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Abstract: A main challenge in radiotherapy is to personalize the treatment by adapting the
dose fractionation scheme to the patient. One way is to model the treatment effect on the tumor
growth. In this study, we propose a new multinomial model based on a discrete-time Markov
chain, able to take into account both of cell repair and cell damage heterogeneity. The proposed
model relies on the "Hit’ theory in Radiobiology and assumes that a cancer cell contains m
targets which must be all deactivated to produce cell death. The malignant cell population
is then split up into m categories to incorporate the variation of cancer cell radio-sensitivity
according to their states. This work gives also a new formulation of the tumor control probability
(TCP) suited to the perspective of dynamic fractionation schedules in radiotherapy.
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1. INTRODUCTION

In radiotherapy, the pattern of fractionation of radiation
treatment has an important consequence on both tumor
cell kill and the damage in the surrounding healthy nor-
mal tissue [Withers (1992)]. Since radiation delivery at a
precise point of cells is generally described as a stochastic
process, the effects of the radioactive treatments on cancer
and healthy cells are characterized by two probabilities:
(i) the tumor control probability (TCP) and (ii) the nor-
mal tissue complication probability (NTCP) [Dawson and
Hillen (2006); Gay and Niemierko (2007)] respectively.
Both are based on mathematical models like the survival
curves [Fowler (1989)], population-dynamic models [Sachs
et al. (2001)] or the cell-cycle models [Kirkby et al. (2002)].
These models are also used to express the dynamic frac-
tionation scheme as a control problem [Tervo et al. (2007)].
Unfortunately two main aspects of tumor growth are often
missing in these modelling studies: (i) the cell repara-
tion between two consecutive dose fractions and more
particularly (ii) the heterogeneity of damages induced by
radiations in the cancer cell population after each dose
fraction. The objective of this work is to propose:

e a modelling solution to take into account both cell
reparation and treatment effect heterogeneity;
e a new expression of TCP.

This paper is structured as follows: hit models and target
theory are firstly introduced in Section 2. We develop a
multinomial model of tumor growth in Section 3, and a
new expression of tumor control probability in Section 4.
Finally, numerical results are presented in Section 5.

Table 1. Notations

Not. Definition

f number of dose fractions during the radiotherapy
k discrete time

m number of targets in the cancer cells

no initial number of cancer cells in the tumor

p survival probability of a target after treatment
Pe survival probability of a cell after treatment

q probability that a radiation particle inactivates a target
I probability for an inactive target to be reactivated

P transition matrix associated to treatment effects
R

II

transition matrix associated to cell repair process
transition matrix associated to both of treatment
effects and repair process, I = PR

S; binary state of the j7* cell
time variable
U radiation dose (Gy)
Xk () | number of cancer cells with ¢ deactivated targets
Zy damage state of a cell (nb of deactivated targets)

2. HIT MODELS AND TARGET THEORY

The target theory and hit-modeling paradigm were intro-
duced in the 1920s when biologists were beginning to
develop quantum approaches to inactivation phenomena
in irradiated biological tissue [Dessauer (1922); Blau and
Altenburger (1922); Crowther (1924)]. The modeling of
radiation effects on living cells were continued both theo-
retically and experimentally by K. C. Atwood and A. Nor-
man [Atwood and Norman (1949)], D. E. Lea [Lea (1955)],
E. C. Pollard and coworkers [Pollard et al. (1955); Pollard
(1959)]. Since these seminal works, a lot of mathematical
models expressing the interaction of radiation particles
with biological cells have been proposed [Fowler (1964); Sy



and Han (1982); Ditlov (2001); Satow and Kawai (2006);
Chapman (2007); Ditlov (2009)]. Most of existing math-
ematical models used in radiotherapy dosimetry, e.g. cell
survival curves, derive from the Target Theory. In this the-
oretical setting, a target is a necessary and indispensable
place of a cell to exist. It is an idea that the cell death
happens when a radiation particle hits the target. The
underlying assumptions of the hit models are:

e a cell has one critical target;

e the probability ¢ that a radiation particle will hit a
critical target is constant;

e the hit events are independently distributed in a cell;

