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An existence result for multidimensional immiscible two-phase

flows with discontinuous capillary pressure field

Clément Cances
∗,†, Michel Pierre‡

January 31, 2011

Abstract

We consider the system of equations governing an incompressible immiscible two-phase flow within
an heterogeneous porous medium made of two different rock types. Since the capillary pressure function
depends on the rock type, the capillary pressure field might be discontinuous at the interface between the
rocks. We prove the existence of a solution for such a flow by passing to the limit in regularizations of
the problem.
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1 Introduction

The models of immiscible two-phase flows in porous media are often used to give a prediction of the
motions of complex flows in subsoil, particularly in the frame of oil-engineering. So they have been widely
studied, both from theoretical and numerical points of view. One of the main difficulty appearing in their
study is linked to the degeneracy of the problem where one of the two phases vanishes.

Because of variations of the rock type, one has to take into account strong heterogeneities of the
subsoil with respect to space in the model and to assume that the physical properties of the porous
medium are even discontinuous in the case of severe variations of the rock type. It is well known that
such discontinuities of the medium induce discontinuities of the fluid composition, but also discontinuous
pressure fields (see [vDMdN95], [EEN98], [BDPvD03], [EEM06], [CGP09], [BLS09], [Can09]). While
some mathematical analysis in the one-dimensional case has been carried out in [BDPvD03], [BLS09],
[CGP09] and [Can09], ensuring the well-posedness of the problem, there is no existence result available for
the solution of immiscible two-phase flows with discontinuous pressure fields in several dimensions, unless
some strong assumptions are made in order to reduce the problem (see [CGP09], [EEM06]). In this paper,
we propose to establish an existence result for the solution of the system of equations governing such a
flow.

1.1 Presentation of the problem

For the sake of simplicity, we suppose that the porous medium, represented by a bounded open subset
Ω with Lipschitz continuous boundary of R

d (d = 2 or 3), is built of two homogeneous subdomains,
represented by bounded open subsets (Ωi)i∈{1,2} with Lipschitz continuous boundaries such that

Ω1 ∩ Ω2 = ∅, Ω1 ∪ Ω2 = Ω.
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Figure 1: A example of domain Ω made of two subdomains Ω1 and Ω2 separated by the interface Γ

We denote by Γ ⊂ Ω the interface between the two subdomains :

Γ = Ω1 ∩ Ω2.

The porous medium Ω is supposed to be saturated by a moisture made of only two immiscible phases,
the oil phase (for which the subscript o stands) and the water phase (for which the subscript w stands).
One denotes by s the oil saturation, and (1− s) is thus the water saturation.

The motion of each phase in Ωi in governed by the diphasic Darcy-Muskat laws (see e.g. [AS79]):

φi∂ts− div

(

Ki
kro,i(s)

µo
(∇po − ρog)

)

= 0, (1)

− φi∂ts− div

(

Ki
krw,i(s)

µw
(∇pw − ρwg)

)

= 0, (2)

where φi ∈ (0, 1) is the porosity of Ωi, the symmetric definite positive matrix Ki is the permeability of
the rock Ωi, krα,i is the relative permeability of the phase α ∈ {o, w} in Ωi, µα > 0 is its viscosity, pα
its pressure, ρα its density and g stands for the gravity. In order to simplify the problem, we suppose that
the there are no irreducible saturations. More precisely, we do the following assumptions on the functions
krα,i :

Assumption 1 For i ∈ {1, 2},
• kro,i ∈ C1 is (strictly) increasing on [0, 1] with kro,i(0) = 0 and kro,i(1) = 1;

• krw,i ∈ C1 is (strictly) decreasing on [0, 1] with krw,i(0) = 1 and krw,i(1) = 0.

The difference between the phase pressures, so called capillary pressure, is given by the following simplified
law

po − pw = πi(s). (3)

We do the following reasonable assumption on the capillary pressure functions.

Assumption 2 For i ∈ {1, 2}, the function πi belongs to C1((0, 1);R) ∩ L1((0, 1);R), and are (strictly)
increasing.

Note that the functions πi are not supposed to be bounded near 0 and 1, but, thanks to the monotony of
πi, we can define

R ∋ πi(0) = lim
s→0+

πi(s), R ∋ πi(1) = lim
s→1−

πi(s).

Remark 1.1 The most classical choices for the capillary pressure functions are the so-called Van Genuchten
and Brooks-Corey capillary pressure functions, respectively defined by (we suppose here that the water
phase is the wetting phase)

πV G(s) = A
(

(1− s)−
ν

ν−1 − 1
) 1

ν
, πBC(s) = B + C(1− s)

1
λ ,

where A > 0, B ≥ 0, C > 0, ν > 2, and λ > 1 are parameters depending on the rock type. These choices
of capillary pressure functions satisfy Assumption 2.

It has been stressed in [ALV84] that the natural topology for the phase pressures in Ωi is governed by
the quantity

∫∫
(

kro,i(s)

µo
(∇po)2 + krw,i(s)

µw
(∇pw)2

)

dxdt. (4)

In particular, assume that s(x, t) = 0 for some x ∈ Ωi, then it follows from Assumption 1 that
kro,i(s(x, t)) = 0. As a consequence, the control of the quantity (4) provides no information on
po(x, t). But because of the relation (3), then the oil-pressure po(x, t) can not exceed the threshold
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value p(x, t) + πi(0), otherwise the oil-phase should be present. Hence, po(x, t) should be defined in a
multivalued way, i.e.

s(x, t) = 0 ⇔ po(x, t) = [−∞, pw(x, t) + πi(0)]. (5)

Similarly, on has
s(x, t) = 1 ⇔ pw(x, t) = [−∞, po(x, t)− πi(1)]. (6)

We deduce from (5) and (6) that the capillary pressure function πi has to be extended into a monotone
graph π̃i, defined by

π̃i(s) =







πi(s) if s ∈ (0, 1)
[−∞, πi(0)] if s = 0
[πi(1),+∞] if s = 1.

The capillary pressure graph π̃i admits a continuous inverse, denoted by π−1
i , mapping R to [0, 1], that,

thanks to Assumption 2, satisfies

π−1
i ∈ L1(R−),

(

π−1
i − 1

)

∈ L1(R+). (7)

Let us now focus on the transmission conditions at the interface Γ. On one hand, because of mass
balance of each phase, both phase fluxes have to be continuous, i.e. for α ∈ {o, w}, one has

∑

i∈{1,2}

(

Ki
krα,i(s)

µα
(∇pα − ραg)

)

· ni = 0, (8)

where ni denotes the outward normal to ∂Ωi. On the other hand, following [EEM06], we prescribe the
continuity of the pressure of the mobile phases :

krα,1(s1) (pα,1 − pα,2)
+ − krα,2(s2) (pα,2 − pα,1)

+ = 0, (9)

where si, pα,i denote the traces on Γ from Ωi of s, pα respectively. The relation (9) claims that either the
pressure of the phase α is continuous through the interface Γ, or the phase α is missing at the side of the
interface where its pressure is the larger. Using the multivalued formalism introduced in (5) and (6), the
relation (9) is equivalent to

pα,1 ∩ pα,2 6= ∅. (10)

In order to close the system, we impose a no-flux boundary condition for each phase on ∂Ω
(

Ki
krα,i(s)

µα
(∇pα − ραg)

)

· n = 0, (11)

where n denote the outward normal to Ω, and an initial condition

s0(x) ∈ L∞(Ω, [0, 1]). (12)

It is worth noticing that due to the choice of the boundary condition (11), the pressure are only determined
up to a constant.

The purpose of this paper is to show that, after suitable reformulation, the problem (1)–(3),(8),(10)–
(12) admits a solution.

