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We consider the density convolution model: Y = X + , where X and are independent random variables. We suppose that the density of X is a finite mixture with unknown components. We want to estimate a component of this mixture from pairwise positive quadrant dependent observations Y 1 , . . . , Y n . To reach this goal, a linear wavelet estimator is developed. We measure its performance by determining an upper bound of the mean integrated squared error.

Motivations

We consider the following model:

Y v = X v + v , v ∈ {1, . . . , n}, n ∈ N * , (1) 
where X 1 , . . . , X n are n random variables and 1 , . . . , n are n identically distributed random variables. For any v ∈ {1, . . . , n}, X v and v are independent. The density of 1 , denoted g, is known and ordinary smooth (to be defined in Section 2). For any v ∈ {1, . . . , n}, the density of X v is the following finite mixture:

h v (x) = m d=1 w d (v)f d (x), x ∈ [-Ω, Ω],
where Ω ∈ (0, ∞), m ∈ N * , Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse-Normandie, Campus II, Science 3, 14032 Caen, France. E-mail: chesneau@math.unicaen.fr We suppose that Y 1 , . . . , Y n are pairwise positive quadrant dependent (PPQD) (to be defined in Section 2). For a fixed q ∈ {1, . . . , m}, we aim to estimate f q when only Y 1 , . . . , Y n are observed.

Let us now present a brief review on (1) under various configurations. In the case where Y 1 , . . . , Y n are independent, (1) has been recently considered in [START_REF] Van Es | Deconvolution for an atomic distribution[END_REF], [START_REF] Lee | Direct deconvolution density estimation of a mixture, distribution motivated by mutation effects distribution[END_REF] and Chesneau (2010a). Note that, in this case, if m = 1, w 1 (1) = . . . = w 1 (n) = 1 and f q = f 1 = f , it becomes the standard convolution density model. See e.g. [START_REF] Caroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Devroye | Consistent deconvolution in density estimation[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF], [START_REF] Butucea | Minimax estimation of the noise level and of the signal density in a semiparametric convolution model[END_REF], [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF], [START_REF] Delaigle | Estimation of boundary and discontinuity points in deconvolution problems[END_REF], [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF] and Butucea and Tsybakov (2008a,b). In the case where Y 1 , . . . , Y n have some kinds of dependence and m = 1, w 1 (1) = . . . = w 1 (n) = 1 and f q = f 1 = f , we refer to e.g. [START_REF] Masry | Deconvolving Multivariate Kernel Density Estimates From Contaminated Associated Observations[END_REF], [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF], [START_REF] Comte | Adaptive density deconvolution for dependent inputs with measurement errors[END_REF] and [START_REF] Kulik | Nonparametric deconvolution problem for dependent sequences[END_REF]. The estimation of f q from independent observed X 1 , . . . , X n has been investigated by e.g. [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF], Hall andZhou (2003), Pokhyl'ko (2005) and Prakasa [START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF]. The same problem with observed PPQD X 1 , . . . , X n has been considered in [START_REF] Chesneau | Wavelet linear estimation of a density from observations of mixtures under quadrant dependence[END_REF]. However, to the best of our knowledge, the estimation of f q from Y 1 , . . . , Y n in the PPQD case is a new challenge.

We estimate f q by a linear wavelet estimator. It is "similar" to the one of [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF] and [START_REF] Van Zanten | A note on wavelet density deconvolution for weakly dependent data[END_REF]. It has the originality to incorporate some technical tools on mixture and to take into account the PPQD case. We measure its performance by considering the mean integrated squared error (MISE) under the assumption that f q belongs to a Besov ball B s p,r (M ) (to be defined in Section 3). We prove that it attains the rate of convergence r n = (ρ n /n 1-θ ) 2s/(2s+2δ+4) , where ρ n depends on the weights of the mixture, θ is a "dependence factor" and δ is a parameter related to the ordinary smooth assumption on g.

The paper is organized as follows. Assumptions on (1) and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis and the Besov balls. The linear wavelet estimator is presented in Section 4. The upper bound result is set in Section 5. Section 6 is devoted to the proofs.

