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Abstract

Through the main example of the Ornstein-Uhlenbeck semigroup, the Bakry-Emery cri-
terion is presented as a main tool to get functional inequalities as Poincaré or logarithmic
Sobolev inequalities. Moreover an alternative method using the optimal mass transportation,
is also given to obtain the logarithmic Sobolev inequality.
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1 Introduction

The goal of this course is to introduce inequalities as Poincaré or logarithmic Sobolev for diffusion
semigroups. We will focus more on examples than on the general theory. A main tool to obtain
those inequalities is the so-called Bakry-Emery Γ2-criterium. This criterium is well known to
prove such inequalities and has been also used many times for other problems, see for instance
[BÉ85, Bak06]. We will focus on the example of the Ornstein-Uhlenbeck semigroup and on the
Γ2 -criterium.

In section 2 we investigate the main example of the Ornstein-Uhlenbeck semigroup whereas in
section 3 we show how the Γ2-crierium implies such inequalities. In section 4, we will explain
an alternative method to get a logarithmic Sobolev inequality under curvature assumption. It
is called the mass transportation method and has been introduced recently, see [CE02, OV00,
CENV04, Vil09]. By this way we will also obtain an another inequality called the Talagrand
inequality or T2 inequality.

2 The Ornstein-Uhlenbeck semigroup and the Gaussian mea-

sure

In the general setting if (Xt)t>0 is a Markov process on R
n then the family of operators :

Pt(f)(x) = E(f(Xt)),

where X0 = x and a smooth function f , defined is Markov semigroup on R
n. There are two main

examples. The first one is the heat semigroup which is associated to the Brownian motion on
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Rn. In this course we will study the second one which is the Ornstein-Uhlenbeck semigroup. We
will see that the Ornstein-Uhlenbeck semigroup is associated to a linear stochastic differential
equation driven by a Brownian motion.

In this note a smooth function f in R
n is a function such that all computation done as integration

by parts are justified, for example C∞
c (Rn).

2.1 Definition and general properties

Definition 2.1 Let define the family of operator (Pt)t>0 : if f ∈ Cb(Rn) then

Ptf(x) =

∫

f(e−tx+
√

1− e−2ty)dγ(y), (1)

where

dγ(y) =
e−|y|2/2

(2πn)n/2
dy

is the standard Gaussian distribution in R
n and |·| is the Euclidean norm on R

n.

The family of operator (Pt)t>0 is called the Ornstein-Uhlenbeck semigroup.

Remark 2.2 Let (Xt)t>0 be a Markov process, solution of the stochastic differential equation

{

dXt =
√
2dBt −Xtdt

X0 = 0.
(2)

Since the stochastic differential equation is linear, there is an explicit solution

Xt = e−tX0 +

∫ t

0

√
2es−tdBs,

and equation (1) is known as the Mehler Formula. Moreover Itô’s formula gives that for all
continuous and bounded functions f on R

n

Ptf(x) = Ex(f(Xt)).

Proposition 2.3 The Ornstein-Uhlenbeck semigroup is a linear operator satisfying the following
properties :

(i) P0 = Id

(ii) For all functions f ∈ Cb(Rn), the map t 7→ Ptf is continuous from R
+ to L2(dγ).

(iii) For all s, t > 0 one has Pt ◦Ps = Ps+t.

(iv) Pt1 = 1 and Ptf > 0 if f > 0.

(v) ‖Ptf‖∞ ≤ ‖f‖∞.

We say that the Ornstein-Uhlenbeck semigroup is a Markov semigroup on (Cb(Rn), ‖·‖∞).
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Proof

⊳ We will give only some indications of the proof. First it is easy to prove items (i), (ii), (iv)
and (v).
For the item (iii), you just have to compute the Ornstein-Uhlenbeck as follow : Ptf(x) =
E(f(e−tx +

√
1− e−2tY )) where Y is a random variable with a Gaussian distribution. Then

compute Pt(Psf) to obtain Pt+sf . In fact, since the solution of the stochastic differential equa-
tion (2) is a Markov process then (iii) is a natural property of the Ornstein-Uhlenbeck semigroup.
⊲

Proposition 2.4 For all smooth functions f one has

∀x ∈ R
n, ∀t > 0,

∂

∂t
Ptf(x) = L(Ptf)(x) = Pt(Lf)(x),

where for all smooth functions f , Lf = ∆f − x · ∇f .
The linear operator L is known as the infinitesimal generator of the Ornstein-Uhlenbeck semi-
group.

