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Manipulation of Documented Objects by a Walking Humanoid Robot

Sébastien Dalibard, Alireza Nakhaei, Florent Lamiraux and Jean-Paul Laumond

Abstract— This paper deals with manipulation task planning
for a humanoid robot while stepping. It introduces the concept
of “documented” objects, i.e. objects that provide information
on how to manipulate them. The planning phase is decoupled
into two parts. First a random motion planner uses the
documentation of the object to quickly plan a collision free
motion for a simplified model of the robot manipulating the
object. Then an inverse kinematics solver animates the whole
set of the robot’s degrees of freedom by converting the simplified
path into time parametrized tasks. Several examples show the
generalization of the method.

I. INTRODUCTION

Humanoid robots are highly redundant and complex sys-

tems. As such, they are a very challenging field of mo-

tion planning research: while their many degrees of free-

dom (DoFs) provide them with great capacities for both

navigation and manipulation, they make the computational

complexity of classic motion planners explode.

Indeed, the complexity of motion planning is strongly

related to the dimension of the spaces to explore. Beyond

the intrinsic difficulty due to a humanoid robot’s many DoFs,

two factors account for a growth of complexity:

• the manipulation of an object by the robot, since the

DoFs of that object must also be taken into account,

• the possibility -or necessity- of stepping during task

execution. The positions of the footsteps then become

new variables that require planning.

However, in many everyday tasks, a lot of planning time

can be avoided by the use of a little knowledge about the

robot or the environment. When opening a door or picking

an object on a table for instance, the way the robot has to

execute its manipulation task follows a known pattern, and

often the exploration of the configuration space of the system

(robot, object) does not need to be exhaustive.

In addition, for simple tasks, the collision avoidance com-

putation can be done at a simplified level, without including

all the DoFs of a humanoid robot. It is a classic assumption

for navigation planning in graphic animation or robotics

([20], [25]).

This paper proposes a framework for manipulation task

planning with steps for humanoid robots based on the

simplifying hypotheses that

• the robot is provided with knowledge on how to ma-

nipulate objects,
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Fig. 1. Humanoid robot manipulating a door with both hands while
stepping.

• collision avoidance can be computed on a simplified

model of the robot.

II. RELATED WORK AND CONTRIBUTION

Our work is based on two fields of robotics research:

first the inverse kinematics approach to humanoid path

planning and second randomized motion planning and more

specifically its application to manipulation planning.

During the last few years, random motion planning and

inverse kinematics techniques have already been coupled

successfully on manipulator and humanoid motion planning

([23], [3], [5]). These studies all present generic, probabilistic

complete, task motion planners. To our knowledge, they are

not suited to plan for steps for a humanoid robot.

A. Whole-Body Task Motion Planning

The classic formulation of inverse kinematics is to com-

pute a joint motion to achieve a desired end-effector pose.

When dealing with a humanoid robot, i.e. a highly redundant

system, one wants to take advantage of this redundancy by

specifying multiple tasks, potentially with different priorities.

This problem has been widely studied in robotics planning

and control literature, and many jacobian-based solutions

have been proposed, for example: [19], [21], [2], [12]. Step

generation itself can be part of such a local optimization

routine, as presented in [10]. The main limitation of these

methods is the difficulty in using them in the presence

of obstacles. Local collision avoidance can be seen as a

task constraint [8], but is often very costly. [5] presents



a comparison between local collision avoidance and global

motion planning for humanoid whole-body task planning. In

our work, we will use a jacobian-based framework for whole-

body motion generation without dealing with obstacles. The

collision avoidance will be guaranteed by a first process of

randomized motion planning.

B. Manipulation Planning

In the past few decades, successful works have tried to

tackle the general problem of motion planning with random-

ized algorithms. Following the configuration space paradigm

[18], sampling ([11]) and diffusion ([13]) techniques have

been proposed, the most famous probably being PRM and

RRT. An overview of motion planning methods can be found

in [4], [14] and [16].

Powerful as they are, these techniques are not perfectly

suited for manipulation planning. A robot manipulating an

object is subject to constraints. In terms of configuration

space planning, these constraints mean that the path to find

lies in a sub-manifold of null volume of the total space.