1.2 Reformulation of the problem

Classical computations (see e.g. [CJ86], [AKM90], [Arb92]) allow to rewrite the equations (1)–(3) under
the form

φi∂ts− div
(

Ki

(

kro,i
µo

(s) (∇P − ρog) +∇ϕi(s)

)

)

= 0, (13)

− div
(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

= 0, (14)

with

Mi(s) =
kro,i(s)

µo
+
krw,i(s)

µw
, ϕi(s) =

∫ s

0

kro,i(a)krw,i(a)

kro,i(a)µw + krw,i(a)µo
π′
i(a)da,

ζi(s) =
kro,i(s)

µo
ρo +

krw,i(s)

µw
ρw

and

P = pw +

∫ πi(s)

0

kro,i(π
−1
i (a))

kro,i(π
−1
i (a)) + µo

µw
krw,i(π

−1
i (a))

da = pw + λw,i(πi(s)) (15)

= po −
∫ πi(s)

0

krw,i(π
−1
i (a))

µw

µo
kro,i(π

−1
i (a)) + krw,i(π

−1
i (a))

da = po + λo,i(πi(s)). (16)

The function ϕ′
i is given by

ϕ′
i(s) =

kro,i(s)krw,i(s)

kro,i(s)µw + krw,i(s)µo
π′
i(s),

where π′
i(s) can eventually tend to+∞ as s tends to 0 or 1, but simultaneously, the ratio

kro,i(s)krw,i(s)

kro,i(s)µw+krw,i(s)µo

tends to 0. By the following assumption, we assume that the product remains bounded.
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Assumption 3 The functions ϕi are Lipschitz continuous on [0, 1].

Thanks to Assumption 1 and since πi is supposed to be increasing, the functions ϕi defined above are
such that ϕ−1

i are continuous functions on [ϕi(0), ϕi(1)]. We define the quantity

αM = min
i∈{1,2}

(

min
s∈[0,1]

Mi(s)

)

,

it is then easy to check that αM > 0.

We now focus on the transmission conditions. The conservation of the oil-phase at the interface Γ
can be written

∑

i∈{1,2}

Ki

(

kro,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

· ni = 0, (17)

while the conservation of the total flux at the interface yields

∑

i∈{1,2}

(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

· ni = 0. (18)

The relation (10) on the interface Γ implies that

there exists π ∈ π̃1(s1) ∩ π̃2(s2) s.t. P1 − λw,1(π) = P2 − λw,2(π). (19)

Remark 1.2 1. In (19), requiring that P1 − λw,1(π) = P2 − λw,2(π) corresponds to imposing the
continuity (in the multivalued sense (10)) of the water pressure. By adding π to this relation, we
also recover the continuity of the oil-pressure (in the same weak sense (10)), so that the relation (19)
contains the the continuity of both pressures.

2. Following [CGP09] and [BLS09], in the one-dimensional case, the relation (19) can be reduced to

π̃1(s1) ∩ π̃2(s2) 6= ∅.

It has been proved in [CGP09], [Can09] that this relation ensures the existence and the uniqueness
of the solution to the problem.

The no-flux boundary condition for each phase on ∂Ω ∩ ∂Ωi is replaced by

Ki

(

kro,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

· n = 0, (20)

(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

· n = 0. (21)

All along the paper, for any f ∈ {φ,K, . . . }, we denote by x 7→ f(s, x) the piecewise constant
function equal to fi(s) if x ∈ Ωi. For T > 0, then we denote by QT (resp. Qi,T ) the cylinder Ω× (0, T )
(resp.Ωi × (0, T )).

Definition 1.1 (weak solution) A couple (s, P ) is said to be a weak solution to the problem (12)-(14),
(17)-(21) in the cylinder QT if it fulfills the following points:

1. s ∈ L∞(QT , [0, 1]), φ∂ts ∈ L2
(

(0, T );
(

H1(Ω)
)′
)

and ϕi(s) ∈ L2((0, T );H1(Ωi));

2. P ∈ L2((0, T );H1(Ωi)) for i ∈ {1, 2}, with for a.e. t ∈ (0, T ),

∫

Ω

P (x, t)dx = 0;

3. there exists a measurable function π mapping Γ × (0, T ) to R such that, for almost all (x, t) ∈
Γ× (0, T ),

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − λw,1(π) = P2 − λw,2(π);

4. for all ψ ∈ L2((0, T );H1(Ω)), one has
∫∫

QT

φs∂tψdxdt+

∫

Ω

φs0ψ(·, 0)dx

+
∑

i∈{1,2}

∫∫

Qi,T

Ki

(

kro,i(s)

µo
(∇P − ρog) +∇ϕi(s)

)

· ∇ψdxdt = 0; (22)

5. for all ψ ∈ L2((0, T );H1(Ω)), one has

∑

i∈{1,2}

∫∫

Qi,T

(

Ki

(

Mi(s)∇P − ζi(s)g
)

)

· ∇ψdxdt = 0. (23)

The paper is devoted to the proof of the following theorem.

Theorem 1 (main result) Under Assumptions 1 and 2, there exists a weak solution to the problem (12)-
(14), (17)-(21) in the sense of Definition 1.1.
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It is well known that for suitable initial and boundary conditions, the flow governed by the equa-
tions (13)–(14) admits a solution (see e.g. [ALV84], [AD85], [CJ86], [AKM90], [Arb92] or [Che01]) in
the case where the physical characteristics of the domain do not depend on space, or at least sufficiently
smoothly. In the case considered here, the difficulty will come from the fact that the physical properties of
the medium Ω —particularly the capillary pressure curve— are discontinuous with respect to space at the
interface Γ. The effects of space depending capillarities have been widely studied during the last years.
Analytical results have been provided by [ABE96], [vDMdN95], [BDPvD03], [Can08], [CGP09]. Effective
models have been provided in [BH95a], [vDMP02], [vDEHP07] and [Sch08] using homogenization tech-
nics. Some numerical schemes have been introduced [EEN98], [EMS09] and studied [EEM06], [Can09],
[BCH]. It has been pointed out in [Can10a], [Can10b] and [Can10c] that the orientation of the capillary
forces at the interface has a strong influence on the qualitative behavior of the saturation profile.

1.3 Organization of the paper

In Section 2, we introduce a simplified problem, where the pressure of both phase is (strongly) continuous
at the interface. This can be done under a compatibility condition of the capillary forces, that is

π1(0) = π2(0) ∈ R, π1(1) = π2(1) ∈ R. (24)

If the functions πi satisfy the above condition, the capillarity curves are said to be matching. In that case,
the existence of a weak solution is proven using a spatial regularization of the function x 7→ π(·, x), i.e.
by introducing a thin transition layer between the two rocks.

Section 3 is devoted to the end of the proof of Theorem 1. We will show that the problem with
non-matching capillarity curves, i.e. when the condition (24) is not satisfied, can be approximated by
problems with matching capillarity curves studied in Section 2. Compactness properties on the family of
approximate solutions will allow us to exhibit a weak solution in the sense of Definition 1.1 as a limit value.

2 The problem with matching capillarity curves

In this section, we assume that the capillary pressure functions πi belong to C1([0, 1];R), and fulfill the
relation (24), so that the relation (19) turns to

π1(s1) = π2(s2) and P1 − λw,1(π1(s1)) = P2 − λw,2(π2(s2)). (25)

So the pressure of each phase is continuous at the interface Γ, i.e.

po,1 = po,2, pw,1 = pw,2. (26)

Theorem 2 Under assumption (24), there exists a weak solution (s, P ) to the problem (12)-(14), (17),
(18), (20), (21), (25) in the sense of Definition 1.1.

