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The Hamiltonian gyrofluid model recently derived by Waelbroeck et al. [Phys. Plasmas 16,
032109 (2009)], is used to investigate nonlinear collisionless reconnection with a strong guide field by
means of numerical simulations. Finite ion Larmor radius gives rise to a cascade of the electrostatic
potential to scales below both the ion gyroradius and the electron skin depth. This cascade is similar
to that observed previously for the density and current in models with cold ions. In addition to
density cavities, the cascades create electron beams at scales below the ion gyroradius. The presence
of finite ion temperature is seen to modify, inside the magnetic island, the distribution of the velocity
fields that advect two Lagrangian invariants of the system. As a consequence, the fine structure
in the electron density is confined to a layer surrounding the separatrix. Finite ion Larmor radius
effects produce also a different partition between the electron thermal, potential, and kinetic energy,
with respect to the cold ion case. Other aspects of the dynamics such as the reconnection rate
and the stability against Kelvin-Helmholtz modes, are similar to simulations with finite electron
compressibility but cold ions.

I. INTRODUCTION

The investigation of collisionless magnetic reconnection by means of Hamiltonian reduced fluid models has proved

to be useful in various ways, for instance in the interpretation of nonlinear structures observed in simulations [1–6], the

derivation of stability criteria [7], the extension of the model to include external fields while preserving a Hamiltonian

structure [6], and the identification of negative energy modes [7]. The above mentioned results refer, however, to

cold-ion Hamiltonian models. Energy-conserving, hot-ion (in particular, gyrofluid) versions of such cold-ion models

have been derived, for instance in Refs.[8–12]. In particular, a gyrofluid two-field version of the model presented in

Ref.[9] was investigated numerically in Ref.[13] and a dissipative version of it was studied in Ref. [14]. A separate

application of this model to the study of Alfvénic turbulence appeared after completion of the present work.[15]

Although different energy-conserving, hot-ion models are available, the nonlinear numerical investigation of Hamil-

tonian gyrofluid models for collisionless reconnection is relatively less developed with respect to that in the cold-ion

limit. An example of results in this direction was presented in Ref. [13]. The analysis presented in that article,

however, was limited to the linear and early nonlinear phase of the dynamics. The purpose of this article is to in-

vestigate the nonlinear dynamics of a Hamiltonian gyrofluid model and compare the results with those obtained in

Ref.[13] and in previous investigations of cold-ion models. Particular emphasis will be given to the analysis of the

structures that form nonlinearly in the fields. The structure of the electric field, for example, is of interest in theories
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of electron [16, 17] and ion [18] energization during magnetic reconnection in the magnetopause, the solar corona,

and in laboratory experiment[19, 20]. Note, however, that energization is a kinetic process that cannot be described

rigorously within the fluid model used here. We will investigate, with the help of the Hamiltonian structure of the

model, the role played by the finite ion Larmor radius on the electron density distribution. The influence of finite ion

temperature on the secondary fluid instabilities observed in recent years [4, 5, 21, 22] will also be considered.

The paper is organized as follows: in Sec. II the model equations are introduced. Sec. III and Sec. IV are de-

voted to the analysis of the results of the numerical simulations, with focus on field structures and energy partition,

respectively. Conclusions are drawn in Sec. V.

II. MODEL EQUATIONS

We consider the following Padé approximant, two-dimensional version of the Hamiltonian gyrofluid model of Ref.[12]:

∂ni
∂t

+ [Φ, ni] = 0, (1)

∂ne
∂t

+ [φ, ne] − [ψ,∇2ψ] = 0, (2)

∂

∂t
(ψ − d2

e∇
2ψ) + [φ, ψ − d2

e∇
2ψ] + ρ2

s[ψ, ne] = 0, (3)

ne =
1

1 −
ρ2

i

2
∇2

ni +
∇2

1 − ρ2
i∇

2
φ. (4)

