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A c c e p t e d M a n u s c r i p t

ABSTRACT

The KAL-1 gene underlies the X-linked form of Kallmann syndrome (KS), a neurological disorder that impairs the development of the olfactory and GnRH systems. KAL-1 encodes anosmin-1, a cell matrix protein that shows cell adhesion, neurite outgrowth, and axon-guidance and -branching activities. We used zebrafish embryos as model to better understand the role of this protein during olfactory system (OS) development. First, we detected the protein in olfactory sensory neurons from 22 hours post-fertilization (hpf) onward, i.e. prior their pioneer axons reached presumptive olfactory bulbs (OBs). We found that anosmin-1a depletion impaired the fasciculation of olfactory axons and their terminal targeting within OBs.

Last, we showed that kal1a inactivation induced a severe decrease in the number of GABAergic and dopaminergic OB neurons. Though the phenotypes induced following anosmin-1a depletion in zebrafish embryos did not match precisely the defects observed in KS patients, our results provide the first demonstration of a direct requirement for anosmin-1 in OS development in vertebrates and stress the role of OB innervation on OB neuron differentiation.

A c c e p t e d M a n u s c r i p t INTRODUCTION Genetic neurological diseases offer a powerful approach to identify proteins involved in setting neural networks up and thus, to better understand the molecular processes underlying axon growth and guidance, and neuron migration. Kallmann syndrome (KS) is a human genetic disease that affects OB differentiation, olfactory axon elongation and migration of GnRH (gonadotropin releasing hormone) synthesizing neurons to the brain. As a consequence, the disease is characterised by the association of anosmia (a lack of the sense of smell) (de [START_REF] Morsier | Etudes sur les dysraphies crânio-encéphaliques[END_REF], with hypogonadism resulting from GnRH deficiency [START_REF] Naftolin | Effect of purified luteinizing hormone releasing factor of normal and hypogonadotropic anosmic men[END_REF].

Links between olfaction and reproductive function have long been reported (Witthen, 1956). In vertebrates, GnRH-synthesizing neurons migrate from the olfactory placode to the hypothalamus, along an olfactory epithelium-forebrain axis of nerve fibres [START_REF] Schwandzel-Fukuda | Immunocytochemical demonstration of neural cell adhesion molecule (NCAM) along the migration route of luteinizing hormone releasing-hormone (LHRH) neurons in mice[END_REF][START_REF] Livne | Biochemical differentiation and intercellular interactions of migratory gonadotropin-releasing hormone (GnRH) cells in the mouse[END_REF]. These neurons first travel along olfactory nerves, then penetrate the forebrain just caudal to developing OBs, and ultimately migrate tangentially to reach the hypothalamic area where GnRH secretion takes place (Schwandzel-Fukuda et al., 1988;Schwanzel-Fukuda and Pfaff. 1989;[START_REF] Wray | Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode[END_REF][START_REF] Norgren | Cell adhesion molecules and the migration of LHRH neurons during development[END_REF].

Examination of a 19-week-old human foetus carrying a deletion uncovering the KAL-1 gene showed that both olfactory nerve terminals and GnRH-synthesizing neurons did not enter the brain and had accumulated in the upper nasal region (Schwanzel-Fukuda et al., 1989). This observation led to the hypothesis that the olfactory axon elongation defect is the causative event leading to anosmia and hypogonadism, the OB agenesis being the mere consequence of the lack of contact between OSNs and the presumptive OBs, which in turn prevents their differentiation.

The gene underlying the X chromosome-linked form of Kallmann syndrome (KAL-1) was identified several years ago (Franco et al. 1991;[START_REF] Legouis | The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules[END_REF].