Remark 2.1 The result stated in Theorem 2 is very close to the main result of the paper [BH95b].
However, it seems that there is a technical mistake in the proof suggested in [BH95b] and detailed in
[Hid93]. For this reason, we choose to give another proof of this theorem. But we stress the fact that
the main result proposed in [BH95b] is true and that numerous ideas presented here have already been
proposed in [BH95b], [Hid93]. In particular, the homogeneization result published in [BH95a] relies on
correct preliminaries.
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2.1 The regularized problems

Let ε > 0. In order to obtain regular phase pressures, we regularize the problem in the following form:
find (sε, pεo, p

ε
w) such that







































































































































































φi∂ts
ε − div

(

Ki
kro,i(s

ε)

µo
(∇pεo − ρog)

)

= ε∆πi(s
ε) in Qi,T ,

−φi∂ts
ε − div

(

Ki
krw,i(s

ε)

µw
(∇pεw − ρwg)

)

= −ε∆πi(s
ε) in Qi,T ,

pεo − pεw = πi(s
ε) in Qi,T ,

pεo,1 = pεo,2, pεw,1 = pεw,2. on Γ× (0, T ),

∑

i∈{1,2}

(

Ki
kro,i(s

ε)

µo
(∇pεo − ρog) + ε∇πi(s

ε)

)

· ni = 0 on Γ× (0, T ),

∑

i∈{1,2}

(

Ki
krw,i(s

ε)

µw
(∇pεw − ρwg) − ε∇πi(s

ε)

)

· ni = 0 on Γ× (0, T ),

(

Ki
kro,i(s

ε)

µo
(∇pεo − ρog) + ε∇πi(s

ε)

)

· n = 0 on (∂Ω ∩ ∂Ωi)× (0, T ),

(

Ki
krw,i(s

ε)

µw
(∇pεw − ρwg)− ε∇πi(s

ε)

)

· n = 0 on (∂Ω ∩ ∂Ωi)× (0, T ),

sε(·, 0) = s0 in Ω.

(27)

In order to use an existing result (Theorem 1 in [Arb92] or Theorem 2.1 in [Che01]), we introduce a
smooth regularization of Ω, consisting in introducing a thin transition layer to replace Γ. Let δ > 0, we
define the Lipschitz continuous function Hδ on Ω by

Hδ(x) =
1

2

(

1−min

(

d(x,Ω1)

δ
, 1

)

+min

(

d(x,Ω2)

δ
, 1

))

so that Hδ(x) = 1 if d(x,Ω2) ≥ δ and Hδ(x) = 0 if d(x,Ω1) ≥ δ. Let f ∈ {K, φ, krα, π} piecewise
constant on Ω with respect to space, we define the function

fδ : (s, x) 7→ f1(s)H
δ(x) + f2(s)(1−Hδ(x))

which has been built in order to be Lipschitz continuous with respect to the space variable x. For
g ∈ {M,ϕ, ζ, λw}, we denote by gδ the function obtained by using krδα, π

δ instead of krα, π in the
definition of g.

We define the fully regularized problem by: find (sε,δ, pε,δo , pε,δw ) such that







































































































φδ∂ts
ε,δ − div

(

K
δ kr

δ
o(s

ε,δ)

µo

(

∇pε,δo − ρog
)

)

= ε∆πδ(sε,δ) in QT ,

−φδ∂ts
ε,δ − div

(

K
δ kr

δ
w(s

ε,δ)

µw

(

∇pε,δw − ρwg
)

)

= −ε∆πδ(sε,δ) in QT ,

pε,δo − pε,δw = πδ(sε,δ) in QT ,

(

K
δ kr

δ
o(s

ε,δ)

µo

(

∇pε,δo − ρog
)

+ ε∇πδ(sε,δ)

)

· n = 0 on ∂Ω× (0, T ),

(

K
δ kr

δ
w(s

ε,δ)

µw

(

∇pε,δw − ρwg
)

− ε∇πδ(sε,δ)

)

· n = 0 on ∂Ω× (0, T ),

sε,δ(·, 0) = s0 in Ω.

(28)

Proposition 2.1 There exist sε,δ ∈ L∞(QT , [0, 1]) and pε,δo , pε,δw ∈ L2((0, T );H1(Ω)) solution to the
system (28). Furthermore, the following energy estimate holds: there exists C depending only on φ, K,
ρα, µα, Ω, T , g (but neither on ε nor on δ) such that

mK

2

∑

α∈{o,w}

∫∫

QT

krα,i(s
ε,δ)

µα

(

∇pε,δα

)2

dxdt+ε

∫∫

QT

(

∇π(sε,δ)
)2

dxdt ≤ C

(

1 + sup
x∈Ω

‖π(·, x)‖L1(0,1)

)

.

(29)
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Denoting by
P ε,δ = pε,δw + λδ

w(π
δ(sε,δ)), (30)

one can furthermore require that

∫

Ω

P ε,δ(x, t)dx = 0 for a.e. t ∈ [0, T ]. (31)

Proof: The existence proofs carried out in [Arb92] and [Che01], dealing with the case ε = 0, can
be mimicked for ε > 0. This particularly yields the existence of sε,δ ∈ L∞(QT , [0, 1]) and pε,δo , pε,δo ∈
L2((0, T );H1(Ω)) satisfying the system (28).

Choosing pε,δo as test function in the first equation, pε,δw in the second one and summing yields:

〈

φδ∂ts
δ,ε, πδ(sδ,ε)

〉

+
∑

α∈{o,w}

∫∫

QT

(

krδα(s
δ,ε)

µα
K

δ∇pδ,εα · ∇pδ,εα

)

dxdt

+ε

∫∫

QT

∣

∣

∣∇πδ(sδ,ε)
∣

∣

∣

2

dxdt−
∑

α∈{o,w}

∫∫

QT

krδα(s
δ,ε)

µα
K

δ∇pδ,εα · ραgdxdt = 0. (32)

Denoting by Πδ(s, x) =

∫ s

0

πδ(a, x)da, it is classical (see e.g. Lemma 4 in [Car99]) that

〈

φδ∂ts
δ,ε, πδ(sδ,ε)

〉

=

∫

Ω

φδ(x)Πδ(sδ,ε)(x, T )dx−
∫

Ω

φδ(x)Πδ(s0)(x)dx

≥ −2

∫

Ω

φδ(x)

∫ 1

0

∣

∣

∣π
δ(a, x)

∣

∣

∣ dadx

≥ −2|Ω|
(

max
i
φi

)(

max
i

‖πi‖L1(0,1)

)

. (33)

Since each Ki is a symmetric positive definite matrix, Kδ(x) also for all x ∈ Ω. We denote by m
Kδ(x)

(resp. MKδ (x)) its smaller (resp. larger) eigenvalue. Then it is easy to check that for all x ∈ Ω, one has

mK = min
i∈{1,2}

mKi ≤ mKδ (x), MK = max
i∈{1,2}

MKi ≥MKδ (x).

This provides that for α ∈ {o, w}, one has

∫∫

QT

(

krδα(s
δ,ε)

µα
K

δ∇pδ,εα · ∇pδ,εα

)

dxdt ≥ mK

∫∫

QT

krδα(s
δ,ε)

µα

∣

∣

∣
∇pε,δα

∣

∣

∣

2

dxdt. (34)

From Cauchy-Schwarz inequality, one has

∫∫

QT

krδα(s
δ,ε)

µα
K

δ∇pδ,εα · ραgdxdt

≤
(
∫∫

QT

krδα(s
δ,ε)

µα
K

δ∇pδ,εα · ∇pδ,εα dxdt

)

1
2

ρα

(
∫∫

QT

krδα(s
δ,ε)

µα
K

δ
g · gdxdt

)

1
2

≤ MK

ρα√
µα

|g||QT |
1
2

(∫∫

QT

krδα(s
δ,ε)

µα

∣

∣

∣
∇pε,δα

∣

∣

∣

2

dxdt

)

1
2

.

Using that for a, b ∈ R, one has

ab ≤ mK

a2

2
+

b2

2mK

,

we obtain the existence of C depending only on K, ρα, µα, Ω, T , g such that

∫∫

QT

krδα(s
δ,ε)

µα
K

δ∇pδ,εα · ραgdxdt ≤ mK

2

∫∫

QT

krδα(s
δ,ε)

µα

∣

∣

∣
∇pε,δα

∣

∣

∣

2

dxdt+ C. (35)

The inequality (29) is a consequence of (32),(33),(34) and (35).
Since the function pεw (and thus pεo) is defined up to a function depending on time, one can choose

this function so that (31) holds. �

Lemma 2.2 There exists Cε depending only on π, φ, K, ρα, µα, Ω, T , g, αM and ε (but not on δ) such
that

∫∫

QT

(

∇pε,δβ

)2

dxdt ≤ Cε, for β ∈ {o, w}.

