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Sébastien Verel1,2, Philippe Collard2, and Manuel Clergue2

1 INRIA Lille - Nord Europe, France
2 University of Nice Sophia-Antipolis, France.

Abstract. Choosing the suitable representation, the operators and the values of
the parameters of an evolutionary algorithm is one of the main problems to design
an efficient algorithm for one particular optimization problem. This additional
information to the evolutionary algorithm generally is called the algorithm pa-
rameter, or parameter. This work introduces a new evolutionary algorithm,States
based Evolutionary Algorithm which is able to combine different evolutionary
algorithms with different parameters included different representations in order
to control the parameters and to take the advantage of each possible evolution
algorithm during the optimization process. This paper gives first experimental
arguments of the efficiency of the States based EA.

1 Introduction

The evolutionary algorithms are based on a search population of potential solutions of
an optimisation problem. They iterate selection and replacement operators which favour
the exploitation with stochastic operators which favour the exploration. Evolutionary
Algorithm (EA) is a general framework which has been prove tobe efficient on large
optimisation classes of problems. The efficiency of the EA islied in the ability to man-
age the balance between the exploitation and the exploration of the search space. The
stochastic or selection operators must be chosen and their parameters must be tuned in
order to be efficient on the given optimisation problem. And so, one main difficulty for
an engineer or optimisation researcher is to choose such operator and parameters. More
generally, the representation or coding of solutions either the fitness function is also a
key in the design of EA [7,8]. The problem could be difficult for one representation
or fitness function and not for another one [9]. Generally this additional information
to the evolutionary algorithm is calledalgorithm parameter, or simplyparameter; and
the problem to choose efficient parameterparameter setting. Two ways of parameters
setting are possible: first one is off-line before the run, often calledparameter tuning,
and the second is on-line during the run, calledparameter control. A nice review of this
field of research has been made in the recent work of Loboet al. [5]. The algorithm
proposed in this work will use a parameter control method instead of parameter tuning
method. The parameter of the States based EA will be modified on-line during the run
by taking into account the current state of the search.



2 States based Evolutionary Algorithm

To define the State based EA (SEA), we supposed to haven evolutionary algorithms.
Each algorithmEAi is a stochastic population based operator defined on the search
spacesS: ∀i ∈ [1, n], EAi : 2

S → 2S

In a practical way, eachEAi could have his own representation of solutions, but also
his own selection operator, variation operators (mutationand crossover), and parameter
settings. The EA has only to be defined whatever the population size.

A state of a solution is an integer number between[1, n] added to the solution which
indicates the EA applied on the solution. If different representations and fitness func-
tions are used for eachEAi, we suppose that the fitness of a solution does not change
when the state changes:∀i, j, fi(s) = fj(stateMutij(s)) wherestateMutij is an
operator which changes the state of solutions from i to j. The main principle of the
SEA is to control the population size of eachEAi according to the fitness values of the
actual solutions with a classical selection operator.

The total search population size is constant during the run and given by a parameter.
The number of statesn is also a parameter of the algorithm. The initialization of the
population is an operator which first choose the state of eachsolution, and then apply
the initialisation operator of the solutions state. One iteration of the algorithm is the
succession of the stochastic population based operators: selection, split,EAi, merge,
state mutation, and replacement. Theoperator of selection choose a population from a
population included inS of solutions with their state. It selects the solutions accord-
ing to their fitness but not directly according to their state. Thesplitting operator splits
the population fromS into n sub-populations inSi. Each sub-population is composed
with all the solutions in the same state. Then, the EA corresponding to the solutions
state is applied on each sub-population. The EAs are independent, and does not take
into account the result of the other EAs. The sizes of each sub-populations vary as
they are not defined by a parameter of the algorithm but by the number of solutions in
each state. This stage could be parallelized. Themerging operator is a simple operator
which merges then sub-populations fromSi into one population ofS. After, a oper-
ator of state mutation is applied which possibly change only the state of solutions. If
a solution changes from search spacek to search spacel, the solution is moved with
the state change operatorstateMutationkl. Remember that the fitness of solutions
is maintained by a state change. It is possible to have state mutation operators which
changes the state of solutions in the same way for all solutions in the same states in-
dependently of the solutions in other state. In that case, itis possible to parallelize this
stage. Otherwise, it is not possible when for example, the operator changes the state of a
fixed number of solutions. Theoperator of replacement is the classical operator which
creates a new population for the next iteration according tothe population from EAs
and the old population of solutions. Again, the replacementdoes not take into account
the states of solutions. The algorithm 1 is the algorithm of State based EA.

