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This paper revisits the classic seamount test used in numerous previous studies to evidence the sigma

errors of the pressure gradient force (PGF) and their long-term effects on circulation. Two kinds of anal-

ysis are developed. We first consider the initial PGF errors. Then, the global level of erroneous kinetic

energy is computed along a 180-day simulation. The long-term circulation appears to be better correlated

to the initial vorticity errors than to the initial error diagnostics.

The original feature of this study is to reconsider the currently admitted idea that Density-Jacobian type

PGFs perform better than the primitive sigma formulation discretized in a straightforward way (hereafter

Straightforward-Primitive PGF). Errors on the discrete hydrostatic pressure are actually closely related to

the way the density field is initialized. If a mass conserving method is preferred to a straightforward ini-

tialization, the rectangular integral of the Straightforward-Primitive PGF is likely to be more accurate than

the trapezoidal rule usually involved in Density-Jacobian PGFs. Errors on the vorticity field of the Straight-

forward-Primitive PGF depend on the discretization of the hydrostatic correction term. A modified version

of the Straightforward-Primitive PGF is shown to be in better agreement with the concept of bottom torque

consistency. The seamount tests show that this so-called Modified-Primitive PGF performs globally better

than the current low-order Density-Jacobian PGFs.

1. Introduction

Truncation error on the pressure gradient force (PGF) is a well-

known and challenging problem in ocean models using topogra-

phy-following coordinates. It has given rise to a vast literature

(see for instance references in Shchepetkin and McWilliams,

2003, hereafter SMW03), from which the ‘‘hydrostatic inconsis-

tency” emerged as a key concept. The ‘‘hydrostatic inconsistency”

can be viewed as a grid level slope threshold beyond which

increasing vertical resolution destroys PGF accuracy (Haney,

1991). The ‘‘hydrostatic inconsistency” is a useful but incomplete

indicator of the grid propensity to develop erroneous circulation,

since initial PGF errors also depend on the initial density field. This

led several authors to propose more complete diagnostics, both

considering the grid geometry and the vertical gradient of the

background density (Mellor et al., 1994). As a matter of fact, pres-

sure gradient errors can be efficiently reduced by methods adapt-

ing the coordinate stretching function of sigma coordinate models

to the initial background density field, as shown by Ciappa (2008).

Alternatively, for a given grid geometry, the background density

field can be optimized in order to minimize PGF errors (Auclair

et al., 2000). A purely vertical reference state, possibly deduced

from a horizontal averaging of the density field, can also be

removed before computating the PGF (Haney, 1991).

However, a priori estimates of the erroneous circulation, based

on the assumption of a geostrophic balance with PGF errors, are

somehow limited since they do not reflect the possible growth of

the error level during the time of the simulation. As far as C-grid,

free-surface, terrain-following type models are concerned,

SMW03 and Mellor et al. (1998) (hereafter MOE98) have described

the long-term effect of PGF errors on barotropic and baroclinic

circulations.

Along with the development of the POM model in the eighties

(Blumberg and Mellor, 1987) and its wide spreading in the coastal

modelling community, the discrete PGF formulation of the POM

model has generally been considered as a better alternative to

the primitive sigma coordinate formulation which is given by:
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where p is the pressure, 1 the free-surface elevation, q0 a reference

density, q0 ¼ q� q0 with q the density. Subscript s refers to a differ-

entiation along a constant level in the topography-following coordi-

nate system and subscript z simply refers to the truly horizontal

differentiation. The hydrostatic pressure anomaly p0 is given by:
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p0ðx; zÞ ¼ g

Z 1

z

q0dz0 ð2Þ

In the following, the straightforward discrete form of (1) and (2),

presented in Section 2.1, is referred to as the Straightforward-Prim-

itive PGF.

On the other hand, the PGF used in the POM model is a discrete

form derived from:
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Because of the terms in brackets at the right-hand side (hereafter

RHS) of (3) and the symmetries of its possible discretization, the

POM PGF is often regarded as a Density-Jacobian method

(SMW03). The POM PGF was first expressed using the conventional

sigma coordinate system (Blumberg and Mellor, 1987). A formula-

tion suitable for more generalized vertical coordinate systems has

been proposed by Song (1998). Following Song’s terminology, the

standard discrete form of (3) (detailed in SMW03 and Song

(1998)) is hereafter referred as to the Standard-Jacobian PGF.

It has been argued that the Standard-Jacobian PGF is more accu-

rate than the straightforward discrete form of (1) (SMW03) since in

the case of a density field linear in z and constant in x, the discrete

Standard-Jacobian exactly vanishes (as expected) when the

Straightforward-Primitive PGF does not. A new scheme derived

from the Standard-Jacobian method has been suggested by Song

(1998), the so-called Weighted-Jacobian providing an exact form

of the discrete PGF when density field is both linear in z and x.