Thus, naive sampling will never generate configurations on

that sub-manifold, and will fail to solve any manipulation

problem. A lot of work has been done to overcome that

issue in a general way, see: [1], [17], [22], [24], [6] for good

examples.

In our work, we will not try to tackle the manipulation

problem in its general formulation. Instead, we will assume

that when manipulating an object, the robot is provided with

some information on how to manipulate it. This information

can be, for instance, the hands the robot has to use or

the position from which the robot should manipulate the

object. These instructions will be, formally, projectors in the

configuration space of the system (robot,object). We will not

focus on the problem of grasp planning, and will assume

that our local inverse kinematics solver generates adequate

grasping configurations. This work does not deal either with

the dynamic door opening problem, as it has been intensively

studied in literature, but only geometric motion planning.

C. Contribution

This paper presents a software architecture for manipula-

tion planning based on the notion of “documented” object,

i.e. objects that come with a effective user manual for the

robot to manipulate them. The planner computes a path for

a simplified model of the robot manipulating the object, then

animates all the DoFs of the robot by converting this path

into time parametrized tasks and passing them to a inverse

kinematic solver. This architecture is similar to what was

presented in [27], but generalizes it to any manipulation task.

D. Paper Outline

Next sections will detail the different steps of our method,

using the example of a robot going through a door. Section

III is dedicated to the manipulation planner and section IV

to the inverse kinematics solver. Section V presents several

examples where our planner is used to manipulate rotating

or translating objects.

III. MANIPULATION OF “DOCUMENTED”

OBJECTS

This section describes the first component of our task

planner. It consists in computing a collision free motion

for a system composed by both a simplified model of the

humanoid robot and the manipulated object. Depending on

the object and the state of the robot, several constraints can

be applied to the system. These constraints may vary along

the execution of a single task.

For instance to pass through a door without releasing it

during its motion, one has to:

1) Grab it with one hand,

2) Open the door,

3) Grab the handle on the other side with the other hand,

4) Pass through to the other side while closing the door.

The graph of possible transitions between these constraints

is shown on Fig. 2.

Away
from Door

Hold Door
with Right
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with Both

Hands
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with Left Hand

Fig. 2. Graph of successive constraints when opening and closing a door
using two hands.

One or a family of sub-manifolds in the system con-

figuration space correspond to each of these constraints.

A transition between two constraints is the intersection of

such sub-manifolds. A graph such as Fig. 2, as well as the

operational expression of the constraints, i.e. the projectors

on the corresponding sub-manifolds in the configuration

space, are an input of the planner. The information on how

to manipulate the object is in sense a user manual for the

robot. From now, we will refer to objects coming with such

a manual as “documented objects”.

Fig. 3 shows configuration examples corresponding to the

different constraints of the door opening problem. In this

figure, the simplified model of the robot is a blue box

that moves in a 2D plane, with three DoFs (x, y, θ). The

workspaces of its left and right hands are approximated

by circles, shown as red dashed lines in the figures. The

projector corresponding to the constraint “Hold Door with

Right Hand”, for instance (Fig. 3,b), ensures that the outer

handle of the door lies within the circle corresponding to the

right hand workspace.



Fig. 3. Example of constraints applied to the system when passing through
a door. The simplified model of the robot is a blue box with three DoFs:
(x, y, θ). The workspaces of its left and right hands are approximated by
circles and are shown in red dashed lines. Fig. a represents the constraint
“Away from Door”, b is “Hold Door with Right Hand”, c is “Hold Door
with Both Hands” and d is “Hold Door with Left Hand”.

Given the documentation of an object, we plan a path for

the system (robot,object) using randomized motion planning

techniques.

Adaptation of randomized planning

Randomized motion planning techniques have been widely

investigated and used during the last decades. They aim at

capturing the topology of a configuration space by sampling

collision-free configurations and then connecting them. The

family of algorithms on which we have based our planner is

Rapidly exploring Random Trees (RRT). Some adjustments

had to be made to use that technique in our framework.

A. Representation of the system

The system we plan a path for is composed of a simplified

model of the robot and a manipulated object. The state of

the system can be described by the DoFs of both and an

extra discrete DoF that represents the constraint applied to

the system. For instance on Fig. 2 that extra DoF can take

four different discrete values, each one corresponding to a

node of the graph.

