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INTERCEPTION AND FURTIVITY OF DIGITAL
TRANSMISSIONS

Gilles BUREL1, André QUINQUIS2, Stéphane AZOU3

Abstract: The development of digital communications creates new challenges for
spectrum surveillance. Similarly, modern signal processing techniques and increasing
available computational power make communication discretion ever more difficult. In this
paper, we present recent methods based on time-frequency analysis and on statistical analysis
of fluctuations, that are useful for detection and identification of transmissions in a non-
cooperative context. Furthermore, promising research concerning the use of chaotic signals
to develop furtive transmission systems is also presented.

Keywords: Digital transmissions, Interception, Time-frequency analysis, Furtivity,
Chaos, Spectrum surveillance, Spread spectrum, Unscented Kalman filters

I. Introduction

The proliferation of high performance digital transmission devices has enhanced the
role of collecting and securing information in order to provide intelligence on the enemy's
intentions and capabilities without revealing one's own intentions. The modern concept is that
interception and furtivity of transmissions is an important part of an overall military strategy
which concentrates on collecting information through interception of enemy communications
while maintaining the capability of discretely operating one's own data transmissions.

However, these considerations are not restricted to the military domain. Indeed, the
development of wireless transmissions (e.g. wireless indoor domestic networks or cellular
telephones) points out the need of mastering interception techniques (to protect transmissions,
or for spectrum surveillance) as well as the need of research on furtive and secure
transmissions.

In this paper, we present an overview of some researches about interception and
furtivity of transmissions developed in our laboratory.

In Section 2, we show how modern mathematical tools such as time-frequency
analysis, can be adapted for the detection and analysis of classical narrow band digital
transmissions. Experimental results show that a high attenuation of interferences can be
obtained, thus enhancing discrimination capabilities.

However, digital transmissions are not always narrow-band. Indeed, a technique that is
often used to hide transmissions in noise is spread spectrum. In Section 3, we show that
spread spectrum signals can be detected and demodulated in a non cooperative context, even
at a very low signal to noise ratio. Once demodulated, the spread spectrum signal becomes
narrow-band, and techniques presented in Section 2 can be used for further analysis.
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From the opposite point of view, the existence of methods to detect and analyze
classical digital transmissions points out the need to develop new modulations, in order to
transmit signals which are more difficult to intercept. One promising idea is the use of chaotic
signals produced by non-linear oscillators, as detailed in Section 4.

Hence, our research has two complementary objectives: being able to detect and
analyze digital transmissions, and, simultaneously, ensuring highest discretion of one’s own
transmissions.

II. Detection and analysis of narrow-band signals

Introduction

Nowadays digitally modulated signals such as ASK (Amplitude Shift Keying), PSK
(Phase Shift Keying) among others are very important for telecommunications systems. Such
signals can be found in many civilian as well as military applications such as: interference
identification and spectrum management, identification of non-licensed transmitters,
electronic warfare, surveillance and threat analysis, control of communication quality, etc.

In COMmunication INTelligence (COMINT) applications, the modulation types are
considered as signal signatures. Therefore, the modulation recognition is an essential key to
demodulate as well as to decode and understand the transmitted message.

In the last two decades, many researchers have been interested by automatic
recognition and identification algorithms for communication signal. In fact, since 1990, many
algorithms have been proposed [3]. The main differences among these algorithms are their
sensitivity to Signal to Noise Ratio (SNR), the type of modulation that they can deal with, and
the applications where they can be used.

Generally, modulation algorithms consist of various steps depending on the field of
interest. First of all, if we are only interested in modulation types, a simple modulation
classifier can deal with this case. Once the modulation type has been classified, one may seek
other features for signal identification purpose. For example, one can seek for a state number,
a symbol duration among others.

To distinguish the different versions of modulation, algorithms often enclose the
computation of state number. For instance, many studies aim at distinguishing the different
MPSK or the different MFSK versions [15]. With regard to the symbol duration, we can quote
the methods based on the level crossing, the derivation or a wavelet transform, for example.
On the other hand, it seems that the carrier frequency is a main feature in many applications.