Proof

⊳ If f be a smooth function, then

∂

∂t
Ptf(x) =

∫
(

−e−tx+
e−2t

√
1− e−2t

y

)

· ∇f
(

e−tx+
√

1− e−2ty
)

dγ(y).

By definition of the Ornstein-Uhlenbeck semigroup one gets

−xe−t ·
∫

∇f
(

e−tx+
√

1− e−2ty
)

dγ(y) = −x · ∇Ptf(x)

whereas the second term, after an integration by parts gives

e−2t

√
1− e−2t

∫

y · ∇f
(

e−tx+
√

1− e−2ty
)

dγ(y) = ∆Ptf(x),

which finishes the proof.
Using the same computation one can prove the commutation property between Pt and the gen-
erator L. ⊲

More generally, if L is an infinitesimal generator associated to a linear semigroup (Pt)t>0 (not
necessary a Markov semigroup) then the commutation LPt = PtL holds.

Proposition 2.5 (Some properties of the O-U semigroup) The Ornstein-Uhlenbeck semi-
group is γ-ergodic, that means for all f ∈ Cb(Rn),

∀x ∈ R
n, lim

t→∞
Ptf(x) =

∫

fdγ, (3)

in L2(dγ).
The probability measure γ is then the unique invariant probability measure, for all smooth func-
tions f ∈ Cb(Rn) :

∫

Ptfdγ =

∫

fdγ, (4)
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or equivalently for all smooth functions f ,

∫

Lfdγ = 0.

In fact we have the fundamental identity,

∫

gLfdγ =

∫

fLgdγ = −
∫

∇f · ∇gdγ, (5)

for all smooth functions f and g on R
n. We say that the Gaussian distribution is reversible with

respect to the Ornstein-Uhlenbeck semigroup, L is symmetric in L2(dγ).

Proof

⊳ Let us give the proof of (5):

∫

fLgdγ =

∫

f∆gdγ −
∫

(fx · ∇g)dγ

= −
∫

∇ · (fγ) · ∇gdx−
∫

fx · ∇gdγ

= −
∫

∇f · ∇gdγ,

where ∇ · f stands for the divergence of f .

In fact (4) is clear due to the fact if a semigroup is ergodic for some probability measure then
the measure is always invariant. ⊲

As we have seen in the proof of Proposition 2.4, the Ornstein-Uhlenbeck semigroup satisfies the
equality for all f and x:

∀t > 0, ∇Ptf(x) = e−tPt∇f(x), (6)

where Pt∇f = (Pt∂if)1≤i≤n and for all norms ‖·‖ in R
n, one gets easily

∀t > 0, ‖∇Ptf(x)‖ ≤ e−tPt‖∇f‖(x), (7)

those equations are known as the commutation property of the gradient and the Ornstein-
Uhlenbeck semigroup. Inequality (7) is the key formula to get classical inequalities.

2.1.1 The Poincaré and logarithmic Sobolev inequalities

Theorem 2.6 The following Poincaré inequality for the Gaussian measure holds, for all smooth
functions f on R

n,

Varγ(f) :=

∫

f2dγ −
(
∫

fdγ

)2

≤
∫

|∇f |2dγ. (8)

The term Varγ(f) is the variance of f under γ. Moreover, the inequality is optimal and extremal
functions are given by smooth functions satisfying ∇f = C for some constant C ∈ R

n.

Proof

⊳ Let f be a smooth function on R
n then P0f = f and P∞f =

∫

fdγ (see (3)), therefore the
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Ornstein-Uhlenbeck semigroup gives a nice interpolation between f and
∫

fdγ.

Varγ(f) = −
∫ +∞

0

d

dt

∫

(Ptf)
2dγdt

= −2

∫ +∞

0

∫

LPtfPtfdγdt

= 2

∫ +∞

0

∫

|∇Ptf |2dγdt

≤ 2

∫ +∞

0

∫

e−2t(Pt|∇f |)2dγdt

≤ 2

∫ +∞

0

∫

e−2tPt

(

|∇f |2
)

dγdt

= 2

∫ +∞

0

∫

e−2t|∇f |2dγdt

=

∫

|∇f |2dγ,

where we use equality (7), Cauchy-Schwarz inequality and the invariance property of the stan-
dard Gaussian distribution (4).

