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SUMMARY

Estimability is a property which states on the accuracy of the parameter estimation in the case of

experimental data. This paper defines a new method based on interval analysis and set inversion to

characterize estimability in the case of a bounded additive noise. To illustrate this new method, the

Time Difference of Arrival (TDOA) passive location estimability is evaluated: to our knowledge, it is

the first time that the parameter estimation error of these nonlinear equations is given. Copyright c©

2010 John Wiley & Sons, Ltd.
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1. Introduction

Estimability is a property which states on the accuracy of the parameter estimation in the case

of experimental data [1, 2]. Indeed, a parameter can be identifiable [3, 4] but poorly estimable
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for a given experiment. This paper defines a new method based on interval analysis and set

inversion to characterize estimability in the case of a bounded additive noise.

A bounded-error estimation problem can be written under the form [5]:

y = f(p) + e, (1)

where e ∈ E stands for an additive noise vector, E stands for the additive noise set and

f : R
n → R

m is a nonlinear function. Our interval-based estimability approach focuses on p̂

vectors which are estimable from y, i.e. that can lead to the same measurement vector y. We

are looking for P set such as:

P = {p̂ ∈ R
n | ∃(e1, e2) ∈ E

2, f(p̂) + e1 = f(p) + e2} (2)

Define the uncertainty set U = {e2 − e1|e1 ∈ E, e2 ∈ E} and Y = f(p) + U. Then, P can be

written as a set inversion [6]:

P = f−1(Y). (3)

Figure 1 illustrates our estimability approach.

In next section, we define the estimability function ξf which characterizes the size of P. Third

section shows how interval analysis and set inversion may be used to evaluate of ξf . Finally, last

section illustrates ξf relevance by evaluating the estimability of a nonlinear passive location

function.
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Figure 1. Illustration of our estimability approach: P constitutes the reciprocal image of Y = f(p)+U.

Our estimability function ξf evaluates the size of P.

2. Estimability Function ξf

2.1. Preliminary definition

To define ξf , we need a general size function w such as:

w : C(Rn) → R
+

A → w(A)

(4)

where C(Rn) stands for compact sets of R
n. The general size function satisfies two conditions:

w(A) always belongs to R
+ and w is monotonic, i.e. A ⊆ B ⇒ w(A) ≤ w(B). Classically, w is

chosen as the largest dimension of the smallest box containing A. Nevertheless, depending on

the context and the dimension n, w may account for area, volume or diameter of a compact

set [7, 8].

2.2. Estimability Function ξf Definition

In the following, f : R
n → R

m stands for a nonlinear function. Then we can define estimability

function ξf as follow:

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 1:1–6
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ξf : R
n → R

+

p → w(f−1(f(p) + U))

(5)

where U = {e2 − e1|e1 ∈ E, e2 ∈ E} is the uncertainty set and E stands for the additive noise

set. ξf (p) value is the size of the inverted set of Y = f(p) + U.

2.3. Illustration of Estimability Function

To illustrate ξf concept, let us choose the following one-dimension nonlinear function f :

f : [0, 6] → R

x → √
x sin(x) + x.

(6)

This f function is sketched in Fig. 2 and ξf (1) evaluation is detailed. We suppose that the

additive noise set is [−ε/2, ε/2]. Then, interval analysis allows us to write :

U = [−ε/2, ε/2] − [−ε/2, ε/2] = [−ε, ε]. (7)

In this example, we choose ε = 0.7. Therefore f−1(f(1)+ [−ε, ε]) results in two intervals A1

and A2. Let us denote by ai
−

and ai+ the Ai lower and upper bound. w result is the sum of

the diameters of these two intervals†. That is why:

ξf (1) = (a1+
− a1

−

) + (a2+
− a2

−

).

ξf (1) is found to be about 1.55. It characterizes parameter estimation error due to additive

noise and nonlinearity of f near x = 1.

The lesser ξf (x), the better the accuracy of the parameter estimation. On the contrary,

ξf (x) ≫ 1 characterizes the impossibility to properly estimate parameters: it is due to noise,

low growing rate or non-injectivity of f [9] .