7



Proof: We will prove this estimate only for the oil pressure, since obtaining it for the water pressure is
similar.
∫∫

QT

(

∇pε,δo

)2

dxdt ≤ 1

αM

∫∫

QT

(

krδo(s
ε,δ)

µo
+
krδw(s

ε,δ)

µw

)

(

∇pε,δo

)2

dxdt

≤ 1

αM

∫∫

QT

[

krδo(s
ε,δ)

µo

(

∇pε,δo

)2

+
krδw(s

ε,δ)

µw

(

∇pε,δw +∇πδ(sε,δ)
)2
]

dxdt.

Since (a+ b)2 ≤ 2(a2 + b2), and since 0 ≤ krδw(s) ≤ 1, one obtains

∫∫

QT

(

∇pε,δo

)2

dxdt

≤ 1

αM

∫∫ [

krδo(s
ε,δ)

µo

(

∇pε,δo

)2

+ 2
krδw(s

ε,δ)

µw

(

∇pε,δw

)2

+
1

µw

(

∇πδ(sε,δ)
)2
]

dxdt.

We conclude by using the energy estimate (29). �

Let h > 0, then we define Ωh
i = {x ∈ Ωi s.t. dist(x,Ωj) > h for j 6= i} and Qh

i,T = Ωh
i × (0, T ). On

the set Ωδ
i , the functions fδ is equal to f for all f ∈ {krα, π, . . . }. This particularly yields that in Qδ

i,T ,
the two first equations of the system (28) can be rewritten under the form

φi∂ts
ε,δ − div

(

Ki

(

kro,i(s
ε,δ)

µo

(

∇P ε,δ − ρog
)

+∇ϕi(s
ε,δ)

))

= ε∆πi(s
ε,δ), (36)

− div
(

Ki

(

Mi(s
ε,δ)∇P ε,δ − ζi(s

ε,δ)g
)

)

= 0. (37)

Lemma 2.3 There exists C depending only on φ, K, ρα, µα, Ω, T , g, αM (but neither on ε nor on δ)
such that for all ε, δ > 0,

∫∫

Qδ
i,T

(

∇P ε,δ
)2

dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

.

Proof: One has

∫∫

Qδ
i,T

(

∇P ε,δ
)2

dxdt ≤ 1

α2
M

∫∫

Qδ
i,T

(

Mi(s
ε,δ)∇P ε,δ

)2

dxdt

≤ 1

α2
M

∫∫

Q
i,Tδ

(

kro,i(s
ε,δ)

µo
∇pε,δo +

krw,i(s
ε,δ)

µw
∇pε,δw

)2

dxdt

≤ 2

min(µo, µw)α2
M

∫∫

Q
i,Tδ

(

kro,i(s
ε,δ)

µo

(

∇pε,δo

)2

+
krw,i(s

ε,δ)

µw

(

∇pε,δw

)2
)

dxdt.

We conclude by using Proposition 2.1. �

Lemma 2.4 There exists C depending only on φ, K, ρα, µα, Ω, T , g, αM (but neither on ε nor on δ)
such that for all ε, δ > 0, one has:

∫∫

Qδ
i,T

(

∇ϕi(s
ε,δ)
)2

dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

Proof: This estimate is only a consequence of the fact that in Qδ
i,T ,

∇ϕi(s
ε,δ) =

kro,i(s
ε,δ)

µo

(

(∇pε,δo − ρog)−∇P ε,δ
)

.

We conclude by using Proposition 2.1 and Lemma 2.3. �

Lemma 2.5 Let τ ∈ (0, T ) and let h > 0, then there exists Ch depending on φ, K, ρα, µα, Ω, T , g,
Lϕi , αM and h such that for all ε > 0 and for all δ ∈ (0, h),

∫∫

Q2h
i,T−τ

(

ϕi(s
ε,δ)(·, ·+ τ )− ϕi(s

ε,δ)
)2

dxdt ≤ τCh

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (38)
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Proof: Let ξh be a nonnegative smooth function equal to 1 in Ω2h
i and equal to 0 in

(

Ωh
i

)c
. Since ϕi is

Lipschitz continuous, one has
∫∫

Q2h
i,T−τ

(

ϕi(s
ε,δ)(x, t+ τ )− ϕi(s

ε,δ)(x, t)
)2

dxdt

≤
∫∫

Qh
i,T−τ

ξh(x)
(

ϕi(s
ε,δ)(x, t+ τ )− ϕi(s

ε,δ)(x, t)
)2

dxdt

≤ Lϕi

∫∫

Qh
i,T−τ

ξh(x)
(

ϕi(s
ε,δ)(x, t+ τ )− ϕi(s

ε,δ)(x, t)
)

(sε,δ(x, t+ τ )− sε,δ(x, t))dxdt

≤ −Lϕi

∫∫

Qh
i,T−τ







∇
(

ξh(x)
(

ϕi(s
ε,δ)(x, t+ τ )− ϕi(s

ε,δ)(x, t)
))

∫ τ

0

(

Ki
kro,i(s

ε,δ)(x, t+ θ)

µo
∇pε,δo (x, t+ θ) + ε∇πi(s

ε,δ)(x, t+ θ)

)

dθ






dxdt

≤ Lϕi4τ‖∇
(

ξhϕi(s
ε,δ)
)

‖L2(Qh
i,T

)

(

∫∫

Qh
i,T

(

(

Ki
kro,i(s

ε,δ)

µo
∇pε,δo

)2

+ ε
(

∇πi(s
ε,δ)
)2
)

dxdt

)1
2

.

There exists Ch depending only on Ω and h such that

‖∇
(

ξhϕi(s
ε,δ)
)

‖L2(Qh
i,T

) ≤ Ch‖ϕi‖∞ +
√
2‖∇ϕi(s

ε,δ)‖L2(Qh
i,T

).

One concludes by using Proposition 2.1, Lemma 2.4 and the fact that ‖ϕi‖∞ ≤ Lϕi . �

We have now all the necessary estimates to consider the limit δ → 0 of our problem.

Proposition 2.6 There exists sε ∈ L∞(QT ; [0, 1]), p
ε
o, p

ε
w ∈ L2((0, T );H1(Ω)) solution to the sys-

tem (27). Moreover, there exists C depending only on φ, K, ρα, µα, Ω, T , g, αM such that

mK

2

∑

α∈{o,w}

∫∫

QT

krα,i(s
ε)

µα
(∇pεα)2 dxdt+ ε

∫∫

QT

(∇π(sε))2 dxdt ≤ C

(

1 + sup
x∈Ω

‖π(·, x)‖L1(0,1)

)

.

(39)
Furthermore, for i ∈ {1, 2}, one has P ε, ϕi(s

ε) ∈ L2((0, T );H1(Ωi)) with

P ε
1 − λw,1(π1(s

ε
1)) = P ε

2 − λw,2(π2(s
ε
2)), (40)

∫

Ω

P ε(x, t)dx = 0 for a.e. t ∈ [0, T ], (41)

and (sε, P ε) that satisfies the following system: ∀ψ ∈ D(Ωi × [0, T )),

∫∫

QT

φsε∂tψdxdt+

∫

Ωi

φs0ψ(·, 0)dx

−
∑

i∈{1,2}

∫∫

Qi,T

Ki

(

kro,i(s
ε)

µo
(∇P ε − ρog) +∇ϕi(s

ε) + ε∇πi(s
ε)

)

· ∇ψ dxdt = 0; (42)

∑

i∈{1,2}

∫∫

Qi,T

Ki (Mi(s
ε)∇P ε − ζi(s

ε)g) · ∇ψ dxdt = 0. (43)

The following energy estimate holds:

∫∫

Qi,T

(∇P ε)2 dxdt+

∫∫

Qi,T

(∇ϕi(s
ε))2 dxdt ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (44)