The seamount test, presented by Beckmann and Haidvogel

(1993) and then revisited by several authors (Chu and Fan, 1997;

MOE98, Song, 1998, SMW03, Ciappa, 2008) has enabled to test

and compare different numerical forms of the PGF, for various

types of grids and models. Basically, this numerical experiment

consists of academical simulations of the ocean circulation around

a gaussian-shaped seamount, using an initial density field which is

non-linear in z and constant in x and y. Because of the vertical non-

linearity of q, discrete PGFs do not exactly vanish and lead to long-

term erroneous circulations. The recent seamount study of SMW03

presented a comparison of various, low- and high-order, Density-

Jacobian type, PGF schemes. As far as low-order methods are

concerned, the SMW03’s study showed that the Standard-Jacobian

performed better than the Weighted-Jacobian, the schemes being

mainly evaluated according to the global level of erroneous kinetic

energy (hereafter ERKE) during the simulation. SMW03 also

showed that the Blended-Jacobian PGF, namely a combination of

the Standard-Jacobian and Weighted-Jacobian schemes, performed

better than these two schemes separately. Although a fifty-fifty

blend seemed to provide the best performance, SMW03’s study

did not really permit to conclude whether this particular combina-

tion would still be optimal in other circumstances. Not surpris-

ingly, higher order methods reduce the ERKE (SMW03, Chu and

Fan, 1997) but it is not clear whether these sophisticated schemes

are really compatible with the principle of energy conservation

involving the discrete form of the density advection, notably

because high-order pressure schemes are not consistent with the

usual low-order definition of the potential energy (SMW03,

p35–30).

The original point of the present study is to bring new insight on

the Straightforward-Primitive PGF, generally ignored in recent stud-

ies on the grounds that this method is a priori less accurate than

Density-Jacobian type methods. First of all we will see in Section

2 that the inherent superiority of the Density-Jacobian method over

the Straightforward-Primitive method is not so obvious, notably

because the answer to this question largely depends on the way

the discrete density field is defined. Besides, we will see that the

initialization method has possible repercussions on the writing of

the discrete hydrostatic correction term of the Straightforward-

Primitive PGF. The so-called Modified-Primitive PGF possibly leads

to reconsider the discretization of the density advection scheme.

Secondly, SMW03 emphasised that initial PGF errors should not

be regarded as being representative of errors developed during

the simulations, and that any PGF scheme should in particular be

evaluated based on long-term simulations. On this particular point

too, the proof of the inaccuracy of the Straightforward-Primitive PGF

has not been provided by the previous studies. We reproduced in

Section 3 the long-term seamount simulations and compared the

Straightforward-Primitive and Modified-Primitive methods to cur-

rent low-order Density-Jacobian schemes, namely the Standard-

Jacobian, the Weighted-Jacobian and the Blended-Jacobian PGFs.

Following MOE98 who identified a sigma error of the second kind,

the growth of the errors is examined in the light of the discrete vor-

ticity of the vertical integral of the PGF (Section 4). We will see that

the vorticity analysis provides another good reason to reconsider

the writing of the discrete hydrostatic correction term of the

Straightforward-Primitive PGF (Appendix).

2. Initialization issues

2.1. Straightforward-Primitive PGF: The discrete formulation

The straightforward discrete form of the primitive formulation

of the PGF, corresponding to the terms in brackets at the RHS of

(1), is given by:
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where ðp0
i;k; q

0
i;k; zi;kÞ are the discrete values of, respectively, pressure

anomaly, density anomaly and depth, in the middle of the grid box

corresponding to horizontal index i and vertical index k. As in

Marsaleix et al. (2008), we first defined ðzi;kþ1=2; zi;k�1=2Þ, the depth

at the top and bottom of grid boxes, and then computed zi;k accord-

ing to

zi;k ¼ ðzi;k�1=2 þ zi;kþ1=2Þ=2 ð5Þ

The thickness of grid box (i,k) is given by:

Dzi;k ¼ zi;kþ1=2 � zi;k�1=2 ð6Þ

The discrete form of the hydrostatic pressure is:

p0
i;k ¼ p0

i;kþ1=2 þ 0:5g q0
i;kDzi;k ð7Þ

where p0
i;kþ1=2, the pressure at the top of grid box (i,k), is given by a

rectangular vertical integration of the density profile:

p0
i;kþ1=2 ¼ g

X

q¼kþ1;kmax

q0
i;qDzi;q ð8Þ

where kmax is the vertical index of the topmost grid box.

We can note that an equivalent expression for (7) is:

p0
i;k ¼

p0
i;kþ1=2 þ p0

i;k�1=2

2
ð9Þ

The location of the numerical variables on the C-grid is shown on

Fig. 1.

2.2. ‘‘Straightforward” or ‘‘Volume-Averaged” initialization

It can be shown (SMW03) that the discrete Standard-Jacobian

would be equivalent to the Straightforward-Primitive scheme if

the rectangular integration (8) were simply replaced by a trapezoi-

dal scheme. Consequently, we can think that the difference in

accuracy is related to the method used to compute the hydrostatic

pressure and thus, it is tempting to conclude that the trapezoidal
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method of the Standard-Jacobian is a priori more accurate than the

rectangular integration of the Straightforward-Primitive scheme.

However, this reasoning is somehow limited, notably because

PGF errors also depend on how the discrete density field has been

initialized. Let us thus consider the initial density field, exponential

in z, constant in x and y, used by SMW03 for the seamount test.