†This definition of w is consistent with the section 2.1 of this paper.
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Figure 2. One dimension f(x) =
√

x sin(x) + x function and ξf concept: ε/2 = 0.35, x = 1. In this

example, f−1(f(1) + [−ε, ε]) results in two intervals A1 and A2.ξf (1) = (a1+
− a1

−

) + (a2+
− a2

−

).

3. Estimability Evaluation

3.1. Methodology

To evaluate ξf , four stages are required: firstly, U must be deduced from E. Secondly, f(p)+U of

(5) is evaluated. Then, f−1(Y) is characterized by using set inversion [10]. Finally, w computes

the sum of the sizes of the resulting intervals.

Powerful set methods exist to address set inversion problems [6]. In this paper, we are

using Quimper, a high-level language for QUick Interval Modeling and Programming in a

bounded-ERror context‡. Quimper uses interval analysis and constraint propagation [11] to

solve equations. It guarantees that the computed intervals enclose all solutions for given initial

intervals. In addition, it provides built-in contractors which speed up computation. Details

about Quimper and contractor programming can be found in [12]. But let us now illustrate

‡See Ibex/Quimper site at http://ibex-lib.org/
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the estimability function ξf on a one dimension example.

3.2. 1-D Estimability Evaluation

ξf and f of (6) are drawn for x ∈ [0, 20] in Fig. 3. Each point of ξf (x) has been evaluated

using contractor set inversion. Quimper script for each point is similar to listing 1.

Listing 1. Example of Quimper script for set inversion

Constants

fxme=1.33470616479;

fxpe =2.73470616479;

Variables

x in [ 0 , 2 0 ] ;

contractor f i n v

x+sq r t ( x ) ∗ s i n ( x ) in [ fxme , fxpe ]

end

contractor i sTh ick

maxdiamGT( 0 . 0 1 )

end

In this listing 1, true value of x is 1.1, E = [−ε/2, ε/2] = [−0.35, 0.35] and [fxme, fxpe] stands

for [f(x) − ε, f(x) + ε]. The contractor finv eliminates all the intervals which do not satisfy

(6). isThick is a special contractor to fix the bisection limits. It collects all the intervals whose

maximum size is 0.01. Therefore the intervals that are not solutions and the intervals that are

indiscernible are included by contractor isThick§. Computation takes about 0.002s per point¶.

§See Quimper manual for examples.
¶on an Intel Core 2 Duo CPU at 2.00GHz
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E : (x,y)

R1 : (x1,y1)

R2 : (x2,y2)

R0 : (x0,y0)

x

y

o
t0- t1=constant

t1- t2=constant

t2- t0=constant

ξf is not monotonic over [0, 20]. Structural identifiability [9] tells us that it is due to variation

of the cardinality of f−1(Y). ξf can take high values because of non-injectivity. On the contrary,

if the injective part of f is considered and if the growing rate of f is high, then ξf tends to 0.

4. Application to Passive Location

4.1. TDOA Hyperbolic Equations

Let (x, y) be the unknown location of the emitter, and (xi, yi) the location of the receivers.

Distance from emitter to receiver i is:

Di =
√

(x − xi)2 + (y − yi)2 (8)

Let tij be the measured‖ Time Difference Of Arrival (TDOA) of the signal between receiver

‖See [13] and [14] for correlation techniques used to measure TDOA.
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Figure 3. One dimension f(x) =
√

xsin(x) + x function and ξf over x-range [0, 20] for ε = 0.7.

i and j. As Di − Dj = ctij , hyperbolic TDOA equations are:

√

(x − xi)2 + (y − yi)2 −
√

(x − xj)2 + (y − yj)2 = ctij (9)

where c is the speed of the signal and (i, j) ∈ {(0, 1), (1, 2), (2, 0)}.

Solving these nonlinear equations for (x, y) is not a trivial problem [15, 16, 17], especially

when time measurements are noisy. However, we have shown in [18] that our approach based

on interval analysis, constraint propagation and contractor programming allows us to avoid

any approximations and naturally results in bounded-error estimation.
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4.2. TDOA Estimability

Consider the following function:

f : R
2 → R

3

(x, y) → (t01, t12, t20).