Given a Cartesian coordinate system (x, y, z), we assume that all the fields are translationally invariant along z. The

variables in Eqs.(1)-(4) are written in a dimensionless form and their relations with dimensional quantities are given

by:

t =
vA
L
t̂, x =

x̂

L
, ni =

L

d̂i

n̂i
n0

, (5)

de =
d̂e
L
, ne =

L

d̂i

n̂e
n0

, ψ =
Âz
BL

, φ =
ρ̂2
s

L2

L

d̂i

eφ̂

Te
,

where the carets denote dimensional variables. In (5) n0 indicates a background density, L is a characteristic magnetic

equilibrium scale length, vA is the Alfvèn speed based on a characteristic poloidal magnetic field intensity B, n̂i,e

represent the ion guiding center and the electron density, respectively, Âz is the z component of the vector potential,

ρ̂s is the sonic Larmor radius, φ̂ is the electrostatic potential, d̂i,e the ion and electron skin depth, Ti,e the ion and

electron temperature, respectively, and e is the unit charge. In addition to this, we indicate with ρi =
√

Ti/Teρs the
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ion Larmor radius, and with

Φ =
1

1 −
ρ2

i

2
∇2

φ, (6)

the gyroaveraged electrostatic potential. Note that this normalization differs from that adopted in Ref. [12].

It is easy to see that in the limit ρi → 0, the ions decouple and the above equations effectively reduce to the two-

field, cold-ion model used in [2, 23]. This model as well as the more complete model used here, describe the so-called

“inertial-Alfvén” regime in the limit βe ≪ me/mi (or equivalently, ρs ≪ de) as well as the “kinetic Alfvén” regime

in the opposite limit. In the previous expression, we indicated with me,i the electron and ion mass, respectively, and

with βe the ratio between the electron pressure and the magnetic pressure. These two regimes have been observed

in laboratory experiments [24] as well as in the auroral region with the Freja satellite. [25] The characteristics of

magnetic reconnection in the two limits βe < me/mi and βe > me/mi have been compared and contrasted by Rogers

et al.[26]

III. ANALYSIS OF THE FIELD STRUCTURES

We perform numerical simulations of the model (1)-(4) on the domain {(x, y) : −π ≤ x < π,−π ≤ y < π}, with a

grid of 1024×128 points and imposing double periodic boundary conditions. The initial equilibrium is given by

nieq
(x) = n0, neeq

(x) = n0, ψeq(x) =

11
∑

n=−11

an exp(inx), (7)

where n0 is a constant background density and the an are the Fourier coefficients of the function f(x) = 1/ cosh2 x. In

Ref. [27] it has been shown that such truncated Fourier series provides a very good representation of the equilibrium flux

function. The equilibrium of the form 1/ cosh2 x makes it possible to avoid the early cross-talking between magnetic

islands that prevented the observation of a developed nonlinear phase in Ref.[13]. The equilibrium (7) allows to reach

a nonlinear phase, in which the ratio between the island width and the electron skin depth is approximately twice as

much as that permitted in Ref.[13], and eventually a saturation phase. The equilibrium is destabilized by perturbing

the ni field with a four-cell pattern disturbance of the form ñi ∝ cos(x + y) − cos(x − y). The field φ is perturbed

accordingly, in such a way that the initial perturbation on ne is zero. The choice (7) for the equilibrium implies that

ni grows only very weakly compared to the other fields. Although this choice makes the role of ni on the dynamics

essentially negligible, it permits to make a more direct comparison with previous results. An investigation in the

presence of an ion guiding center nonuniform equilibrium will be the subject of a future publication.
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Simulations have been run fixing de = 0.2 and varying the values of ρs and ρi, in order to investigate the influence

on the dynamics of finite ion temperature with respect to cold ion models or to the gyrofluid model of Ref. [13].

Linear growth rates observed in the simulations have been compared with the asymptotic formula γ ≈ 2(2deρ
2
τ/π)1/3,

derived from linear theory [28], and a good agreement was found (here ρ2
τ = ρ2

i + ρ2
s and the multiplicative factor 2

comes from the choice of the magnetic equilibrium adopted here).

We first carried out a comparison between simulations obtained by setting alternatively ρs and ρi equal to 0.4 and

0.01. The case ρi = 0.4, ρs = 0.01, although unphysical, makes it possible to observe and isolate the effect of ion

temperature on the cold plasma state. Results are shown in Fig. 1. Because the lengths of the initial transient phases

are different in the two cases, we did not compare the fields at the same time but rather when the magnetic island

has reached approximately the same width, which indicates that the two dynamics have reached the same degree of

advancement.