The KAL-1 gene encodes anosmin-1, an extracellular matrix (ECM) protein that displays a modular structure and comprises an amino-terminal whey acidic protein (WAP) motif found in several proteins showing protease inhibitor activity, four contiguous fibronectin type III (FNIII) repeats, which are indicative of extracellular proteins, and a carboxy-terminal histidine-rich region of unknown function [START_REF] Del Castillo | Structure of the X-linked Kallmann syndrome gene and its homologous pseudogene on the Y chromosome[END_REF]. Using in vitro approaches, we previously demonstrated that anosmin-1 displays neurite outgrowth, axon guidance and axon branch promoting activities [START_REF] Soussi-Yanicostas | Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by neuronal cellpopulations in the central nervous system[END_REF]1998;2002). Last, we, and other, recently identified anosmin-1 as a partner of FGFR1 in OB mitral cells in rodents (Gonzalez-Martinez et al., 2005;[START_REF] Ayari | FGFR1 and anosmin-1 underlying genetically forms of Kallmann Syndrome are co-expressed and interact in olfactory bulbs[END_REF] and a likely cofactor of the A c c e p t e d M a n u s c r i p t 4 signalling pathway mediated by the chemokine-like SDF1a and its two receptors CXCR4b and CXCR7 in zebrafish embryos [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF].

Olfactory sensory neurons (OSNs) differentiate within the olfactory placode, a thickened ectoderm that later gives raise to the olfactory epithelium (OE). A previous fate map study has revealed that a large cellular field located along the lateral edge of the anterior neural plate converges through cell movements to form the olfactory placode in zebrafish [START_REF] Whitlock | The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate[END_REF]. At 20 hpf OSNs extend pioneer axons toward the developing OB. Indeed, OB innervation is accomplished with exquisite precision through sophisticated processes comprising axon guidance and synapse formation. These processes can be divided into at least three steps; First, pioneer OSN axons exit the OE and coalesce to form fascicles that grow toward the presumptive OBs at the rostral tip of the telencephalon. Second, upon reaching the OBs, OSN axons defasciculate tangentially and sort out into smaller subsets toward restricted domains of the OB. Third, the olfactory axons make synaptic connections in target glomeruli with the dendrites of OB output neurons, the mitral cells, and interneurons.

Two KAL-1 orthologs, namely kal1a and kal1b, encoding anosmin-1a and anosmin-1b, respectively, have been identified in zebrafish, [START_REF] Ardouin | Characterization of the two zebrafish orthologues of the KAL-1 gene underlying X chromosome-linked Kallmann syndrome[END_REF].

In the present work, we demonstrated that anosmin-1a is accumulated in OSNs and along their axons from 22 hpf onward, i.e. prior pioneer axons enter OBs.

We also found that fasciculation of OSN axons and their targeting within OB were severely compromised following anosmin-1a depletion. Last, we showed that kal1a inactivation also impairs OB development, and differentiation of GABAergic and dopaminergic OB neurons.

A c c e p t e d M a n u s c r i p t

MATERIALS AND METHODS

Zebrafish strains

Zebrafish (Danio rerio) were maintained as described by [START_REF] Westerfield | The Zebrafish Book[END_REF].

Embryos were produced in our facility using standard conditions. Wild-type embryos were from the AB strain. Animals from the omp-Tau::GFP transgenic line were kindly provided by M.Mishina [START_REF] Yoshida | Regulation of proteine kinase A swithing of axonal pathinfinding of zebrafish olfactory sensory neurons through the olfactoryplacode-olfactory bulb bondary[END_REF].

Antibody production and fluorescent immunocytochemistry on whole mount embryos

Antibodies rose against zebrafish anosmin-1a (Genbank AF163310) have been previously described [START_REF] Ernest | Localisation of anosmin-1a and anosmin-1b in the inner ear and neuromasts of zebrafish[END_REF][START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF]. Antianosmin-1a, anti-Calretinin (CliniSciences) and anti-Tyrosine Hydroxylase (TH) (Boerhinger) antibodies were used at 1:1000, 1:500 and 1:500 dilutions, respectively. Immunodetections of anosmin-1a, Calretinin and Tyrosine Hydoxylase (TH) were performed as described in [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF].

Morpholino-mediated gene inactivation

All morpholino-oligonucleotides (MO) used in this study have been previously described, i.e. kal1a-specific morpholino, MO kal1a, the corresponding mismatching control morpholino, mmMO kal1a, and kal1b-specific morpholino: MO kal1b, which was also used as control, [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF]. Throughout this study, complete or nearly complete anosmin-1a depletion was achieved following injection of solutions containing 0.5 mM MO kal1a.

