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Abstract

In this paper, we investigate a new way to deal with the problems generated by
the limitation process of very high-order finite volume methods based on polyno-
mial reconstructions. Multi-dimensional Optimal Order Detection (MOOD) breaks
away from classical limitations employed in MUSCL or ENO/WENO. Indeed, in-
stead of classical limiting of polynomial reconstructions, MOOD detects problematic
situations after each time evaluation of the solution. Then, locally, the flux approx-
imations are modified by reducing the local polynomial degree and the solution is
updated. Several advantages are consequently gained: the concept is simple, totally
independent of mesh structure in any spatial dimension and is able to take physics
into account thanks to its “a posteriori” detection. The detection uses the Discrete
Maximum Principle (DMP) for advection problem. For Euler system the detection
is based on a mix between DMP on density variable and positivity of pressure. In
order to avoid expensive substeps of polynomial limiting the solution re-evaluations
are embedded into the substeps of a Runge-Kutta high-order time discretization.
Numerical results on classical and demanding tests cases are proposed on quadran-
gular meshes to support the promising potential of this approach.
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1 Introduction

High-order methods for system of nonlinear conservation laws are an impor-
tant challenging question with a wide range of applications. Since four decades
numerical schemes have been designed to be used in simulation codes in order
to accurately approach these solutions on a computational mesh. Today engi-
neering community has to deal with complex domains as the computational
power increases. Consequently the meshes that are employed are at minimum
heterogeneous, often unstructured and sometimes non-conformal. Therefore
new numerical methods must be designed to deal with highly stretched mesh
made of different cell shapes (as instance in two dimensions such mesh is built
with triangles, quadrangles, polygons mixed together and eventually degener-
ated). In three dimensions the situation becomes even more complex as the
mesh generation is not a trivial task.
The Finite Volume (FV) method is a very popular technique due to its sim-
plicity since only one unknown located at cell center is carried out, and, its
build-in conservativity property. FV became very popular and nowadays many
engineering applications or commercial codes are based on a finite volume for-
mulation. The major drawback of a direct use of the FV method is the presence
of a large amount of numerical diffusion leading to a poor accuracy and over
smoothed shock waves. To overcome such a problem, high-order methods such
as MUSCL [39], PPM [15], (W)ENO [19,20] or ADER [35] techniques based
on a local polynomial reconstruction allow to increase the spatial approxi-
mation accuracy and consequently reduce the numerical diffusion. The main
difficulty of all these approaches is that a simple polynomial reconstruction
is not enough to obtain an accurate and physically relevant solution free of
spurious oscillations. The schemes coupled with a reconstruction technique
have to respect an important property: the Discrete Maximum Principle to
ensure L∞ stability for the scalar autonomous hyperbolic problem [3,6,8–10].
Such a constraint also holds for systems where non-physical oscillations and
non-physical solutions have to be eliminated. The goal of high-order accurate
numerical approximations is such that they achieve high accuracy on smooth
regions and sharpen profiles of discontinuities, without spurious oscillations.
Many authors have contributed to increase the numerical scheme performance
still maintaining a reasonable computational cost. Several methods are rela-
tively well-defined such as:

• the MUSCL method [39,3,4,6,10,21,27],
• the PPM [15,7],
• the ENO/WENO method [1,22,26,32,33,42,44],
• the spectral method [18,40,41],
• the residual distribution method [2,16,28],
• the ADER methods [35,37,17],
• the Discontinuous Galerkin method [11–14].
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The MUSCL method [39] is probably the most popular high-order FV method.
Spatial second-order accurate schemes usually use piecewise linear polynomial
reconstruction. This reconstruction is equipped with a limiter that reduces
the accuracy to first-order near discontinuities and steep gradients in order to
ensure the stability of the overall scheme. The choice of the limiter has been ex-
tensively discussed and some popular limiters each with specific qualities and
drawbacks are today available (minmod, superbee, Van Leer, Barth-Jespersen
[4] for instance). A second-order in time discretization is employed to get a
formally second-order scheme away from discontinuity.
More advanced schemes using polynomial reconstructions emerged with PPM.
It is widely used in many operational codes (gas dynamics, astrophysics, rela-
tivity, meteorological simulation). However it is only an upwind biased method
meaning that its multidimensional extension never requires any multidimen-
sional polynomial reconstruction. Only 1D parabolic state variable reconstruc-
tions are performed in the canonical directions. Monotonicity is ensured by a
limiting process inspired from the slope limitation of MUSCL method. Essen-
tially non oscillatory (ENO) polynomial reconstruction procedures were de-
signed to reach “very” high-order accuracy [19,20,1,33,32]. As quoted in [25]:
The ENO concept represents an extension of the Godunov approach based upon
higher order reconstruction of the solution, in a similar way to the MUSCL
and PPM schemes, but using an adaptive stencil that ensures that informa-
tion is always obtained from smooth regions of the flow. This procedure starts
from a piecewise constant description of physical variable. Then the naive
ENO method reconstructs any possible polynomial of user-given degree using
any possible local stencil. Amongst all of them the least oscillatory polyno-
mial is chosen and further used by the numerical scheme. ENO schemes can
retain high-order spatial accuracy even at points of extrema, by allowing ac-
centuation of local extrema, which, in other words, means that the Discrete
Maximum Principle may be violated. Some additional operations are involved
in polynomial computations. Moreover extra difficulties and complexities have
to be faced for the implementation on multidimensional unstructured grids [5].
These drawbacks finally disqualify ENO type of method within our context.
Contrarily to the previous methods the Discontinuous Galerkin (DG) method
[11–14] carry several unknowns per variable per cell. The polynomial coef-
ficients used to describe one variable in a given cell are solved rather than
reconstructed. Usually they are the mean value and some representation of
first, second and higher derivatives. A limiter has still to be designed and has
to be used to ensure monotonicity and physically relevant approximation.
In the present paper, we propose a new strategy to develop very high-order
schemes within a Finite Volume Eulerian framework. These new schemes use
polynomial reconstructions of state variables as for MUSCL and ENO meth-
ods and they strictly preserve the Discrete Maximum Principle. The efficiency
relies on a Multi-dimensional Optimal Order Detection (MOOD). In each cell
this optimal order is used to build the numerical flux that leads to the preser-
vation of the maximum principle. At each time step, the MOOD method
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consists in an iterative procedure where we first initialize all the local poly-
nomial reconstructions to a maximum degree that we further decrement up
to satisfaction of the Discrete Maximum Principle. Instead of designing an a
priori limiter as for any MUSCL/ENO/DG like techniques one reduces the
polynomial degree a posteriori. The iterative decrementing procedure is in fact
embedded in the sub-steps of a Runge-Kutta scheme leading to a high-order
time discretization.
The paper is organized as follows. Section 2 is dedicated to the generic frame-
work used to describe the MOOD method where the high-order finite volume
scheme is presented. Section 3 is devoted to the polynomial reconstruction
and to a short presentation of the classical limiting procedure used in the
MUSCL method. The MOOD method is detailed in the fourth section where
we introduce the two fundamental notions: Cell Polynomial Degree and Edge
Polynomial Degree. We present several strategies to decrement and evaluate
the reconstructed values employed to compute the numerical flux. We extend
the MOOD method to vectorial value problem such as the Euler system in sec-
tion 5. At last, in sections 6 and 7 are gathered the numerical results for scalar
and vectorial values problems respectively. The convergence rates are studied
and the maximum principle preservation is verified. Classical tests are carried
out for the scalar and Euler hyperbolic system of conservation laws. Compar-
isons with an existing MUSCL method are provided and prove the efficiency
of the MOOD method. The last section gathers conclusion and perspectives.
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Fig. 1. Mesh notation. Ki is a generic element with the centroid ci. Index set ν(i)
corresponds to blue cells (with gradation), ν(i) corresponds to every non-white cells
and λ(i) is the set of red Pm node indexes. Edges are denoted by eij with nij the
unit outward normal vector of element Ki. Numerical integration on edge eil is
performed with the two Gauss points q1

il, q
2
il.