Thereafter, we define n, = wup the total number of
radiation particles with u the amount of dose and p the
number of radiation particles per unit dose. n, is assumed
to be an integer for the simplification. Let Y be the random
variable denoting the number of radiation particles that
hit the critical target. Then, ¥ ~ B(ng,q) (binomial
distribution) and the probability that exactly j radiation
particles hit the critical target is given by [Satow and
Kawai (2006)]:

Pr(Y =j) = <T;q> qj(l _Q)nqijv J=0,1,2,--- ng.
(1)

If ng is large enough and ¢ is low, and fixing nsq = A,
eq. (1) can be approximated by a Poisson distribution,

j2071727"' (2)

A is the expected number of primary lesions; the parameter
a = % can be interpreted as a basic characteristic of the
damage process itself, i.e., as radiosensitivity in its literal
sense [Hanin et al. (1996)]. There are several classes of hit
models classified by the number of targets and the number
of hits.

2.1 Single target — single-hit model

In this model structure, it is implicitly assumed that a cell
has one lethal target and that the cell dies when it is hit
by one or more radiation particles. The probability that
the cell dies is then given by

bV
qec = Z Tet=1-eM (3)

2.2 Single target — multi-hit model

In the multi-hit model structure, it is assumed that the cell
dies when it is hit by at least h radiation particles. In other
words, h is a threshold number of cell inactivation. The
parameter h is the critical number of radiation-induced
primary lesions a cell can bear without being killed. A is
also called extrapolation number. The probability that the
cell dies is then given by

J
=3 e (4)
j=h
The multi-hit model of cancer is a way to outline the
progression of cancer as the accumulation of mutations in
the genome of cells. Much data has supported the multi-
hit model of cancer. In essence, each mutation to a cell

generation’s genome is a hit and the accumulation of hits
is what creates the tumor potential of the dividing progeny.

2.3 Multi-target — single-hit model

In this model, cell death results from the lethal damage to
the subcellular targets, the intracellular sensitive sites. In
other terms, it is assumed that there exist different targets
within a nucleus which must be inactivated to kill the
cell. For instance, it is accepted that the chromosomes are
sensitive targets [Dertinger and Jung (1970)] but there is
additional evidence that the nuclear membrane, or things
close to the nuclear membrane are targets [Datta et al.
(1976)]. This model structure is used therafter by con-
sidering m distinct targets within a nucleus. Underlying
assumptions of this model are also specify further along in
this paper.

3. MULTINOMIAL MODEL OF A TUMOR

Hit models could be used to express the fractionated ra-
diation therapy as a control problem [Tervo et al. (2007)].
Unfortunately two main aspects of tumor growth are
generally missing in these models: (i) the cell reparation
between two consecutive dose fractions and (ii) the het-
erogeneity of damages induced by radiations in the cancer
cell population after each dose fraction. Thereafter, we
thus propose to take these two issues into account in a
multinomial model relying on the multi-target — single-hit
modeling paradigm. In this paragraph, the first row and
first column of a matrix will be noted by the index value
0.

8.1 Radiation static signal

We restrict our study to fractionated radiation schedules
that have 5 dose fractions per week. More specifically, the
first fraction is given on Monday morning, and there is
no treatment on the weekends. The treatment is based
on a static (i.e., fraction sizes do not vary over time)
scheme illustrated in Fig. 1, which is characterized by the
magnitude ug of each dose fraction and the total number of
fractions f, (f ug) then corresponds to the total delivered
dose. k is the discrete time based on a daily sampling rate.