Production of MO kal1a-insensitive kal1a transcripts and phenotypic rescue MO kal1a-insensitive kal1a transcripts were synthesised as previously described [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF]. For rescue experiments, a mix containing MO kal1a (0,5 mM) and MO kal1a-insensitive kal1a mRNA (1 µM), was injected into embryos at the one-cell stage according to standard protocols. In situ hybridization experiments were performed using the R&D Systems kit (R&D Systems Europe, Lille, France) as previously described [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF]. The following cDNA were used as templates to synthesize RNA probes: kal1a [START_REF] Ardouin | Characterization of the two zebrafish orthologues of the KAL-1 gene underlying X chromosome-linked Kallmann syndrome[END_REF]Genbank AF163310), and GAD67 [START_REF] Martin | Sequence and expression of glutamic acid decarboxylase isoforms in the developing zebrafish[END_REF]Genbank CR 384078) 

Whole-mount in situ hybridization

Microscopy, Confocal microscopy and ApoTome microscopy

Fluorescent microscopy images were acquired on a Zeiss LSM confocal microscope. In vivo imaging of olfactory system development in OMP-Tau::GFP transgenic embryos was recorded using an epifluorescent AXIO imager Z1 microscope (Zeiss) equipped with an ApoTome system (Zeiss). Prior to imaging, live embryos were anaesthetized in tricaine dissolved in fish water for 5 minutes and then mounted in a drop of low-melting NuSieve GTG agarose (FMC BioProducts) cooled at 38°C.

Quantification of Tyrosine Hydroxylase immunolabelling and statistical analysis

To quantify Tyrosine Hydroxylase immunolabelling the mean grey-scale intensity was measured using the ImageJ software (NIH, Bethesda, MD) on randomly selected images of wild-type embryos (n=10) and kal1a morphants (n=10).

Immunolabelling intensities were statistically analysed using a Student's t-test and P<0.05 was considered statistically significant.

A c c e p t e d M a n u s c r i p t 7 RESULTS

Previous studies demonstrated that though the kal1a gene played an essential role in several developmental processes in zebrafish embryos, including GnRH neuron migration [START_REF] Whitlock | A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio[END_REF], the journey of the posterior lateral line primordium [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF] and OS development (the present study), none of these processes were defective following anosmin-1b depletion [START_REF] Whitlock | A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio[END_REF][START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF]data not shown). Therefore, we focused our investigations on the function of anosmin-1a in OS development.

Distribution of anosmin-1a in the olfactory system

We first investigated the distribution of anosmin-1a in the developing OS of zebrafish embryos aged from 20 hpf to 120 hpf using two polyclonal anti-anosmin-1a antibodies, which have been previously described [START_REF] Ernest | Localisation of anosmin-1a and anosmin-1b in the inner ear and neuromasts of zebrafish[END_REF][START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF].

In the developing OS, anosmin-1a was detected from 22 hpf onward in OSNs, at around the stage their pioneer axons exit the olfactory epithelium (data not shown). At 36 hpf, though anosmin-1a accumulation persisted in OSNs, the protein was also observed in, or around, growing pioneer OSN axons extending toward presumptive OBs (Fig. 1A). At this stage, anosmin-1a-immunoreactive OSN axons were also observed within OBs. At 72 hpf, the same pattern was observed, with anosmin-1a being detected in olfactory neurons and along their axons (Fig. 1B-C).

Thus, anosmin-1a is expressed in OSNs and their axons throughout OS development.

In presumptive OBs, no immuno-reactive cells were detected between 22 and 48 hpf (data not shown). During OB differentiation, cells accumulating anosmin-1a were only detected from 72 hpf onward (Fig. 1D, and data not shown).