Every time a configuration is created or modified, the

projector corresponding to that extra DoF is called and

changes the other DoFs of the system accordingly.

B. Interpolation between two configurations

Since a configuration contains the constraint the system

must respect, not every connection is possible between

configurations, and this for two possible reasons:

• The connection is not authorized by the documentation.

Recalling the example of Fig. 2, it is not possible to

directly connect a configuration where the robot does

not hold the door to one where it holds it with both

hands.

• The manipulated object cannot move if the robot does

not hold it. Random sampling will generate configura-

tions of the system with various values for the object

DoFs. However, a configuration where the robot does

not hold the object can not be directly linked to one

with a different set of DoF for the object.

When a direct connection is possible between two con-

figurations with different extra DoFs, the constraint to apply

to any interpolated configuration is the weakest of the two

constraints at the ends of the direct path. For instance, when

linking a configuration where the robot does not hold the

object to one where it holds it with its right hand, the linear

path connecting them is made of configurations where the

robot does not hold the object.

C. Distance

An RRT algorithm is very sensible to the metric used in the

configuration space. The distance between two collision free

configurations must reflect the likelihood of these configura-

tions seeing each other, i.e. the straight line connecting them

is collision free as well. In our case, the distance function we

use should also reflect the fact that this straight line exists

regarding the constraints. If no direct path exists between two

configurations (because of one of the reasons mentioned in

the previous paragraph), the distance function returns +∞.

D. Constrained sampling

As said previously, a constraint on the system

(robot,object) is formally a sub-manifold of the configuration

space. Switching from a constraint to another requires to

sample a configuration at the intersection of such sub-

manifolds.

Still using the example of Fig. 2, to go from a con-

figuration q1 where the robot does not hold the door to

one q2 where it holds it with its right hand, the motion

planner has to generate a configuration where the door

does not move relatively to q1 and the constraint “Hold

the door with Right Hand” is activated. The probability of

sampling such a configuration is 0. To overcome this issue,

we do not uniformly sample the configuration space. Instead,

we specifically sample the intersections of sub-manifolds

corresponding to different constraints. The sub-manifolds

of interest correspond to the configurations already in the

tree. This specific sampling uses the documentation of the

manipulated object as well.

To summarize, the documentation of the object consists

in:

1) a method that takes as input a model of the robot and

builds a system (robot,object,constraint)

2) the projectors in the system configuration space corre-

sponding to all possible constraints

3) the graph of possible transitions between constraints

Given the documentation, a classic motion planner can make

the adjustments detailed above. Fig. 4 shows a solution path



Fig. 4. Solution path for a 2-D box computed by an RRT algorithm to pass through a door. The box comes near the door, attaches its right side to the
outer handle, changes sides, attaches its left side to the inner handle, and closes the door.

found for a 2-D box model of the robot passing through a

door. This path was planned by an RRT algorithm applied

on the system (box,door,constraint).

IV. INVERSE KINEMATICS WITH STEPPING

Once a path has been planned for the simplified model of

the robot and the manipulated object, we need to convert it

into a whole-body trajectory for the humanoid robot. To do

so, we convert the configurations along that kinematic path

into time parametrized tasks.

The simplified model of the robot we use is a bounding

box around the robot and small spheres that approximate its

hands workspaces. The sizes of the box and spheres ensure

that no collision will appear once we animate the path with

all the joint motions.

A. Generalized Inverse Kinematics Solver

To animate the path found in the previous section, we use

a prioritized inverse kinematic solver that merges dynamic

walk generation [7] with operational space task completion.

It was first presented in [26], a exhaustive description of it

can be found in [9].

B. Footsteps and Stability Constraints

The path of the bounding box around the robot is con-

verted into a stack of footprints. The distance between two

footprints, as well as the duration of each step depend on

the controller parameters and capabilities of the humanoid

robot. Dynamically stable walking is ensured by tasks

1) on the position of the center of mass of the robot,

2) on the position and orientation of the non-support foot.

These tasks are given the highest priority since they involve

the equilibrium of the robot and can not be hindered by any

other motion.