3.2 Heterogeneity of cell states after radiations

We consider that a cell contains m targets. Each target can
be made inactive by a single hit. In this case, the cell death
occurs when m targets are deactivated, it is the hypothesis
of the multi-target model. We suppose that the targets can
reactivate between two consecutive dose fractions when
the cell is still alive (repair of sublethal damages). Most
of modelling studies also assume the homogeneity of cell
states after the delivery of each dose fraction which is
rarely the case in practice. The target reactivation and
cell state heterogeneity, are addressed hereafter. After the
first fraction of treatment, different states of living cells
can appear. Therefore, we have m + 1 possible states for a
cell:

e state i, the cell has i inactive targets, ¢ € {0,1,..., m—
1}, these are the m states of a surviving cell.
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Fig. 1. Radiation static scheme

e state m, the cell has m inactive targets, it is a dead
cell.

Fig. 2 shows the case of a 3-targets cell.
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Fig. 2. Heterogeneous states of a cell (m = 3) after

radiation exposure
3.8 Discrete-time Markov chain model of a cancer cell

A discrete-time Markov chain model is proposed to de-
scribe the heterogeneity of cellular damages during the
fractionated treatment.

Let us first consider a single cell composed of m targets.
Let Zi be the random variable describing the state of the
cell at time k, Zx, =i € {0,1,--- ,m} means that the cell
has i deactivated targets at time k. We suppose that (Zj)
is a discrete-time Markov chain, i.e. the cell state at time
k+1 only depends on the current state at time k. We firstly
formulate the transition matrix of (Zx)ren by considering
only the effects of dose fractions, and we secondly integrate
repair mechanisms into this matrix in such a way that the
dynamics of the Markov chain takes both treatment effects
and repair mechanisms into account.

Treatment effect modelling. Let P be the transition
matrix of (Zx)gen. We firstly consider the effects of dose
fractions. P(4, 7) is the transition probability to deactivate
by the treatment j targets at time k+ 1 when ¢ targets are
disabled at time k. Let ¢ be the probability to inactivate
a target after a fraction dose wug, therefore 1 — ¢ is the
probability that an active target remains active. Moreover,
we suppose that the disabling of targets in the cell are
independent events. Thus after applying a fraction dose,
various scenarios are possible:

e acell in state 0 at time k, has m+1 possible outcomes.
It may switch at time k + 1 to the state [ by the
deactivation of | target(s) among the m active ones
with 0 <7 < m and a transition probability

P(0,)) = (")d' (1 —q)™ " (5)

e a cell in state 1 at time k has m possible outcomes.

It may switch at time k£ + 1 to the state | by the

deactivation of [ — 1 target(s) among the m — 1 active
ones, with 1 <1 < m and a transition probability

P(L1) = ("¢ (1 - g™ (6)

e a cell in state m—1 at time k has 2 possible outcomes
at time k + 1: either it remains in the state m — 1
with a probability P(m —1,m —1) =1 — ¢, or it dies
after the deactivation of the last active target with a
probability P(m — 1,m) = gq.

e Finally, a dead cell remains in state m with probabil-
ity P(m,m) = 1.

Then, we obtain the general expression of the transition
matrix (upper triangular matrix)

P(i,j) _ [ ()7 (-7 i< .
0<i,j<m | 0 o (7)
<ij<m Jj<t.
and the explicit expression is given by
1-¢™ ()l —g)™ " ... ¢"
0 1—q™ ' ... qgm!
P = : : : )
0 0 e q
0 0 |

Fig. 3 shows the transition graph corresponding to the
Markov chain (Zj) before taking into account the repair
of inactive targets, for the case of a 3-targets cell (m = 3).
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Fig. 3. Transition graph of the Markov chain (Zj)ren-

Cellular reparation modelling. We introduce now
repair mechanisms of deactivated targets which occur
between two consecutive fractions. We assume that the
repair process of a deactivated target is constant and
independent of the number of active targets in the cell. Let
r be the probability of an inactive target in a living cell
to revive during the period that separates two consecutive
dose fractions. Then we have:

e a cell in state 0 at ¢ = k, remains in this state at
t = k + 1 with probability 1, because it has no target
to repair;

e a cell in state 1 at ¢t = k, has 2 opportunities at
t=k+1:

- either it returns to 0 with probability r;
- or it remains in state 1 with probability 1 — r;

a cell in state m — 1 at t = k, has m opportunities
at t = k + 1. It can return to state [ with probability
(%j_l)rmflfl(l —-nho<i<m-—1;

finally, a dead cell remains in state m with probability
1.



