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Abstract We consider the density convolution model: Y = X + ε, where X
and ε are independent random variables. We suppose that the density of X
is a finite mixture with unknown components. We want to estimate a compo-
nent of this mixture from pairwise positive quadrant dependent observations
Y1, . . . , Yn. To reach this goal, a linear wavelet estimator is developed. We mea-
sure its performance by determining an upper bound of the mean integrated
squared error.
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1 Motivations

We consider the following model:

Yv = Xv + εv, v ∈ {1, . . . , n}, n ∈ N∗, (1)

where X1, . . . , Xn are n random variables and ε1, . . . , εn are n identically dis-
tributed random variables. For any v ∈ {1, . . . , n}, Xv and εv are independent.
The density of ε1, denoted g, is known and ordinary smooth (to be defined
in Section 2). For any v ∈ {1, . . . , n}, the density of Xv is the following finite
mixture:

hv(x) =

m∑
d=1

wd(v)fd(x), x ∈ [−Ω,Ω],

where Ω ∈ (0,∞), m ∈ N∗,
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– (wd(v))(v,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any
v ∈ {1, . . . , n},

m∑
d=1

wd(v) = 1,

– f1, . . . , fm are m unknown densities.

We suppose that Y1, . . . , Yn are pairwise positive quadrant dependent (PPQD)
(to be defined in Section 2). For a fixed q ∈ {1, . . . ,m}, we aim to estimate fq
when only Y1, . . . , Yn are observed.

Let us now present a brief review on (1) under various configurations. In the
case where Y1, . . . , Yn are independent, (1) has been recently considered in Van
Es et al. (2008), Lee et al. (2010) and Chesneau (2010a). Note that, in this case,
if m = 1, w1(1) = . . . = w1(n) = 1 and fq = f1 = f , it becomes the standard
convolution density model. See e.g. Caroll and Hall (1988), Devroye (1989),
Fan (1991), Pensky and Vidakovic (1999), Fan and Koo (2002), Butucea and
Matias (2005), Comte et al. (2006), Delaigle and Gijbels (2006), Lacour (2006)
and Butucea and Tsybakov (2008a,b). In the case where Y1, . . . , Yn have some
kinds of dependence and m = 1, w1(1) = . . . = w1(n) = 1 and fq = f1 = f ,
we refer to e.g. Masry (2003), Van Zanten and Zareba (2008), Comte et al.
(2008) and Kulik (2008). The estimation of fq from independent observed
X1, . . . , Xn has been investigated by e.g. Maiboroda (1996), Hall and Zhou
(2003), Pokhyl’ko (2005) and Prakasa Rao (2010). The same problem with
observed PPQD X1, . . . , Xn has been considered in Chesneau (2010b). How-
ever, to the best of our knowledge, the estimation of fq from Y1, . . . , Yn in the
PPQD case is a new challenge.

We estimate fq by a linear wavelet estimator. It is ”similar” to the one of
Pensky and Vidakovic (1999), Fan and Koo (2002) and Van Zanten and Zareba
(2008). It has the originality to incorporate some technical tools on mixture
and to take into account the PPQD case. We measure its performance by
considering the mean integrated squared error (MISE) under the assumption
that fq belongs to a Besov ball Bsp,r(M) (to be defined in Section 3). We prove

that it attains the rate of convergence rn = (ρn/n
1−θ)2s/(2s+2δ+4), where ρn

depends on the weights of the mixture, θ is a ”dependence factor” and δ is a
parameter related to the ordinary smooth assumption on g.

The paper is organized as follows. Assumptions on (1) and some notations
are introduced in Section 2. Section 3 briefly describes the wavelet basis and
the Besov balls. The linear wavelet estimator is presented in Section 4. The
upper bound result is set in Section 5. Section 6 is devoted to the proofs.

2 Assumptions and notations

Assumption on f1, . . . , fm. For any d ∈ {1, . . . ,m}, we assume that the
support of fd is [−Ω,Ω].
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Assumptions on Y1, . . . , Yn. Recall that Y1, . . . , Yn are PPQD i.e. for any
(v, `) ∈ {1, . . . , n}2 with v 6= ` and any (x, y) ∈ R2,

P(Yv > x, Y` > y) ≥ P(Yv > x)P(Y` > y).