On can check that in all stages of the proof, smooth functions satisfying ∇f = C are the unique
function such that the two inequalities become equalities. ⊲

Theorem 2.7 The following logarithmic Sobolev inequality for the Gaussian measure holds, for
all smooth and non-negative functions f on R

n,

Entγ(f) :=

∫

f log
f

∫

fdγ
dγ ≤ 1

2

∫ |∇f |2
f

dγ. (9)

The term Entγ(f) is known as the entropy of f under γ. Moreover, the inequality (9) is optimal
and extremal functions are given by ∇f = Cf for some constant C ∈ R

n.

Proof

⊳ Let us mimic the proof of the Poincaré inequality, let f be a smooth and non-negative function
on R

n then

Entγ(f) = −
∫ +∞

0

d

dt

∫

Ptf logPtfdγdt

= −
∫ +∞

0

∫

LPtf logPtfdγdt

=

∫ +∞

0

∫

∇Ptf · ∇ logPtfdγdt

=

∫ +∞

0

∫ |∇Ptf |2
Ptf

dγdt,

≤
∫ +∞

0

∫

e−2t (Pt|∇f |)2
Ptf

dγdt

where we have used the same argument as for Poincaré inequality. Now Cauchy-Schwarz in-
equality or the convexity of the map

(x, y) 7→ x2/y
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for x, y > 0, implies

(Pt|∇f |)2
Ptf

≤ Pt

(

|∇f |2
f

)

,

then one gets

Entγ(f) ≤
∫ +∞

0

∫

e−2tPt

(

|∇f |2
f

)

dγdt =
1

2

∫ |∇f |2
f

dγ.

One obtains extremal functions in the same way than for Poincaré inequality. ⊲

The logarithmic Sobolev inequality is often noted for f2 instead of f , which gives for all smooth
functions f ,

Entγ
(

f2
)

≤ 2

∫

|∇f |2dγ.

At the light of the Theorems 2.6 and 2.7, we say that the standard Gaussian satisfies a Poincaré
and a logarithmic Sobolev inequality.

More generally a logarithmic Sobolev inequality always implies a Poincaré inequality by a Taylor
expansion (see Chapter 1 of [ABC+00]).

In proposition 2.5, we proved that the Ornstein-Uhlenbeck semigroup is ergodic with respect to
the Gaussian distribution. In fact one of the main application of the Poincaré and the logarithmic
Sobolev inequalities is to give an estimate of the speed of convergence in two different spaces.

Theorem 2.8 The Poincaré inequality (8) is equivalent to the following inequality

Varγ(Ptf) ≤ e−2tVarγ(f) , (10)

for all smooth functions f .

And in the same way, the logarithmic Sobolev inequality (9) is equivalent to

Entγ(Ptf) ≤ e−2tEntγ(f) , (11)

for all non-negative and smooth functions f .

Proof

⊳ For the first assertion, an elementary computation gives that

d

dt
Varγ(Ptf) = −2

∫

|∇Ptf |2dγ,

then the Poincaré inequality and Grönwall lemma implies (25). Conversely, the derivation at
time t = 0 of (25) implies the Poincaré inequality.

For the second assertion, we use the same method and the derivation of the entropy,

d

dt
Entγ(Ptf) = −

∫ |∇Ptf |2
Ptf

dγ. (12)

⊲

One of the main difference between the two inequalities is that the initial condition is in L2(dγ)
for the Poincaré inequality whereas the initial condition is in L logL(dγ) for the logarithmic
Sobolev inequality.
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3 Poincaré and logarithmic Sobolev inequalities under curva-

ture criterium

The main idea of this section is to obtain criteria for a probability measure µ such that the two
inequalities (8) and (9) hold for the measure µ. We will study a particular case of the curvature-
dimension criterium (or Γ2-criterium) introduced by D. Bakry and M. Emery in [BÉ85]. This
criterium gives conditions on an infinitesimal generator L such that all the computations done
for the Ornstein-Uhlenbeck semigroup could be applied to L.