Let h > 0 and τ ∈ (0, T ), then there exists Ch depending only on φ, K, ρα, µα, Ω, T , g, Lϕi , αM and
h such that

∫∫

Qh
i,T−τ

(ϕi(s
ε)(·, ·+ τ )− ϕi(s

ε))2 dxdt ≤ τCh

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

. (45)

Proof: Let ε be a fixed strictly positive parameter. First of all, since for all δ > 0, 0 ≤ sε,δ ≤ 1 a.e. in
QT , there exists sε ∈ L∞(QT ; [0, 1]) such that, up to a subsequence,

sε,δ → sε in the L∞(QT ) weak- ⋆ sense, and 0 ≤ sε ≤ 1 a.e. in QT . (46)

Let h > 0. It follows from Lemma 2.4 that for all δ ∈ (0, h),

∫∫

Qh
i,T

(

∇ϕi(s
ε,δ)
)2

dxdt ≤ C.
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Then in particular, for all ξ > 0, one has the following estimate on the space-translates of ϕi(s
ε,δ):

∫∫

Q
h+ξ
i,T

(

ϕi(s
ε,δ)(·+ ξ, ·) − ϕi(s

ε,δ)
)2

dxdt ≤ Cξ2 (47)

where C does not depend on ε, δ, ξ (see e.g. [Bré83]). Using moreover Lemma 2.5 allows to use the
Kolmogorov compactness criterion (see e.g. [Bré83]) that provides that

(

ϕi(s
ε,δ)
)

δ∈(0,h)
is relatively

compact in L2(Qh
i,T ). Hence, up to a subsequence, there exists a function f ∈ L2(Qh

i,T ) such that
ϕi(s

ε,δ) converges almost everywhere in Qh
i,T towards f . Since ϕ−1

i is continuous, one obtains that sε,δ

converges almost everywhere in Qh
i,T towards ϕ−1

i (f) = sε. Since this convergence results holds for all
h > 0, one obtains that, up to a subsequence,

sε,δ → sε a.e. in QT . (48)

Because of the definition (30) of the global pressure P ε,δ and thanks to (31), one has, for almost every
t ∈ [0, T ] that

∫

Ω

pε,δw (x, t)dx =

∫

Ω

λδ
w(π

δ(sε,δ))dx.

Hence, since we have supposed in this section that πi ∈ C1([0, 1];R) and since 0 ≤
(

λδ
w

)′ ≤ 1, we obtain
that

∣

∣

∣

∣

∫

Ω

pε,δw (x, t)dx

∣

∣

∣

∣

≤ ‖π1‖∞|Ω|. (49)

Similarly, using the fact that P ε,δ = pε,δo + λδ
o(π

δ(sε,δ)) provides that for almost every t ∈ [0, T ], one has

∣

∣

∣

∣

∫

Ω

pε,δo (x, t)dx

∣

∣

∣

∣

≤ ‖π1‖∞|Ω|. (50)

Thanks to Lemma 2.2 and Poincaré-Wirtinger inequality, one can claim the existence of Cε which is not
depending δ such that

∥

∥

∥

∥

pε,δβ −
∫

Ω

pε,δβ (x, ·)dx
∥

∥

∥

∥

L2((0,T );H1(Ω))

≤ Cε, for β ∈ {o, w}.

This yields, using (49)-(50), that
(

pε,δβ

)

δ
is uniformly bounded in L2((0, T );H1(Ω)). Thus there exits pεβ

belonging to L2((0, T );H1(Ω)) such that, up to a subsequence,

pε,δβ → pεβ weakly in L2((0, T );H1(Ω)). (51)

In particular, πδ(sε,δ) = pε,δo − pε,δw also converges weakly in L2((0, T );H1(Ω)) and strongly in L2(QT )
towards π(sε) thanks to (48). In order to check that P ε satisfies the equation (41), it suffices to verify that
P ε,δ tends weakly to P ε in L2(QT ). This convergence can be directly established using the definition (30)
and (48)–(51).

The first and the fourth equation of the system (28) can be rewriten: ∀ψ ∈ D(Ω× [0, T )),

∫∫

QT

φδsε,δ∂tψdxdt+

∫

Ω

φδs0ψ(·, 0)dx

−
∫∫

QT

K
δ kr

δ
o(s

ε,δ)

µo

(

∇pε,δo − ρog
)

∇ψdxdt = ε

∫∫

QT

∇πδ(sε,δ)∇ψdxdt (52)

while the second and the fifth turn to: ∀ψ ∈ D(Ω× [0, T )),

∫∫

QT

φδsε,δ∂tψdxdt+

∫

Ω

φδs0ψ(·, 0)dx

+

∫∫

QT

K
δ kr

δ
w(s

ε,δ)

µw

(

∇pε,δw − ρwg
)

∇ψdxdt = ε

∫∫

QT

∇πδ(sε,δ)∇ψdxdt. (53)

Since φδ and Kδ converge almost everywhere respectively towards φ and K, and since, thanks to (48),
krδβ(s

ε,δ) tends almost everywhere —thus strongly in Lp(QT ) for all p ∈ [1,∞)— towards krβ(s
ε), one

can pass to the limit in (52)–(53) using (48) and (51), obtaining

∫∫

QT

φsε∂tψdxdt+

∫

Ω

φs0ψ(·, 0)dx

−
∫∫

QT

K
kro(s

ε)

µo
(∇pεo − ρog)∇ψdxdt = ε

∫∫

QT

∇π(sε)∇ψdxdt (54)
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and
∫∫

QT

φsε∂tψdxdt+

∫

Ω

φs0ψ(·, 0)dx

+

∫∫

QT

K
krw(s

ε)

µw
(∇pεw − ρwg)∇ψdxdt = ε

∫∫

QT

∇π(sε)∇ψdxdt. (55)

Thanks to (48) and (51), one can also pass in the limit in the third equation of the system (28), leading
to

pεo − pεw = π(sε),

then sε, pεo and pεw are solutions to (27).
Since in Qi,T , the function P ε has been built so that

Mi(s
ε)∇P ε =

kro,i(s
ε)

µo
∇pεo +

krw,i(s
ε)

µw
∇pεw,

classical calculations (see e.g. [AKM90], [CJ86]) yield that the weak formulation (54)–(55) is equivalent
to (42)–(43).

Let h > 0, then for all δ ∈ (0, h), one has

∇P ε,δ = ∇pε,δw +
kro,i(s

ε,δ)

kro,i(sε,δ) +
µo

µw
krw,i(sε,δ)

∇πi(s
ε,δ) a.e. in Qh

T .

Thus it follows from (48)–(51) that ∇P ε,δ converges towards ∇P ε weakly in L2(Qh
T ) as δ tends to 0.

This ensures that
∫∫

Qh
i,T

(∇P ε)2 dx ≤ lim inf
δ→0

∫∫

Qh
i,T

(

∇P ε,δ
)2

dx.

Thanks to Lemma 2.3, one obtains that for all h > 0,
∫∫

Qh
i,T

(∇P ε)2 dx ≤ C

(

1 + max
i∈{1,2}

‖πi‖L1(0,1)

)

.

Letting now h tend to 0 provides the estimate (44). The estimates (39) and (45) are directly provided by
letting δ tend to 0 in the estimates (29) and (38).

Since P ε,δ converges weakly in L2(QT ) towards P ε, the zero mean condition (31) is conserved as
δ → 0, giving (41). Since pεw ∈ L2((0, T );H1(Ω)), then it is continuous on Γ × (0, T ) in the sense that
its traces from Q1,T and Q2,T coincide. Using the definition (15) of the global pressure provides (40). �

2.2 Proof of Theorem 2

The goal of this section is to let tend ε to 0 in the system (27). We first give the following technical
lemma, that ensures that the global pressure jump at the interface remains uniformly bounded, and that
remains valid for non-matching capillary pressure functions.