Discrete pressure can not be exact, whatever the integration meth-

od, rectangular or trapezoidal, if the non-linear analytical density

has been discretized in a straightforward way, i.e.

q0
i;k ¼ ae

zi;k
d ð10Þ

On the other hand, defining the discrete density in such a simple

way is somehow questionable since it is generally admitted that a

discrete variable should represent some average of the true field

over the volume of the considered cell box (Ferziger and Peric,

2002). Practically, it means that (10) could be replaced by:

q0
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ddz
0
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¼ a d
e
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d � e
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d
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ð11Þ

In the following, (11) will be referred to as a Volume-Averaged ini-

tialization. If initial density is given by (11), pressure p0
i;kþ1=2 com-

puted by the rectangular method is exact, since substituting (11)

into (8) (and for simplicity assuming 1 ¼ 0) leads to

p0
i;kþ1=2 ¼ gadð1� e

zi;kþ1=2
d Þ. We note, however, that the mid-box pres-

sure obtained from (9), i.e. the average of the pressure at the top

and bottom of grid box ði; kÞ, is eventually not exact since the ana-

lytical pressure between intermediate levels zi;k�1=2 and zi;kþ1=2 is not

linear. In return, the fact that the pressure at intermediate levels is

exact, makes the pressure at the centre of the grid box potentially

more accurate than the same pressure computed with a trapezoidal

integration of the straightforward discrete density (9). This be-

comes particularly true at deepest levels since the pressure vertical

profile tends to be linear when z decreases. As a consequence, we

will see in the following that the Primitive method is possibly more

accurate than Density-Jacobian type PGFs, provided that a suitable

discrete form of the hydrostatic correction term, gq0oz
ox

�

�

s
, accounting

for the Volume-Averaged initialization concept, is also adopted.

Besides, we note that the discrete integration of (11) over the

whole water column,
P

k¼1;kmax
q0

i;kDzi;k, is the same as its analytical

counterpart, adð1� e
�h
d Þ. In other words, the initialization method

(11) has also the advantage to be more conservative (vis-à-vis to

the global density) than the straightforward method (10).

We also note that most of C-grid ocean models use a conserva-

tive form of advection and diffusion processes based on discrete

flux differences, ensuring that the first order volume integral
P

Vq
0
i;j;kDV i;j;k remains unchanged, provided that advection and dif-

fusion fluxes at the boundary of V are globally zero. This implicitly

supposes that q0
i;j;k represents an average value over the cell box

ði; j; kÞ, and thus justifies to choose (11) rather than (10).

2.3. Hydrostatic cancelation

A situation of hydrostatic inconsistency is reached when

(SMW03):

rx ¼
zi;kþ1=2 þ zi;k�1=2 � zi�1;kþ1=2 � zi�1;k�1=2
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An example of the case rx ¼ 1 is given on Fig. 1. Pioneer studies (see

for instance Haney, 1991) showed that the PGF accuracy is im-

proved with higher vertical resolution, as long as the grid remains

hydrostatically consistent. As a matter of fact, it is commonly admit-

ted that model grids should strive to avoid hydrostatic inconsistency,

or at least should not lead to unreasonably high values of rx. For a

given number of vertical levels, rx can be reduced by increasing hor-

izontal resolution or smoothing the discrete bathymetry. However,

within the range of variation 0 6 rx 6 1, the highest PGF errors do

not necessarily correspond to rx ¼ 1 (Mellor et al., 1994; MOE98).

Actually, PGF errors can exactly cancel in this latter case

(SMW03). The so-called hydrostatic cancellation property of the

PGF, can be recovered in the case of the primitive formulation of

the PGF and the Volume-Averaged initialization, provided that the

discrete expression (4) is rewritten as follows:
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Indeed, let us consider the example of the hydrostatic inconsistency

situation shown on Fig. 1. We have zi;k�1=2 ¼ zi�1;kþ1=2 and (since the

Volume-Averaged initialization method leads to exact pressure at

intermediate levels) p0
i;k�1=2 ¼ p0

i�1;kþ1=2. Using 5, 6, 9, it follows that

zi;k � zi�1;k ¼ ðzi;kþ1=2 � zi�1;k�1=2Þ=2; Dzi;k þ Dzi�1;k ¼ zi;kþ1=2 � zi�1;k�1=2

and p0
i;k � p0

i�1;k ¼ ðp0
i;kþ1=2 � p0

i�1;k�1=2Þ=2. Then the RHS of (13) be-

comes equivalent to ðp0
i;kþ1=2 � p0

i�1;k�1=2 þ gDzi;kqi;k þ gDzi�1;kqi�1;kÞ=

ð2DxÞ. Using (8), the latter is finally equal to ðp0
i;k�1=2 � p0

i�1;kþ1=2Þ

=ð2DxÞ, i.e. zero. In the following, the Straightforward-Primitive termi-

nology will be restricted to (4) and, on the other hand, scheme (13)

will be referred to as theModified-Primitive PGF.

2.4. Energy conservation

The principle of global energy conservation requires to dis-

cretize PGF and density advection in a consistent way. Practi-

cally, the energetic consistency has mainly two consequences.

On one hand, the discrete hydrostatic pressure (7)–(9) must be

consistent with vertical density advection and on the other hand,

the discretization of the hydrostatic correction term, gq0oz
ox

�

�

s
,

appearing in the RHS of (1), has to be consistent with horizontal

density advection (SMW03). As far as the Straightforward-Primi-

tive PGF is concerned, a possible energy-conserving form of the

horizontal mass flux uq0, located at the velocity grid point, is

based on a simple half-half average of the density field

(Marsaleix et al., 2008), when the Modified-Primitive PGF leads

to compute uq0 according to

ui�1=2;k

Dzi�1;kqi�1;k þ Dzi;kqi;k

Dzi�1;k þ Dzi;k
ð14Þ
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Fig. 1. Location of variables on the vertical C-grid.
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3. The seamount test experiment