See Lehmann (1966) and Newman (1980).
Moreover, we assume that there exist positive real numbers b0, . . . , bn−1
such that
1. for any (v, `) ∈ {1, . . . , n}2,

C(Yv, Y`) = b|v−`|, (2)

2. there exist two constants, C > 0 and θ ∈ [0, 1), satisfying

n−1∑
u=0

bu ≤ Cnθ. (3)

Assumptions on g. We define the Fourier transform of a function h by

F(h)(x) =

∫ ∞
−∞

h(y)e−ixydy, x ∈ R,

whenever this integral exists. The notation · will be used for the complex
conjugate.
We assume that there exist two constants, c∗ > 0 and δ > 1, such that

| F(g)(x)| ≥ c∗
(1 + x2)δ/2

, x ∈ R. (4)

This assumption controls the decay of the Fourier coefficients of g, and
thus the smoothness of g.

Assumptions on the weights. Set

Γn =

(
1

n

n∑
v=1

wk(v)w`(v)

)
(k,`)∈{1,...,m}2

.

We suppose that det(Γn) > 0. For the considered q and any v ∈ {1, . . . , n},
we set

aq(v) =
1

det(Γn)

m∑
k=1

(−1)k+qγnq,kwk(v), (5)

where γnq,k denotes the determinant of the minor (q, k) of the matrix Γn.
Then, for any k ∈ {1, . . . ,m},

1

n

n∑
v=1

aq(v)wk(v) =


1 if k = q,

0 otherwise,

(6)
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and

(aq(1), . . . , aq(n)) = argmin
(b1,...,bn)∈Rn

1

n

n∑
v=1

b2v.

Technical details can be found in Maiboroda (1996).
We set

ρn =
1

n

n∑
v=1

a2q(v) (7)

and, for technical reasons, we suppose that ρn < n1−θ where θ refers to
(3).

3 Wavelets and Besov balls

Wavelet basis. Let N ∈ N∗, φ be a father wavelet of a multiresolution
analysis on R and ψ be the associated mother wavelet. Assume that
– supp(φ) = supp(ψ) = [1−N,N ],

–
∫ N
1−N φ(x)dx = 1,

– for any v ∈ {0, . . . , N − 1},
∫ N
1−N x

vψ(x)dx = 0,
– φ and ψ are of class Cυ, υ > 2 + δ, where δ is the one in (4).

(For instance, the Daubechies wavelets dbN with an appropriate N satisfy
these assumptions).
Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatments at the boundaries, there exists an
integer τ and a set of consecutive integers Λj with a length proportional
to 2j such that, for any integer ` ≥ τ , the collection

B = {φ`,k(.), k ∈ Λ`; ψj,k(.); j ∈ N− {0, . . . , `− 1}, k ∈ Λj},

is an orthonormal basis of L2([−Ω,Ω]) = {h : [−Ω,Ω]→ R;
∫ Ω
−Ω h

2(x)dx <
∞}.We refer to Cohen et al. (1993).
For any integer ` ≥ τ , any h ∈ L2([−Ω,Ω]) can be expanded on B as

h(x) =
∑
k∈Λ`

α`,kφ`,k(x) +

∞∑
j=`

∑
k∈Λj

βj,kψj,k(x), x ∈ [−Ω,Ω],

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ Ω

−Ω
h(x)φj,k(x)dx, βj,k =

∫ Ω

−Ω
h(x)ψj,k(x)dx. (8)
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Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to
Bsp,r(M) if and only if there exists a constant M∗ > 0 (depending on M)
such that the associated wavelet coefficients (8) satisfy

 ∞∑
j=τ−1

2j(s+1/2−1/p)

∑
k∈Λj

|βj,k|p
1/p


r

1/r

≤M∗.

We set βτ−1,k = ατ,k. In this expression, s is a smoothness parameter and
p and r are norm parameters. Besov balls contain the Hölder and Sobolev
balls. See Meyer (1992).

4 Linear estimator

Assuming that fq ∈ Bsp,r(M) with p ≥ 2, we define the linear estimator f̂ by

f̂(x) =
∑
k∈Λj0

α̂j0,kφj0,k(x), x ∈ [−Ω,Ω], (9)

where

α̂j0,k =
1

2πn

n∑
v=1

aq(v)

∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx, (10)

aq(1), . . . , aq(n) are defined by (5), j0 is the integer such that

1

2

(
n1−θ

ρn

)1/(2s+2δ+4)

< 2j0 ≤
(
n1−θ

ρn

)1/(2s+2δ+4)

,

ρn is defined by (7) and θ is the one in (3).

The integer j0 is chosen to minimize the MISE of f̂ (see the proof of
Theorem 1 below).

5 Upper bounds

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that

fq ∈ Bsp,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂ be (9). Then there exists a
constant C > 0 such that

E

(∫ Ω

−Ω

(
f̂(x)− fq(x)

)2
dx

)
≤ C

( ρn
n1−θ

)2s/(2s+2δ+4)

.
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The proof of Theorem 1 uses a moment inequality on (10) and a suitable
decomposition of the MISE.