The selection of the right state is indirect and it is made only with the fitness of the
actual solutions. If the solutions of a given state are better, we hope that the selection
operator choose more often such solutions, and as a consequence, the state population
size should increase. Indirectly, the selection operator puts more solutions in the rights
state.



Algorithm 1 States based evolutionary algorithm.
population← initialisation()
while continue(population) do

selectedPop← selection(population)
(pop1, . . . ,popn)← split(selectedPop)
for all i ∈ [1, n] do

popi← EAi(popi)
end for
mergedPop←merge(pop1, . . . ,popn)
child← stateMutation(mergedPop)
population← replace(child, population)

end while

3 Experimental study

To conduct experimental study of the SEA, we test the algorithm on two classical prob-
lems in EA:OneMax andlong k-path problems. Those problems were used in recent
works of Fialho et al. [1] [2] which propose a parameters control methods, the average
and the extreme Dynamic Multi-Bandits (resp. avg-DMAB and ex-DMAB). It allows
the comparison of performances between the SEA and the exDMAB. The authors takes
(1+λ)−EA with λ = 50. To compare to this work, we use evolution algorithms without
crossover, and using one of the same four mutation operators: the standard1/l bit-flip
operator (every bit is flipped with the binomial distribution of parameter1/l wherel is
the length of the bit-strings), and the1−bit, 3−bit, and5−bit mutation operators (the
b−bit mutation flips exactlyb bits, uniformly selected in the parents). So there are four
evolutionary algorithms denotedEAi i = 1..4. The population size ofEAi is λi. At
each iteration ofEAi, the best solution is selected from theλi solutions in the parent
population. From this best solution,λi solutions are created using the mutation operator.
The generational replacement with elitism is used: all the offspring solutions replace the
parent ones keeping the best solution founded in the parent population. ThoseEAi are
closed to(1 + λ)−EA.

The SEA controls the population size of the fourEAi. The total population size is
λ = λ1+λ2+λ3+λ4 = 50. The selection method used is tournament selection of size
t, and the replacement method is generational with elitism. The state mutation operator
changes a state at random with a ratep. EachEAi is running with the number of gen-
erationg. The meta-parameters of the SEA has been computed off-line by a Design Of
Experiments campaign. The tournament selection is used forthe state selection operator
with the tournament sizet ∈ {2, 3, 5}. The mutation operator changes the state of solu-
tions randomly with the state mutation ratep ∈ {0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.4}.
The number of generations of eachEAi is g ∈ {1, 5, 10, 25, 50, 100, 200, 400}.

3.1 One Max problem

The oneMax problem, the ”drosophila” of evolutionary computation, is a unimodal
problem defined on binary strings of sizel. The fitness is the number of ”1” in the



bit-string. In the experiments, the length of the bit strings is l = 104. In all reported
experiments, the initial solution is set to(0, . . . , 0).

The table 1 shows the performances of the SEA compared to the ones of extreme
and average DMAB (ex-DMAB and avg-DMAB) and oracle strategyreported from
[1]. The performance of SEA are better than the average-DMABand worst than the
extreme-DMAB according to the non-parametric tests of Wilcoxon and Kolmogorov-
Smirnov (p-values are under10−7). The figure 3 shows a typical example of dynamics
of the SEA. Due to the difference of the number of iteration between the200 runs, we
show the run which gives the median performance (5891 generations). At the beginning,
the largest sub-population quickly becomes the one of the5-bit mutation operator. This
operator is the best one at this stage. Around the generation3600, the population size
of the 1-bit mutation operator dominates the other ones. We can notice that the3-bit
mutation operator never able to dominate the others. The3-bit mutation is the operator
with best average fitness gain for fitness values between6580 and8400. Nevertheless,
the fitness gain of the5 and3 bit mutations are close. The difference of performance
between SEA and ex-DMAB could be explain by the relative lackof the3 bit mutation
operator. At the end, the1/l bit-flip mutation has a population size around those of the
1-bit mutation. Indeed, this two operators have nearly the fitness gain for high fitness
value.