Let a function ψ ∈ C2(Rn), and define the infinitesimal generator:

Lf = ∆f −∇ψ · ∇f, (13)

for all smooth functions f .
Assume that

∫

e−ψdx < +∞ and define the probability measure dµψ(x) = e−ψdx
Zψ

dx, where

Zψ =
∫

e−ψdx. It is easy to see that the operator L satisfies for all smooth functions f and g
on R

n,
∫

fLgdµψ =

∫

gLfdµψ = −
∫

∇f · ∇gdµψ , (14)

and
∫

Lfdµψ = 0. We recover the same property as for the Ornstein-Uhlenbeck semigroup,
see (5). The generator L is symmetric in L2(dµψ) and the probability measure µψ is also
invariant with respect to L.
Let define the Carré du champ, for all smooth functions f ,

Γ(f, f) =
1

2

(

L(f2)− 2fLf
)

, (15)

we note usually Γ(f) instead of Γ(f, f). The carré du champ is a quadratic form and the bilinear
form associated is given by

Γ(f, g) =
1

2
(L(fg)− fLg − gLf).

If we iterate the process one obtains the Γ2-operator, for all smooth functions f ,

Γ2(f, f) =
1

2
(L(Γ(f))− 2Γ(f,Lf)). (16)

We assume in this section that there exits a set of function A, dense in L2(dµ), such that all
computations can be done in this class of function. In the previous section, the setA was C∞

c (Rn)
and one of the main problem is to describe this class of functions. It can be done under the
Γ2-criterium CD(ρ,+∞) (see the definition below), we refer to [ABC+00, Bak06] and references
therein to get more informations.

Definition 3.1 We say that the linear operator L, satisfies the Γ2-criterium CD(ρ,+∞) with
some ρ ∈ R, if for all functions f ∈ A

Γ2(f) > ρΓ(f). (17)

Remark 3.2 Since for all smooth functions f , Lf = ∆f −∇ψ · ∇f , a straight forward compu-
tation gives,

Γ(f) = |∇f |2,
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and

Γ2(f) = ‖Hess(f)‖2H.S.+ < ∇f,Hess(ψ)∇f >,

where the Hilbert-Schmidt norm is given by ‖Hess(f)‖2H.S. =
∑

i,j

(

∂2

∂xi∂xj
f
)2

.

Then the linear operator L defined in (13) satisfies the Γ2-criterium CD(ρ,+∞) with some
ρ ∈ R if for all x ∈ R

n

Hess(ψ)(x) > ρId, (18)

in the sense of the symmetric matrix, i.e. for all Y ∈ R
n,

< Y,Hess(ψ)(x)Y >> ρ|Y|2,

where < ·, · > is the Euclidean scalar product.

Theorem 3.3 Let ψ ∈ C2(Rn) and assume that there exists ρ > 0 such that the linear opera-
tor (13) satisfies a Γ2-criterium CD(ρ,+∞), then the probability measure µψ satisfies a Poincaré
inequality

Varµψ (f) ≤
1

ρ

∫

|∇f |2dµψ, (19)

for all f ∈ A and a logarithmic Sobolev inequality

Entγ(f) ≤
1

2ρ

∫ |∇f |2
f

dµψ, (20)

for all smooth and non-negative functions f ∈ A.

Lemma 3.4 Let (Pt)t>0 be the Markov semigroup associated to the infinitesimal generator L.
Assume that ρ > 0 then (Pt)t>0 is µψ-ergodic which means for all functions f ∈ A

lim
t→+∞

Ptf(x) =

∫

fdµψ,

in f ∈ L2(dµψ) and µψ almost surely.

Lemma 3.5 Let ϕ be a C2 function, then for all functions f ∈ A,

Lϕ(f) = ϕ′(f)Lf + ϕ′′(f)Γ(f) and Γ(log f) =
1

f2
Γ(f), (21)

moreover one has

Γ2(log f) =
1

f2
Γ2(f)−

1

f3
Γ(f,Γ(f)) +

1

f4
(Γ(f))2 (22)

Proof of the Theorem 3.3

⊳ First we prove the first inequality (19). As for the Ornsten-Uhlenbeck semigroup, one gets
if (Pt)t>0 is the Markov semigroup associated to the infinitesimal generator L, for all functions
f ∈ A,