Most of the Frequency-domain estimation methods are based on the signal spectrum.
The performances of such methods depend on the estimation techniques (Welch, …) and the
estimation window (such as Hamming, Hanning, …). Indeed, the experimental studies show
that this technique is sensitive to noise. To increase the robustness of the approach, new
methods based on recent developments are possible.

Time frequency distributions (TFD)

Most TFDs of current interest are members of Cohen’s bilinear class which can be
generated by Fourier transformation of a weighted version of the ambiguity function (AF) of
the signal to be analyzed. That is, if TFR(t,f) is a bilinear TFD of the signal x(t), then

with A( ,F) the ambiguity function of the signal:

)1(2,,, fdFdFtfjeFFAftTFR
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If ( ,F)=1 we obtain the classical Wigner-Ville distribution (WVD). Different
choices of the kernel function  are possible to obtain many TFDs. In recent years, it has
become apparent that no single kernel can give adequate performance for a large class of
signals; hence, there has been increasing interest in signal-dependent or adaptive TFRs
(ATFRs). It was proposed [4] an ATFR based on kernels with Gaussian radial cross sections:

2

2

2
exp, rr

The function ( ) controls the spread of the Gaussian at radial angle  ; we will call
( ) the spread function. The angle  is measured between the radial line through the point

( ,f) and the  axis: farctan .

A high quality time-frequency representation results when the kernel is well matched
to the component of a given signal. The radial Gaussian kernel is adapted to a signal by
solving the following optimization problem:
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By focusing the volume under the optimal kernel, the parameter  controls the trade-
off between interference suppression and smearing of the auto-components.

The shape of a radial Gaussian kernel is completely parameterized by the spread
function; so, finding the optimal kernel opt for a signal is equivalent to find the optimal
function opt( ) for the signal. The algorithm includes four stages (Fig. 1)

Fig. 1 - Adaptive time-frequency representation algorithm

In the first stage, the AF of the signal is computed. In the second stage the
optimization problem is solved for the optimal kernel. Next, we compute the product between
AF of the signal x and  opt obtained as result of the second stage. Finally, we compute the bi-
dimensional Fast Fourier Transform (FFT2D) in order to obtain the adaptive time-frequency
distribution of the signal x.

This distribution has many attractive qualities; the most important (in this context)  is
the time-frequency interference suppression. So, we may imagine many applications, such as
the time-frequency signal analysis or the signal classification using the most adapted kernel
function as a discriminative element.

The limitation of this method is that it designs only one kernel for the entire signal. So,
for signals with characteristics that change over time, it is necessary to use a procedure that
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adapts the kernel each time in order to achieve optimal local performance. Moreover, the
choice of the parameter  is another problem that appears in practice.

To obtain the optimal local performances, we apply this procedure on short slide
window over the signal. That is, we adapt the kernel for all the sequences obtained by
windowing. Let us name this new transformation as «Short ATFR». Furthermore, we prefer
the use of this transform, because it is well adapted for real-time problem.

Comparative results

In order to compare the presented method with the classical TFRs we consider an FSK
signal (Frequency Shift Keying) with eight frequency steps, presented in figure 2. We show
also his ideal time-frequency distribution.

In figure 3, we show the results obtained by applying the described time-frequency
distributions and we observe the superior performance of the ATFR. The SPWVD (Fig. 3.a)
precludes some interference terms, but affects the time-frequency support which is not well
conserved. Another problem with this distribution is the choice of the smoothing windows,
that is hard in practice. Moreover, between atoms 3 and 4, respectively 5 and 6 strong
interference terms appear. The same comment can be formulated when using CWD (Fig. 3.b).
Even if CWD uses a kernel with Gaussian shape (like ATFR), the results are unwell, because
this kernel has a fixed position in the ambiguity plane, unadapted to the signal.