3.1. Description

The numerical domain is the same as the one described in

SMW03. We used 11 vertical grid boxes. SMW03 used a general-

ized coordinate transformation leading to a horizontally variable

vertical stretching function. Here, the vertical stretching is hori-

zontally uniform and corresponds to the vertical stretching func-

tion of SMW03 when h ¼ hmax. Practically, the depth of the

intermediate vertical levels is computed according to z=ðhþ 1Þ ¼
ðrhmin þ CðrÞðhmax � hminÞÞ=hmax, where, as in SMW03, CðrÞ ¼
sinhðhrÞ= sinhðhÞ, hmax ¼ 5000 m, hmin ¼ 500m, h ¼ 3, and �1 6

r 6 0 is discretized uniformly. The depth of middle grid box levels

is then computed according to (5). Bathymetry (Fig. 2) is given by:

hi;j ¼ hmax � hmount exp �
ði� imax=2Þ

2
Dx2 þ ðj� jmax=2Þ

2
Dy2

L2

( )

ð15Þ

with hmount ¼ 4500m, L ¼ 40� 103 m, Dx ¼ Dy ¼ 6700 m, and

imax � jmax, the number of grid boxes in the horizontal directions,

is 48� 48. The analytical initial density is q ¼ �3ez=500. Lateral

boundaries are closed, so that boundary conditions leave the

mechanical energy globally unchanged.

We used SYMPHONIE, the C-grid, free-surface, sigma coordinate

model detailed in Marsaleix et al. (2008). As far as density is con-

cerned, a linear equation of state is used and advection is com-

puted with second-order centred schemes. Mixing is computed

by the mean of a classic Laplacian type operator. In the present

study, horizontal diffusivity is set to zero and vertical diffusivity

is given by the turbulence closure of Gaspar et al. (1990). As far

as velocities are concerned, vertical advection is centred and hori-

zontal advection is upwind. Although horizontal viscosity is set to

zero we note that the upwind horizontal advection scheme is

inherently diffusive and somehow equivalent to set Ox and Oy vis-

cosities to jujDx
2

; jvjDy
2

� �

(James, 1996). Vertical viscosity is given by

the turbulence closure of Gaspar et al. (1990).

3.2. Initial PGF

Fig. 3 shows initial pressure gradient errors for different options

(summarized by Table 1) of discrete PGF scheme and density

initialization. The location of these profiles, indicated on Fig. 2,

has been chosen in order to cover a wide range of topographic

situations, from the deep area with gentle slope (Fig. 3a), to the

seamount top area (Fig. 3d) characterized by strong hydrostatic

inconsistency (SMW03). We will see in the following that initial

PGF errors have a rather small influence on the long-term circula-

tions, which limits their interest. Keeping this observation in mind,

Fig. 3 leads to the following comments:

1. The Modified-Primitive PGF combined to the Volume-Averaged

initialization (case 1) leads to the smallest initial errors in most

cases (Fig. 3a–c).

2. At the basis of the seamount (Fig. 3a) the bottom slope becomes

small, leading to a small amplitude hydrostatic correction term,

gq0oz
ox

�

�

s
. The Straightforward-Primitive PGF leads to small errors

(comparable to those obtained in case 1) if the Volume-Averaged

initialization is used (case 2B), and on the opposite, gives the

largest errors if a Straightforward initialization is used (case 2).

3. Near the top of the seamount (Fig. 3d), the hydrostatic inconsis-

tency (12) is especially high (SMW03), leading to the strongest

PGF errors. The Standard-Jacobian PGF seems to be the best

option. PGF errors are insensitive to the initialization method

(case 1 is similar to case 1B, case 2 is similar to case 2B).

3.3. Long-term simulations

In this type of study, it has often been considered that the accu-

racy of a PGF scheme can not be judged on the initial errors only,

but also on the results of long-term simulations (Mellor et al.,

1994; MOE98). Indeed, it has been argued that the long-term erro-

neous circulation can be quite different from the geostrophic

current simply deduced from the initial PGF (SMW03). As under-

lined by SMW03, the error level may grow along the simulation be-

cause not only the PGF scheme but all terms containing horizontal

derivatives are in fact potentially altered by the terrain-following

coordinate system. Thus, a long-term simulation enables to better

estimate the relevance of a numerical system or another. As in

SMW03, our simulations are 180-day long and the time evolution

of the volume averaged global erroneous kinetic energy,

ERKE ¼ 1
2V

R

ðu2 þ v2ÞdV (V being the total volume of the domain),

is used to assess the different PGF schemes.

Results are summarized by Fig. 4. First, we note that

cð0 6 c 6 1Þ refers to the ratio of the two basic schemes used to

build the Blended-Jacobian PGF (c ¼ 0 corresponds to the Stan-

dard-Jacobian and c ¼ 1 to the Weighted-Jacobian). Fig. 4a corre-

sponds to the reference case described in Section 3.1. We also

considered several other configurations derived from this refer-

ence case, by simply changing the vertical resolution, or the initial

stratification or the shape of the seamount. Practically, Fig. 4b was

obtained with 22 vertical levels, Fig. 4c with q ¼ �3ez=250 and

Fig. 4d with hmount ¼ 2500 m. Concerning Fig. 4a, we note that

curves labelled 0, 0.4, 0.5 and 1 can be compared to the time
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Fig. 2. Topography and depth (m) of vertical levels. Vertical dashed lines indicate the location of vertical profiles of Fig. 3.
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history of the net kinetic energy computed by SMW03 for the

Blended-Jacobian PGF (see top left Fig. in SMW03, p35–8).