From comparing the plots of the electron density one can see that the structures observed in the two simulations

are qualitatively similar, in particular in the lobes around the magnetic separatrices. Such structures have already

been observed in previous nonlinear simulations of different cold ion models (e.g. [2, 4, 6]). The inner regions look

somewhat different, with a more accentuated quadrupolar structure in the ρs = 0.4 case.

In order to understand the observed behavior we note the following: let us assume that the contribution coming

from ni is negligible in (4). One can indeed verify that the amplitude of such term is typically much smaller than

that of the other terms in the equation, namely due to the homogeneity of ni in the initial state. We then have the

relation

φ = ∇−2ne − ρ2
ine. (8)

Through this relation we can eliminate φ in (2)-(3) and obtain

∂ne
∂t

+ [∇−2ne, ne] − [ψ,∇2ψ] = 0, (9)

∂

∂t
(ψ − d2

e∇
2ψ) + [∇−2ne, ψ − d2

e∇
2ψ] + (ρ2

s + ρ2
i )[ψ, ne] + ρ2

i d
2
e[ne,∇

2ψ] = 0. (10)

We can now see that in the evolution equation for ne (9) there is no explicit dependence on ρi and ρs. These parameters

appear explicitly only in the electron momentum equation (10). Note, however, that the coefficient of [ψ, ne] in (10),

takes the same value in the two cases of our simulations. Therefore, apart from the term ρ2
i d

2
e[ne,∇

2ψ], the two
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systems we solve in the simulations are very similar. Thus, when it comes to determining the reconnection rate and

qualitative field structures, interchanging the role of ρi and ρs can be expected to produce little differences, as already

observed in Ref. [13]. This is reminiscent of the case with zero guide-field investigated in the “GEM challenge.” In

that case a comparison of kinetic, hybrid, and fluid (cold ion) codes showed that the reconnection rate is insensitive

to the details of the plasma dynamics. [29] Subsequent work found that for all the models investigated in the GEM

challenge, fast reconnection occurs when the phase velocity of the wave mediating the reconnection increases with

the wavevector in a certain range. [26] Note, however, that more recent studies of reconnection in electron-positron

plasmas have cast doubt on the role of the dispersion properties on the reconnection rate (see [30] and references

therein).

In the case of the model considered here, when considering homogeneous equilibria nieq
= n0, neeq

= n0, ψeq(x) = αψx,

with constant αψ, the linear dispersion relation resulting from Eqs. (1)-(4) reads

ω = ±|αψky|

√

1 + (ρ2
i + ρ2

s)k
2
⊥

1 + d2
ek

2
⊥

. (11)

In Eq. (11) ω is the frequency of propagation of the wave, ky is the wave vector along the y direction and k⊥ is the

perpendicular wave vector. Note that this dispersion relation includes the so-called “inertial-Alfvén” regime in the

limit βe ≪ me/mi or equivalently, ρs ≪ de, as well as the “kinetic Alfvén” regime in the opposite limit. [24, 25]

The expression (11) indicates that the inclusion of finite ion temperature does not modify the dispersive properties

of the wave, with respect to the ρi = 0, ρs 6= 0 case. It simply amounts to introducing an effective sonic radius

ρτ =
√

ρ2
i + ρ2

s. In this respect, the cold plasma case is qualitatively different.

Another similarity between the effect of the ion and electron temperature is that the secondary Kelvin-Helmholtz

instability, observed in cold plasma models, [4, 5, 21, 22] is suppressed when ρi 6= 0, even if ρs is very small. Indeed,

even in the cold electron case, if finite ion temperature is taken into account, the formation of thinning layers prone to

the fluid instability is suppressed by the appearance of lobes enclosed in the separatrices. We can then conclude that

finite temperature effects, of either the electron or of the ion species, inhibit the onset of a secondary Kelvin-Helmholtz

instability.