Lemma 2.7 Let π1, π2 be increasing functions belonging to C1((0, 1);R) ∩ L1((0, 1)), then the function
p 7→ Z(p) = λw,1(p)− λw,2(p), where the functions λw,i are defined by (15), is uniformly bounded on R

by a constant depending only on krα,i, µα and ‖πi‖L1((0,1)) (i ∈ {1, 2}, α ∈ {o, w}). Moreover, Z(p)
admits a finite limits as p→ ±∞.

Proof: Denote by Li the Lipschitz constant of s 7→ kro,i(s)

kro,i(s)+
µo
µw

krw,i(s)
, then, for all p ≤ 0,

λw,i(p) =

∫ p

0

kro,i(π
−1
i (a))

kro,i(π
−1
i (a)) + µo

µw
krw,i(π

−1
i (a))

da ≥ −Li

∫ p

0

|π−1
i (a)|da.

Then it follows from (7) that

0 ≥ λw,i(p) ≥ −Li

∥

∥π−1
i

∥

∥

L1(R
−
)
≥ −Li‖πi‖L1((0,1)), ∀p ≤ 0,

and thus that
|Z(p)| ≤ Li ‖πi‖L1((0,1)) , ∀p ≤ 0.

In order to deal with the case p ≥ 0, we remark that, thanks to (16), Z(p) is also equal to λo,1(p)−λo,2(p),
where

λo,i(p) =

∫ p

0

(

kro,i(π
−1
i (a))

kro,i(π
−1
i (a)) + µo

µw
krw,i(π

−1
i (a))

− 1

)

da ≥ Li

∫ p

0

|π−1
i (a)− 1|da.

Hence, for all p ≥ 0,

0 ≥ λo,i(p) ≥ −Li

∥

∥π−1
i − 1

∥

∥

L1(R+)
≥ −Li‖πi‖L1((0,1)).
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This yields that
|Z(p)| ≤ Li ‖πi‖L1((0,1)) , ∀p ≥ 0.

The fact that Z(p) admits finite limits as p → −∞ comes from the fact that so does λw,i(p), while
λo,i(p) admits a finite limit as p→ +∞, ensuring that it is also the case for Z(p). �

Lemma 2.8 Denote by mi(P
ε)(t) = 1

|Ωi|

∫

Ωi
P ε(x, t)dx, then there exists C depending only on krα,j ,

‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2}, α ∈ {o, w}) such that

‖mi(P
ε)‖L2((0,T )) ≤ C.

Proof: It follows from (41) that for almost all t ∈ (0, T ), one has

|Ω1|m1(P
ε)(t) + |Ω2|m2(P

ε)(t) = 0. (56)

Thanks to (40), the following relation holds almost everywhere on Γ× (0, T ):

m1(P
ε)−m2(P

ε) = (P ε
2 −m2(P

ε))− (P ε
1 −m1(P

ε)) + λw,2(π2(s
ε
2))− λw,1(π1(s

ε
1)),

ensuring, thanks to (56), that

(m1(P
ε))2 ≤ C

(

(P ε
2 −m2(P

ε))2 + (P ε
1 −m1(P

ε))2 + (λw,2(π2(s
ε
2))− λw,1(π1(s

ε
1)))

2
)

.

Integrating this relation on Γ× (0, T ) provides

|Γ|
∫ T

0

(m1(P
ε)(t))2 dt ≤ Aε

2 + Aε
1 +Bε, (57)

where

Aε
i = C

∫ T

0

∫

Γ

(P ε
i −mi(P

ε))2 dxdt

and

Bε = C

∫ T

0

∫

Γ

Z(πi(s
ε
i ))

2dxdt,

where the function Z was introduced in Lemma 2.7. Thanks to Lemma 2.7, there exists C depending
only on the prescribed data such that

Bε ≤ C. (58)

Thanks to the continuity of the trace operator mapping H1(Ωi) to L
2(Γ), there exists C depending only

on Ωi such that

‖P ε
i −mi(P

ε)‖L2(Γ×(0,T )) ≤ C‖P ε −mi(P
ε)‖L2((0,T );H1(Ωi))

.

Now, from Poincaré-Wirtinger inequality and estimate (44), one has

‖P ε −mi(P
ε)‖L2((0,T );H1(Ωi))

≤ C‖∇P ε‖L2(Qi,T ) ≤ C,

where C only depends on the prescribed data. As a consequence, there exists C depending only on the
prescribed data such that

Aε
i ≤ C. (59)

It follows then from (57)–(59) that
∫ T

0

(m1(P
ε)(t))2 dt ≤ C.

The derivation of an L2((0, T ))-estimate on m2(P
ε) is similar. �

We now give the following lemma, which is a straightforward consequence of (44), Lemma 2.8 and
the Poincaré-Wirtinger inequality.

Lemma 2.9 There exists P ∈ L2((0, T );H1(Ωi)) such that, up to a subsequence, P ε converges towards
P weakly in L2((0, T );H1(Ωi)) as ε tends to 0. Moreover,

‖P‖L2((0,T );H1(Ωi))
≤ C,

where C only depends on krα,j , ‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2}, α ∈ {o, w}).
Lemma 2.10 There exists s ∈ L∞(QT ; [0, 1]) such that, up to a subsequence,

sε → s a.e. in QT as ε→ 0,

ϕi(s
ε) → ϕi(s) weakly in L2((0, T );H1(Ωi)).

Moreover,
‖ϕi(s)‖L2((0,T );H1(Ωi))

≤ C, (60)

where C only depends on krα,j , ‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2}, α ∈ {o, w}), and
∫∫

Qh
i,T−τ

(ϕi(s)(·, ·+ τ )− ϕi(s))
2 dxdt ≤ τCh, (61)

where Ch depends on krα,j , ‖πj‖L1((0,1)), φ, K, ρα, µα, Ω, T , g (j ∈ {1, 2}, α ∈ {o, w}), Lϕi and h.
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Proof: It follows from (44) and (45) that the family (ϕi(s
ε))ε is sequentially relatively compact

in L2(Qh
i,T ) for all h > 0. Then there exists fi ∈ L2(Qh

i,T ) such that, up to a subsequence,

ϕi(s
ε) → fi a.e. in Q

h
i,T as ε→ 0.

Since this relation stands for all h > 0, one can claim that

ϕi(s
ε) → fi a.e. in Qi,T as ε→ 0.

Using the fact that ϕ−1
i is continuous, then, by setting s = ϕ−1

i (fi) in Qi,T , we obtain that

sε → s a.e. in QT as ε→ 0.

Since 0 ≤ sε ≤ 1 almost everywhere in QT , we obtain that s ∈ L∞(QT ; [0, 1]). It follows from (44)
that ϕi(s

ε) converges, up to a subsequence, towards ϕi(s) weakly in L2((0, T );H1(Ωi)), and that the
estimate (60) holds for the limit, while the estimate (61) is obtained by passing to the limit in (45). �

Lemma 2.11 The function (x, t) 7→ επ(sε(x, t), x) tends to 0 in L2((0, T );H1(Ω)) as ε tends to 0.

Proof: We deduce from the estimate (39) that

‖επ(sε, ·)‖L2((0,T );H1(Ω)) ≤ Cε1/2,

ensuring the expected convergence. �

We now state a proposition that ends the proof of Theorem 2.

Proposition 2.12 Let s, P be the functions built in Lemmas 2.9 and 2.10, then (s, P ) is a solution to the
problem (12)-(14), (17), (18), (20), (21), (25) in the sense of Definition 1.1.

Proof: The convergence properties stated in Lemmas 2.9, 2.10 and 2.11 allow to pass to the limit ε→ 0
in the weak formulations (42) and (43). Since P ε converges weakly in L2((0, T );H1(Ωi)) for i ∈ {1, 2},
it also converges weakly in L2(QT ). As a consequence, we deduce from (41) that for all ψ ∈ L2((0, T )),

0 =

∫ T

0

(∫

Ω

P ε(x, t)dx

)

ψ(t)dt −→
ε→0

∫ T

0

(∫

Ω

P (x, t)dx

)

ψ(t)dt,

ensuring that for almost all t ∈ (0, T ),
∫

Ω

P (x, t)dx = 0.