Fig. 4 finally leads to the following observations:

1. Despite our model is not exactly the same as the one used in

SMW03, Fig. 4a leads to similar comments. Indeed, as far as

Density-Jacobian methods are concerned, the Weighted-Jacobian

PGF gives the worst results and for a wide range of combina-

tions (c ¼ 0:5 being a priori the best option), the Blended-Jaco-

bian PGF is more accurate than the Standard-Jacobian PGF.

2. The same comments can be done for Fig. 4b–d, except that the

best configuration of the Blended-Jacobian PGF is not always

obtained for c ¼ 0:5.

3. The Modified-Primitive PGF (13) is better than the Straightfor-

ward-Primitive PGF (4) and also better than the Standard-Jaco-

bian PGF and the Weighted-Jacobian PGF. In some cases, the

Modified-Primitive PGF (13) is even better than the best config-

uration of the Blended-Jacobian PGF (Fig. 4c and d).

4. We note that errors developed by the Straightforward-Primitive

PGF are not, as Fig. 3 could suggest, stronger than those devel-

oped by the Standard-Jacobian PGF. Another unexpected result

is that errors developed by Primitive type PGFs (13) and (4)

are not very sensitive to the way density is initialized. We also

observe that ERKE of Fig. 4a and b are of the same order, despite

hydrostatic inconsistency, and thus initial PGF errors, are greater

in the case corresponding to Fig. 4b (obtained with 22 vertical

levels).

The latter point confirms an idea already underlined by several

previous studies, namely that initial PGF errors are not systemati-

cally representative of long-term erroneous currents. As a matter

of fact, analysing a vorticity balance built from the discrete equa-

tions of their model, MOE98 have identified a sigma error of the

second kind, more likely responsible for the growth of erroneous

circulations. A similar approach is now used to better understand

the results shown on Fig. 4 and notably explained the particularly

good results provided the Modified-Primitive PGF (13).

4. Bottom torque consistency

The bottom torque (or topographic torque) concept follows

from the curl of the depth integrated momentum equations

(Mertz and Wright, 1992). In the ideal case of the seamount test,

the latter is expected to be zero. As the sea surface elevation is

also supposed to remain unchanged in the ideal case (i.e. 1 ¼ 0),

this means that the bottom pressure anomaly, Pb
0
¼ g

R 0

�h
q0dz,

should simply verify JðPb
0
;hÞ ¼ 0. However, this is not likely to

happen in our numerical context, because of the troncation

errors associated to the discrete vorticity balance. If we consider
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Fig. 3. Vertical axes: depth (m). Horizontal axes: 107 � q�1
0 rxp0 (ms�2). The terminology is the same as in Table 1: the discrete PGF has been computed with the Modified-

Primitive scheme and the density has been initialized using the Volume-Averaged method (Case 1) or the straightforward method (Case 1B). The discrete PGF has been

computed with the Straightforward-Primitive scheme and the density has been initialized using the straightforward method (Case 2) or the Volume-Averaged method (Case

2B). The discrete PGF has been computed with the Standard-Jacobian scheme and the density has been initialized using the straightforward method (Case 3). The location of

profiles a–d is indicated by vertical dashed lines in Fig. 2.

Table 1

Discrete PGF and density initialization options used in Fig. 3.

Cases Pressure Initialization Pressure gradient

1 Rectangular Volume-Averaged Modified-Primitive (Eq. (13))

2 Rectangular Straightforward Straightforward-Primitive (Eq. (4))

3 Trapezoidal Straightforward Standard-Jacobian

1B Rectangular Straightforward Modified-Primitive

2B Rectangular Volume-Averaged Straightforward-Primitive

Note: SMW03 showed that the pressure gradients of Cases 2 and 3 become equiv-

alent provided that the rectangular rule used to compute the pressure in Case 2 is

replaced by a trapezoidal rule.
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that the variations of the coriolis parameter, the non-linear and

viscosity terms are negligible, the vorticity balance of Mertz and

Wright (1992, Eq. (14) p. 303) suggests that the model should

produce an adjustment of the sea surface anomaly in order to

restore the equilibrium of the bottom torque, in other words

Jðg1;hÞ ¼ �q�1
0 JðPb

0
;hÞ.
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Fig. 4. ERKE (m2s�2) as a function of time (days), for the reference case described in Section 3.1 (a), case with 22 vertical levels (b), case with initial density given by

q ¼ �3ez=250 (c), case with bathymetry given by (15) using hmount ¼ 2500 m (d). Solid lines: PGF has been computed using a Modified-Primitive scheme with a volume averaged

initialization (s1), a Modified-Primitive scheme with straightforward initialization (s2), a Straightforward-Primitive scheme with volume averaged initialization (s3), a

Straightforward-Primitive scheme with straightforward initialization (s4). Dashed lines: PGF has been computed using the Blended-Jacobian method. Labels indicate the value

of c, i.e. the mixing ratio of the Standard-Jacobian and theWeighted-Jacobian PGFs. c ¼ 0 corresponds to the Standard-Jacobian PGF. c ¼ 1 corresponds to theWeighted-Jacobian

PGF.
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Let us consider now the depth integrated PGF at the initial state

(1 ¼ 0) and define �p0 as being the depth-averaged pressure anom-

aly. The vertical integral for each of the last two terms at the

RHS of (1) is:

Z 0

�h

op0

ox

�

�

�

�

s

� �

dz ¼ h
o

ox

Z 0

�1

p0ds ¼ h
o�p0

ox
ð16Þ

Z 0

�h

gq0 oz

ox

�

�

�

�

s

� �

dz ¼
g

h

oh

ox

Z 0

�h

zq0dz ¼
oh

ox
�p0 � h

oPb
0

ox
ð17Þ

where, for convenience, we used the coordinate transformation

s ¼ z=h in order to write dz ¼ h ds and oz
ox

�

�

s
¼ h

�1 oh
ox
z. We see that

the hydrostatic correction term of the PGF leads to two terms at

the RHS of (17). The former, oh
ox
�p0, added to the RHS of (16), gives

oh �p0

ox
. The latter disappears when the curl of the depth integrated

PGF is written, in order to simply obtain JðPb
0
; hÞ. So we clearly

see that some numerical consistency between the discrete form of
op0

ox

�

�

�

s
and gq0 oz

ox

�

�

s
is required in order to obtain a realistic discrete bot-

tom torque effect. This property is referred to as the bottom torque

consistency. In Appendix we show that the Modified-Primitive PGF is

bottom torque consistent, in other words that the curl of the depth

integrated PGF (13) has the expected form of a Jacobian of the bot-

tom pressure anomaly and the bathymetry, namely (details of the

demonstration are given in Appendix):

curlz

Z 0

�h

rp0

q0

dz

� �

i�1=2;j�1=2

¼
ðhi�1;j �hi;j�1ÞðPb

0
i;j �Pb

0
i�1;j�1Þ� ðhi;j �hi�1;j�1ÞðPb

0
i�1;j �Pb

0
i;j�1Þ

2q0DxDy
ð18Þ

Although there is no particular reason for the discrete Jacobian

(18) to be exactly zero in the present case (since h and Pb
0
are

not linear in x and y), we can intuitively expect that the curl of

the depth integrated PGF will be smaller if the scheme is bottom

torque consistent, i.e. if the RHS of (16) and the first term at the

RHS of (17) disappear when the discrete vorticity balance is com-

puted. A consequence of this should be a smaller adjustment of

the sea surface pressure and thus a smaller long-term surface cir-

culation. As a matter of fact, the bottom torque consistency has al-

ready been identified as a critical property in previous studies

(Song and Wright, 1998). These authors have proposed a demon-

stration of the bottom torque consistency for the Standard-Jacobian

PGF, but their reasoning, however, required redefining a suitable

expression of the discrete bottom pressure (see Eq. (2.37) in Song

and Wright, 1998). Thus, it is worthwhile to note that in the case

of the Modified-Primitive PGF, our demonstration is based on the

genuine discrete pressure (see Appendix). In the following, this

will explain why bottom torque computations can be rather differ-

ent from one scheme to another.

A mean vorticity error, obtained by averaging over the numeri-

cal domain the magnitude of the curl of the depth integrated pres-

sure gradient, namely:

�ne ¼

Z Z

curlz

Z 0

�h

rp0

q0

dz

� ��

�

�

�

�

�

�

�

dxdy

Z Z

dxdy

�

ð19Þ

is presented on Table 2 for the various PGF. We show in Appendix

that the bottom torque consistency of the Modified-Primitive PGF is

a consequence of the particular form of its discrete hydrostatic cor-

rection term. Table 2 actually shows that the global vorticity effect

of the initial PGF is twice as small in the case of the Modified-Prim-

itive PGF than in the case of the Straightforward-Primitive PGF.

Obviously, the conclusions that can be made from Table 2 are

partly limited by the fact that our vorticity analysis does not con-

sider the non-linearity of the system. We also note that �ne has been

computed at the initial time so that Table 2 does not consider the

evolution of the density field either. As a matter of fact, Table 2 is

not always in perfect agreement with Fig. 4. If considering the ref-

erence case, the lowest �ne is obtained with the Blended-Jacobian

PGF using c ¼ 0:4, and Fig. 4a shows that c ¼ 0:5 gives the lowest

ERKE. The fact that theModified-Primitive PGF performs better than

the Blended-Jacobian PGF with c ¼ 0:3 (Fig. 4a) is also not com-

pletely consistent with Table 2.

On the other hand, Table 2 is in good agreement with Fig. 4 on

several points:

1. The Primitive type PGF is more sensitive to the discrete form of

the hydrostatic term, i.e. (13), (4), than to the way the density

field is initialized.

2. The22vertical levels case and the reference case lead to similar �ne.

3. The Straightforward-Primitive and Standard-Jacobian PGFs give

similar �ne.

4. �ne is generally much smaller in the case of theModified-Primitive

PGF.

5. Among the considered scheme, the worst �ne is obtained with

the Weighted-Jacobian PGF.

6. Concerning the Blended-Jacobian PGF, the best combination (i.e.

smallest �ne) is not the same from one topographic situation to

another.

7. For hmount ¼ 2500m, the Modified-Primitive PGF gives particu-

larly low �ne. This can be explained by the fact that both h and

Pb
0
are nearly linear so that Expression (18) nearly vanishes.

Points 2 and 7 lead to the following comment: smoothing

bathymetry is generally recommended to reduce hydrostatic incon-

sistency, but in the case of the Modified-Primitive PGF, this should

be mainly regarded as a mean to reduce bottom torque

inconsistency.