Varµψ (f) = −
∫ +∞

0

d

dt

∫

(Ptf)
2dµψdt

= −2

∫ +∞

0

∫

LPtfPtfdµψdt
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Since µψ is invariant,

∫

2PtfLPtfdµψ =

∫

(

2PtfLPtf − L(Ptf)
2
)

dµψ = −2

∫

Γ(Ptf)dµψ,

which gives

Varµψ (f) =

∫ +∞

0
2

∫

Γ(Ptf)dµψdt. (23)

Let now consider for all t > 0,

Φ(t) = 2

∫

Γ(Ptf)dµψ,

The time derivative of Φ is equal to

Φ′(t) = 4

∫

Γ(Ptf,LPtf)dµψ =

2

∫

(2Γ(Ptf,LPtf)− L(Γ(Ptf)))dµψ = −4

∫

Γ2(Ptf)dµψ.

The Γ2-criterium implies that Φ′(t) ≤ −2ρΦ(t) which gives Φ(t) ≤ e−t2ρΦ(0). The last inequality
with (23) implies

Varµψ(f) ≤
∫ +∞

0
e−t2ρdt

∫

2Γ(f)dµψ =
1

ρ

∫

Γ(f)dµψdt.

Let now prove the logarithmic Sobolev inequality for the measure µψ. Let f be a non-negative
and smooth function on R

n,

Entµψ(f) = −
∫ +∞

0

d

dt

∫

Ptf logPtfdµψdt

= −
∫ +∞

0

∫

LPtf logPtfdµψdt

Since L is symmetric and by lemma 3.5 one gets

∫

LPtf logPtfdµψ =

∫

PtfL logPtfdµψ = −
∫

Γ(Ptf)

Ptf
dµψ = −

∫

Γ(logPtf)Ptfdµψ,

which gives

Entµψ(f) =

∫ +∞

0

∫

Γ(logPtf)Ptfdµψdt. (24)

As for Poincaré inequality, let consider for all t > 0,

Φ(t) =

∫

Γ(Ptf)

Ptf
dµψ

where Ptf = g. The time derivative of Φ is equal to

Φ′(t) =

∫
(

2
Γ(Lg, g)

g
− LgΓ(g)

g2

)

µψ =

∫
(

2
Γ(Lg, g)

g
− LgΓ(g)

g2
− L

(

Γ(g)

g

))

µψ.

Since

L

(

Γ(g)

g

)

= 2Γ

(

Γ(g),
1

g

)

+
1

g
LΓ(g) + L

(

1

g

)

Γ(g),

9



by Lemma 3.5 one has

Φ′(t) = −2

∫

Γ2(logPtf)Ptfdµψ.

The Γ2-criterium implies that Φ′(t) ≤ −2ρΦ(t) which gives Φ(t) ≤ e−2ρtΦ(0). This inequality
with (24) implies that

Entµψ (f) ≤
∫ +∞

0
e−2ρtdt

∫

Γ(log f)fdµψ =
1

2ρ

∫

Γ(log f)fdµψ =
1

2ρ

∫ |∇f |
f

dµψ.

⊲

The meaning of this result is : if µψ is more log-concave than the Gaussian distribution then µψ
satisfies both inequalities.

Remark 3.6 The Γ2-criterium is in fact a more general criterium. The definition of a diffusion
semigroup could be a Markov semigroup such that for all smooth functions ϕ, the equations (21)
and (22) hold for the generator associated to the semigroup.
In fact on R

n (or on a manifold on a local chart) that means that the infinitesimal generator L
of the Markov semigroup is given by,

∀x ∈ R
n, Lf(x) =

∑

i,j

Di,j(x)∂i,jf(x)−
∑

i

ai(x)∂if(x),

where D(x) = (Di,j(x))i,j is a symmetric and non-negative matrix and a(x) = (ai(x))i is a
vector.
Then the conditions Γ2(f) > ρΓ(f) for some ρ > 0 implies that there exists an invariant measure
µ of the semigroup and µ satisfies the Poincaré and a logarithmic Sobolev inequality with the
same constant as before. One of the difficulties of this general case is to find tractable conditions
on functions D and a such that the Γ2-criterium holds. Some others examples can be found
in [BG10].
Let us also note that the Γ2-criterium CD(ρ,∞) is a particular case of the CD(ρ, n) criterium
where n ∈ N

∗ :

Γ2(f) > ρΓ(f) +
1

n
(Lf)2,

for all smooth functions f . For example, the Ornstein-Uhlenbeck semigroup satisfies the CD(1,∞)
criterium and the heat equation L = ∆ satisfies the CD(0, n). On can observe that the Ornstein-
Uhlenbeck semigroup does not satisfies a CD(r,m) criterium for any r,m > 0.