Assumptions and notations

Assumption on f 1 , . . . , f m . For any d ∈ {1, . . . , m}, we assume that the support of

f d is [-Ω, Ω].
Assumptions on Y 1 , . . . , Y n . Recall that Y 1 , . . . , Y n are PPQD i.e. for any (v, ) ∈ {1, . . . , n} 2 with v = and any (x, y) ∈ R 2 ,

P(Y v > x, Y > y) ≥ P(Y v > x)P(Y > y).
See [START_REF] Lehmann | Some concepts of dependence[END_REF] and [START_REF] Newman | Normal fluctuations and the FKG inequalities[END_REF]. Moreover, we assume that there exist positive real numbers b 0 , . . . , b n-1 such that 1. for any (v, ) ∈ {1, . . . , n} 2 ,

C(Y v , Y ) = b |v-| , (2) 
2. there exist two constants, C > 0 and θ ∈ [0, 1), satisfying

n-1 u=0 b u ≤ Cn θ . (3) 
Assumptions on g. We define the Fourier transform of a function h by

F(h)(x) = ∞ -∞ h(y)e -ixy dy, x ∈ R,
whenever this integral exists. The notation • will be used for the complex conjugate.

We assume that there exist two constants, c * > 0 and δ > 1, such that

| F(g)(x)| ≥ c * (1 + x 2 ) δ/2 , x ∈ R. (4) 
This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g. Assumptions on the weights. Set

Γ n = 1 n n v=1 w k (v)w (v) (k, )∈{1,...,m} 2 .
We suppose that det(Γ n ) > 0. For the considered q and any v ∈ {1, . . . , n}, we set

a q (v) = 1 det(Γ n ) m k=1 (-1) k+q γ n q,k w k (v), (5) 
where γ n q,k denotes the determinant of the minor (q, k) of the matrix Γ n . Then, for any k ∈ {1, . . . , m},

1 n n v=1 a q (v)w k (v) =            1 if k = q, 0 otherwise, (6) and (a q (1), . . . , a q (n)) = argmin (b1,...,bn)∈R n 1 n n v=1 b 2 v .
Technical details can be found in [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF]. We set

ρ n = 1 n n v=1 a 2 q (v) (7)
and, for technical reasons, we suppose that ρ n < n 1-θ where θ refers to (3).

3 Wavelets and Besov balls Wavelet basis. Let N ∈ N * , φ be a father wavelet of a multiresolution analysis on R and ψ be the associated mother wavelet. Assume that

-supp(φ) = supp(ψ) = [1 -N, N ], - N 1-N φ(x)dx = 1, -for any v ∈ {0, . . . , N -1}, N 1-N x v ψ(x)dx = 0, -φ and ψ are of class C υ , υ > 2 + δ,
where δ is the one in (4). (For instance, the Daubechies wavelets dbN with an appropriate N satisfy these assumptions). Set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then, with an appropriate treatments at the boundaries, there exists an integer τ and a set of consecutive integers Λ j with a length proportional to 2 j such that, for any integer ≥ τ , the collection

B = {φ ,k (.), k ∈ Λ ; ψ j,k (.); j ∈ N -{0, . . . , -1}, k ∈ Λ j }, is an orthonormal basis of L 2 ([-Ω, Ω]) = {h : [-Ω, Ω] → R; Ω -Ω h 2 (x)dx < ∞}.
We refer to [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. For any integer ≥ τ , any h ∈ L 2 ([-Ω, Ω]) can be expanded on B as

h(x) = k∈Λ α ,k φ ,k (x) + ∞ j= k∈Λj β j,k ψ j,k (x), x ∈ [-Ω, Ω],
where α j,k and β j,k are the wavelet coefficients of h defined by

α j,k = Ω -Ω h(x)φ j,k (x)dx, β j,k = Ω -Ω h(x)ψ j,k (x)dx. ( 8 
)
Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (8) satisfy

   ∞ j=τ -1   2 j(s+1/2-1/p)   k∈Λj |β j,k | p   1/p    r    1/r ≤ M * .
We set β τ -1,k = α τ,k . In this expression, s is a smoothness parameter and p and r are norm parameters. Besov balls contain the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Linear estimator

Assuming that f q ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f by

f (x) = k∈Λj 0 α j0,k φ j0,k (x), x ∈ [-Ω, Ω], (9) 
where

α j0,k = 1 2πn n v=1 a q (v) ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx, (10) 
a q (1), . . . , a q (n) are defined by ( 5), j 0 is the integer such that 1 2

n 1-θ ρ n 1/(2s+2δ+4) < 2 j0 ≤ n 1-θ ρ n 1/(2s+2δ+4)
, ρ n is defined by (7) and θ is the one in (3). The integer j 0 is chosen to minimize the MISE of f (see the proof of Theorem 1 below).