2 General framework

We consider the generic scalar hyperbolic equation defined on a domain Ω ⊂
R

2, t > 0 cast in the conservative form

∂tu+∇ · F (u)= 0, (1a)

u(·, 0)=u0, (1b)

where x = (x1, x2) denotes a point of Ω and t the time, u = u(x, t) is the
unknown function, F = (f1, f2) is the physical flux and u0 is the initial condi-
tion. Boundary conditions shall be precribed in the following.
To elaborate the discretization in time and space, we introduce the follow-
ing ingredients. We assume that the computation domain Ω is a polygonal
bounded set of R2 divided into quadrangles Ki, i ∈ Eel where Eel is the cell
index set. For each cell Ki, λ(i) is the set of all the nodes Pm, m ∈ λ(i) while
eij denotes the common edge between Ki and Kj with j ∈ ν(i), ν(i) being the
index set of all the elements which share a common side with Ki. Moreover,
ν(i) represents the index set of all Kj such that Ki ∩Kj 6= ∅ (see figure 1). At
last, |Ki| and |eij| measure the surface of Ki and the length of eij respectively.

To compute an approximation of the solution of equation (1), we first integrate
formally in time between tn and tn+1 and in space over a cell Ki

∫ tn+1

tn

∫

Ki

∂tu(x, t)dxdt+
∫ tn+1

tn

∫

Ki

∇ · F (u(x, t))dxdt = 0, (2)
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the previous equation can be rewritten assuming function u regular enough
into

∫ tn+1

tn
∂t

(∫

Ki

u(x, t)dx
)
dt+

∫ tn+1

tn

∫

∂Ki

F (u(s, t)) · nij dsdt = 0, (3)

where the cell boundary ∂Ki is the union edges eij, j ∈ ν(i), ds is the length
element along ∂Ki and nij the unit normal vector of eij from Ki toward Kj .
Finally evaluating the first term yields

∫

Ki

u(x, tn+1)dx−
∫

Ki

u(x, tn)dx+
∑

j∈ν(i)

∫ tn+1

tn

∫

eij

F (u(s, t)) ·nij dsdt = 0. (4)

Let us introduce an approximate mean value of u on Ki at any time tn

un
i ≃

〈
u(x, tn)

〉

Ki

=
1

|Ki|

∫

Ki

u(x, tn) dx, (5)

and the numerical flux between Ki and Kj evaluated at tn as

Gn
ij ≃

1

|eij |

∫

eij

F (u(s, tn)) · nij ds. (6)

An explicit scheme to solve (4) writes

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij|

|Ki|
Gn

ij , (7)

where ∆t = tn+1−tn. More precisely a generic first order explicit finite volume
scheme writes

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij|

|Ki|
G(un

i , u
n
j ,nij), (8)

where Gij = G(un
i , u

n
j ,nij) is a numerical flux which satisfies the classical

properties of consistency and monotonicity. Unfortunatly, such a scheme only
provides first-order accuracy in space and higher-order reconstruction tech-
niques are used to improve the solution approximation.

To this end, we substitute in equation (8) the first-order approximation un
i and

un
j with better approximations of un

ij,r on the eij edge. Consequently numerical
integration on the boundary of Ki in (6) has to be performed with enough
accuracy which is obtained by using high-order quadrature formula. Indeed,
we consider the generic high-order finite volume scheme

un+1
i = un

i −∆t
∑

j∈ν(i)

|eij|

|Ki|

R∑

r=1

ξrG(un
ij,r, u

n
ji,r,nij), (9)
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where un
ij,r and un

ji,r, r = 1, ..., R are high-order representations of u on both
sides of edge eij and ξr denote the quadrature weights for the numerical in-
tegration. In practice, un

ij,r and un
ji,r are two approximations of u(qrij , t

n) at
quadrature points qrij ∈ eij , r = 1, ..., R (see figure 1).

For the sake of simplicity, let us write the scheme under the compact form

un+1
h = un

h +∆t HR(un
h), (10)

with un
h =

∑
i∈Eel u

n
i 1IKi

the constant piecewise approximation of function u
and operator HR being defined as

HR(un
h) := −

∑

j∈ν(i)

|eij|

|Ki|

R∑

r=1

ξrG(un
ij,r, u

n
ji,r,nij). (11)

Remark 1 Note that relation (10) can be rewritten as a convex combination
of the first-order scheme (8) since weights ξr are positive with unit sum

un
i −∆t

∑

j∈ν(i)

|eij |

|Ki|

R∑

r=1

ξrG(un
ij,r, u

n
ji,r,nij) =

R∑

r=1

ξr


un

i −∆t
∑

j∈ν(i)

|eij|

|Ki|
G(un

ij,r, u
n
ji,r,nij)


 .

From a practicle point of view, the high-order scheme consists in applying R
times the first-order scheme. Implementation effort to produce the high-order
approximation is very straightforward. 2

To provide a high-order method in time, we use the third-order TVD Runge-
Kutta method which corresponds to a convex combination of three explicit
steps

u(1)

h = un
h +∆t HR (un

h) , (12a)

u(2)

h = u(1)

h +∆t HR(u(1)

h ), (12b)

u(3)

h =

(
3un

h + u(2)

h

4

)
+∆t HR

(
3un

h + u(2)

h

4

)
, (12c)

un+1
h =

un
h + 2u(3)

h

3
. (12d)

The main challenge is to build the approximations un
ij,r and un

ji,r on both
sides of edge eij with r = 1, ..., R to be plugged into relations (11) and (12).
Polynomial reconstructions provide high-order approximation but unphysical
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oscillations arises in the vicinity of discontinuities. Indeed, the exact solu-
tion of an autonomous scalar conservation law (1) satisfies a local Maximum
Principle and we intend to build the reconstructions such that this stability
property is fulfilled at the numerical level (see [8] and references herein). To
this end, we state the following definition.

Definition 2 A numerical scheme (10) satisfies the Discrete Maximum Prin-
ciple (DMP) if for any cell index i ∈ Eel one has

min
j∈ν(i)

(un
i , u

n
j ) ≤ un+1

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (13)

3 A short review on MUSCL methods

All L∞ stable high-order schemes are based on a piecewise linear reconstruc-
tion equipped with a limiting procedure. The polynomial reconstruction will
provide the accuracy while the limitation algorithm will ensure the physical
relevance of the numerical approximation. We briefly present the piecewise lin-
ear reconstruction step and recall a limitation procedure used in the popular
MUSCL technique [39,4,21,3].

3.1 Unlimited linear reconstruction

Let (ui)i∈Eel be a set of cell centered mean values given on cells Ki, i ∈ Eel.
For a generic cell K, we reconstruct a polynomial function ũ(x) of degree
d = 1 using the mean values on elements Kj , j ∈ ν where ν is an index set of
neighbouring cells.

Criterion 3 The polynomial reconstruction must fulfill the following criteria

(1)
〈
ũ(x)

〉

K

= ū where ū is the mean value approximation of u on K.