Anosmin-1a is required for OE differentiation and proper fasciculation of OSN axons

We made use of morpholino oligonucleotide (MO)-mediated gene inactivation to investigate the consequences of anosmin-1a depletion on OS development. To visualize OSNs and their axons, we used embryos of the omp-tau::GFP transgenic line as recipients for MO kal1a injection. In this line, embryos display an intense fluorescent labelling of OSNs and their axons [START_REF] Yoshida | Regulation of proteine kinase A swithing of axonal pathinfinding of zebrafish olfactory sensory neurons through the olfactoryplacode-olfactory bulb bondary[END_REF]. As previously described, analysis of 24 hpf omp-tau:GFP embryos showed tens of fluorescently A c c e p t e d M a n u s c r i p t 8 labelled OSNs. These neurons were arrayed in a circle and extended their axons toward presumptive OBs (Fig. 2A). After exiting the OE, OSN axons coalesced to form tightly fasciculated nerve fibres. At the same stage, we observed several defects in the OS of omp-tau:GFP kal1a morphants (n=38) (Fig. 2B-E). First, we detected a severe disorganization of the olfactory placode that comprised irregularly deposited OSNs. The growth of pioneer olfactory axons was also markedly impaired and the few shortened axons that exited OE did not fasciculate properly and appeared to elongate at random, sometime coalescing onto small fascicule-like structures. At 48 hpf, GFP staining of omp-tau::GFP embryos revealed that the nerve fibres comprising OSN axons had crossed the boundary between the olfactory placode and the OB (BPB) through a discrete region, as described by [START_REF] Hansen | Development of the olfactory organ in the zebrafish, Brachydanio rerio[END_REF]. After crossing the BPB, OSN axons defasciculated to form thinner axon fascicules that projected toward distinct OB regions (Fig. 2F). At the same stage, in kal1a morphants (n=36), the overall organization of the olfactory epithelium and the regular circular distribution of OSNs were compromised, with several OSNs wandering outside the OE (Fig. 2J). In addition, though olfactory axons extended properly toward the rostral tip of the telencephalon, they formed dishevelled bunches of axon fibres instead of coalescing onto tightly fasciculated nerve fibres (Fig. 2G-J). At 72 hpf, analysis of omp-tau::GFP embryos showed that within OBs the olfactory nerves fully defasciculated (Fig. 2K). At the same stage, omp-tau::GFP kal1a morphants (n=36) showed several defects. First, the regular circular distribution of the OSNs was markedly disorganized in almost all anosmin-1adepleted embryos (33/36) (Fig. 2L-O) and, in the most affected morphants (5/36), the OE was partially split into two adjacent and poorly organized structures (Fig. 2M). The olfactory tract comprising OSN axons also displayed an abnormal organization. These axons appeared fully dishevelled (Fig. 2L-O), sometime coalescing onto two (Fig. 2L) or more fascicules (Fig. 2N). Last, though most OSN axons entered OBs, their subsequent targeting also was compromised, as illustrated by the disorganized axonal network observed in OBs (Fig. 2L-O).

To verify that the defects observed in kal1a morphants were not due to a nonspecific effect of the morpholino used in this study, we tested whether co-injection of a MO kal1a-insensitive kal1a RNA was able to rescue the defects observed in MO kal1a-injected embryos (Fig. 3C). The results show that in almost all (42/45) embryos co-injected with MO kal1a (0.5 mM) and MO kal1a-insensitive kal1a RNA (1 µM), OE differentiation, fasciculation of OSN axons, and OB innervation were not significantly different to that observed in wild-type embryos (Fig. 3D), or those A c c e p t e d M a n u s c r i p t 9 injected with a mis-matching kal1a morpholino (n=52), mmMO kal1a (Fig. 3A) or the MO kal1a-insensitive kal1a RNA alone (n=38) (Fig. 3B).

Kal1a inactivation impairs innervation of OB neurons by OSN axons

Analysis of omp-tau::GFP kal1a morphants suggested that anosmin-1a depletion impaired both the fasciculation of OSN axons and proper establishment of synaptic connections between OSN axons and the dendrites of OB neurons.