The transition matrix R (lower triangular matrix) corre-

sponding to the repair mechanisms is then given by
R(i,j) _ [ (1—r) j<i<m (8)
0<ij<m | 0 1< g,

for i = m, R(m,m) = 1 and R(m, j) = 0 for all j # m.

The explicit expression is given by

1 0 0 .. 0
T 1—r 0 ... 0
2 Hr(l—r) (1-r)?%...0
R=| . . : )
Pl (M2 ) . L0
0 0 0 1

When we introduce the reparation mechanisms, the tran-
sition matrix of the Markov chain (Zj)ren previously
defined, is then given by Il = (7 ;)i je{0,1,....m}>

Il = PR, (10)
where m;, ; = Pr(Zx41 = j | Zi = i). For the case of a
3-targets cell, let ¢ =1 —qgand ' = 1 —r, then

(ra+4q)? = (rq)® 3r'qq? + 6r'¢*q’ 3¢°¢'"” ¢°
H _ rq/Q +2T2qql /r/q/2 +4rr/qq/ 2,’,‘/2qu q2
2/ i 2 1
req 2rr'q r'eq q
0 0 0 1
(11)

Fig. 4 shows the transition graph corresponding to the
Markov chain (Zj) after taking the repair of inactive
targets into account.
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Fig. 4. Transition graph corresponding to (Zj)reN -

Probability distribution of Z;. In order to determine
the probability distribution of Zj, we introduce the vector
v, = (V),...,v), vi = Pr(Z; =i). From the transition
matrix IT and the initial probability distribution v of Zj,
we can determine vy, for all k& € N*, using the Markov
chain property,

Ve = voll”. (12)
If we assume that the cell is initially in state 0, in this
case we have Pr(Zy = 0) = 1, then vy = (1,0,...,0).
Therefore, we obtain

vi =117(0,i) i€{0,...,m}. (13)

3.4 Multinomial model of the tumor

Consider a group of ng cells {d;};¢10,1,...,n,} that compose
the tumor. For each cell §;, we associate a discrete-time

Markov chain (Z,(cj )), where Z,(CJ ) is the random variable
denoting the state of the cell J; at time k. We assume
that all the cells behave independently, and with the
same dynamics, which implies that the Markov chains

{(Zéj))}je{o’l ,,,,, no}» are independent and have the same
transition matrix II.

Our aim is to determine the probability distribution of the
number of cells in each state. Let X (i) be the random
number of cells in state ¢ € {0,...,m}, at time k, among

the ng initial cells. Since Zél),...,Z,i””) are i.i.d., and
follow a categorial distribution, then the state vector of
the tumor X, = (Xx(0), ---, Xp(2), -+, Xx(m)) follows
a multinomial distribution with parameters ng and vy =
(u,?7 ..., "), where u,i are the event probabilities defined
by (13). The probability mass function of the multinomial
distribution, g(ho, ..., hm,no, Ve, ..., ") = Pr(X;(0) =
hoy ..., Xk(m) = hy,), is given by

no! 0\h m\hm 3 S —
9= ol g RV G D B =
0 otherwise
(14)
where h;, i € {0,...,m}, are non-negative integers. The
average number of cells in state i at time k is
E(Xy(i)) = novj, = noll*(0,4). (15)

8.5 Number of surviving cells

In the multinomial model, the number of surviving cells
after the k' dose fraction is given by

Ni = Xp(0)+ ...+ Xp(m —1) =ng — Xx(m). (16)
Since Xj(m) ~ B(ng, I1¥(0,m)), then
Ny ~ B(ng, 1 —T1¥(0,m)). (17)
This implies that :
E(Ny) = no(1 —11*(0,m)) (18)
and
Var(Ny) = no(1 — II¥ (0, m)) II* (0, m). (19)

4. TUMOR CONTROL PROBABILITY

The probability that no cancer cell remains in a tumor
after radiation is known as the tumor control probability
(TCP). This probability may be useful to evaluate either
the quality of a treatment planning or for the optimization
process.