(2) The polynomial coefficients are determined as the ones that minimize the
functional

E(ũ) =
∑

j∈ν

(
uj −

〈
ũ(x)

〉

Kj

)2

. (14)

The polynomial ũ writes

ũ(x) = ū+ (G · x− Ḡ), (15)
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where Ḡ =
〈
G·x

〉

K

and G = (G1, G2) is a constant approximation of ∇u(x) on

K. Note that the reconstruction satisfies the first condition of criterion 3 and
classical techniques like least square methods are used to determine vector G
that minimizes the functional E in equation (14) . Notice that if u is a linear
function on the neighbourhood of the current cell then ũ ≡ u. Such a property
justifies the denomination of second-order reconstruction.

3.2 Gradient limitation

As we mentioned above, a finite volume scheme only based on the local polyno-
mial reconstruction without limiting procedure produces spurious oscillations.
Initiated by the pioneer work of Van Leer [39], the MUSCL technique deals
with a local linear reconstruction like (15) where the gradient G on each cell
K is reduced by a limiter coefficient φ ∈ [0, 1] such that the reconstructed
values satisfy the Discrete Maximum Principle [4,21,3]

ũlim(x) = ū+ φ
(
G · x− Ḡ

)
. (16)

As an example, we hereafter detail the MLP method proposed in [27] we shall
compare with our new MOOD method. Other classical limiters are also used
(see for exemple [4,21,3]).

The MLP limiter proposed in [27] applies the following procedure.

• Construction of an unlimited slope G using the neighbour cells Kj, j ∈ ν.
• Evaluation of the unlimited reconstruction (15) at the vertices Pm of K:
um = ũ(Pm), m ∈ λ.

• Evaluation of the bounds for each node Pm

δumax
m = max

j, Kj∋Pm

(uj − ū), δumin
m = min

j, Kj∋Pm

(uj − ū).

• Evaluation of the vertex based limiter φm

φm =






min

(
1,

δumax
m

um − ū

)
if um − ū > 0,

min

(
1,

δumin
m

um − ū

)
if um − ū < 0,

1 if um − ū = 0.

• Cell-centered limiter φ = min
m∈λ

φm.
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Fig. 2. Classical high-order methods idea (top) and MOOD idea (bottom).

The MLP technique provides a second-order finite volume scheme which sat-
isfies the Discrete Maximum Principle under the CFL condition.

Remark 4 Although there exists a large litterature about piecewise linear lim-
itation, the extension of MUSCL type method to piecewise quadratic or even
higher degree polynomial in a multi-dimensional context is not yet achieved. An
efficient limitation process is still an under-investigation field of research. 2

4 The Multi-dimensional Optimal Order Detection method (MOOD)

Classical high-order methods are based on a a priori limitation of the recon-
structed values which are plugged into a one time step generic finite volume
scheme to update the mean values (see figure 2 top). Unlike the existing meth-
ods, the MOOD technique proceeds in a different way since we introduce an a
posteriori limitation. An unlimited polynomial reconstruction is carried out to
build a predicted update mean value. Then the a posteriori limitation consists
in reducing the polynomial degree and recomputing the predicted solution u⋆

h

until the DMP property (13) is achieved.

To this end, a prescribed maximum degree dmax is introduced and used to
perform an initial polynomial reconstruction on each cell. Through an iterative
decremental procedure, we determine the optimal degree di ≤ dmax such that
the updated mean values fulfill the DMP property (see figure 2 bottom).

In the following we focus on the quadratic polynomial case dmax = 2 and
present the piecewise quadratic polynomial reconstruction of [26] based on a
minimization technique. The MOOD method is then detailed and we prove
that the numerical approximations satisfy the DMP property.
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4.1 Quadratic polynomial reconstruction

Using the same framework as in section 3.1, the quadratic polynomial recon-
struction writes

ũ(x) = ū+ (G · x− Ḡ) +
1

2

(
xtHx− H̄

)
, (17)

with

H̄ =
〈
xtHx

〉

K

, H =



H11 H12

H12 H22


 ,

where matrix H is an approximation of the Hessian matrix ∇2u on K. Note
that by construction, the mean value of ũ on K is still equal to ū.
A minimization technique is used to compute G and H . To this end, for a cell
Kj , let us define the integral

x
{α,β}
Kj

=
〈
xαyβ

〉

Kj

−
〈
xαyβ

〉

K

.

Algebraic manipulations yield the following expression for
〈
ũ(x)

〉

Kj

〈
ũ(x)

〉

Kj

= ū+
(
G1 x

{1,0}
Kj

+G2 x
{0,1}
Kj

)
+
1

2

(
H11x

{2,0}
Kj

+ 2H12x
{1,1}
Kj

+H22x
{0,2}
Kj

)
.

(18)
This expression is further derived for any cell Kj such that j ∈ ν to form an
over-determined linear system of the form AΛ = B with

A =




x
{1,0}
K1

x
{0,1}
K1

x
{2,0}
K1

x
{1,1}
K1

x
{0,2}
K1

x
{1,0}
K2

x
{0,1}
K2

x
{2,0}
K2

x
{1,1}
K2

x
{0,2}
K2

...
...

...
...

...

x
{1,0}
KN

x
{0,1}
KN

x
{2,0}
KN

x
{1,1}
KN

x
{0,2}
KN




, Λ =




G1

G2

1
2
H

11

H12

1
2
H22




, B =




u1 − ū

u2 − ū
...

uN − ū




,

(19)
with N = #ν.
This system is solved using the Householder transformation computing A =
QR with Q ∈ MN×N(R) an orthogonal matrix and R ∈ MN×5(R) an upper-
triangular matrix. Finaly back-substitution of RΛ = QtB defines ũ (see [26]).

Remark 5 A left preconditioner matrix can be applied to reduce the system
sensitivity. For example, in [26], the authors use a diagonal matrix whose
coefficients ωjj = ‖cj − c‖−2 (j = 1, . . . , N) correspond to geometrical weights
in order to promote closest information. 2
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EPD0 strategy EPD1 strategy EPD2 strategy

EdgePD dij di min(di, dj) min
j∈ν(i)

(di, dj)

Table 1
Evaluation of the EdgePD dij using the CellPD of the neighbour elements.

4.2 Description of the MOOD method

We now detail the MOOD technique considering the simple case where an
explicit time discretisation is employed. Moreover, without loss of generality,
we present the method using only one quadrature point, R = 1, and skip
the subscript r denoting uij in place of uij,r. Extention to several quadrature
points, i.e. R > 1, is straightforward.

Assume that we have a given sequence un
h = (un

i )i, i ∈ Eel of mean value
approximations at time tn, the goal is to build a new sequence un+1

h = (un+1
i )i

at time tn+1 = tn + ∆t. To this end, we define the following fundamental
notions.

- di is the Cell Polynomial Degree (CellPD) which represents the degree of the
polynomial reconstruction on cell Ki;

- dij and dji are the Edge Polynomial Degrees (EdgePD) which correspond to
the effective degrees we use to respectively build uij and uji on both sides of
edge eij .

The MOOD method consists in the following iterative procedure.

1. CellPD initialisation. Each CellPD is initialized with dmax.
2. EdgePD evaluation. Each EdgePD is set up as a function of the neigh-

bours CellPD thanks to one of the methods proposed in table 1.
3. Quadrature points evaluation. Each uij is evaluated with the poly-

nomial reconstruction of degree dij at the quadrature point.
4. Mean values update. The updated values u⋆

h are computed using the
finite volume scheme (10).