Calretinin is accumulated to high levels in OSNs and along their axons [START_REF] Castro | Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. I. Olfactory organ and forebrain[END_REF], making this protein a good marker to visualize these axons and their behaviour within presumptive OBs and, thus, the effect of anosmin-1a depletion on innervation of presumptive OBs. In 72 hpf wild-type embryos (n=9), Calretinin accumulation was detected in OSNs and in, or around, the fibre that comprises OSN axons and connects the OE to presumptive OBs (Fig. 4A). Within OBs, Calretininpositive axons mainly projected toward two discrete proto-glomeruli (Fig. 4A). In kal1a morphants (n=13), Calretinin staining confirmed that OSN axons misrouted within OBs, some of them projecting toward single and irregularly shaped protoglomeruli (Fig. 4B). In 120 hpf wild-type embryos (n=9), the same pattern of Calretinin accumulation was observed in OBs with OSN axons projecting toward glomeruli (Fig. 4C). At the same stage, in anosmin-1a depleted embryos (n=13), we found a marked disorganization of Calretinin immuno-reactive axons, which appeared to project at random, combined with a lack of properly differentiated OB glomeruli (Fig. 4D).

Kal1a inactivation compromises the differentiation of several populations of OB neurons

While the examination of a 19-week-old human foetus carrying a deletion of the KAL-1 gene strongly suggested an essential requirement for anosmin-1 in terminal elongation of OSN axons toward OB anlagen (Schwandzel-Fukuda et al., 1989), in zebrafish embryos, anosmin-1a depletion does not fully block the elongation of OSN axons toward OBs. Furthermore, because the early arrest of OSN axons was proposed to be the causative defect leading to OB agenesis in Xlinked KS, we next investigated whether OB development and/or differentiation were compromised following kal1a inactivation.

Visual examination of the telencephalon morphology in 120 hpf wild-type embryos (n=8), kal1a morphants (n=12), and embryos injected with a control MO A c c e p t e d M a n u s c r i p t 10 (n=9), first revealed that OBs displayed an abnormal shape in kal-1a morphants (Fig. 5B), when compared to those of wild-type embryos (Fig. 5A) or embryos injected with a control MO (Fig. 5C). GABAergic neurons express glutamate decarboxylase 67, which is encoded by the GAD67 gene [START_REF] Martin | Sequence and expression of glutamic acid decarboxylase isoforms in the developing zebrafish[END_REF]. We therefore investigated by in situ hybridization on whole-mount dissected brain of 120 hpf embryos using a GAD67 probe, whether anosmin-1a depletion affected the differentiation of GABAergic OB neurons. In wild-type embryos, OBs comprised a large population of GAD67 expressing cells located within the internal cell layer (Fig. 5A,C). In contrast, in kal1a morphants, no GAD67 positive cells were detected (Fig. 5B), demonstrating that anosmin-1a depletion prevented the differentiation of GABAergic OB neurons. To further investigate the requirement for anosmin-1a in OB differentiation, we tested whether the differentiation of dopaminergic OB neurons was also impaired following MO-mediated kal1a inactivation. We visualized these interneurons by immunochemistry using an antibody raised against Tyrosine Hydroxylase (TH), a rate-limiting enzyme in dopamine synthesis. In OBs of wild-type 120 hpf embryos (n=11), we observed a large population of TH expressing cells in the glomerular cell layer (Fig. 6A).

In OBs of 120 hpf kal1a morphants (n=13), quantification revealed a significant decrease (by ∼ 50%) of TH labelling intensity when compared to that observed in wild-type embryos (wild-type embryos, 109.8 ± 20.04, n=10; kal1a morphants: 55,68 ± 20.24, n=10; p<0.01) (Fig. 6B), thus showing that anosmin-1a depletion also severely compromised differentiation of dopaminergic OB neurons. 

Species-specific tissue distribution of anosmin-1/anosmin-1a in the OS

We observed a strong accumulation of anosmin-1a in OSNs and along their pioneer axons in zebrafish embryos aged from 22 hpf onward. A similar pattern of accumulation was seen at 48 and 72 hpf, except that immuno-reactive OSN axons were also detected within the presumptive OBs. By contrast, accumulation of anosmin-1a in the presumptive OBs was detected from 72 hpf onward, approximately two days after the earliest pioneer OSN axons enter the brain. These results are consistent with previous in situ analyses of the pattern of expression of kal1a transcripts, which were faintly detected in presumptive OBs at 37 hpf, and transcribed to high levels in these structures from 72 hpf onward [START_REF] Ardouin | Characterization of the two zebrafish orthologues of the KAL-1 gene underlying X chromosome-linked Kallmann syndrome[END_REF].