Since ϕi(s
ε) converges towards ϕi(s) weakly in L2((0, T );H1(Ωi)) and strongly in L2(Qi,T ), then it also

converges strongly in L2((0, T );Hs(Ωi)) for s ∈ (1/2, 1). As a consequence, its trace on Γ × (0, T )
converges strongly in L2(Γ × (0, T )). The continuity if ϕ−1

i ensures the convergence of the traces sεi
towards si almost everywhere on Γ×(0, T ) (up to a subsequence) and in Lp(Γ×(0, T )) for all p ∈ [1,∞).
Hence, we can pass to the limit in the relation

π1(s
ε
1) = π2(s

ε
2) a.e. on Γ× (0, T ),

that gives
π1(s1) = π2(s2) a.e. on Γ× (0, T ).

Since P ε converges towards P weakly in L2((0, T );H1(Ωi)), then P
ε
i converges towards Pi weakly in

L2(Γ× (0, T )). We can pass to the limit in the relation

P ε
1 − λw,1(π1(s

ε
1)) = P ε

2 − λw,2(π2(s
ε
2)),

that takes sense in L2(Γ× (0, T )), and that provides (25). �

3 Existence of a solution for non-matching capillary curves

In this section, we aim to prove the existence of a weak solution in the case where the capillary pressure
curve do not satisfy the assumption (24). As it has been done in [BLS09, CGP09] in the case where the
elliptic equation on the pressure can be removed, as for example in the one-dimensional case, the main
idea consists in approximating the capillary pressure graphs π̃i by regularized capillary pressure functions
πi,n satisfying the matching conditions (24).

Let (πi,n)n≥1 ⊂ C1([0, 1];R) be a sequence of approximate capillary pressures satisfying

π1,n(0) = π2,n(0), π1,n(1) = π2,n(1)

such that

πi,n = πi on

[

1

n
, 1− 1

n

]

, (62)
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such that there exists Cπ not depending on n fulfilling

∫ 1

0

|πi,n(a)|da ≤ Cπ, ∀i ∈ {1, 2}, ∀n ≥ 1, (63)

and such that
πi,n(0) → min

j
πj(0), πi,n(1) → max

j
πj(0) as n→ ∞, (64)

the quantities minj πj(0) and maxj πj(0) belonging to R. Note that Dini’s theorem implies that

π−1
i,n → π−1

i uniformly on R as n→ ∞. (65)

ca
p
il
la
ry

p
re
ss
u
re

0

π1(0)

π1(0)

π1(1) = π2,n(1)

π2(0) = π1,n(0)

saturation 1

Figure 2: An example of functions πi,n fulfilling the matching condition (24) approxi-

mating non-matching capillary pressure functions πi.

We denote by

ϕi,n(s) =

∫ 1

0

kro,i(a)krw,i(a)

µwkro,i(a) + µokrw,i(a)
π′
i,n(a)da.

We assume furthermore that the sequence (πi,n) is chosen such that

ϕ′
i,n =

kro,ikrw,i

µwkro,i + µokrw,i
π′
i,n → ϕ′

i uniformly in [0, 1] as n→ ∞. (66)

This particularly yields that

ϕi,n → ϕi uniformly on [0, 1] as n→ ∞.

Moreover, the Lipschitz constant Lϕi,n of the function ϕi,n remains uniformly bounded as n tends to ∞
thanks to (66), i.e. there exists a constant Cϕ > 0 such that

Lϕi,n ≤ Cϕ, ∀i ∈ {1, 2}, ∀n ≥ 1.

One denotes by λw,i,n then function defined by

λw,i,n(p) =

∫ p

0

kro,i(π
−1
i,n(a))

µo

µw
krw,i(π

−1
i,n(a)) + kro,i(π

−1
i,n(a))

da, ∀p ∈ R,

then it follows from (65) that

λw,i,n → λw,i uniformly on R as n→ ∞. (67)

For any fixed n, Theorem 2 ensures the existence of a weak solution (sn, Pn) to the approximate
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φi∂tsn − div

(

Ki

(

kro,i(sn)

µo
(∇Pn − ρog) +∇ϕi,n(sn)

))

= 0 in Qi,T ,

−div (Ki (Mi(sn)∇Pn − ζi(sn)g)) = 0 in Qi,T ,

π1,n(s1,n) = π2,n(s2,n) on Γ× (0, T ),

P1,n − λw,1,n(π1,n(s1,n)) = P2,n − λw,2,n(π2,n(s2,n)) on Γ× (0, T ),

∑

i∈{1,2}

Ki

(

kro,i(sn)

µo
(∇Pn − ρog) +∇ϕi,n(sn)

)

· ni = 0 on Γ× (0, T ),

∑

i∈{1,2}

Ki (Mi(sn)∇Pn − ζi(sn)g) · ni = 0 on Γ× (0, T ),

Ki

(

kro,i(sn)

µo
(∇Pn − ρog) +∇ϕi,n(sn)

)

· n = 0 on ∂Ω× (0, T ),

Ki (Mi(sn)∇Pn − ζi(sn)g) · n = 0 on ∂Ω× (0, T ),

sn(·, 0) = s0 in Ω,

(68)

where si,n and Pi,n denote the respective traces of (sn)|Ωi
and (Pn)|Ωi

on Γ× (0, T ).

3.1 Uniform estimates with respect to n and compactness properties

First of all, since for all n ≥ 1, one has sn ∈ L∞(QT ; [0, 1]), there exists s ∈ L∞(QT ; [0, 1]) such that,
up to a subsequence,

sn → s in the L∞(QT ) weak- ⋆ sense. (69)

Thanks to Lemma 2.10 and to the assumption (63) on the sequences (πi,n)n, there exists C (not depending
on n) such that

∫∫

Qi,T

(∇ϕi,n(sn))
2 dxdt ≤ C.

Moreover, since (ϕi,n)n converges uniformly towards ϕi on [0, 1], then (ϕi,n(sn))n is uniformly bounded
in L∞(QT ). Thus up to a subsequence,

ϕi,n(sn) → ϕi(s) weakly in L2((0, T );H1(Ωi)) as n→ ∞. (70)

Let τ, h > 0, then it follows from Lemma 2.10 and (63) that there exists Ch (not depending on n) such
that

∫∫

Qh
i,T−τ

(ϕi,n(sn(·, ·+ τ ))− ϕi,n(sn))
2 dxdt ≤ τCh.

Hence the sequence (ϕi,n(sn))n is relatively compact in L2(Qh
i,T ) for all h > 0, thus also in L2(Qi,T ).

Using Minty’s trick (see e.g. [CGP09]), we obtain that up to a subsequence,

ϕi,n(sn) → ϕi(s) a.e. in Qi,T .

Since ϕ−1
i is continuous, one has, up to a new subsequence

sn → s a.e. in QT . (71)

Thanks to Lemma 2.9 and (63), we can claim that there exists P ∈ L2((0, T );H1(Ωi)) such that

Pn → P weakly in L2((0, T );H1(Ωi)) as n→ ∞. (72)

Thus Pn tends to P also weakly in L2(QT ), hence, since Pn satisfies

∫

Ω

Pn(x, t)dx = 0 for a.e. t ∈ (0, T ),

using again arguments developed in the proof of Proposition 2.12, one obtains for n tending to ∞ that

∫

Ω

P (x, t)dx = 0 for a.e. t ∈ (0, T ).
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3.2 Recovery of the weak formulations (22) and (23)

Let ψ ∈ C∞
c (Ω× [0, T )), then thanks to (69), one has

∫∫

QT

φsn∂tψdxdt→
∫∫

QT

φsn∂tψdxdt as n→ ∞. (73)

Thanks to (70), (71) and (72), one has

lim
n→∞

∑

i∈{1,2}

∫∫

Qi,T

Ki

(

kro,i(sn)

µo
(∇Pn − ρog) −∇ϕi,n(sn)

)

· ∇ψdxdt

=
∑

i∈{1,2}

∫∫

Qi,T

Ki

(

kro,i(s)

µo
(∇P − ρog)−∇ϕi(s)

)

· ∇ψdxdt. (74)

The weak formulation (22) is then a direct consequence of (73) and (74).
The same way, in order to recover (23), it suffices to check that thanks to (71) and (72),

Ki (Mi(sn)∇Pn − ζi(sn)g) → Ki (Mi(s)∇P − ζi(s)g)

weakly in L2(Qi,T ) as n→ ∞.

