metric geometric explanation of Otto’s formal calculation of the sectional curva-
ture of (P2(R

n), dW2 ) ([Ot]). We remark that this relation can not be extended to positive
or negative curvature bounds. In fact, if (X, d) is not an Alexandrov space of nonnegative
curvature, then (P(X), dW2 ) is not an Alexandrov space of curvature ≥ k even for negative
k ([St3, Proposition 2.10]). Optimal transport in Alexandrov spaces is further studied in
[Be], [Oh3], [Sav], [Gi] and [GO].

Since the Ricci curvature is the trace of the sectional curvature, it is natural to expect
that Alexandrov spaces satisfy the curvature-dimension condition. Petrunin [Pe3] recently
claims that it is indeed the case for K = 0, and is extended to the general case K 6= 0
by [ZZ]. They use the second variation formula in [Pe1] and the gradient flow technique
developed in [PP] and [Pe2], instead of calculations as in Sections 3, 4 involving Jacobi
fields.

8.3 The measure contraction property

For K ∈ R and N ∈ (1,∞), a metric measure space is said to satisfy the measure con-

traction property MCP(K,N) if the Bishop inequality (3.3) holds in an appropriate sense.
More precisely, MCP(K,N) for (X, d,m) means that any x ∈ X admits a measurable
map Φ : X −→ Γ(X) satisfying e0 ◦ Φ ≡ x, e1 ◦ Φ = IdX and

dm ≥ (et ◦ Φ)♯
(

tNβtK,N
(

d(x, y)
)

dm(y)
)

for all t ∈ (0, 1) as measures (compare this with Theorem 6.1(i)). As we mentioned in
Further Reading in Section 3, this kind of property was suggested in [CC, I, Appendix 2]
and [Gr, Section 5.I], and systematically studied in [Oh1], [Oh2] and [St4, Sections 5, 6].
Some variants have been also studied in [KS1] and [St1] before them.

MCP(K,N) can be regarded as the curvature-dimension condition CD(K,N) applied
only for each pair of a Dirac measure and a uniform distribution on a set, and CD actually

42



implies MCP in non-branching spaces. It is known that Alexandrov spaces satisfy MCP
(see [Oh1], [KS2]). For n-dimensional (unweighted) Riemannian manifolds, MCP(K, n) is
equivalent to Ric ≥ K, however, MCP(K,N) withN > n does not imply Ric ≥ K. In fact,
a sufficiently small ball in Rn equipped with the Lebesgue measure satisfies MCP(1, n+1).
This is one drawback of MCP. On the other hand, an advantage of MCP is its simpleness,
there are several facts known for MCP and unknown for CD. We shall compare these
properties in more details.

(A) (Product spaces (L2-tensorization property)) If (Xi, di, mi) satisfies MCP(Ki, Ni)
for i = 1, 2, then the product metric measure space (X1 ×X2, d1 × d2, m1 ×m2) satisfies
MCP(min{K1, K2}, N1 +N2) ([Oh2]). The analogous property for CD is known only for
min{K1, K2} = 0 or N1 +N2 = ∞ in non-branching spaces ([St3]).

Recently, Bacher and Sturm [BaS1] introduce a slightly weaker variant of CD, called the
reduced curvature-dimension condition CD∗ (recall (4.15) in Further Reading of Section 4).
They show that CD∗ enjoys the tensorization property if the spaces in consideration are
non-branching.

(B) (Euclidean cones) If (X, d,m) satisfies MCP(N − 1, N), then its Euclidean cone
(CX, dCX , mCX) defined by

CX :=
(

X × [0,∞)
)

/ ∼, (x, 0) ∼ (y, 0),

dCX
(

(x, s), (y, t)
)

:=
√

s2 + t2 − 2st cos d(x, y),

dmCX := dm× (tN dt)

satisfies MCP(0, N + 1) ([Oh2]). This is recently established for the curvature-dimension
condition by [BaS2] in the case where (X, d,m) is Riemannian.

(C) (Local-to-global property) Sturm [St3] shows that, if (X, d,m) is non-branching
and if every point in X admits an open neighborhood on which CD(K,∞) holds, then the
whole space (X, d,m) globally satisfies CD(K,∞). In other words, CD(K,∞) is a local
condition as is the Ricci curvature bound on a Riemannian manifold. The same holds
true also for CD(0, N) with N < ∞. It is shown in [BaS1] that CD∗(K,N) satisfies the
local-to-global property for general K ∈ R and N ∈ (1,∞), however, it is still open and
unclear if CD(K,N) for K 6= 0 and N <∞ is a local condition.

In contrast, the local-to-global property is known to be false forMCP. As we mentioned
above, sufficiently small balls in Rn satisfy MCP(1, n+ 1), while the entire space Rn does
not satisfy it by virtue of the Bonnet-Myers diameter bound (Theorem 6.5).
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nian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146
(2001), 219–257.

44



[CMS2] D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, Prékopa-
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