The distribution of anosmin-1a in the brain of zebrafish embryos did not match precisely with earlier investigations of the distribution of KAL-1 mRNA and/or anosmin-1 in chick, human, rat and musk shrew embryos [START_REF] Legouis | Expression of the KAL gene in multiple neuronal sites during chicken development[END_REF]1994;Rugarli et al., 1993;[START_REF] Soussi-Yanicostas | Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by neuronal cellpopulations in the central nervous system[END_REF][START_REF] Hardelin | Anosmin is a regionnaly retricted component of basement membranes and interstitial matrices during organogenesis: implications for the developement anomalies of X chromosome-linked Kallmann syndrome[END_REF][START_REF] Dellovade | Anosmin-1 immunoreactivity during embryogenesis in a primitive eutherian mammal[END_REF][START_REF] Clemente | Expression pattern of Anosmin-1 during pre-and postnatal rat brain development[END_REF]. In particular, investigations performed on human foetuses aged from 4 to 10 weeks of gestation demonstrated a strong accumulation of the protein in OB from 5 week of gestation onward and a complete absence of anosmin-1 expressing cells in the OE [START_REF] Hardelin | Anosmin is a regionnaly retricted component of basement membranes and interstitial matrices during organogenesis: implications for the developement anomalies of X chromosome-linked Kallmann syndrome[END_REF]. These data suggested that anosmin-1 plays an essential permissive, or instructive, role in the targeting of olfactory axons toward the OBs [START_REF] Hardelin | Anosmin is a regionnaly retricted component of basement membranes and interstitial matrices during organogenesis: implications for the developement anomalies of X chromosome-linked Kallmann syndrome[END_REF]. In the present study, though we detected anosmin-1a accumulation in OSNs from 22 hpf onward, prior their pioneer axons reach presumptive OBs, we did not detect accumulation of the protein in OB anlagen at this stage. These data suggest that anosmin-1a does not play a permissive, or instructive, role for proper targeting of OSN axons in zebrafish embryos. Moreover, following anosmin-1a depletion, OSN axons projected properly toward the rostral region of the telencephalon and eventually reached OBs. These data contrast with the examination of a 19-week-old human foetus carrying a chromosomal deletion encompassing the KAL-1 gene that showed an accumulation of olfactory axons in the upper nasal region (Schwandzel-Fukuda et al., 1989).

Taken together, these data suggest that though anosmin-1 is accumulated in the developing OS in humans and fish and plays an essential role for proper A c c e p t e d M a n u s c r i p t 12 innervation of OBs in both species, this protein appears to play distinct and speciesspecific function in this process.

Anosmin-1a, a factor required for the fasciculation and terminal targeting of OSN axons

In vertebrates, individual OSNs express only one odorant receptor (OR) among ∼1000 genes in rodents and ∼100 genes in fish [START_REF] Mombaerts | Molecular biology of odorant receptors in vertebrates[END_REF]. OSNs expressing a given OR are scattered within the OE but they project their axons onto specific OB glomeruli to create a neural representation of odorant stimuli, an odor map in mice [START_REF] Ressler | Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb[END_REF][START_REF] Vassar | Topographic organization of sensory projections to the olfactory bulb[END_REF]Mombaert et al., 1996).

Though, genetic manipulation of specific OR genes in mice have shown that the ORs themselves play an instructive role in glomerular targeting of OSN axons, other molecules involved in the guidance of olfactory axons have been identified [START_REF] St John | Multiple axon guidance cues establish the olfactory topographic map: how do these cues interact ?[END_REF]. Ablation experiments have demonstrated that pioneer neuron axons play an essential role for proper elongation and guidance of OSN axons suggesting these pioneer axons may serve a guidance function for later developing olfactory axons [START_REF] Whitlock | A transient population of neurons pioneer the olfactory pathway in the zebrafish[END_REF]. Furthermore, as pioneer axons do not express odorant receptors in zebrafish, Whitlock and Whiterfield (1998) put forward the hypothesis that these receptors are not involved in the guidance of pioneer axons and that other cues, such as cell-surface glycoproteins, guide these axons to the telencephalon. Several molecules have been identified as guidance cues controlling the navigation of OSN axons toward the presumptive OBs.