Theorem 3.7 As for the Ornstein-Uhlenbeck semigroup, the Poincaré inequality (19) is equiv-
alent to the following inequality

Varµψ(Ptf) ≤ e
− 2

ρ
t
Varµψ(f) , (25)

for all functions f ∈ A.
And in the same way, the logarithmic Sobolev inequality (20) is equivalent to

Entµψ(Ptf) ≤ e−2tEntµψ(f) , (26)

for all non-negative functions f ∈ A.

The logarithmic Sobolev inequality has two main applications. The first one the asymptotic
behaviour in term of entropy, this is the result of Theorem 3.7. The second application is about
concentration inequality, a probability measure µ satisfying a logarithmic Sobolev inequality has
the same tail as the Gaussian distribution.
This properties is also a consequence of the Talagrand inequality described in the next section.
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4 The logarithmic Sobolev and transport inequalities by trans-

portation method

We will see how Brenier’s Theorem can be used in this context to give a new proof of the
logarithmic Sobolev inequality, the method is called mass transportation method.

We will illustrate this method for the Gaussian measure but it could be generalized for a large
class of measures, this will be discussed later. The method come from [OV00, CE02] and has been
generalized for many Euclidean inequalities as Sobolev and Gagliardo-Nirenberg inequalities,
see [AGK04, CENV04, Naz06].

The Wasserstein distance between two probability measures µ and ν is defined by

W2(µ, ν) =

(

inf

∫

|x− y|2dπ(x, y)
)1/2

. (27)

where the infimum is running over all probability measures π on R
n × R

n with respective
marginals µ and ν : for all bounded functions g and h,

∫

(g(x) + h(y))dπ(x, y) =

∫

gdµ +

∫

hdν.

Such probability is called a coupling of (µ, ν).

Brenier’s theorem says that that there exits an optimal deterministic coupling of (µ, ν) : there
exists a convex map Φ satisfying

∫

h(∇Φ)dν =

∫

hdµ,

for all bounded functions h. Moreover

W 2
2 (dν, dµ) =

∫

|∇θ|2dν,

where θ(x) = Φ(x) − 1
2 |x|

2. This result has been proved by Brenier, ∇Φ is called the Brenier
map between ν and µ, see [Vil09].

We apply this result in the Gaussian case. Let f be a smooth and positive function such that
∫

fdγ = 1, Brenier’s theorem implies that there exists a convex map Φ satisfying

∫

h(∇Φ)fdγ =

∫

hdγ, (28)

for all bounded and measurable functions h. Moreover

W 2
2 (fdγ, dγ) =

∫

|∇θ|2fdγ,

where θ(x) = Φ(x)− 1
2 |x|

2.

If now Φ is a C2(Rn) function, then coming from (28), the Monge-Ampère equation holds :
fdγ-a.e.

f(x)e−|x|2/2 = det(Id + Hess(θ))e−|x+∇θ(x)|2/2. (29)

11



After taking the logarithm, we get

log f(x) = −1

2
|x+∇θ(x)|2 + 1

2
|x|2 + log det(Id+Hess(θ))

= −x · ∇θ(x)− 1

2
|∇θ(x)|2 + log det(Id+Hess(θ))

≤ −x · ∇θ(x)− 1

2
|∇θ(x)|2 +∆θ(x),

where we used inequality log(1 + t) ≤ t whenever 1 + t > 0. We integrate with respect to fdγ :

Entγ(f) ≤
∫

f(∆θ − x · ∇θ)dγ −
∫

1

2
|∇θ(x)|2fdγ.

The integration by parts implies

Entγ(f) ≤ −
∫

∇θ · ∇fdγ −
∫

1

2
|∇θ(x)|2fdγ

≤ −1

2

∫
∣

∣

∣

∣

√

f∇θ + ∇f√
f

∣

∣

∣

∣

2

dγ +
1

2

∫ |∇f |2
f

dγ

≤ 1

2

∫ |∇f |2
f

dγ,

which is the optimal logarithmic Sobolev inequality (9).