5. DMP test. The DMP criterion is checked on each cell, that is

min
j∈ν(i)

(un
i , u

n
j ) ≤ u⋆

i ≤ max
j∈ν(i)

(un
i , u

n
j ). (20)

If u⋆
i does not satisfy (20) the CellPD is decremented, i.e. di := max(0, di−

1).
6. Stopping criterion. If all cells satisfy the DMP property, the iterative

procedure stops with un+1
h = u⋆

h else go to Step 2.
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Fig. 3. Value of EdgePD according to the EPD strategy. The CellPD are in red and
the EdgePD are in black. Every omitted CellPD are equal to 2.

Remark 6 From a practicle point of view, we do not have to recompute the
polynomials if dij is modified in step 2 but we perform a simple truncation of
the initial polynomial of degree d

max
. 2

Remark 7 Only cells where CellPD has been decremented and their neigh-
bours in a compact stencil have to be updated. For instance, if di is decre-
mented, we only have to update the Ki cell and all the Kj, j ∈ ν(i). 2

To conclude the section, we give in figure 3 an example of the three strategies
of EdgePD calculation proposed in table 1. The simplest strategy named EPD0

consists in setting dij = di and dji = dj while EPD1 chooses the minimal value
between di and dj for both dij and dji. At last, the smallest CellPD of all the
neighbour cells is taken in the EPD2 strategy.

4.3 Convergence of the MOOD method

We first recall the classical stability result (see for example [9] and the refer-
ences herein).

Proposition 8 Let us consider the generic first-order finite volume scheme
(7) with reflective boundary conditions. If the numerical flux is consistent and
monotone, then the DMP property given by definition 2 is satisfied.

It implies that if uij = ui and uji = uj for all j ∈ ν(i) then relation (13) holds.
To prove that the iterative MOOD method provides a solution which satisfies
the DMP, we introduce the following definition.

Definition 9 An EPD strategy is said upper-limiting (with respect to the
CellPD) if for any Ki

di = d̄ =⇒ dij ≤ d̄ and dji ≤ d̄. (21)

Remark 10 Note that EPD1 and EPD2 are upper-limiting strategies whereas
EPD0 strategy does not satisfy condition (21). 2
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We then have the following theorem.

Theorem 11 Let us consider the generic high-order finite volume scheme
with reflective boundary conditions and assume that the numerical flux is con-
sistent and monotone. If the EPD strategy is upper-limiting then the MOOD
method provides an updated solution un+1

h which satisfies the DMP property
with a finite number of iterations.

Proof. Let di be the CellPD of cell Ki. If di = 0, then equation (21) implies
that dij = dji = 0, hence un

ij = un
i and un

ji = un
j , for all j ∈ ν(i). We

recover the first-order scheme (8) and proposition 8 yields that un+1
i satisfies

the DMP property (13). Otherwise, if di > 0 then two situations arise. Either
the Maximum principle is satisfied and we do not modify di or we decrement
di. Consequently if the maximum principle is not satisfied for all the cells,
then there is at least one cell having its CellPD positive which has to be
decremented. Since we can not decrement more than dmax ×#(Eel) times, the
iterative procedure stops after a finite number of iterations and the solution
satisfies the DMP property. 2

Remark 12 To carry out a third-order Runge-Kutta time discretisation (12)
which provides a solution satisfying the DMP property, one has to performe
the MOOD procedure for each explicit substep since (12) rewrites as a convex
combination. 2

5 Extension to hyperbolic system

We develop an extension of the MOOD method to hyperbolic system. For the
sake of simplicity, we only deal with the Euler system

∂t




ρ

ρu1

ρu2

E




+ ∂x1




ρu1

ρu2
1 + p

ρu1u2

u1(E + p)




+ ∂x2




ρu2

ρu1u2

ρu2
2 + p

u2(E + p)




= 0, (22)

where ρ, V = (u1, u2) and p are the density, velocity and pressure respectively
while the total energy per unit volume E is given by

E = ρ
(
1

2
V2 + e

)
, V2 = u2

1 + u2
2,
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where e is the specific internal energy. For an ideal gas, this system is closed
by the equation of state

e =
p

ρ(γ − 1)
,

with γ the ratio of specific heats.

Despite that the physical variables do not have to respect the maximum princi-
pal, classical methods such as the MUSCL technique use a limiting procedure
derived from the scalar case to keep the numerical solution from producing
spurious oscillations. A popular choice consists in reconstructing and limit-
ing the density, the velocity components and the pressure variables but other
limitations can be carried out: the internal energy, the specific volume or the
characteristic variables for instance. We propose here several strategies in the
MOOD framework to both perform an accurate reconstruction in domains
where the solution is regular enough, still preventing the oscillations from
appearing close to the discontinuities.

The keypoints of the MOOD method is the CellPD decrementing procedure
and the EdgePD strategy. As in the scalar case, we first build the local poly-
nomial reconstruction of maximal degree dmax for the density, the velocity
components and the pressure. A natural idea would be to apply the MOOD
method to the four variables independently. We have carried out numerical
simulations and obtained physically admissible solution but we observe an
excessive diffusion.

To reduce the diffusion amount, we propose the new strategy where the DMP
test (step 5 of section 4.2) is substituted with the following stages.

• Density DMP test. The DMP criterion is checked on the density that is

min
j∈ν(i)

(ρni , ρ
n
j ) ≤ ρ⋆i ≤ max

j∈ν(i)
(ρni , ρ

n
j ). (23)

If ρ⋆i does not satisfy (23) the CellPD is decremented: di := max(0, di − 1).
• Pressure positivity preserving test. The pressure positivity is checked
and if p⋆i ≤ 0 and di has not been altered by the density DMP test then the
CellPD is decremented: di := max(0, di − 1).

Numerical experiments with this strategy give good results with low diffusion
and we shall adopt it in the remaining of the paper.
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6 Numerical results: the scalar case

We first consider a scalar problem where the scalar quantity u is convected
with velocity V (x, t). Several series of tests are proposed and comparisons
with the classical MUSCL method are drawn.
Let Ω be the unit square [0, 1] × [0, 1]. We consider the linear convection
problem

∂tu+∇.(V u) = 0, (24a)

u(., 0) = u0, (24b)

where V (x, t) is a given continuous function on Ω × [0, T ] and u0 the initial
function we shall characterize in the following. Moreover, periodic boundary
conditions are prescribed on ∂Ω. Comparisons are carried out between the
simple first-order finite volume method (FV), the MUSCL method proposed in
[27] (MLP) and the MOOD method with dmax = 1 (MOOD-P1) and dmax = 2
(MOOD-P2).

6.1 Numerical flux

The monotone upwind numerical flux writes

G(un
i , u

n
j ,nij) = [V (x, tn) · nij ]

+ un
i + [V (x, tn) · nij]

− un
j ,

where the velocity is evaluated at the quadrature point x and the positive and
negative parts are respectively defined by

[α]+ = max(0, α) and [α]− = min(0, α).

Two Gauss points are used on each edge to provide a third-order accurate
numerical integration. On the other hand, time integration is performed with
a forward Euler scheme for the FV method whereas the RK3-TVD method
given by system (12) is employed for the MLP and MOOD methods.

Remark 13 We use the most obvious implementation of MOOD where we
simply apply the procedure detailed in section 4.2 to each substep of system
(12). Indeed, the CellPD are reinitialized to d

max
at the beginning of each sub-

step.
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6.2 Test descriptions

Three classical numerical experiments are carried out to demonstrate the abil-
ity of the method to provide effective third-order accuracy and to handle
discontinuities with a very low numerical diffusion. L1 and L∞ errors are eval-
uated with

err1 =
∑

i∈Eel

|uN
i − u0

i ||Ki| and err∞ = max
i∈Eel

|uN
i − u0

i |,

where (u0
i )i and (uN

i )i are respectively the cell mean values at initial time t = 0
and final time t = tf = N∆t.