Semaphorin3A and EphrinA have been identified as key factors for proper axon sorting within the olfactory nerve layer [START_REF] Schwarting | Semaphorin 3A is required for guidance of olfactory axons in mice[END_REF]Tanigusi et al., 2003) and termination of OSN axons onto precisely defined glomeruli [START_REF] Cutforth | Axonal ephrin-As and odorant receptors: coordinate determination of the olfactory sensory map[END_REF], respectively, in rodents. [START_REF] Miyasaka | Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system[END_REF] identified Robo2/Slits as the components of a signalling pathway that play a key role in the guidance of nascent OSN axons to presumptive OBs in zebrafish embryos. In particular, in zebrafish embryos homozygous for the robo2 mutation, astray (ast), OSN axons were misrouted and, the spatial arrangement of glomeruli in OB was disorganized in adults [START_REF] Miyasaka | Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system[END_REF]. Moreover, ast embryos showed defects in both the fasciculation of OSN axons and proto-glomerular organization in OBs [START_REF] Miyasaka | Robo2 is required for establishment of a precise glomerular map in the zebrafish olfactory system[END_REF], which were reminiscent, though not identical, to the phenotypes observed in kal1a morphants. Anosmin-1 and anosmin-1a have been shown to be likely cofactors of FGFR1 [START_REF] Hu | Cross-talk of anomin-1 the protein implication X-linked Kallmann's syndrome with heparan sulfate and urokinase-type plasminogen[END_REF][START_REF] Ayari | FGFR1 and anosmin-1 underlying genetically forms of Kallmann Syndrome are co-expressed and interact in olfactory bulbs[END_REF] and CXCR4b [START_REF] Yanicostas | Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium[END_REF], respectively. Moreover, it has been demonstrated that A c c e p t e d M a n u s c r i p t 13 anosmin-1 binds to urokinase-type plasminogen activator [START_REF] Hu | Cross-talk of anomin-1 the protein implication X-linked Kallmann's syndrome with heparan sulfate and urokinase-type plasminogen[END_REF] suggesting that the extra-cellular matrix anosmin-1 acts as a scaffold protein that recruits proteases and locally increases the proteolytic degradation of extracellular matrix components, and thus the release or activation of receptor ligands. In this context, an attracting hypothesis would be that anosmin-1/anosmin-1a is a cofactor of signalling pathways controlling the guidance of olfactory axons toward OBs.

Consistent with this hypothesis, we have shown that anosmin-1 stimulated neurite outgrowth of OSN axons in rat (Soussi-Yanicostas, unpublished results).

Notwithstanding the role of anosmin-1a in terminal extension of OSN axons within OBs, in kal1a morphant embryos, the olfactory epithelium appeared disorganized, with a few isolated OSNs wandering outside the OE. These data, which suggested that anosmin-1a is essential to maintain the cohesion of OSNs, were in agreement with the cell adhesion properties of the protein observed in vitro [START_REF] Soussi-Yanicostas | Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by neuronal cellpopulations in the central nervous system[END_REF]. Similarly, the fasciculation defect of OSN axons and their dishevelled appearance in kal-1a morphants reinforced the hypothesis of anosmin-1a acting as an adhesion molecule required for both the cohesion of OSNs within the OE and coalescence of their axons as they exit the olfactory epithelium.