The similarities in the growth rates, electron density structures around the separatrices and Kelvin-Helmholtz

stability properties, however, should not be allowed to distract from an important qualitative difference between the

cold-ion and hot-ion cases: for hot ions, the electrostatic potential develops very fine structure, whereas for cold ions,

it varies no faster than on the scale of ρs. This difference, which is clearly visible in Fig. 1, is confirmed by comparing
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profiles of |∇φ| in Fig. 2. Such plots indeed show that, as ρi increases, strong electric fields develop in the plane

perpendicular to the guide field, in regions surrounding the separatrices. In order to highlight this aspect, we chose

to show the profiles at the chord y/π = −1/2, which crosses such regions. Formation of fine structures and steep

gradients in the electric field accompany this growth in amplitude. Evidently, the same trend can be read also in

terms of an increase in amplitude and in gradients of the E×B drift. The fine structure of the electrostatic potential

influences also the parallel electric field. Since E‖ = −∂ψ/∂t− [φ, ψ], the latter field too develops small scales as ρi

increases. As an example, the contour plot of E‖ is drawn in fig. 3 for the case with ρi = ρs = 0.4. Fig. 3 shows

clearly that all the area enclosed by the magnetic island is dominated by fine structures. This behavior of the parallel

electric field, combined with the formation of density cavities, is suggestive [16] of a possible enhancement of the

particle acceleration along magnetic field line and, consequently, of the plasma heating as ρi is increased.

To understand the reason for fine-scale structure of φ, when ρs is large, it is necessary to recall the conservation

properties of the system. The study of these conservation properties [2, 12] leads to the conclusion that the dynamical

equations (1)-(3) can be cast in the form of the following set of convection equations:

∂Gj
∂t

+ vj · ∇Gj = 0, (12)

where the convection velocities vj are prescribed in terms of stream-functions φj by vj = ẑ×∇φj . Here the index j

takes the values 0, +, and -. The fields Gj are Lagrangian invariants given by G0 = ni and G± = ψ + d2
eJ ± deρsne,

with J = −∇2ψ, and the corresponding advecting stream-functions are φ0 = Φ and φ± = φ± ρsψ/de.

The Lagrangian representation of the dynamics leads to the “phase-mixing” picture of collisionless reconnection

presented in Ref. [2]. According to this picture, the reconnection is enabled by the mixing of the invariants in a way

analogous to the mixing of the distribution function during Landau damping. As a result of this mixing, the G± fields

develop increasingly fine structure, like cream stirred in a cup of coffee. In order to determine the smoothness of the

original fields, such as ne and ψ, we need to solve for these fields in terms of the invariants.

ψ = 1

2
(1 − d2

e∇
2)−1(G+ +G−); (13)

ne = 1

2
(G+ −G−)/deρs. (14)

The first of these expressions shows that ψ is a smoothed version of the mixed-up G± fields, the inverse Kelvin-

Helmholtz operator (1−d2
e∇

2)−1 having the effect of suppressing all scales below de. The second expression, Eq. (14),

by contrast, shows that ne is not smoothed at all, and will contain all the fine scales produced by the mixing of
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the G±. Applying the ∇2 operator to Eq. (13) shows that the axial current J , like ne, retains the fine structure of

the G±. The dark and light structures (six of each, see Fig. 1, case with ρs = 0.4) in ne lying on and inside the

separatrix can be recognized as being part of two spirals resulting from the roll-up of the invariants of the system

in the counterclockwise and clockwise sense, respectively. [2, 23] These spirals represent a historical record of the

reconnection up to that point, much like geological strata preserve the record of tectonic subduction and buckling.

Returning to the question of the behavior of the electrostatic potential, inspection of Eq. (8) shows that φ will

itself only be smoothed when ρi = 0. For ρi > 0, by contrast, φ contains an unfiltered contribution from ne that

exhibits progressively finer structure as the reconnection progresses. That is, φ as well as ne and J , exhibit a cascade

towards smaller scales. It is easy to see that the fine structure is retained by the electron perpendicular velocity,

since ve = ẑ×∇(φ− ρ2
sne). Thus, the gyrofluid model describes the formation of electron beams much like the ones

observed in kinetic simulations. [16, 17, 31] The width of the beams is determined by the stretching and folding of

the G±, and their parallel velocity is determined by the electron momentum conservation in the ẑ direction.