a b

dc
Fig. 2: FSK signal and its ideal

time-frequency representation
Fig. 3 - Comparison of time-frequency

distributions. From left to right and top to
bottom: (a) Smoothed pseudo Wigner-Ville
distribution with  g window width 33 and h
window width123; (b) Choi Williams distribution
with smoothing parameter =3.5; (c) ATFR with

=2; (d) Short ATFR of volume =25 and
window width 32

The results obtained by the ATFR use denote the quality of this transformation: ATFR
precludes almost all interferences and better preserves the time-frequency support (Fig. 3.c).
Ideally, a TFR should have the same nonzero support, i.e., duration and bandwidth, as the
signal under analysis. These properties state that if a signal starts at time t1 (and at a frequency
f1) and stops at time t2 (and frequency f2), then an ideal TFR should start and stop at the same
time-frequency point. These properties ensure the fidelity of the signal approximation in the
time-frequency plane. Furthermore, we can accurately estimate the signal characteristics.
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In order to evaluate the support conservation capability of the TFR, a set of quality
parameters is introduced :
1) Degree of  time support conservation (DTSC): this parameter is defined for a certain time-

frequency atom and represents the time support of this atom. We prefer to use the DTSC

normalized at the support of entire signal. That is : 
T
dtTSCnD   where dt is the temporal

support and  T is the number of samples of the signal.
2) Degree of  frequency support conservation (DFSC): this parameter is defined as the

frequency support of a time-frequency atom; we prefer to use the DFSC normalized at the

sampling frequency (Fs).  
sF

dfDFSCn

3) Interferences attenuation factor (IAF): this parameter represents a quality measure of the

interference time-frequency suppression, defined by 
i

u

E
EIAF  where Eu is the energy of

auto-terms and Ei the energy of interference terms. In the ideal case, this factor must be .

Table 1 shows the obtained parameters for each transformation, as well as their ideal
values. We observe the high performances of the short ATFR, provided by the kernel
adaptation over time. In figure 3.d we demonstrate the superiority of Short ATFR facing
ATFR (that computes a single kernel for the entire signal).

TFRs DTSCn DTFCn IAF
Ideal 0.125 0
Smoothed pseudo Wigner-Ville 0.0947 0.029 1.5
Choi-Williams 0.1 0.034 1.02
ATFR 0.0512 0.022 3.1
Short ATFR 0.0893 0.011 157.27

Table 1 - Time-frequency distribution performances

We observe the superior performances of the ATFR facing classical interference terms
suppression methods, but its quality is poorer than the short ATFR; this result illustrates the
benefits of the kernel time adaptivity.

Conclusion

The novel approach precludes almost all the interference terms and, simultaneously,
better keeps the time and frequency resolution. There are two major drawbacks: first, the
choice of the kernel volume parameter is sometimes difficult to do and supposes more
knowledge about the signal spreading in time and frequency. On the other hand, the adaptive
Gaussian kernel designed in the ambiguity plane works only with signals having multiple
components of the same nature.

Furthermore, we can improve the performances of this approach using the locally
kernel design. Our future work will be devoted to this, by experimenting the time-frequency
distributions using adaptive signal expansion for the linear modulations, and using the
warping operators for the non-linear ones.
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III. Interception of hidden spread spectrum transmissions

Introduction

Spread spectrum signals have been used for secure communications for several
decades. Nowadays, they are also widely used outside the military domain, especially in Code
Division Multiple Access (CDMA) systems [12]. Due to their low probability of interception,
these signals increase the difficulty of spectrum surveillance.

Direct-Sequence Spread Spectrum transmitters (DS-SS) use a periodical pseudo-
random sequence to modulate the baseband signal before transmission. In the context of
spectrum surveillance, the pseudo-random sequence used by the transmitter is unknown (as
well as other transmitter parameters such as duration of the sequence, symbol frequency and
carrier frequency). Hence, in this context, a DS-SS transmission is very difficult to detect and
demodulate, because it is often below the noise level.