Double Sine Translation (DST):
We consider a constant velocity V = (2, 1) and the initial condition is the C∞

initial condition

u0(x1, x2) = sin(2πx1) sin(2πx2).

The final time tf = 2.0.

SQuare Translation(SQT):
We consider a constant velocity V = (2, 1) and the initial condition is the
square wave defined by

u0(x1, x2) =






1 if x1 − 0.4| < 0.25 and |x2 − 0.5| < 0.25,

0 elsewhere.

The final time tf = 2.0.

Solid Body Rotation(SBR):
First introduced by R.J. Leveque in [23], this solid body rotation test uses
three shapes which are a hump, a cone and a slotted cylinder. Each shape is
located within a circle of radius r0 = 0.15 and centered at (x0

1, y
0
2)

Hump centered at (x0
1, x

0
2) = (0.25, 0.5)

u0(x1, x2) =
1

4
(1 + cos(πmin(r(x1, x2), 1))).

Cone centered at (x0
1, x

0
2) = (0.5, 0.25)

u0(x1, x2) = 1− r(x1, x2).
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Table 2
L1 and L∞ errors and convergence rates for DST problem with the MOOD-P2
method: EPD1 (left) and EPD2 (right).

Nb of EPD1 EPD2

Cells err1 err∞ err1 err∞

20x20 9.469E-02 — 3.960E-01 — 1.104E-01 — 4.506E-01 —

40x40 1.113E-02 3.09 1.333E-01 1.57 1.382E-02 3.00 1.566E-01 1.52

80x80 1.768E-03 2.65 4.164E-02 1.68 2.309E-03 2.58 5.196E-02 1.59

160x160 2.481E-04 2.83 1.304E-02 1.68 3.262E-04 2.82 1.698E-02 1.61

Slotted cylinder centered at (x0
1, x

0
2) = (0.5, 0.75)

u0(x1, x2) =





1 if |x1 − 0.5| < 0.25, or x2 > 0.85

0 elsewhere,

where r(x1, x2) =
1

r0

√
(x1 − x0

1)
2 + (x2 − x0

2)
2. To perform the rotation, we use

the velocity V = (−x2 + 0.5, x1 − 0.5) and the final time tf = 2π corresponds
to one full rotation.

6.3 Numerical results

6.3.1 Comparison between EPD1 and EPD2 strategies

We consider the DST approximations on uniform meshes from 20 × 20 to
160 × 160 cells and compare the L1 and L∞ errors and convergence rates
displayed in table 2 using EPD1 and EPD2 strategies with the MOOD -P2
method. We obtain in table 2 an almost effective third-order convergence in
L1 norm and a 1.6 convergence rate in L∞ norm for the two strategies. We
observe in this case that the L1 and L∞ errors for EPD1 are slightly less
important than the EPD2 and the convergence orders seem to indicate that
the EPD1 strategy should be privileged. Moreover, from a practical point of
view, the EPD1 implementation is performed with a more compact stencil than
the EPD2 (see remark 7).

6.3.2 Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1

strategy on uniform meshes

Double Sine Translation.
We report in table 3, 4 and 5 the L1 and L∞ errors and convergence rates
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Table 3
L1 and L∞ errors and convergence rates for the DST with FV and MLP methods.

Nb of FV MLP

Cells err1 err∞ err1 err∞

20x20 3.924E-01 — 9.371E-01 — 1.417E-01 — 3.765E-01 —

40x40 3.480E-01 0.17 8.375E-01 0.16 3.038E-02 2.22 1.121E-01 1.75

80x80 2.663E-01 0.39 6.241E-01 0.42 6.904E-03 2.14 3.534E-02 1.67

160x160 1.734E-01 0.62 3.964E-01 0.65 1.693E-03 2.03 1.167E-02 1.60

Table 4
L1 and L∞ errors and convergence rates for the DST with MOOD-P1 and MOOD-
P2 methods.

Nb of MOOD-P1 MOOD-P2

Cells err1 err∞ err1 err∞

20x20 1.502E-01 — 4.876E-01 — 9.469E-02 — 3.960E-01 —

40x40 3.141E-02 2.26 1.629E-01 1.58 1.113E-02 3.09 1.333E-01 1.57

80x80 7.438E-03 2.08 5.188E-02 1.65 1.768E-03 2.65 4.164E-02 1.68

160x160 1.787E-03 2.06 1.675E-02 1.63 2.481E-04 2.83 1.304E-02 1.68

Table 5
L1 and L∞ errors and convergence orders for the DST with P1 and P2 methods.

Nb of P1 P2

Cells err1 err∞ err1 err∞

20x20 1.334E-01 — 3.227E-01 — 7.130E-02 — 1.729E-01 —

40x40 2.896E-02 2.20 6.593E-02 2.29 9.877E-03 2.85 2.427E-02 2.83

80x80 6.604E-03 2.13 1.408E-02 2.23 1.255E-03 2.98 3.091E-03 2.97

160x160 1.603E-03 2.04 3.310E-03 2.09 1.573E-04 3.00 3.876E-04 3.00

for FV, MLP, MOOD-P1, MOOD-P2, unlimited P1 and P2 reconstruction
methods respectively. At last, we plot in figure 4 the convergence curves for
the four methods as well as the convergence curves for the unlimited version.

The high-order finite volume method with the two Gauss points and the RK3
time scheme reach the optimal convergence rate for the unlimited P1 and
P2 reconstructions hence the accuracy discrepancy has to be charged to the
limiting procedure.

Figure 4 shows that the optimal convergence rate in L1 error for P1, MOOD-
P1 and MLP methods is achieved since the curves fit very well. On the other
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Fig. 4. Convergence curves err1(left) and err∞(right).

Table 6
Min and Max for SQT with MLP, MOOD-P1 and MOOD-P2.

Nb of MLP MOOD-P1 MOOD-P2

Cells Min Max Min Max Min Max

20x20 1.224E-03 9.392E-01 9.044E-04 8.691E-01 2.300E-04 9.187E-01

40x40 5.602E-07 9.998E-01 2.496E-07 9.964E-01 1.125E-07 9.995E-01

80x80 5.160E-08 1.000 7.520E-08 1.000 1.145E-08 1.000

hand, the P2 and MOOD-P2 curves are very close and parallel which confirm
that MOOD-P2 is an effective third-order method for the L1 norm. For the L∞

norm, none of the limited method is over the effective second-order while the
unlimited P1 and P2 provide an effective second- and third-order respectively.
Indeed the strict maximum principle application at extrema is responsible for
the L∞ error discrepancy and we can expect nothing more than a second-
order scheme in L∞ norm, whatever the polynomial degree is when the DMP
condition is enforced.

Square Translation.
The next issue we address concerns the translation of a discontinuous shape
to observe the scheme ability to preserve the discontinuity. Table 6 gives the
minimum and maximum values of the solution using the three reconstruction
methods where we check that the maximum principle is respected for all the
methods. Notice that the CFL condition is set in order to satisfy the DMP
property for each time step.

In figure 5, we display the L1 errors for the three methods. An effective 0.70
convergence rate is achieved by the three reconstruction but the MOOD-P2
provides the best accuracy. We print in the left panels of figure 6 elevations
of the solutions while the right panels show 10 isolines top view uniformly
ranged from 0 to 1. MOOD-P1 and MLP methods provide very similar results
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Fig. 5. Convergence curves in L1 norm with the MLP, MOOD-P1 and MOOD-P2
for SQT problem.

whereas the third-order MOOD-P2 method gives a solution with sharper dis-
continuities. We observe that that MOOD-P2 method succeeds in preserving
the shape symmetry whereas the MLP and MOOD-P1 methods do not.