Upper bounds

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that f q ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f be (9). Then there exists a constant C > 0 such that

E Ω -Ω f (x) -f q (x) 2 dx ≤ C ρ n n 1-θ 2s/(2s+2δ+4)
.

The proof of Theorem 1 uses a moment inequality on (10) and a suitable decomposition of the MISE. Note that the rate of convergence of f in the PPQD case is greater than the one obtained in the independent case i.e. (ρ n /n) 2s/(2s+2δ+1) (see (Chesneau 2010a, Theorem 1)).

Due to the definition of j 0 , f is not adaptive with respect to s. Adaptivity can perhaps be achieved by using another wavelet estimator as the hard thresholding one. This approach works when Y 1 , . . . , Y n are independent (see (Chesneau 2010a, Theorem 2)), but the proof of this fact uses technical probability inequalities (Bernstein, Rosenthal, . . . ) and it is not immediately clear how to extend this to the PPQD case.

Proofs

In this section, we consider (1) under the assumptions of Section 2. Moreover, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depends on φ.

Lemma 1 For any k ∈ Λ j0 , set h j0,k (y) = 1 2π ∞ -∞ F (φ j0,k )(x) F(g)(x) e -ixy dx, y ∈ R.
Then there exists a constant C > 0 such that

sup y∈R |h j0,k (y)| ≤ C2 j0(δ+3/2) .
Proof of Lemma 1. With the aid of differentiation under the integral sign, we have [START_REF] Meyer | Wavelets and Operators[END_REF]). Therefore, using υ > 2+δ, we have

h j0,k (y) = -i 1 2π ∞ -∞ x F (φ j0,k )(x) F(g)(x) e -ixy dx, y ∈ R. Now note that, since φ ∈ C υ , there exists a constant C > 0 such that |F (φ) (x)| ≤ C(1+|x|) -υ , x ∈ R (see
∞ -∞ |x|(1 + x 2 ) δ/2 |F (φ) (x)| dx ≤ C ∞ -∞ |x|(1 + x 2 ) δ/2 (1 + |x|) -υ dx < ∞. (11) 
Using (4), the equality |F (φ j0,k ) (x)| = 2 -j0/2 F (φ) (x/2 j0 ) , the change of variables u = x/2 j0 and (11), we obtain

sup y∈R |h j0,k (y)| ≤ 1 2π ∞ -∞ |x| |F (φ j0,k )(x)| |F(g)(x)| dx ≤ 1 2πc * 2 -j0/2 ∞ -∞ |x|(1 + x 2 ) δ/2 F (φ) (x/2 j0 ) dx = 1 2πc * 2 -j0/2 ∞ -∞ |2 j0 u|(1 + 2 2j0 u 2 ) δ/2 |F (φ) (u)| 2 j0 du ≤ 1 2πc * 2 j0(δ+3/2) ∞ -∞ |u|(1 + u 2 ) δ/2 |F (φ) (u)| du = C2 j0(δ+3/2) .
The proof of Lemma 1 is complete.

Proposition 1 For any k ∈ Λ j0 , let α j0,k be the wavelet coefficient (8) of f q and α j0,k be (10). Then there exists a constant C > 0 such that

E | α j0,k -α j0,k | 2 ≤ C2 (2δ+3)j0 ρ n n 1-θ .
Proof of Proposition 1. Since X v and v are independent, for any x ∈ R, we have

E e -ixYv = E e -ixXv E e -ix v = F(h v )(x)F(g)(x) = m d=1 w d (v)F(f d )(x)F(g)(x). (12) 
It follows from the Fubini theorem, ( 12), ( 6) and the Parseval-Plancherel theorem that

E ( α j0,k ) = 1 2πn n v=1 a q (v) ∞ -∞ F (φ j0,k )(x) F(g)(x) E e -ixYv dx = 1 2πn n v=1 a q (v) ∞ -∞ F (φ j0,k )(x) F(g)(x) m d=1 w d (v)F(f d )(x)F(g)(x)dx = m d=1 1 2π ∞ -∞ F (φ j0,k )(x)F(f d )(x)dx 1 n n v=1 a q (v)w d (v) = 1 2π ∞ -∞ F (φ j0,k )(x)F(f q )(x)dx = Ω -Ω φ j0,k (x)f q (x)dx = α j0,k . Therefore E | α j0,k -α j0,k | 2 = V ( α j0,k ) . ( 13 
)
For any k ∈ Λ j0 , set

h j0,k (y) = 1 2π ∞ -∞ F (φ j0,k )(x) F(g)(x) e -ixy dx, y ∈ R.
Then

α j0,k = 1 n n v=1 a q (v)h j0,k (Y v ).
We have

V ( α j0,k ) = 1 n 2 n v=1 n =1 a q (v)a q ( )C (h j0,k (Y v ), h j0,k (Y )) ≤ 1 n 2 n v=1 n =1 |a q (v)||a q ( )||C (h j0,k (Y v ), h j0,k (Y )) |. ( 14 
)
We need the following lemma proved by (Newman 1980, Lemma 3).