The research work developed in our laboratory aims at:
1. detecting the presence of a spread spectrum transmission in a non-cooperative context
2. then, estimating the transmitter parameters (including its spreading sequence).

Once the spreading sequence has been estimated, a classical spread-spectrum receiver
can demodulate the signal.

Blind detection of a spread spectrum transmission

In a DS-SS transmission, the symbols ak are multiplied by a pseudo-random sequence
which spreads the bandwidth. At the output of the receiver filter, the downconverted signal is:

)()()()()( tnkTthatntsty s
k

k

where s(t) is the spread-spectrum signal (variance 2
s ), n(t) is the noise (variance 2

n ),
and h(t) stands for the spreading waveform (more precisely, it is the convolution of the
pseudo-random sequence with the transmission filters and the channel).

In a cooperative context, the pseudo-random sequence, as well as the carrier and
symbol frequencies, are known by the receiver. The receiver correlates the received signal
with the pseudo-random sequence, in order to retrieve the symbols. In a non-cooperative
context, these parameters are unknown. Furthermore, classical second order detection
methods are useless, because the autocorrelation function of a DS-SS signal is similar to the
autocorrelation of a white noise. The method we have developed for blind detection of a DS-
SS transmission hidden under the noise level is based on fluctuations of correlation estimators
[6]. The received signal is divided into non-overlapping windows of duration T (the exact
value of T does not matter; ideally, the window should contain a few symbols, but the
methods works over a large range of values). Within each window, we compute an estimation
of the correlation:

dttyty
T

R
Tm

yy )()(1)(ˆ *

0

)(

where m is the window's index. Using M windows, we can estimate the second order
moment of the estimated autocorrelations:

M

m

m
yyR

M 1

2)( )(ˆ1)(

This is a measure of the fluctuations of the autocorrelation estimator.
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If no signal is hidden in the noise (i.e. y(t)=n(t) ), we can predict the average value and
standard deviation of the fluctuation curve ( ). For simplicity, let us consider the case of a
receiver filter with flat frequency response in [-W/2, +W/2] and zero outside. In that case, we
can prove [6] that the theoretical average value and standard deviation of the fluctuations are:

4)( 1
n

n

TW
m

M

m n
n

)(
)(

Hence, is no signal is hidden in the noise, the curve ( ) should remain around )(nm
and has a very low probability to go above )()( 4 nnm .

If a signal is hidden in the noise, we can prove that its contribution to the fluctuation
curve is negligible, except for values of  which are multiples of the symbol period. In this
later case, the average value of its contribution is:

4)(
s

ss

T
Tm

Then the ratio between the mean value of the peaks created by the DS-SS signal (if
there is one such signal hidden in the noise), and the standard deviation of the fluctuations due
to the noise is:

4

4

)(

)(

2 n

s
sn

s

WTMm

The reader must not be surprised to see a ratio between a mean and a standard
deviation: indeed, it is this ratio which is significant to determine if the peaks due to the DS-
SS signal may be hidden by the fluctuations due to the noise (see the display below). This
equation shows that the performances of our method can always be improved by increasing
the number of windows M (at the expense of longer computation time).

Figure 4 shows an example of the detector output. The curve represents ( ) (i.e. the
fluctuations of the correlation estimator), as a function of  (in s). The two horizontal lines
show )(nm  (the predicted average value of the fluctuation if noise only were present) and

)()( 4 nnm .