Solid Body Rotation.
The last test of this subsection concerns the solid body rotation where three
shapes are clockwise rotated. We employ a 140×140 uniform mesh of squared
element in order to compare our results with 100× 100× 2 triangular mesh in
reference [27].

We display in the left panels of figure 7 a three-dimensional elevation while we
print on the right panels top views of the ten uniformly distributed isolines
from 0 to 1. we can measure the scheme accuracy by counting the number
of isolines outside of the slot since the exact solution isolines would fit the
slot shape. The smaller number of isolines outside of the slot is, the better
the scheme is. With the MLP reconstruction, we observe three isolines out-
side while we have only two with the MOOD-P1. At last, the outstanding
result is that we have just one isoline outside of the slot with the MOOD-P2
method which proves the great ability of the technique to handle and preserve
discontinuities.

6.3.3 Comparison between FV, MLP, MOOD-P1 and MOOD-P2 with EPD1

strategy on distorted meshes

Approximation accuracy is reduced when one employs meshes with large de-
formation, i.e. the elements are no longer rectangular but quadrilateral with
large aspect ratio. The present subsection investigates the MOOD method
sensitivity with mesh distortion.
To obtain the distorted mesh, we proceed in two stages. First the following
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Fig. 6. Results on 80x80 of SQT — Top: MLP method — Middle: MOOD-P1
method — Bottom: MOOD-P2 method.

transformation is applied to the uniform mesh

x1 →






x1(10x
2
1 + 5x1 + 1), if x1 ≤ 0.5,

(x1 − 1)(10(x1 − 1)2 + 5(x1 − 1)) + 1, elsewhere,

and we operate in the same way with variable x2.
Then we apply a second transformation
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Fig. 7. Results on 140x140 of SBR. Isolines are from 0 to 1 by 0.1. Top: MLP method — Middle: MOOD-P1

method — Bottom: MOOD-P2 method.

x1 →x1 + 0.1|x1 − 0.5| cos(6π(x2 − 0.5)) sin(4π(x1 − 0.5)),

x2 →x2 + 0.1|x2 − 0.5| cos(4π(x1 − 0.5)) sin(6π(x2 − 0.5)).

As an example a distorted mesh is given in figure 9. Notice that domain Ω is
shape preserved by the transformation.
Since we use periodic boundary conditions, the final time corresponds to a full
revolution such that the exact solution coincides with the initial one.

Double Sine Translation.
We report in tables 7, 8 and 9 the L1 and L∞ errors and convergence rates
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Table 7
L1 and L∞ errors and convergence rates for the DST with FV and MLP methods.

Nb of FV MLP

Cells err1 err∞ err1 err∞

20x20 4.053E-01 — 9.032E-01 — 3.907E-01 — 8.752E-01 —

40x40 4.038E-01 0.01 9.822E-01 -0.12 1.893E-01 1.05 5.306E-01 0.72

80x80 3.834E-01 0.07 9.486E-01 0.05 4.370E-02 2.11 1.806E-01 1.55

160x160 3.144E-01 0.29 7.825E-01 0.28 9.846E-03 2.15 5.889E-02 1.62

Table 8
L1 and L∞ errors and convergence rates for the DST with MOOD-P1 and MOOD-
P2 methods.

Nb of MOOD-P1 MOOD-P2

Cells err1 err∞ err1 err∞

20x20 3.770E-01 — 8.557E-01 — 3.408E-01 — 7.897E-01 —

40x40 1.599E-01 1.24 4.541E-01 0.91 8.992E-02 1.92 3.222E-01 1.29

80x80 3.892E-02 2.04 1.314E-01 1.79 1.375E-02 2.71 9.199E-02 1.81

160x160 9.170E-03 2.09 3.374E-02 1.96 1.922E-03 2.84 2.483E-02 1.89

Table 9
L1 and L∞ errors and convergence rates for the DST with P1 and P2 methods.

Nb of P1 P2

Cells err1 err∞ err1 err∞

20x20 3.658E-01 — 8.312E-01 — FAIL — FAIL —

40x40 1.534E-01 1.25 3.793E-01 1.13 8.328E-02 — 2.135E-01 —

80x80 3.856E-02 1.99 9.760E-02 1.96 1.403E-02 2.57 3.582E-02 2.58

160x160 9.052E-03 2.09 2.643E-02 1.88 1.920E-03 2.87 4.917E-03 2.86

for FV, MLP, MOOD-P1, MOOD-P2, unlimited P1 and P2 reconstruction
methods respectively. At last, we plot in figure 8 the convergence curves for
the four methods as well as the convergence curves for the unlimited version.

We first observe in table 9 an accuracy discrepancy with the unlimited re-
constructions since the errors are roughly ten times larger for the distorted
mesh than for the uniform one given in table 5. Nevertheless, we obtain good
effective rates of convergence both in L1 and L∞ norm for the P1 and P2
reconstructions. Optimal second-order scheme is achieved for the P1 method
and convergence rate is around 2.9 for the P2 reconstruction.
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Fig. 8. Convergence curves err1(left) and err∞(right).

Table 10
Min and Max for DST with MLP, MOOD-P1 and MOOD-P2.

Nb of MLP MOOD-P1 MOOD-P2

Cells Min Max Min Max Min Max

20x20 -3.740E-02 3.479E-02 -7.168E-02 7.566E-02 -1.376E-01 1.516E-01

40x40 -4.634E-01 4.645E-01 -5.445E-01 5.458E-01 -6.738E-01 6.792E-01

80x80 -8.179E-01 8.204E-01 -8.747E-01 8.743E-01 -9.098E-01 9.079E-01

160x160 -9.433E-01 9.431E-01 -9.655E-01 9.668E-01 -9.752E-01 9.748E-01

For the L1 norm, P1, MOOD-P1 and MLP convergence curves fit well hence
we get the optimal accuracy with the three methods. In the same way, the
P2 and MOOD-P2 are also superimposed which means that MOOD-P2 is
optimal with respect to the unlimited case. For the L∞ norm, MLP method
convergence rate is around 1.6 whereas the MOOD-P1, MOOD-P2 and P1
provide a 1.9 convergence rate. Notice that the MOOD-P2 produces more
accurate results but does not reach the third-order convergence since it has to
respect a strict DMP property.

Table 10 shows that the extrema are better approximated with respect to the
exact solution with the MOOD methods than the MLP method, in particular
when coarse meshes are employed.

Square Translation.
Table 11 gives the minimum and maximum values of the solution using the
three reconstruction methods and we check that the maximum principle is
respected for all the methods. The MOOD methods manage to compute a
solution whose the minima are very close to the theoretical ones which suggest
that the discontinuity is less diffused.

We print in the left panels of figure 9 elevations of the solutions while the right
panels show 10 isolines top view uniformly ranged from 0 to 1. MOOD-P1 and

25



Table 11
Min and Max for SQT with MLP, MOOD-P1 and MOOD-P2.