Table 1. Average and standard deviation number of generations to theoptimal solution
out of200 independent (for SEA) runs using the optimal meta-parameters

Algo. Configuration Gens to Opt. (avgsd)
SEA t = 2 p = 0.05 g = 25 6076804

avg-DMAB C = 10 γ = 25 W = 50 7727642
Ex-DMAB C = 1 γ = 250 W = 50 5467513

Oracle strategy 5069292

The figure 2 allows to study the robustness of the meta-parameters of the SEA. It
shows the average performances of the SEA computed off-lineduring the Design Of
Experiments campaign according to the tournament sizet, the state mutation ratep,
and the number of generationsg. The average performance is relatively independent of
the tournament size. The number of generations and the statemutation rate have more
impact on it. Extreme values of the number of generations (1, 200, and400) do not give
good performances. According to the state mutation rate, the performances increases
till p around0.05 or 0.1, and decreases after0.1. For the oneMax problem withl = 104

robust parameters seems to bet ∈ [2, 5], p ∈ [0.05, 0.1], andg ∈ [25, 50]. In this case,
the window of robust meta-parameters is quite large.

3.2 Long k-path problem

The long path problem [4] has been introduced to show that a problem instance can be
difficult to solve for a hill-climber-like heuristic even ifthe search space is unimodal,
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Fig. 1. Example of run of the SEA witht = 2, p = 0.05 andg = 25 on the oneMax
problem: fitness, the relative number of solutions in each states are given. The chosen
example gives the median performance (gens to opt5891).

i.e. a fitness landscape where the global optima is the single local optima. For such a
problem, a hill-climber guarantees to reach the global optimum, but the length of the
path to get it is exponential in the dimension of the search space. As a consequence, a
hill-climbing-based heuristic cannot solve the problem inpolynomial time. The ‘path
length’ takes then place in the rank of problem difficulty, onthe same level as multi-
modality, ruggedness, deceptivity, etc. The long path problem [10] [3] can be solved in
a polynomial expected amount of time for a(1 + 1)−EA which is able to mutate more
than one bit at a time. This(1 + 1)−EA can take some shortcuts on the outside of the
path so that it makes the computation more efficient.

Like in the work of Fialho, an additional mutation operator,the 3/l bit-flip, has
been added to the operator set. The table 2 shows the performances of the SEA and ex-
DMAB. The minimum and the median of number generations to optimum over200 runs
are presented. The performances for all algorithms are highly variables from one sample
to another. We perform the two non-parametric tests of Wilcoxon (W) and Kolmogorov-
Smirnov (KS). Forl = 43, the performances of ex-DMAB are better according to
KS with confidence1%, but only at confidence5% for W test. Forl = 49, the two
algorithms obtain similar results according both test W andKS. For the problems with
l = 55 andl = 61, the SEA outperforms the ex-DMAB according the statisticaltests (p-
values are under10−4). It is difficult to have a clear conclusion from those experiments
due to the large randomness of the results, but it seems that SEA is able to have better
performances than extreme value based DMAB on the largest instance of long3-path
problems.
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Fig. 2. Average performance of the SEA on the oneMax problem withl = 104 com-
puted off-line during the Design Of Experiments campaign according to the state mu-
tation ratep, the number of generationg, and tournament sizet. From top to bottom
tournament sizet = 2, 3, 5. Average on50 independent runs.