4.1 Classical expressions of TCP
Two formulations of TC'P are generally used in radiother-
apy planning:

e if the number of surviving cancer cells follows a
binomial distribution, then

TCP = (1—p.)"°; (20)
e and if it follows a Poisson distribution, then
TCP = e 0Pe, (21)
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Fig. 5. Discrete-time response of the surviving cancer cells
(mean response in solid line, 99.9%-confidence interval
in dotted line, both computed in R with the function
gbinom)

where p. denotes the survival probability of a cancer cell
after the radiation exposure and ng is the initial number
of cancer cells in the tumor. Other TCP expressions are
given in the setting of birth and death processes, and some
of them depend explicitly on time [Zaider and Minerbo
(2000); Dawson and Hillen (2006)]. The main drawback of
these TCP expressions is to ignore the repair mechanism
and the heterogeneous distribution of the cellular damages
over the tumor and over time.

4.2 Multinomial model-based TCP

By considering the multinomial model defined in eq. (14),
TC Py, is the probability that there is no living cell of type:
0,1,---,m — 1, after delivery of the k*" dose fraction, i.e.
the probability that all the cells are in state m at time k.
Since

e each cell (supposed to be initially in state 0), among
the ng cells, is in state m at time k& with probability
11%(0, m);

e all the ng cells behave independently,

then .
TCP, = (11F(0,m))"". (22)
5. NUMERICAL ANALYSIS

We have implemented the multinomial model in the R1!
environment for statistical computing to determine the
temporal response of surviving cancer cells to a classical
radiation treatment and to analyze effects of three model
parameters: ¢, and m on the tumor control probability.
In all these cases, the treatment scheduling is based on a
static scheme composed of 5 dose fractions per week during
six weeks.

1
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1.0

0.4 0.6
1 1
i
o
=
ﬂ\a
\n
—
—

Tumor Control Probability (TCP)

Discrete time (k [day])

Fig. 7. Effects of the repair parameter r on the TCP

Fig. 5 describes on a semi-logarithmic plot the temporal
response of the surviving cell population to the treatment.
We clearly observe decrease periods of the number of
surviving cells during the five days of treatment and stable
periods during the week-ends.

Fig. 6, 7 and 8 display the effects of the model parameters
q,r and m respectively on the TCP. When the probability
q that a radiation particle inactivates a target is increasing,
TCP is increasing. Inversely, the smaller » and m are, the
larger TCP is. These three parameters also influence the
slope of the transition period of TCP between the two
extreme values 0 and 1.



1.0

0.8
Il
—
T
—,
—
~

Tumor Control Probability (TCP’
0.6
1
3
11
S
T—— °
3
11
(4]
—
—

0.0
|

0 10 20 30 40

Discrete time (k [day])

Fig. 8. Effects of the target parameter m on the TCP
6. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a multinomial model for the
radiation treatment of cancer cell, which takes into account
(i) the variety of cell responses to treatment according to
their biological states and (ii) the repair mechanisms that
occur between dose fractions. Therefore, we can obtain a
better estimation of the tumor growth during and after
radiotherapy.

For future works, we plan to pursue several directions. The
first one consists in comparing it with classical models
used in Target theory in order to better emphasize its
advantages and limits. Another direction is to study how
this model can be used to control values of dose fractions
and their number with the aim of achieving an efficient
treatment.
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