Note also that if, on the other hand, one considers the limit ρs → 0, then G± ∼ ψ + d2
eJ and φ± ∼ φ. Consequently,

for small ρs one expects not to see the stretching in opposite directions of G+ and G− under the action of φ±,

because the magnetic contribution to the advection velocity fields v±, which is what causes the opposite circulation

of the two flows, gets suppressed. This can be seen in Fig.1, when comparing the two plots of G+. In the case

with small ρs one does not see the spiral arms that are visible in the case with large ρs and which are a result of

the stretching in the clockwise sense caused by φ+ (the case of G− would be identical but with a spiral winding

up anticlockwise [1]). Therefore, in spite of the similar features in the electron density around the separatrices,

the two cases differ considerably in the structure of the underlying invariants and of the corresponding mixing process.

The Fourier representation offers an alternative explanation for the behavior of φ and the gyro-averaged potential

Φ. Let us write the periodic fields in Fourier series, so that ne =
∑+∞

k=−∞ nek(t) exp(ik · x) and analogously for the

other fields. From (4) one obtains

φk =
1 + ρ2

i k
2

k2

(

1 +
ρ2

i

2
k2

)nik −
1 + ρ2

i k
2

k2
nek , (15)

Φk =
1 + ρ2

i k
2

k2

(

1 +
ρ2

i

2
k2

)2
nik −

1 + ρ2
i k

2

k2

(

1 +
ρ2

i

2
k2

)nek . (16)
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From these relations we deduce that for ρi → 0,

φk ∼ Φk ∼ (nik − nek)/k2. (17)

In this case, both φ and Φ are smoothed with respect to ne, which is proportional to the sum of the convected fields

G+ and G−, and with respect to ni which is itself a convected field.

For ρi → +∞, by contrast,

φk ∼ −ρ2
inek ; (18)

Φk ∼ −
2

k2
nek . (19)

Thus we can see that, as ρi increases, φ tends to become proportional to ne whereas Φ remains screened, an effect of

the gyroaveraging. The similarity in the structure of ne and φ is indeed what Fig.1 shows. Finally note that the above

argument, based on the quasi-neutrality condition, is independent of the value of ρs and holds also in the presence

of nonuniform background density, in which case the perturbations to ni, that were neglected in (9)-(10), must be

retained. Another effect related to the presence of ρi is the flattening of the electron density as far as the central

region of the island is considered. This effect can be explained in terms of the different behavior of the velocity fields

v± = ẑ × ∇φ± which advect the Lagrangian invariants G±. Indeed, as far as ρi increases we observe progressively

weaker velocity fields inside the island, as shown in fig. 4 (first column plots) for two different values of ρi (0.01, 0.4)

at the same value of ρs = 0.4. Hence, the G± are less strechted and filamented far from the separatrices and tend to

coincide inside the island, as shown for a particular y-chord in the second column of fig. 4. Here we note that peaks,

which occur where the velocity field is stronger, develop well inside the island for small ρi, while they tend to be

localized around the separatrices when ρi increases. Since the electron density is recovered from the difference between

the G± fields through relation (14), it follows that its profile tends to become flatter and flatter as we approach the

O-point of the magnetic island.

IV. ENERGY CONSIDERATIONS

The 3-field model (1)-(4) possesses the following conserved energy integral (Hamiltonian) [12]:

H =
1

2

∫

d2x
[

|∇ψ|2 + d2
e(∇

2ψ)2 + ρ2
sn

2
e + Φni − φne

]

. (20)

The various terms in (20) represent the magnetic energy (EB), the parallel electron kinetic energy (Eke), the electron

thermal energy (Ethe), the ion electrostatic energy (Eeli) and the electron electrostatic energy (Eele), respectively.
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We consider the temporal evolution of the different contributions to the total energy for ρs = 0.4, ρi = 0 and ρs = 0,

ρi = 0.4. First we note that, with our choice of equilibria and initial perturbations, the total energy (corresponding

to its value at t = 0) is given by

H =
1

2

∫

d2x
[

|∇ψeq(x)|
2 + d2

e(∇
2ψeq(x))

2 + Φ̃(x, y)ñi(x, y)
]