Table 2. Minimum and median number of generations to the optimal solution out of
200 independent runs using the optimal meta-parameters

l Algo. Configuration Gens to Opt. (min−median)
43 SEA t = 2 p = 0.15 g = 10 20− 3151

Ex-DMAB C = 50 γ = 50 W = 500 11− 2216

Oracle strategy 2− 1202

49 SEA t = 2 p = 0.4 g = 5 5− 3755

Ex-DMAB C = 100 γ = 500 W = 500 17− 3244

Oracle strategy 19− 2668

55 SEA t = 2 p = 0.1 g = 5 51− 4126

Ex-DMAB C = 100 γ = 100 W = 500 161− 6190

Oracle strategy 45− 3224

61 SEA t = 2 p = 0.1 g = 50 59− 7950

Ex-DMAB C = 50 γ = 25 W = 500 80− 10253

Oracle strategy 8− 5408



The figure 3 displays a typical example of run of the SEA on the long3-path with
l = 55. Again, we choose to show the one with the median performance(4126 gen-
erations). The search dynamics on long path problems is different from the one on the
oneMax problem. There is no large stage where the number of solution in one state
dominates the others. Even the larger sub-population size variation is not regular, and
draws a lot of random jumps. Those stochastic variations of sub-population size seem
to appear all along the search process, there is no difference between the beginning and
the end of the run. We can notice that the sub-population of the 1/l bit-flip mutation
operator is more often the larger one. For this typical run, the1/l bit-flip mutation is
the larger one during60% of the total number of generation, the1-bit mutation21%
of times, the3-bit mutation12%, the3/l bit-flip mutation5%, and the less used is the
5-bit mutation with1% of the total number of generations. For the most used mutation
operator, the sub-population size is around55% of the total number of solutionsλ. It
also means that the other mutations are always applied during the run.
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Fig. 3. Example of run of the SEA witht = 2, p = 0.1 andg = 5 on the long3-path
problem withl = 55: fitness, the relative number of solutions in each states aregiven.
The chosen example gives the median performance (gens to opt4126).

The robustness of the meta-parameters of the SEA is also study for the long path
problems. The figure 2 shows the median generation to reach the global optimum com-
puted off-line during the Design Of Experiments campaign according to the state muta-
tion ratep, and the number of generationsg. Only the tournament sizet = 2 is shown.
The similar performances are obtained for tournament size3 and5. A larger number
of generation for theEAi gives bad performances, andg must be lower than100. For
this problemg = 1 can be used in contrary of the oneMax problem. The state mutation



rate seems to be more robust for this problem. Even if a rate around0.1 improves the
performances of the SEA. The large set of parameters values gives good performances.
The meta-parameters of the SEA are more robust for the long path problems than for
the oneMax problem.
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Fig. 4. Median generation (over50 independent runs) to optimal solution on the long 3-
path problems computed off-line during the Design Of Experiments campaign accord-
ing to the state mutation rate. Tournament size ist = 2. From top-left to bottom-right
l = 43, 49, 55, 61.

4 Discussion

In this paper we have presented the State based EA (SEA) as a general framework
which allows to choose efficient parameter setting on-line during the run. Most often,
such approaches work with measure of performance on the operator used as evolvability
of solution or diversity of the population. The SEA proposesa new method which uses
directly the distribution of fitness of solutions produced by the operator to implicitly
select the parameters. Nevertheless, it is rather an adaptive method than an auto-adaptive
method because it manages two kind of dynamics: one to evolvethe solutions, and
one to evolve the parameters of the first ones. The rate of evolution of EA parameters



is different than those of the meta-parameters. A crucial point is to well adjust the
two dynamics in order they work in concordance. Like the bandit methods used in
previous works, the SEA uses an exploitation component (theglobal selection) and
an exploration component (the state mutation). The way to manage the computational
cost,i.e. the number of evaluations, between the operators (or evolutionary algorithms)
is different. In the AOS methods, one operator (or optimization algorithm) is used at
each generation, and the method controls the number of generation for each operator
during the run. In the SEA, several evolutionary algorithmscan be used at the same
time, and the method controls the sub-population size of each algorithm. The SEA is
more parallel and the AOS more sequential.

The performance of the SEA should clearly depends on the balance between the
exploitation and the exploration components. So, theoretical works must be done to
analyse and coordinate this balance. New experimental studies must be conducted on
others problems to understand the advantageous and the limits the SEA. The oneMax
and long path problems are unimodal problems where the population based algorithms
does not perform better than algorithms like(1 + λ)-ES. So, next step will be study
the performance of the SEA on problems such as SAT problems, and then compare the
SEA with the extreme Compass Dynamic Multi-Armed Bandit [6].
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