Lemma 2 [START_REF] Newman | Normal fluctuations and the FKG inequalities[END_REF]) Let X and Y be two quadrant positive dependent random variables and h : R → C such that

sup x∈R |h (x)| < ∞. Then |C (h(X), h(Y )) | ≤ sup x∈R |h (x)| 2 C(X, Y ).
Since Y 1 , . . . , Y n are PPQD, it follows from Lemma 2 that, for any (v, ) ∈ {1, . . . , n} 2 with v = ,

|C (h j0,k (Y v ), h j0,k (Y )) | ≤ sup y∈R |h j0,k (y)| 2 C(Y v , Y ). (15) 
Using ( 15), (2) and Lemma 1, we obtain

1 n 2 n v=1 n =1 |a q (v)||a q ( )||C (h j0,k (Y v ), h j0,k (Y )) | ≤ 1 n 2 sup y∈R |h j0,k (y)| 2 n v=1 n =1 |a q (v)||a q ( )|b |v-| ≤ C 1 n 2 2 j0(2δ+3) n v=1 n =1 |a q (v)||a q ( )|b |v-| . (16) 
We have

n v=1 n =1 |a q (v)||a q ( )|b |v-| = b 0 nρ n + 2 n v=2 v-1 =1 |a q (v)||a q ( )|b v- ≤ b 0 nρ n + n v=2 v-1 =1 a 2 q (v) + a 2 q ( ) b v- = b 0 nρ n + n v=2 v-1 u=1 a 2 q (v) + a 2 q (v -u) b u = b 0 nρ n + n v=2 a 2 q (v) v-1 u=1 b u + n v=2 v-1 u=1 a 2 q (v -u)b u .
Using (3), we obtain

n v=2 a 2 q (v) v-1 u=1 b u ≤ nρ n n-1 u=0 b u ≤ Cρ n n θ+1 and n v=2 v-1 u=1 a 2 q (v -u)b u = n-1 u=1 b u n v=u+1 a 2 q (v -u) ≤ nρ n n-1 u=0 b u ≤ Cρ n n θ+1 . Hence n v=1 n =1 |a q (v)||a q ( )|b |v-| ≤ Cρ n n θ+1 . (17) 
Putting ( 13), ( 14), ( 16) and ( 17) together, we obtain

E | α j0,k -α j0,k | 2 ≤ C2 (2δ+3)j0 ρ n n 1-θ .
This ends the proof of Proposition 1.

Proof of Theorem 1. We expand the function f q on B as

f q (x) = k∈Λj 0 α j0,k φ j0,k (x) + ∞ j=j0 k∈Λj β j,k ψ j,k (x), x ∈ [-Ω, Ω],
where

α j0,k = Ω -Ω f q (x)φ j0,k (x)dx, β j,k = Ω -Ω
f q (x)ψ j,k (x)dx.

We have, for any x ∈ [-Ω, Ω],

f (x) -f q (x) = k∈Λj 0 ( α j0,k -α j0,k ) φ j0,k (x) -∞ j=j0 k∈Λj β j,k ψ j,k (x).

Since B is an orthonormal basis of L 2 ([-Ω, Ω]), we have

E Ω -Ω f (x) -f q (x) 2 dx = k∈Λj 0 E | α j0,k -α j0,k | 2 + ∞ j=j0 k∈Λj β 2 j,k .
Using Proposition 1 and the definition of j 0 , we obtain

k∈Λj 0 E | α j0,k -α j0,k | 2 ≤ C2 j0 2 (2δ+3)j0 ρ n n 1-θ ≤ C ρ n n 1-θ 2s/(2s+2δ+4)
.

Since p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Hence .

Therefore

E Ω -Ω f (x) -f q (x) 2 dx ≤ C ρ n n 1-θ 2s/(2s+2δ+4)
.

The proof of Theorem 1 is complete.

-

  (w d (v)) (v,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any v ∈ {1, . . . , n}, m d=1 w d (v) = 1, f 1 , . . . , f m are m unknown densities.
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