C. Hand Constraints

For every configuration along the first kinematic path, the

set of constraints to apply to the hands of the robot depends

on:

• the parameters of the door (axis position, opening angle,

handle position on the door)

• the value of the extra DoF indicating the constraint

applied to the simplified model of the robot

The time parametrization of these constraints is directly

derived from that of the steps.

Once the set of time parametrized constraints is built, we

pass it to the generalized inverse kinematic solver, which

produces a whole-body, dynamically stable motion. Fig. 5

shows a whole-body path where the robot goes through the

door.

As this example is the result of the parts presented in the

two last sections, let us recall that the planner produced this

motion with the following inputs:

• Initial and final configurations of the system

(robot,object) (door closed)

• Documentation of the door

V. EXAMPLES

This section presents experimental results of our planner

in simulation using the Toyota Partner Humanoid robot. Our

algorithm uses KineoWorksTM([15]) implementation of RRT

algorithm and collision checking. All the simulations were

performed on a 2.13 GHz Intel Core 2 Duo PC with 2 GB

RAM.

The contribution of this paper is the introduction of the

formalism of “documented” objects, and its use in humanoid

manipulation planning. Therefore, we chose not to focus on

computation time evaluation on the examples presented here.

Note that the implementation of the inverse kinematics solver

runs in real time on the robot, so that part is not an issue

as far as computation time is concerned. The manipulation



Fig. 5. Whole-body dynamically stable path for a humanoid robot passing through a door.

planning part took from tens of seconds to a few minutes for

the problems presented here, depending on the difficulty of

each problem.

A. Open and Close a Door

Fig. 5 shows the example of the robot opening and closing

a door with both hands, with constraints as specified in

section III. The only obstacle avoidance in this first example

is between the robot and the door, and the robot and the

walls. The two following examples are more sophisticated

versions of this problem.
1) With obstacles in the way of the door: Fig. 6 shows

the same example, but this time a chair is preventing the

robot from opening the door wide. The random manipulation

planner finds a narrower path, where the robot is very close

to the wall and the door. The documentation of the door is

the same as in the previous example.

Fig. 6. Opening and closing a door with two hands. A chair stands in the
way of the door, so the robot has to go through a narrow passage between
the door and the wall.

2) Using only One Hand: In this example (Fig. 7), the

robot holds an object in its left hand. The documentation

used by the robot is different from the previous one, since

the robot can only use its right hand.

The new set of constraints is:

1) Robot away from door

2) Hold inner handle with right hand

3) Hold outer handle with right hand

The set of possible transitions is: (1) ↔ (2), (1) ↔ (3).
The robot has to open the door, release it, go on the other

side and close the door with the same hand. Again, this

motion was produced with the same framework, with the

new documentation as an input.

Fig. 7. Opening and closing a door with only one hand. The robot has an
object in its left hand.

B. Open and Close a Sliding Door

Fig 8 shows an example similar to the first one, but where

the robot has to go through a sliding door. The robot can

use both its hands here. The set of constraints is the same

as the first door example, except that the DoF of the door is

in translation instead of rotation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a framework for humanoid

robot manipulation planning while stepping. The approach

tries to break down the computational complexity of the

problem by decoupling it into two parts:



Fig. 8. Opening and closing a sliding door with both hands.

• a simplified manipulation problem, with an input doc-

umentation of the object given to the robot,

• whole-body motion generation by an inverse kinematics

solver

We have tried that approach on a few examples of manipu-

lation where stepping is needed, and it produced successful

and realistic results.

Some future work could be envisaged, first would be to

try this approach on other manipulation tasks, for instance

on free-flyer objects coming with documentation. To do so,

we only have to produce the objects documentation, and use

them in our existing framework.

The second and more important point is the fact that for

now, we do not check for collisions at the whole-body motion

generation step. In our examples, since our representation

of the simplified model of the robot was well suited, no

collisions appeared, but we do not have a formal guarantee

that it will always be the case. It could be worth investigating

a hybrid approach between probabilistic complete whole-

body planning approaches, such as [3], [5], and our work: if a

collision appears when generating the whole-body motion, a

local deformation of the path is planned using a probabilistic

whole-body motion planner.
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