Note that the rate of convergence of f̂ in the PPQD case is greater than the
one obtained in the independent case i.e. (ρn/n)2s/(2s+2δ+1) (see (Chesneau
2010a, Theorem 1)).

Due to the definition of j0, f̂ is not adaptive with respect to s. Adaptiv-
ity can perhaps be achieved by using another wavelet estimator as the hard
thresholding one. This approach works when Y1, . . . , Yn are independent (see
(Chesneau 2010a, Theorem 2)), but the proof of this fact uses technical prob-
ability inequalities (Bernstein, Rosenthal, . . . ) and it is not immediately clear
how to extend this to the PPQD case.

6 Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover,
C denotes any constant that does not depend on j, k and n. Its value may
change from one term to another and may depends on φ.

Lemma 1 For any k ∈ Λj0 , set

hj0,k(y) =
1

2π

∫ ∞
−∞

F (φj0,k)(x)

F(g)(x)
e−ixydx, y ∈ R.

Then there exists a constant C > 0 such that

sup
y∈R
|h′j0,k(y)| ≤ C2j0(δ+3/2).

Proof of Lemma 1. With the aid of differentiation under the integral sign,
we have

h′j0,k(y) = −i 1

2π

∫ ∞
−∞

x
F (φj0,k)(x)

F(g)(x)
e−ixydx, y ∈ R.

Now note that, since φ ∈ Cυ, there exists a constant C > 0 such that
|F (φ) (x)| ≤ C(1+|x|)−υ, x ∈ R (see Meyer (1992)). Therefore, using υ > 2+δ,
we have ∫ ∞

−∞
|x|(1 + x2)δ/2 |F (φ) (x)| dx

≤ C

∫ ∞
−∞
|x|(1 + x2)δ/2(1 + |x|)−υdx <∞. (11)
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Using (4), the equality |F (φj0,k) (x)| = 2−j0/2
∣∣F (φ) (x/2j0)

∣∣, the change of
variables u = x/2j0 and (11), we obtain

sup
y∈R
|h′j0,k(y)| ≤ 1

2π

∫ ∞
−∞
|x| |F (φj0,k)(x)|

|F(g)(x)|
dx

≤ 1

2πc∗
2−j0/2

∫ ∞
−∞
|x|(1 + x2)δ/2

∣∣F (φ) (x/2j0)
∣∣ dx

=
1

2πc∗
2−j0/2

∫ ∞
−∞
|2j0u|(1 + 22j0u2)δ/2 |F (φ) (u)| 2j0du

≤ 1

2πc∗
2j0(δ+3/2)

∫ ∞
−∞
|u|(1 + u2)δ/2 |F (φ) (u)| du

= C2j0(δ+3/2).

The proof of Lemma 1 is complete.

�

Proposition 1 For any k ∈ Λj0 , let αj0,k be the wavelet coefficient (8) of fq
and α̂j0,k be (10). Then there exists a constant C > 0 such that

E
(
|α̂j0,k − αj0,k|

2
)
≤ C2(2δ+3)j0

ρn
n1−θ

.

Proof of Proposition 1. Since Xv and εv are independent, for any x ∈ R,
we have

E
(
e−ixYv

)
= E

(
e−ixXv

)
E
(
e−ixεv

)
= F(hv)(x)F(g)(x)

=

m∑
d=1

wd(v)F(fd)(x)F(g)(x). (12)

It follows from the Fubini theorem, (12), (6) and the Parseval-Plancherel the-
orem that

E (α̂j0,k) =
1

2πn

n∑
v=1

aq(v)

∫ ∞
−∞

F (φj0,k)(x)

F(g)(x)
E
(
e−ixYv

)
dx

=
1

2πn

n∑
v=1

aq(v)

∫ ∞
−∞

F (φj0,k)(x)

F(g)(x)

m∑
d=1

wd(v)F(fd)(x)F(g)(x)dx

=

m∑
d=1

(
1

2π

∫ ∞
−∞
F (φj0,k)(x)F(fd)(x)dx

)
1

n

n∑
v=1

aq(v)wd(v)

=
1

2π

∫ ∞
−∞
F (φj0,k)(x)F(fq)(x)dx =

∫ Ω

−Ω
φj0,k(x)fq(x)dx = αj0,k.

Therefore

E
(
|α̂j0,k − αj0,k|2

)
= V (α̂j0,k) . (13)
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For any k ∈ Λj0 , set

hj0,k(y) =
1

2π

∫ ∞
−∞

F (φj0,k)(x)

F(g)(x)
e−ixydx, y ∈ R.

Then

α̂j0,k =
1

n

n∑
v=1

aq(v)hj0,k(Yv).