Fig. 4 - Example of detector output

We can clearly see that peaks are present, and that they go far above the theoretical
upper bound. Hence, there is no doubt that a spread spectrum signal is hidden in the noise.
Indeed, there was, here, a signal hidden 8dB below the noise level. Furthermore, the distance
between the peaks provides an estimation of the symbol period Ts.
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Blind estimation of the spreading sequence

Once a spread spectrum transmission is detected, the problem is to estimate the
spreading sequence. The method we have developed is based on eigenanalysis techniques.
The received signal is divided into temporal windows, the size of which is the symbol period
(this period has been estimated from the distance between the peaks on the fluctuations
curve). Each window provides a vector which feeds the eigenanalysis module. Let us
carefully examine the structure of the signal (Fig. 5). Since the window duration is equal to
the symbol period, a window always contains the end of a symbol (for a duration Ts – t0 ),
followed by the beginning of the next symbol (for a duration t0), where t0 is an unknown
desynchronization. Hence, the presence of the signal will contribute to align the subspace
spanned by the first and second eigenvectors with the subspace spanned by vectors 0h  and 1h
shown on figure 6.

One method [7] consists in trying to identify these vectors from the subspace: the
sequence can be reconstructed from the two first eigenvectors, and that useful information,
such as the desynchronization time, can be extracted from the eigenvalues. Another, slower,
but more robust method [5], consists in first performing a blind synchronization (the criteria is
maximization of the first eigenvalue), and then estimating the spreading sequence from the
first eigenvector.

����������������������� ��������������������
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Fig. 5 - Structure of the signal Fig. 6 - Generating vectors

Experimental results show that the method can provide a good estimation, even when
the received signal is far below the noise level. Fig. 7 shows the estimated and true sequences.
It is clear that the binary sequence can be recovered from the sign of the estimation. Here, the
signal was hidden 8dB below the noise.
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Fig. 7 - Estimated spreading waveform (top) and true spreading sequence (bottom)
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IV. Furtive transmissions based on chaotic signals

Introduction

Since the results of Pecora and Caroll [14] about the synchronization capabilities of
chaotic systems, there has been tremendous interest worldwide in the possibilities of
exploiting chaos in communication systems. Due to its random-like behavior and its wideband
characteristics, a chaotic dynamical system can be very helpful for discretion purposes. Chaos
not only spreads the spectrum of the information signal but also acts as an encryption key.
Thus, without knowledge of the type of nonlinearity on which the transmission is based (the
chaotic dynamic), it will be extremely difficult for the unauthorized user to access the
information. Furthermore, such signals are potentially robust against channel imperfections
such as multipath propagation or jamming. As a result of their sensitive dependence on initial
conditions, chaotic systems are able to produce large sets of uncorrelated signals. This
extreme sensitivity can be demonstrated by giving two very close initial states to a chaotic
map ; After a few iterations, the two resulting sequences will look completely decorrelated.
This can be observed even for very simple (one-dimensional discrete-time) chaotic dynamical
systems. The large signal set generated is an attractive feature in a multiple access
transmission context. Another advantage of a chaos-based communication system is a less
complicated circuitry in comparison with conventional spread spectrum approaches.
Consequently, the weight and volume requirements of the devices are reduced and efficiency
is increased. It may be possible to put a complete transmitter or receiver on one small chip.

Currently, most of the previously mentioned advantages are only projected
advantages, as noted in [17]. Nevertheless, the spectacular success of the recent research on
communications with chaos is strong evidence that future nonlinear devices will actually have
many of these advantages.

Methods for chaos-based digital communications

Many different chaotic modulations have been proposed since the work of Pecora and
Caroll. These techniques may be classified into the following main families : Chaos Shift
Keying (CSK), Differential CSK (DCSK), Chaotic Masking, Direct-Sequence/Frequency
Hopping Spread Spectrum, Predictive Control and Chaotic Pulse Position Modulation. Some
of these methods are overviewed in [8][9]. A detailed explanation is available in [16].

In a chaos-based digital communication system, the information to be transmitted is
mapped to chaotic waveforms. As in conventional communication schemes, the transmitted
symbols are recognized at the receiver using either coherent or noncoherent demodulation
techniques. The first solution is based on a chaotic synchronization process, in order to
recover the original chaotic signal from the noisy received signal. To do so, a precise
knowledge about the transmitter is required, including its chaotic dynamic. Conversely, a
noncoherent demodulator relies on statistical properties of the received signal only. Such an
approach has the advantage of robustness against channel imperfections (noise, multipath,
Doppler) but it is not particularly suited for discretion purposes, as a limited knowledge about
the transmitter is sufficient to recover the data symbols.