3.3 Recovery of the transmission conditions on Γ× (0, T )

Since Pn converges weakly towards P in L2((0, T );H1(Ωi)), one has

Pi,n → Pi weakly in L2(Γ× (0, T )) as n→ ∞. (75)

Since the sequence (ϕi,n(sn)) converges (up to a subsequence) to ϕi(s) weakly in L2((0, T );H1(Ωi))
and strongly in L2(Qi,T ) and since Ωi is supposed to be Lipschitz continuous, then for all s ∈ ( 1

2
, 1), the

sequence (ϕi,n(sn)) converges strongly in L
2((0, T );Hs(Ωi)). In particular, the trace ϕi,n(si,n) converges

strongly in L2(Γ× (0, T )) towards ϕi(si), thus almost everywhere up to a new extraction. Since , ϕ−1
i,n ◦ϕi

converges pointwise on [0, 1] towards the identity, then the traces of the saturation si,n also converge on
the interface

si,n → si a.e. on Γ× (0, T ). (76)

We denote by U and V the measurable sets of Γ× (0, T ) defined by

U = {(x, t) ∈ Γ× (0, T ) | {s1(x, t), s2(x, t)} 6= {0, 1}} and V = Uc.

It is worth noticing that V is negligible if minj πj(1) > maxj πj(0).
In the sequel, we denote by

πn := π1,n(s1,n) = π2,n(s2,n). (77)

Lemma 3.1 There exists a measurable function π mapping U to [minj πj(0),maxj πj(1)] such that πn

converges almost everywhere to π on U , and such that

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − λw,1(π) = P2 − λw,2(π).

Proof: Let (x, t) ∈ U such that (s1,n(x, t), s2,n(x, t)) tends to (s1(x, t), s2(x, t)), then there exists
j ∈ {1, 2} such that πn(x, t) = πj,n(sj,n(x, t)) converges towards π(x, t) = πj(s(x, t)) ∈ [πj(0), πj(1)],
ensuring by the way that

π ∈ π̃1(s1) ∩ π̃2(s2).

One has
P1,n − P2,n = λw,1,n(πn)− λw,2,n(πn).

The left hand side converges weakly in L2(Γ × (0, T )) towards P1 − P2, thus also weakly in L2(U).
Thanks to Lemma 2.7, to the almost everywhere convergence on U of πn towards π, and to the uniform
convergence (67) of λw,i,n towards λw,i, the righthand side converges strongly in L2(U) towards λw,1(π)−
λw,2(π). Then the relation

P1 − P2 = λw,1(π)− λw,2(π)

holds in L2(U), thus almost everywhere. �

As it has been already noticed, the set V has to be taken in consideration only if

π := min
i
πi(1) < π := max

i
πi(0). (78)

Now, we assume that (78) is fulfilled. For any η > 0, we denote by Tη the function defined on R by

Tη(c) = min (π + η,max(π − η, c)) =







π − η if c ≤ π − η,
c if c ∈ [π − η, π + η],
π + η if c ≥ π + η.
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Lemma 3.2 There exists π ∈ L∞(V) such that, for all η > 0, up to a subsequence,

Tη(πn) → π in the L∞(V)-weak- ⋆ sense as n→ ∞.

Proof: First, since the sequence (Tη(πn))n is uniformly bounded on V, then there exists πη ∈ L∞(V)
such that, up to a subsequence,

Tη(πn) → πη in the L∞(V)-weak- ⋆ sense as n→ ∞.

It remains to show that πη does not depend on η. Let η1, η2 > 0, then (up to a new subsequence), one
has

Tη1(πn)− Tη2(πn) → πη1 − πη2 .

Let (x, t) ∈ V such that s1,n(x, t) → s1(x, t) and s2,n(x, t) → s2(x, t), with {s1(x, t), s2(x, t)} = {0, 1},
then it follows from (77) that

lim inf
n

πn(x, t) ≥ min
i
πi(1), lim sup

n
πn(x, t) ≤ max

i
πi(0).

As a consequence,
Tη1(πn(x, t))− Tη2(πn(x, t)) → 0 as n→ ∞,

ensuring that πη1(x, t) = πη2(x, t). �

Lemma 3.3 Let π ∈ L∞(V) be the function defined by Lemma 3.2, then, for a.e. (x, t) ∈ V, one has

P1(x, t)− P2(x, t) = λw,1(π(x, t))− λw,2(π(x, t))

Proof: First, thanks to (67), we can claim that

λw,1,n(πn)− λw,2,n(πn) = λw,1(πn)− λw,2(πn) + ε(n),

with limn→∞ ε(n) = 0. Thus, since Pi,n → Pi weakly in L2(V), it is sufficient to show that

λw,1(πn)− λw,2(πn) → λw,1(π)− λw,2(π) weakly in L2(V) as n→ ∞.

Let ψ ∈ L2(V), then, denoting by Z(p) = λw,1(p)− λw,2(p), for all η > 0,

∫∫

V

Z(πn)ψdxdt = An(η) +Bn(η), (79)

where one has

An(η) =

∫∫

V

Z(Tη(πn))ψdxdt,

Bn(η) =

∫∫

V

(Z(πn)− Z(Tη(πn)))ψdxdt.

Fix ε > 0. Since, as stated in Lemma 2.7, Z(p) admits finite limits as p→ ±∞, then there exists R such
that

η > R =⇒ ‖Z − Z ◦ Tη‖∞ ≤ ε,

ensuring that
η > R =⇒ |Bn(η)| ≤ Cε. (80)

We suppose now, without loss of generality, that π1(1) ≤ π2(0). Then for almost all (x, t) ∈ V, s2(x, t) =
0 and s1(x, t) = 1. One has

λw,2(Tη(πn)) =

∫ π2(0)

0

f2(a)da+

∫ Tη(πn)

π2(0)

f2(a)da,

where

fi(p) =
kro,i ◦ π−1

i (p)
µo

µw
krw,i ◦ π−1

2 (p) + kro,i ◦ π−1
i (p)

.

Note that fi(p) = 0 if p ≤ πi(0), and fi(p) = 1 if p ≥ πi(1). For almost all (x, t) ∈ V, one has
lim supn πn(x, t) ≤ π2(0), thus

lim
n→∞

λw,2(Tη(πn(x, t))) =

∫ π2(0)

0

f2(a)da. (81)

Similarly, the relation

λw,1(Tη(πn))− Tη(πn) =

∫ π1(1)

0

(f1(a)− 1)da+

∫ Tη(πn)

π1(1)

(f1(a)− 1)da
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yields that, for almost all (x, t) ∈ V,

lim
n→∞

λw,1(Tη(πn(x, t)))− Tη(πn)(x, t) =

∫ π1(1)

0

(f1(a)− 1)da. (82)

As a consequence of (81), (82) and Lemma 3.2, we obtain that, for all η > 0,

lim
n→∞

An(η) = C

∫∫

V

ψdxdt+

∫∫

V

πψdxdt =

∫∫

V

Z(π)ψdxdt.

Letting now η tend to +∞ provides, thanks to (79) and (80), that

lim
n→∞

∫∫

V

Z(πn)ψdxdt =

∫∫

V

Z(π)ψdxdt.

�

In order to conclude the proof of Theorem 1, we gather the results of Lemmas 3.1, 3.2 and 3.3 in the
following proposition.

Proposition 3.4 There exists a measurable function π mapping Γ× (0, T ) to R such that, almost every-
where on Γ× (0, T ), one has

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − λw,1(π) = P2 − λw,2(π).
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