We have

V (α̂j0,k) =
1

n2

n∑
v=1

n∑
`=1

aq(v)aq(`)C (hj0,k(Yv), hj0,k(Y`))

≤ 1

n2

n∑
v=1

n∑
`=1

|aq(v)||aq(`)||C (hj0,k(Yv), hj0,k(Y`)) |. (14)

We need the following lemma proved by (Newman 1980, Lemma 3).

Lemma 2 (Newman (1980)) Let X and Y be two quadrant positive depen-
dent random variables and h : R→ C such that supx∈R |h′(x)| <∞. Then

|C (h(X), h(Y )) | ≤
(

sup
x∈R
|h′(x)|

)2

C(X,Y ).

Since Y1, . . . , Yn are PPQD, it follows from Lemma 2 that, for any (v, `) ∈
{1, . . . , n}2 with v 6= `,

|C (hj0,k(Yv), hj0,k(Y`)) | ≤
(

sup
y∈R
|h′j0,k(y)|

)2

C(Yv, Y`). (15)

Using (15), (2) and Lemma 1, we obtain

1

n2

n∑
v=1

n∑
`=1

|aq(v)||aq(`)||C (hj0,k(Yv), hj0,k(Y`)) |

≤ 1

n2

(
sup
y∈R
|h′j0,k(y)|

)2 n∑
v=1

n∑
`=1

|aq(v)||aq(`)|b|v−`|

≤ C
1

n2
2j0(2δ+3)

n∑
v=1

n∑
`=1

|aq(v)||aq(`)|b|v−`|. (16)
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We have

n∑
v=1

n∑
`=1

|aq(v)||aq(`)|b|v−`| = b0nρn + 2

n∑
v=2

v−1∑
`=1

|aq(v)||aq(`)|bv−`

≤ b0nρn +

n∑
v=2

v−1∑
`=1

(
a2q(v) + a2q(`)

)
bv−`

= b0nρn +

n∑
v=2

v−1∑
u=1

(
a2q(v) + a2q(v − u)

)
bu

= b0nρn +

n∑
v=2

a2q(v)

v−1∑
u=1

bu +

n∑
v=2

v−1∑
u=1

a2q(v − u)bu.

Using (3), we obtain

n∑
v=2

a2q(v)

v−1∑
u=1

bu ≤ nρn

(
n−1∑
u=0

bu

)
≤ Cρnnθ+1

and

n∑
v=2

v−1∑
u=1

a2q(v − u)bu =

n−1∑
u=1

bu

n∑
v=u+1

a2q(v − u) ≤ nρn

(
n−1∑
u=0

bu

)
≤ Cρnnθ+1.

Hence

n∑
v=1

n∑
`=1

|aq(v)||aq(`)|b|v−`| ≤ Cρnnθ+1. (17)

Putting (13), (14), (16) and (17) together, we obtain

E
(
|α̂j0,k − αj0,k|2

)
≤ C2(2δ+3)j0

ρn
n1−θ

.

This ends the proof of Proposition 1.

�

Proof of Theorem 1. We expand the function fq on B as

fq(x) =
∑
k∈Λj0

αj0,kφj0,k(x) +

∞∑
j=j0

∑
k∈Λj

βj,kψj,k(x), x ∈ [−Ω,Ω],

where

αj0,k =

∫ Ω

−Ω
fq(x)φj0,k(x)dx, βj,k =

∫ Ω

−Ω
fq(x)ψj,k(x)dx.
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We have, for any x ∈ [−Ω,Ω],

f̂(x)− fq(x) =
∑
k∈Λj0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑
j=j0

∑
k∈Λj

βj,kψj,k(x).

Since B is an orthonormal basis of L2([−Ω,Ω]), we have

E

(∫ Ω

−Ω

(
f̂(x)− fq(x)

)2
dx

)
=

∑
k∈Λj0

E
(
|α̂j0,k − αj0,k|2

)
+

∞∑
j=j0

∑
k∈Λj

β2
j,k.

Using Proposition 1 and the definition of j0, we obtain∑
k∈Λj0

E
(
|α̂j0,k − αj0,k|2

)
≤ C2j02(2δ+3)j0

ρn
n1−θ

≤ C
( ρn
n1−θ

)2s/(2s+2δ+4)

.

Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

∞∑
j=j0

∑
k∈Λj

β2
j,k ≤ C2−2j0s ≤ C

( ρn
n1−θ

)2s/(2s+2δ+4)

.

Therefore

E

(∫ Ω

−Ω

(
f̂(x)− fq(x)

)2
dx

)
≤ C

( ρn
n1−θ

)2s/(2s+2δ+4)

.

The proof of Theorem 1 is complete.

�
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