(10)

where tij is defined by (9). The estimability of this function allows us to refine our TDOA

approach: for a given time additive noise and a special receivers configuration, we can now

easily build a map which states on the TDOA passive location error.

In this example, receivers are located at R0 (-1000, 0) m, R1 (0,1000) m and R2 (1000,0)

m. We choose to define w as area operator. Therefore, ξf unit is km2. In this simulation,

E = [−ε/2, ε/2] × [−ε/2, ε/2] × [−ε/2, ε/2] and ε/2 = 15ns. This time error∗∗ corresponds to

an analog to digital converter with a good precision and a basic signal correlation.

A 100x100 xy grid has been defined over x-range [−5000, 5000] and y-range [−5000, 5000].

For each point (x, y), a Quimper file similar to listing 2 is computed. The area corresponding to

ξf (x, y) is extracted from Quimper results. Figure 4 shows ξf computation. Each point takes

about 0.02 s to compute.

Listing 2. Example of Quimper script for TDOA set inversion

Constants

x0 =0.0 ;

y0=−1000.0;

x1 =0.0 ;

y1=1000.0;

x2=1000.0;

∗∗Different ε/2 could have been chosen for each tij . They also could have been chosen randomly.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 1:1–6

Prepared using acsauth.cls



10 O. REYNET, L. JAULIN

y2 =0.0;

ct01 in [ −592 .12 , −577 .12 ] ;

ct12 in [ −588 .53 , −573 .53 ] ;

ct20 in [ 1 1 5 8 . 1 5 , 1 1 7 3 . 1 9 ] ;

Variables

x in [ −5000 ,5000 ] ;

y in [ −5000 ,5000 ] ;

constraint−l i s t dtoaeq

sq r t ( ( x−x0 ) ˆ2+(y−y0 ) ˆ2)−s q r t ( ( x−x1 ) ˆ2+(y−y1 ) ˆ2) in ct01 ;

s q r t ( ( x−x1 ) ˆ2+(y−y1 ) ˆ2)−s q r t ( ( x−x2 ) ˆ2+(y−y2 ) ˆ2) in ct12 ;

s q r t ( ( x−x2 ) ˆ2+(y−y2 ) ˆ2)−s q r t ( ( x−x0 ) ˆ2+(y−y0 ) ˆ2) in ct20 ;

end

contractor−l i s t p in t e r

for i =1:3 ;

dtoaeq ( i )

end

end

contractor propInte r

propag ( p i n t e r )

end

contractor i sTh ick

maxdiamGT(20)

end

To our knowledge, it is the first time that such a function is evaluated. This map highlights

the emitter positions for which the TDOA passive location error is the most important. These

emitter’s positions are shown to be located over complex regions really difficult to predict

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 1:1–6
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A NEW INTERVAL-BASED METHOD TO CHARACTERIZE ESTIMABILITY 11

Figure 4. TDOA estimability: receivers are sketched with white crosses: R0 (-1000, 0) m, R1 (0,1000)

m and R2 (1000,0) m.

because of the nonlinear hyperbolic equations. These intrinsic properties of f are very useful

to properly design passive location systems.

5. Conclusion

We have introduced a new interval-based method to evaluate the estimability and shown that

it is possible to predict the accuracy of the parameter estimation of a nonlinear model in the

case of noisy data. Our method differs from the Cramer-Rao Lower Bound (CRLB) approach,

because we have not built a statistics-based estimator. Unlike CRLB, no special assumption

is required on the bias or the linearity of the model, neither on the additive noise.

Our approach is not another sensitivity analysis to study the influence of the variation of

the parameters on the function’s result: ξf directly evaluates the error of parameter estimation

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 1:1–6
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12 O. REYNET, L. JAULIN

from f and additive noise set E. Estimability function ξf does not require global identifiability.

Besides, its use is not restricted to small additive noise. This is due to evaluation method based

on interval analysis and set inversion. Application to passive location illustrates the relevance

of our approach. We are certain that numerous experimental design problems can be solved

thanks to ξf .
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