5. Conclusions

Our paper focussed on the currently admitted idea that Den-

sity-Jacobian type PGFs perform better than the primitive formu-

lation of the PGF. We first examined the main argument that has

led to this unfavourable assessment, namely the fact that the

Standard-Jacobian PGF is exact when density is linear in z, while

the primitive type PGF is not. If this argument is correct as far as

the Straightforward-Primitive PGF is concerned, we showed that

the discrete formulation of the latter can be improved. We first

noticed that previous studies were based on a simplistic concep-

Table 2

DxDy�neðm3s�2Þ at the initial state as a function of the PGF scheme (column 1). (�)

indicates that the density field has been initialized with the Volume-Averagedmethod.

Column 2 corresponds to the reference case described in Section 3.1. Column 3: same

as column 2 but we used 22 vertical levels. Column 4: same as column 2 but initial

density is given by q ¼ �3ez=250 , Column 5: same as column 2 but bathymetry is given

by (15) with hmount ¼ 2500m.

Modified-Primitive 0.2667 0.2676 0.0583 0.0020

Modified-Primitive(�) 0.2678 0.2678 0.0578 0.0020

Straightforward-Primitive 0.4542 0.4519 0.2666 0.0272

Straightforward-Primitive(�) 0.4543 0.4520 0.2693 0.0276

Standard-Jacobian 0.4509 0.4511 0.2643 0.0270

Blended c = 0.1 0.3421 0.3427 0.1609 0.0151

Blended c = 0.2 0.2371 0.2373 0.1279 0.0053

Blended c = 0.3 0.1704 0.1692 0.1567 0.0093

Blended c = 0.4 0.1573 0.1546 0.2191 0.0204

Blended c = 0.5 0.1903 0.1865 0.3022 0.0322

Blended c = 0.6 0.2504 0.2464 0.4056 0.0441

Blended c = 0.7 0.3354 0.3312 0.5091 0.0559

Blended c = 0.8 0.4290 0.4251 0.6132 0.0677

Blended c = 0.9 0.5333 0.5297 0.7229 0.0796

Weighted-Jacobian 0.6405 0.6366 0.8326 0.0914
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tion (moreover not conservative) of the initialization of the den-

sity field. As a matter of fact, a fundamental concept in numer-

ical modelling is that a discrete variable does not give a punctual

but a mean representation of the ‘‘true” field around each grid

point. Taking this basic principle into consideration ensures the

consistency of the density field with the rectangular scheme

used to compute the hydrostatic pressure and on the other hand

leads to reconsider the discrete form of the hydrostatic correc-

tion term gq0 oz
ox

�

�

s
. The so-called Modified-Primitive scheme re-

duces the initial PGF errors.

Our paper has also examined the impact of the PGF discretiza-

tion on the vorticity balance and showed that the Modified-Prim-

itive PGF is consistent with the vorticity balance built from the

discrete transport equations and leads to smaller vorticity errors.

These errors (somehow recalling the sigma errors of the second

kind reported by MOE98) are well correlated with the long-term

behaviour of the different tested PGFs, and thus appear to be

more relevant than the initial PGF errors. We will principally re-

tain from these tests that long-term errors are smaller with the

Modified-Primitive PGF than with the Standard-Jacobian or

Weighted-Jacobian PGFs. In some cases, the hybrid PGF built from

the combination of the Standard-Jacobian and Weighted-Jacobian

PGFs, gives the best results, but the fact that the optimal value

of c (the ratio of the two schemes), can vary from one case to

the other, may lead to reconsider the relevance of the so-called

Blended-Jacobian PGF.

However, these conclusions should be tempered by the fact that

the seamount test hardly exemplifies all possible ocean situations,

notably concerning the background stratification. For instance, the

Standard-Jacobian PGF should be a better option than the Modified-

Primitive PGF when the density is linear in z and horizontally

homogeneous. Some authors (Haney, 1991) have suggested to re-

move the purely vertical stratification before computing the PGF.

This would, however, be meaningless in the case of the seamount

test since all PGF schemes would exactly vanish. This is, however,

an important issue for more realistic cases, since the remaining

stratification (once the purely vertical stratification is removed

from the density field) may significantly differ from the exponen-

tial profile used in the seamount test.

Higher order PGFs are beyond the scope of this study. Readers

can refer to Chu and Fan (1997) who showed that 4th and 6th or-

der schemes can easily be derived for Primitive type PGFs. On the

other hand, the possibility to ensure the consistency of the PGF

with some other important physical concepts, makes low-order

schemes also attractive and, to some extent, balances their a

priori lower accuracy. Apart from the aforementioned mass con-

servation and bottom torque consistencies, the energetic consis-

tency with the density advection scheme is easily achieved with

a low-order PGF. If, as noticed by SMW03, the interest of such

a property is possibly doubtful in the case of the seamount test

and its simplistic ideal solution (a motionless ocean), the conser-

vation of energy is a fundamental issue of processes like gravity

waves. Along these lines, our study proposed a suitable discrete

form of the density advection consistent with the Modified-Prim-

itive PGF.
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Appendix A. The initial (1 ¼ 0) bottom pressure torque

Considering (5) and (6), we have:

zi;k ¼ �hi þ
X

q¼1;k�1

Dzi;q þ 0:5Dzi;k ðA1Þ

where h is the bathymetry.