+
1

2
ρ2
s4πn

2
0, (21)

where tildes denote the initial perturbations. The amount of energy turns out to be essentially the same for both

cases, because the difference between the cases ρi = 0 and ρi = 0.4, present in the ion electrostatic energy, is less than

10−5 and because the presence of the constant term in (21) depending on n2
0 is irrelevant for the investigation of the

energy deviations from their initial values. By comparing the two plots of Fig. 5 we can see that, although the total

energy is the same in both cases, the distribution into the various forms is quite different. In both cases we decided

to consider the simulations reliable only when the loss of total energy due to numerical dissipation is less than 1%. If

we consider the plot for ρi = 0 at t = 19 and the plot for ρs = 0 at t = 16 (corresponding to magnetic islands of the

same size) we see that essentially the same amount of magnetic energy has been lost in the two cases. This loss is,

however, compensated in two different ways. For the cold ion case the reconnection process converts magnetic energy

mainly into thermal electron energy (which prevails as ρs is increased) and electron electrostatic energy. A smaller

portion of magnetic energy also goes into parallel kinetic energy, although the latter starts to decrease when the total

energy starts to be no longer conserved. We observe that in the cold ion limit the Hamiltonian can be written as

H =
1

2

∫

d2x
[

|∇ψ|2 + d2
e(∇

2ψ)2 + ρ2
s(∇

2φ)
2

+ |∇φ|2
]

. (22)

Because in this limit ne = ni+∇2φ the ion and electron electrostatic energy can be combined into a single electrostatic

energy term which is also proportional to the perpendicular kinetic energy due to the E × B flow. The conversion

can then of course be interpreted also as partial transformation into perpendicular kinetic energy.

In the opposite limit (ρs = 0, ρi → +∞), the Hamiltonian becomes

H ∼
1

2

∫

d2x

[

|∇ψ|2 + d2
e(∇

2ψ)2 + niΦ +
ρ2
i

4
(∇2Φ)

2

]

. (23)

In this limit the electron thermal energy vanishes and almost all the magnetic energy is converted into electron

electrostatic energy, which in this limit becomes proportional to the square of the laplacian of the gyroaveraged

potential. In particular, if one assumes that ψ = O(1) and ne = O(1) as ρi → +∞, then φ = O(ρ2
i ), and the electron

electrostatic will tend to grow and dominate the other terms in that limit. We note also that, compared to the cold-ion
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case, the presence of finite ion temperature determines a decrease in the parallel kinetic energy as shown in Fig. 6,

where a comparison between two cases with ρs = 0.2 and ρi = 0, 0.2, respectively, is considered.

In the limit of negligible ni we can recover the following expressions:

d

dt

1

2

∫

d2x
(

|∇ψ|2 + d2
e(∇

2ψ)2
)

=

∫

d2x∇2ψ[∇−2ne, ψ] + (ρ2
i + ρ2

s)

∫

d2x∇2ψ[ψ, ne], (24)

d

dt

ρ2
s

2

∫

d2xn2
e = −ρ2

s

∫

d2x∇2ψ[ψ, ne], (25)

−
d

dt

1

2

∫

d2xφne = −

∫

d2x∇2ψ[∇−2ne, ψ] − ρ2
i

∫

d2x∇2ψ[ψ, ne]. (26)

These relations show how the sum of the magnetic and parallel kinetic energy, which is essentially the only form of

energy available at the initial state, is transferred into different channels. Electron temperature terms are a source for

electron thermal energy, whereas the corresponding ion temperature term and the convective term on the right-hand

side of (24) provide a source for the electron electrostatic energy.

V. CONCLUSION

We have shown that, in some respects, ion gyration (parametrized by ρi) plays a role similar to electron parallel

compressibility (parametrized by ρs). Both give rise to an acceleration of reconnection compared to the case of cold

plasma (ρs = ρi = 0), and both have the effect of stabilizing the Kelvin-Helmholtz instabilities that have been observed

in the collisionless reconnection of cold plasma.[4, 5, 21, 22] In both cases, also, the acceleration of reconnection is

consistent with changes in the dispersion relation, fast reconnection occurring when the dispersion curve has a convex

segment. [26] Lastly, when ρs is finite, also in the presence of finite ion temperature, the acceleration observed in

hot plasma can be interpreted as resulting from the roll-up of the two Lagrangian invariants G± by the convection

cells associated with the reconnection. Such roll-up is energetically favorable since the magnetic energy is given by

the integral of |∇ψ|2, and ψ is determined from the difference of the G± by a smoothing operation. The smoothing

filters the short scales, so that the magnetic energy in the rolled-up state is reduced from that in the initial state [2].