Hence we have proved, using Brenier’s map, the logarithmic Sobolev inequality for the Gaussian
measure with the optimal constant. As we can see in the proof, one has assumed that Φ is a C2

function. It can be obtained using Caffarelli’s regularity theory : it needs another assumptions, f
has to be smooth with a compact and convex support. We skip it for simplicity of the description
of the method, many informations can be bound in [Vil09]

Let us see what can be done if now ∇Φ be the Brenier map between dγ and fdγ instead fdγ
and dγ : that is for all bounded and measurable functions h:

∫

hfdγ =

∫

h(∇Φ)dγ,

and if x+∇θ(x) = ∇Φ then

W 2
2 (fdγ, dγ) =

∫

|∇θ|2dγ.

In that case the Monge-Ampère equation gives

det(Id + Hess(θ))f(x +∇θ(x))e−|x+∇θ(x)|2/2 = e−|x|2/2. (30)

Which implies

log f(x+∇θ(x)) =
1

2
|x+∇θ(x)|2 − 1

2
|x|2 − log det(Id+Hess(θ))

= x · ∇θ(x) + 1

2
|∇θ(x)|2 − log det(Id+Hess(θ))

> x · ∇θ(x) + 1

2
|∇θ(x)|2 −∆θ(x)

= −Lθ +
1

2
|∇θ(x)|2,

12



where L is the Ornstein-Uhlenbeck generator. Then

Entγ(f) =

∫

f log fdγ

=

∫

log f(∇Φ)dγ

>

∫

−Lθdγ +
∫

1

2
|∇θ(x)|2dγ

=
∫ 1

2
|∇θ(x)|2dγ =

1

2
W 2

2 (fdγ, dγ)

We have proved that for all functions f such that fdγ is a probability measure, one has

W2(fdγ, dγ) ≤
√

2Entγ(f). (31)

This inequality, called Talagrand inequality for the Gaussian distribution (or T2 inequality), has
been proved by Talagrand in [Tal96].
As for Poincaré and logarithmic Sobolev inequalities, we says that a probability measure µ
satisfies a Talagrand inequality if there exists C > 0 such that,

T2(fdµ, dµ) ≤
√

CEntµ(f), (32)

for all functions f such that fdµ is a probability measure,

4.1 Remarks and extensions

This method can also be used is the context of the section 3. Assume that ψ is uniformly convex
and satisfying

Hess(ψ) > ρI,

with some ρ > 0. The mass transportation method implies that the measure

dµψ(x) =
e−ψdx

Zψ
dx

satisfies the logarithmic Sobolev inequality (20) with the constant 1/(2ρ). This is an alternative
proof of Theorem 3.3. Actually this method is not useful to obtain directly a Poincaré inequality.

Of course, as for Ornstein-Uhlenbeck semigroup, the mass transportation method gives also a
Talagrand inequality (32) for the measure µψ :

T2(fdµψ, dµψ) ≤
√

1

ρ
Entµψ(f),

for all probability measure fdµψ.

In fact the general result holds,

Theorem 4.1 (Otto-Villani) Let µ be a probability measure on R
n satisfying a logarithmic

Sobolev inequality

Entµ
(

f2
)

≤ C

∫

|∇f |2dµ,

for all smooth functions f and for some constant C > 0.
Then µ satisfies a Talagrand inequality

T2(fdµ, dµ) ≤
√

2CEntµ(f),

for all probability measure fdµ.

13



The original proof comes from [OV00] and an easier one, using Hamilton-Jacobi equation, has
been given in [BGL01]. These two inequalities are quite similar but it has been proved in [CG06,
Goz07] that they are not equivalent.
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Synthèses. Société Mathématique de France, Paris, 2000.

[AGK04] M. Agueh, N. Ghoussoub, and X. Kang. Geometric inequalities via a general com-
parison principle for interacting gases. Geom. Funct. Anal., 14(1):215–244, 2004.

[Bak06] D. Bakry. Functional inequalities for Markov semigroups. In Probability measures on
groups: recent directions and trends, pages 91–147. Tata Inst. Fund. Res., Mumbai,
2006.
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