Nb of MLP MOOD-P1 MOOD-P2

Cells Min Max Min Max Min Max

20x20 9.185E-02 4.312E-01 2.562E-02 5.181E-01 1.089E-02 6.030E-01

40x40 5.221E-03 8.555E-01 1.759E-04 9.299E-01 1.167E-05 9.836E-01

80x80 1.493E-05 9.975E-01 2.016E-07 9.998E-01 3.467E-08 1.000

MLP methods provide very similar results whereas the third-order MOOD-P2
method gives a solution with sharper discontinuities. We observe that that
MOOD-P2 method succeeds in preserving the shape symmetry whereas the
MLP and MOOD-P1 methods do not.
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Fig. 9. Results on 80x80 of SQT — Top: MLP method — Middle: MOOD-P1
method — Bottom: MOOD-P2 method.
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7 Numerical results: the Euler case

We now turn to the Euler equations (22) to test the MOODmethod. Efficiency,
accuracy and stability of the method are investigated on classical tests. In
the present article, we use the HLL numerical flux detailed in [36]. To draw
comparisons with the popular MUSCL method, we have implemented the
MLP technique proposed in [27]. We apply the MOOD method using the
detection strategy presented in section 5.

To assess the accuracy of the MOOD method, we have carried out several
numerical simulations. The first test is the classical 1D Sod shock tube to test
the ability of MOOD in reproducing simple waves. It is also used as a sanity
check. Then we proceed with a 2D Riemann problem proposed by [34] (see
also [24]). We conclude the series of tests with two classical references: The
forward step problem [43,27] and the double Mach problem [43,27]. All tests
are run with MOOD-P1 and MOOD-P2 on an uniform mesh. MOOD-P1 is
then compared with MLP method and we visually observe the improvement
when MOOD-P2 is to be used. Finally these test cases are run on deformed
meshes to check the ability of MOOD to perform on non-uniform meshes.

7.1 Sod Shock Tube

The one dimensional Sod problem is used as a sanity check for MOOD.
The computational domain is the rectangular domain Ω = [0, 1] × [0, 0.2].
The solution is invariant in y-direction. The interface between a left state
(ρL, uL, vL, pL) = (1, 0, 0, 1) and a right one (ρR, uR, vR, pR) = (0.125, 0, 0, 0.1)
is located at x = 0.5. Reflective boundary conditions are prescribed. The final
time is tf = 0.2.

Uniform mesh
The computational domain is uniformly meshed by 100 cells in the x direction
and 10 cells in the y direction. We plot the pressure and the density at the final
time against the exact solution using the MLP, MOOD-P1 and MOOD-P2
reconstruction in figure 10. The curves show a very good agreement between
the three methods. The plateau between the contact and the shock is wavy
with the MLP reconstruction while MOOD produces better constant states.
However we observe an undershoot at the tail of the rarefaction with MOOD-
P2 both for the density and the velocity.

Non-uniform mesh
The same simulation is performed on a non-uniform mesh depicted in fig-
ure 11. We plot the density and the x-velocity at the final time using the
MLP, MOOD-P1 and MOOD-P2 reconstruction in figure 12. All cell values
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Fig. 10. Sod shock tube problem: Density and x-velocity on 100 × 10 uniform mesh for (a-b): MLP —

(c-d): MOOD-P1 — (e-f): MOOD-P2.
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Fig. 11. Non-uniform mesh used for the Sod problem.

are represented so that the preservation of the 1D symmetry in the y direc-
tion can then be evaluated by the thickness of the points cloud. Clearly the
MLP method provides the largest dispersion whereas the MOOD-P2 method
manages to better preserve the y invariance. Such a test case suggests that
the MOOD method is less sensitive to mesh deformation. As in the uniform
case an undershoot at the tail of the rarefaction wave appears for MOOD-P2
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Fig. 12. Sod shock tube problem: Density and x-velocity on 100× 10 non-uniform mesh for (a-b): MLP

— (c-d): MOOD-P1 — (e-f): MOOD-P2.

method but the solution is genuinely improved by comparison with MLP. The
MOOD-P1 is an intermediate case we reduce the dispersion in comparison
with the MLP method but we do not reach the MOOD-P2 accuracy. As ex-
pected we do not observe any under/overshoot with the MOOD method for
the density variable.

7.2 Four states Riemann problem

We now deal with one of the four states Riemann problem initially proposed
by [34] (see also [24]) which corresponds to a truly 2D Riemann problem. The
computational domain Ω = [0, 1]× [0, 1] is uniformly meshed by a 100× 100
quadrangle grid. The four sub-domains correspond to four identical squares
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separated by the lines x = 0.5 and y = 0.5. Initial conditions on each sub
domains are

• for the lower-left domain Ωll: (ρ, u, v, p) = (0.029, 0.138, 1.206, 1.206),
• for the lower-right domain Ωlr: (0.3, 0.5323, 0, 1.206),
• for the upper-right domain Ωur: (1.5, 1.5, 0, 0),
• for the upper-left domain Ωul: (0.3, 0.5323, 1.206, 0).

Each sub-domain is filled with a perfect gas of constant γ = 1.4. Reflective
boundary conditions are prescribed and the computation is carried out till the
final time tf = 0.3.
Density at the final time is presented for the three methods in figures 13.
For each figure on the left side one displays a three-dimensional elevation
representation while in the right panels are plotted 30 isolines between the
minimal density, ρm, and maximal one, ρM of each method.
The MLP method generates some oscillations on the plateau while the MOOD
method better preserves the constant states. We obtain thinner shocks with
the MOOD-P2 method and the central peak at x = y = 0.35 is finer resolved
which suggests that the method is more accurate.

We carry out the same simulation using the three methods but with a finer
400× 400 mesh and draw 30 density isolines in figure 14. The shock are finer
with MOOD compared to MLP and the complex structures in the interaction
area are better approximated with the MOOD-P2 method.

7.3 Mach 3 wind tunnel with a step

The test was initially proposed by [43]. A uniform Mach 3 flow enters in a
tunnel which contains a 0.2 unit length step leading to a flow with complex
structures of interacting shocks. The wind tunnel is 1 length unit wide and 3
length unit long and the step is located at 0.6 length unit from the left-hand
side of the domain. At the initial time we consider a perfect gas (γ = 1.4) with
constant density ρ0 = 1.4, uniform pressure p0 = 1.0 and constant velocity
U0 = (3, 0). We prescribe reflective boundary conditions for the upper and
lower sides while we set inflow boundary condition on the left side and an out-
flow condition on the right side. Moreover, we prescribe symmetric boundary
conditions in front of the step. Numerical simulations are carried out till the
final time tf = 4.
We plot a series of figures presenting 30 isolines of the density for three differ-
ent uniform meshes on which the three methods are tested. We first consider
the situation with coarse mesh using 40 × 120 cells. Figures 15 represent the
density computed with the MLP, the MOOD-P1 and MOOD-P2 methods re-
spectively on top, middle and bottom panels. It is noticeable that the MOOD
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Fig. 13. Four states Riemann problem: Density on 100×100 mesh — Left: 3D view, right: Corresponding

2D isolines — Top: MLP method ρm = 0.138 ρM = 1.57 — Middle: MOOD-P1 method ρm = 0.138

ρM = 1.525 — Bottom: MOOD-P2 method ρm = 0.1378 ρM = 1.541.
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Fig. 14. Four states Riemann problem: Density on 400 × 400 mesh — Top: MLP method ρm = 0.138
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method results are the most accurate. The shocks are less diffused and we
can already observe the contact discontinuity formation of the upper slip line.
With the MLP method, we remark that the formation of a triple point at
x = 1.25 above the step (at a distance of about 0.1) while the junction point
should be exactly on the step interface. With the MOOD-P2 method, the
triple point is closer to the interface (half the distance with respect to the
MLP case).
We now plot the density obtained with finer meshes: 80 × 240 cells (see fig-
ure 16) and 160 × 480 cells (see figure 17). The mesh refinement provides
more accurate solutions for any method. However the MOOD method always
provides the best numerical approximation. An other noticeable fact is the
formation of a triangle above the segment line defined by the step corner and
the triple point. A slip line should appear starting at the step corner with an
angle of about 30 degrees. Such a structure clearly appears with the MOOD
method with an even more important effect for the MOOD-P2 reconstruc-
tion. At last the upper slip line located at y = 0.8 is sharper and can be seen
across the whole domain. However the method does not reveal the Kelvin-
Helmholtz instability as in [14] as the strict DMP on the density reduces the
scheme accuracy along the slip line and consequently increases the numerical
dissipation.