As demonstrated in [14], in the noise-free case, two coupled identical chaotic systems
(the master and the slave) are able to synchronize, that is the slave will asymptotically
reproduce the driving signal, for arbitrary initial conditions. However, in practice, we have to
cope with disturbed channels or parameter mismatch between chaotic oscillators. As a
consequence, a perfect synchronization becomes impossible and even a rough approximation
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of the original signal is not that easy. Moreover, the synchronization is lost and recovered
(partially) every time the transmitted symbol is changed.

Usually, a low signal-to-noise ratio is a necessary condition to secure the transmission.
For practical applications, the modulation scheme and especially the chaotic synchronization
method have to be chosen carefully to avoid severe performance degradations in this context.
We believe that chaotic Direct-Sequence Spread Spectrum (DS-SS) [10] or Chaotic Pulse
Position Modulation (CPPM) [18] are very promising methods to succeed in getting
competitive well secured digital communication systems. These two approaches allow
multiple users to operate simultaneously in time over the same frequency band by using
chaotic codes (Code Division Multiple Access).

Chaotic Direct Sequence Spread Spectrum transmission system

A Chaotic DS-SS (CD3S) transmitter has a structure similar to that encountered in a
standard DS-SS transmitter. The only difference is that the pseudo-noise (PN) code is
replaced with a chaotic code. Hence, each data symbol is multiplied by a different portion of
the spreading code, due to its aperiodicity. A possible structure for a CD3S transmitter is
illustrated by figure 8. Here, chaotic markers, whose length is identical to the processing gain
(number of chips of the spreading sequence per data symbol), are regularly inserted in order
to synchronize the receiver. The wideband chaotic signal is then upsampled and a shaping
filter is applied before modulating a sinusoidal carrier.

Fig. 8- Block diagram of a Chaotic DS-SS transmitter

A recent study carried out in our laboratory, about communicating with a CD3S
system underwater [1], have led to encouraging results. Two demodulators currently under
investigation are described below.
 Master-Slave CD3S demodulator (Fig. 9): Though very basic, this kind of demodulation,

initially proposed by Milanovic et al. [13], performs well if the spreading chaotic map is
properly selected (favorable correlation properties). Here, the original spreading code is
estimated owing to a master-slave coupling. Then, symbol decision is just given as the
sign of the output of a correlator, operating over symbol duration. Figure 11 shows the Bit
Error Rate performance of this demodulator on an Additive White Gaussian Noise
(AWGN) channel.

 Dual Unscented Kalman Filtering (UKF) CD3S demodulator (Fig. 10): This original
scheme, detailed in [2], uses recent results on state space adaptive filtering [11] to achieve
the chaotic synchronization. A dual estimation algorithm is implemented to track
simultaneously the state of the received chaotic signal and the corresponding dynamic
model (the symbol is an unknown parameter of the dynamic model). Symbol decision is
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made according to the sign of the averaged output of the second filter over symbol
duration. Figure 12 illustrates BER performance of this scheme on AWGN channel.

Fig. 9 – Block diagram of the Master-Slave
CD3S demodulator

Fig. 10 - Block diagram of the dual UKF
CD3S demodulator

Fig. 11 – BER performance of the Master-
Slave cd3s demodulator (processing gain: 63)

Fig. 12 – BER performance of the dual UKF
cd3s demodulator (Processing gain: 63)

V. Conclusion

In this paper, we have shown that adaptation of modern mathematical tools, such as
time-frequency analysis, statistical analysis of fluctuations, unscented Kalman filters, offer
promising results, both on the interception and furtivity aspects. While research about these
aspects is still mainly confined to the military domain, it is likely to play an increasing role in
the civilian domain in a near future, due to the high demand for privacy of communications,
as well as to the need of efficient regulation and control.
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