Beyond their superficial similarities, however, the cases of cold and hot ions exhibit important differences. Whereas

the electrostatic potential is smooth in the case of cold ions, for hot ions it retains the fine structures created by

the roll-up of the G±. As a result, the finite-ρi model exhibits electron beams similar to those observed in particle

simulations. [16–18, 31] This feature is important for the study of the particle energization occurring during magnetic

reconnection. Moreover, another feature of finite ion temperature is a flattening of the electron density inside the
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magnetic island. This can be explained in terms of a decreasing of the speed of v± going from the separatrices to the

inner region of the island. Also the energy distribution is affected by the presence of hot ions. Indeed, when finite ion

temperature is taken into account a relative increase in the electron electrostatic energy is compensated by a decrease

in the parallel kinetic and electron thermal energies.

Lastly, we note that while particle codes are highly effective for small guide fields, their advantages recede for large

guide fields and for current systems of macroscopic size. For such problems, the present paper shows that gyrofluid

codes may prove to be valuable research tools. A good understanding of gyrofluid dynamics may also prove useful in

the development of implicit moment algorithms [32] for gyrokinetic codes, since the gyrofluid equations are given by

the moments of the gyrokinetic equation [33].
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FIG. 1: (Color online). Contour plots of electron density ne, electrostatic potential φ, gyroaveraged electrostatic potential
Φ and the Lagrangian invariant G+ for ρs = 0.4, ρi = 0.01 (left column) and ρs = 0.01, ρi = 0.4 (right column). Contour
plot of the magnetic island at the corresponding time have been superimposed onto each plot. The color scale goes from
black (minimum value) to white (maximum value). In the plot of ne for ρs = 0.4, ρi = 0.01 dashed black and white lines
are superimposed in order to show the presence of the two spirals resulting from the roll-up of the G± invariants. The black
(white) spiral arm connect regions of high (low) electron density. The value of the electron skin depth is de = 0.2.



14

FIG. 2: Plots of |∇φ|, at y/π = −1/2, as a function of x/π, for ρs = 0.4, de = 0.2 and for three different values of ρi. The
plots on the left-hand side, in the middle and on the right-hand side correspond to ρi = 0, ρi = 0.2 and ρi = 0.4, respectively.
It is possible to observe that, as ρi increases, the amplitude of the peaks becomes larger and steeper gradients form in the
perpendicular electric field. At the times which the three plots refer to, the corresponding magnetic islands have reached the
same width.

FIG. 3: (Color online). Contour plot of the parallel electric field E‖ = −∂ψ/∂t − [φ, ψ] for ρs = 0.4, ρi = 0.4 and de = 0.2.
The plot exhibits fine structures which are determined by the filamentation of φ that occurs as ρi increases.
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FIG. 4: (Color online). Plots of velocity field v+ and profiles of G+ (dashed line) and G− (solid line) at y/π = −1/3 for
ρi = 0.01 (top row) and ρi = 0.4 (bottom row). In both cases ρs = 0.4 and de = 0.2. By comparing the plots of the velocity
fields one observes that for small ρi there exist high speed regions also inside the island (overplotted in red). This favours the
formation of regions in which the difference between the local values of G+ and G− is enhanced. For large ρi, on the other
hand, the velocity field is weaker inside the island, with respect to the separatrix regions. As a consequence, G+ and G− tend
to coincide inside the island and therefore the electron density is locally flattened.

FIG. 5: Temporal evolution of energy deviations from the initial values, according to eqs. (20) and (21), for ρs = 0.4, ρi = 0
(left) and ρs = 0, ρi = 0.4 (right). In both cases de = 0.2.
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FIG. 6: Temporal evolution of energy deviations from the initial values, according to eqs. (20) and (21), for ρs = 0.2, ρi = 0
(left) and ρs = 0.2, ρi = 0.2 (right). In both cases de = 0.2.