7.4 Double Mach reflection of a strong shock

The last problem is the double mach reflection of a strong shock proposed
in [43]. This test problem involves a Mach 10 shock which initially makes a
60◦ angle with a reflecting wall. The air ahead of the shock is at rest and has
uniform initial density ρ0 = 1.4 and pressure P 0 = 1. A perfect equation of
state with γ = 1.4 is considered. The reflecting wall lies along the bottom of
the domain, beginning at x = l/6. The shock makes a 60 degrees angle with
the x axis and extends to the top of the domain at y = 1. The short region
from x = 0 to x = l/6 along the bottom boundary at y = 0 is always assigned
values for the initial post-shock flow. We prescribe a reflective condition on
the bottom part for x > 1/6, Dirichlet condition (supersonic inflow condition)
on the left side and outflow condition on the right side. At the top boundary,
the boundary conditions are set to describe the exact motion of the Mach 10
flow (see also [14]).

Results are presented with isolines on a top view of 30 isolines of density
plotted between minimal and maximal values taken over the results of the
three methods on the same mesh. Mesh refinement is done by dividing by two
the characteristic length starting with a 80 × 320 mesh up to a 480 × 1920
mesh. Results are presented in figures 18-19-20 for MLP method (top panels),
in figures 18-19-20 for MOOD-P1 method (middle panels) and in figures 18-
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Fig. 15. Mach 3 problem — Density with 30 isolines between min and max on 40 × 120 mesh, Top:

MLP method ρm = 0.5437 ρM = 6.75 — Middle: MOOD-P1 method ρm = 0.5589 ρM = 6.58 — Bottom:

MOOD-P2 method ρm = 0.5358 ρM = 6.047.

19-20 for MOOD-P2 method (bottom panels). Zoom on the right part of the
domain is displayed in figure 21 with 50 isolines of density plotted between
minimal and maximal values in order to emphasize tiny details of the solution.

The first Mach stem M1 is connected to the main triple junction point with the
incident shock wave and the reflected wave. A slip line is generated from the
triple junction point behind the incident shock. A secondary Mach stem M2
also appear and interact with the slip line. Using a coarse mesh, the MOOD-
P2 manages to better capture the Mach stem M1 with respect to the two
other methods and this point is confirmed and also available for the secondary
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Fig. 16. Mach 3 problem — Density with 30 isolines between min and max on 80 × 240 mesh, Top:

MLP method ρm = 0.313 ρM = 6.489 — Middle: MOOD-P1 method ρm = 0.329 ρM = 6.628 — Bottom:

MOOD-P2 method ρm = 0.337 ρM = 6.412.

Mach stem M2 when we employ finer meshes. The slip line corresponds to
a contact discontinuity where the jump of tangential velocity may generate
Kelvin Helmholtz instabilities. Usually, the amount of instability measures the
numerical diffusion impact [31]: large instabilities derive from small numerical
diffusion and the number of plane vortexes in the slip line is a qualitative
measure of the scheme diffusivity. In our test, even with the finest mesh,
no instability is reported. Indeed, the application of a strict DMP reduces
the accuracy of the scheme in the vicinity of the slip line maintaining a too
large amount of diffusion. In the WENO framework, the strict DMP property
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Fig. 17. Mach 3 problem — Density with 30 isolines between min and max on 160 × 480 mesh, Top:

MLP method ρm = 0.176 ρM = 6.802 — Middle: MOOD-P1 method ρm = 0.150 ρM = 6.483 — Bottom:

MOOD-P2 method ρm = 0.123 ρM = 6.257.

is not achieved and numerical diffusion is strongly reduced but non-physical
instabilities might appears in that case. Nevertheless, other choices of detection
variables would be investigated to reduce the numerical diffusion for contact
discontinuities.
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Fig. 18. Double Mach problem on 80x320 Top: MLP method ρm = 1.400 ρM = 23.200 — Middle:

MOOD-P1 method ρm = 1.280 ρM = 22.460 — Bottom: MOOD-P2 method ρm = 1.228 ρM = 21.680.
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Fig. 19. Double Mach problem on 240x960 — Top: MLP method ρm = 1.400 ρM = 22.400 — Middle:

MOOD-P1 method ρm = 1.236 ρM = 22.550 — Bottom: MOOD-P2 method ρm = 1.162 ρM = 22.800.
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Fig. 20. Double Mach problem on 480x1920 — Top: MLP method ρm = 1.400 ρM = 22.68 — Middle:

MOOD-P1 method ρm = 1.216 ρM = 22.0 — Bottom: MOOD-P2 method ρm = 1.146 ρM = 21.99.
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Fig. 21. Double Mach problem on 480x1920 — Zoom on the wave interaction zone — Top: MLP method

ρm = 1.400 ρM = 22.68 — Middle: MOOD-P1 method ρm = 1.216 ρM = 22.0 — Bottom: MOOD-P2

method ρm = 1.146 ρM = 21.99.
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8 Conclusion and perspectives

This paper presents a very high-order polynomial finite volume method for hy-
perbolic system of conservation laws with Multi-dimensional Optimal Order
Detection (MOOD) in an Eulerian framework. Unlimited polynomial recon-
structions of state variables are used in a classical finite volume scheme. Even-
tually the polynomial degree is reduced in the cell neighborhood for which the
Discrete Maximum Principle is not fulfilled. A “corrected” approximate solu-
tion is reconstructed using the reduced degree polynomials. This procedure is
repeated up to satisfaction of the Discrete Maximum Principle. Instead of de-
signing an a priori limiter as for classical high-order methods one reduces the
polynomial degree a posteriori. The iterative decrementing procedure is in fact
embedded in the sub-steps of a Runge-Kutta scheme leading to a high-order
time discretization. An extension of MOOD to Euler system is presented; the
polynomial degree reduction is performed if either the density does not fulfill
the Discrete Maximum Principle or the pressure is non positive.
Two-dimensional numerical results are provided for the advection equation
and the Euler system of conservation laws on quadrangular regular and highly
non-regular meshes for second- and third-order accurate MOOD schemes. We
proved that the MOODmethod can reach optimal order of accuracy on smooth
and non-regular meshes for advection of various shapes. Then we showed with
the two-dimensional Sod shock tube that MOOD still performs very well on
non-regular mesh. Finally we proved the good behavior of MOOD on the four
states Riemann problem, Mach 3 step and double Mach reflection problems.
This paper is the first one presenting the MOOD concept. Consequently sev-
eral behaviors and extensions demand for more investigations. As instance we
plan to investigate more deeply new Edge Polynomial Degree (EPD) strategies
that could eventually adapt and act with less abrupt changes. Moreover we
plan to study the behavior of the MOOD concept with polynomials of degree
greater than two and polygonal/polyhedral meshes. Finally no special treat-
ment should theoretically be provided for the concept and the a posteriori
limitation to be effective.
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