Anosmin-1a is required for the differentiation of several OB neuron populations

Patients suffering X-linked KS display OB agenesis (Schwandzel-Fukuda et al., 1989). Our results show that kal-1a inactivation impaired the spatial arrangement of glomeruli within OBs. However, anosmin-1a accumulation in OBs was detected from 72 hpf onward, approximately 2 days after the earliest pioneer OSN axons cross the BPB, suggesting that the absence of differentiated glomeruli in the OBs of kal1a morphants likely relied on OSN axon misrouting within OB. Similarly, the nearly complete lack of GABAergic neurons and the marked decrease in the number dopaminergic neurons in anosmin-1a depleted embryos, strongly suggested that proper innervation of OB by OSN axons is crucial for full differentiation of these two neural populations.

Our data provide functional evidences that zebrafish anosmin-1a plays essential functions in OE development, OSN axon fasciculation, and OB innervation and differentiation, suggesting an evolutionarily conserved function for this protein in OS development. However, the distinct accumulation pattern of anosmin-1 in OE in chick and mammals compared to that observed in fish, also suggests that this protein plays species-specific roles in OS development. This hypothesis is strengthened by the presence of OBs, though of abnormal shape, in kal-1a 

  KS patients display complete OB atrophy. However, whereas the human foetus studied bySchwandzel-Fukuda et al. (1989) was fully devoid of anosmin-1, residual low levels of anosmin-1a might persist in kal-1a morphants leading to partial OB differentiation. Notwithstanding these differences, our results are an important advance in the field, which paves the way to better understand the molecular processes underlying the requirement for anosmin-1a in OS development.
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Figure 2 .

 2 Figure 2. Effects of anosmin-1a depletion on the differentiation of the olfactory epithelium and axon pathfinding of olfactory sensory neurons. Frontal views of living omp-tau::GFP zebrafish embryos at 24 (A-E), 48 (F-J) and 72 hpf (K-O). Wild-type embryos (A, F, K) and kal1a morphants (B-E, G-J, L-O). The same wild-type embryo (A, F, K) and kal1a morphants (B, G, L; C, H, M; D, I, N and E, J, O) were visualized at 24, 48, and 72 hpf. Dorsal is to the top, and ventral to the bottom. Large white arrow indicates tightly fasciculated OSN axons, small white arrows show defasciculated axon fibres within olfactory bulbs, red arrows indicate disorganized olfactory sensory axons and small green arrows point to dissociated olfactory sensory neurons. OE, olfactory epithelium; ON, olfactory nerve; OB, olfactory bulbs.

Figure 3 .

 3 Figure 3. Effects of anosmin-1a depletion can be rescued by ectopic expression of the protein. Frontal views of 48 hpf omp-tau;;GFP embryos injected with mismatching control kal1a MO (A), MO kal1a-insensitive kal1a RNA (B), MO kal1a (C) or omp-tau;;GFP kal1a morphant co-injected with MO kal1a-insensitive kal1a RNA (D). Dorsal is to the top, and ventral to the bottom. White arrows indicate defasciculated axon fibres within olfactory bulbs. Red arrows show disorganized olfactory sensory axons. OE, olfactory epithelium; ON, olfactory nerve; OB, olfactory bulbs.

Figure 4 .

 4 Figure 4. Effects of anosmin-1a depletion on the terminal axon pathfinding of olfactory sensory neurons within olfactory bulbs. Frontal views of calretinin accumulation in the olfactory system of wild-type (A, C) and MO kal1a-injected embryos (B, D) at 72 (A, B) and 120 hpf (C, D). White arrows indicate protoglomeruli. Red arrows show disorganized olfactory sensory axons seen within olfactory bulbs. OE, olfactory epithelium; OB, olfactory bulbs.

Figure 5 .

 5 Figure 5. Anosmin-1a depletion impairs the differentiation of GABAergic olfactory bulb neurons. Whole mount in situ detection of GAD67 transcripts on dissected brains of 120 hpf wild-type embryo (A), MO kal1a morphant (B), and embryo injected with a control MO (C). OB, olfactory bulbs.

Figure 6 .

 6 Figure 6. Anosmin-1a depletion impairs the differentiation of dopaminergic olfactory bulb neurons. Whole mount immunodetection of Tyrosine Hydroxylase (TH) on dissected brains of 120 hpf wild-type embryo (A), and MO kal1a morphant (B). OB, olfactory bulbs.
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