We now consider the numerical vertical integral
P

k¼1;kmax

p0
i;kDzi� ;k, where the index i� can be arbitrarily fixed to i� ¼ i� 1 or

i
�
¼ iþ 1. Using (7) and (8), we have:

X

k¼1;kmax

p0
i;kDzi� ;k ¼

X

k¼1;kmax

X

q¼kþ1;kmax

q0
i;qDzi;q þ 0:5q0

i;kDzi;k

" #

Dzi� ;k

ðA2Þ

The summation at the RHS of (A2) can be alternatively written:

X

k¼1;kmax

p0
i;kDzi� ;k ¼

X

k¼1;kmax

gq0
i;kDzi;k

X

q¼1;k�1

Dzi� ;q þ 0:5 Dzi� ;k

 !" #

ðA3Þ

Using (A1) and (A3) is equivalent to:
X

k¼1;kmax

p0
i;kDzi� ;k ¼

X

k¼1;kmax

gq0
i;kDzi;kðhi� þ zi� ;kÞ

h i

ðA4Þ

and finally:
X

k¼1;kmax

p0
i;kDzi� ;k ¼ hi� Pb

0
i þ

X

k¼1;kmax

gzi� ;kq
0
i;kDzi;k ðA5Þ

where Pb
0
i ¼ g

P

k¼1;kmax
q0

i;kDzi;k is the discrete bottompressure anomaly.

The curl of the depth integrated pressure anomaly gradient is of

the form:

ðPXi�1=2;j�1 � PXi�1=2;jÞ=Dyþ ðPY i;j�1=2 � PY i�1;j�1=2Þ=Dx ðA6Þ

where PX and PY are the Ox and Oy components of the depth inte-

grated PGF (the location of the related variables is given in Fig. 5).

Using the Modified-Primitive PGF scheme (13), we have:

PXi�1=2;j ¼
�1

Dxq0

X

k¼1;kmax

"

p0
i;j;k � p0

i�1;j;k þ gðzi;j;k � zi�1;j;kÞ
�

�
Dzi;j;kqi;j;k þ Dzi�1;j;kqi�1;j;k

Dzi;j;k þ Dzi�1;j;k

�

Dzi;j;k þ Dzi�1;j;k

2

#

ðA7Þ

which can be also written:

PXi�1=2;j ¼
�1

2Dxq0

X

k¼1;kmax

p0
i;j;kDzi;j;k �p0

i�1;j;kDzi�1;j;k þ gzi;j;kDzi;j;kqi;j;k �gzi�1;j;kDzi�1;j;kqi�1;j;k

þp0
i;j;kDzi�1;j;k �p0

i�1;j;kDzi;j;k þ gzi;j;kDzi�1;j;kqi�1;j;k � gzi�1;j;kDzi;j;kqi;j;k

" #

ðA8Þ

Now, using (A5) with i
�
¼ i� 1 and i

�
¼ iþ 1, the last four terms at

the RHS of (A8) are rewritten:
X

k¼1;kmax

½p0
i;j;kDzi�1;j;k � p0

i�1;j;kDzi;j;k þ gzi;j;kDzi�1;j;kqi�1;j;k

� gzi�1;j;kDzi;j;kqi;j;k� ¼ �hi;j Pb
0
i�1;j þ hi�1;jPb

0
i;j ðA9Þ

Using (A9) and (A8) is rewritten:

PXi�1=2;j ¼
�1

2Dxq0

X

k¼1;kmax

p0
i;j;kDzi;j;k � p0

i�1;j;kDzi�1;j;k þ gzi;j;kDzi;j;kqi;j;k

h

�gzi�1;j;kDzi�1;j;kqi�1;j;k

i

�
�hi;j Pb

0
i�1;j þ hi�1;jPb

0
i;j

2Dxq0

!

ðA10Þ

Similarly, PY i;j�1=2 can be written:
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PY i;j�1=2 ¼
�1

2Dyq0

X

k¼1;kmax

½p0
i;j;kDzi;j;k � p0

i;j�1;kDzi;j�1;k

þ gzi;j;kDzi;j;kqi;j;k � gzi;j�1;kDzi;j�1;kqi;j�1;k�

�
�hi;j Pb

0
i;j�1 þ hi;j�1Pb

0
i;j

2Dyq0

!

ðA11Þ

Substituting A10 and A11 into (A6) we finally obtain:

ðPXi�1=2;j�1 � PXi�1=2;jÞ=Dyþ ðPY i;j�1=2 � PY i�1;j�1=2Þ=Dx

¼
ðhi�1;j � hi;j�1ÞðPb

0
i;j � Pb

0
i�1;j�1Þ � ðhi;j � hi�1;j�1ÞðPb

0
i�1;j � Pb

0
i;j�1Þ

2q0DxDy

ðA12Þ

which can be viewed as the numerical counterpart of the bottom

torque term, q�1
0 JðPb

0
;hÞ, appearing in Mertz and Wright (1992,

Eq (14), p303). Let us mainly retain here that:

1. The Modified-Primitive scheme (13) is bottom torque consistent

since the discrete curl of the depth integrated PGF has, as

expected, the form of a Jacobian of the bottom pressure and

the topography.

2. The terms of the form g z Dz q, appearing in (A7)–(A11), are

due to the density weighted-average used in the hydrostatic

correction term of (13).

3. The bottom torque consistency relies on these very terms, since

the cancellation of the terms appearing on the first line of

(A10) and (A11), (when the curl of the depth integrated pres-

sure is computed), is a consequence of the verification of (A5).
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