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In THz QWIPs, quantum well impact ionization rules electronic transport between two different
regimes separated by huge shifts in the current and negative differential resistivity behavior. This
paper is dedicated to give some insight into the microscopic transport physical mechanism. The
investigation of bias versus current measurements reveals that the first two wells of the structure
become partially drained, and that second well enters the ionized regime before the first one. Both
many body effects and a careful model of the contact have to be considered to account for these
features. The use of this mechanism can lead to the design of very high gain fast THz detectors.

PACS numbers:

I. INTRODUCTION

In the electromagnetic spectrum, the terahertz region
(1-10 THz) is under investigation by both optics and elec-
tronics communities1,2. In spite of numerous effort on the
subject, there is still a need for fast and high sensitive de-
tectors. Widely used thermal detectors cannot keep up
with the speed of THz quantum cascade lasers3,4. Quan-
tum Well Infrared Photodetectors (QWIPs), although
traditionally used in the near or mid-infrared regions,
have been recently designed to answer this need5. Due to
the lower transition energy, unprecedented consequences
of impact ionization are appearing6, switching the struc-
ture from a ’down’ resistive state to an ’up’ conductive
state with a current discontinuity up to five orders of
magnitude7. The aim of this paper is to refine our initial
analysis and give practical insight into the phenomenon.
The studied sample is a THz QWIP structure

(9.7THz) as in Ref. 5. It contains 40 GaAs quantum
wells (QWs) of thickness Lw = 11.9 nm separated by
wide Al0.05Ga0.95As barriers, with Lb = 55.2 nm. Each
QW is doped with a nominal value of n2D = 1011 cm−2,
and is designed to put in resonance both the second
bound state and the bottom of the conduction band in
the barriers8. The structure is embedded between two
contacts doped up to 1017 cm−3. The performances of
this detector (referred as v265) were studied by Luo et

al.5 between 4 and 23K.
Figure 1 shows I(v) and V (i) dark characteristics mea-

sured at a temperature of 4K. On the whole I(v) curve,
the bias is swept upwards then downwards, and the
threshold values for the shifting up (0.84V) is higher
than the one for the shifting down (0.65V). The hystere-
sis pattern is shown more clearly in the expanded scale
plot. While increasing the bias from zero, the current
is first dominated by interwell tunneling. Temperature

and bias are too low to allow electrons to flow through
the continuum of states above the barriers. These chan-
nels are opened as the bias goes up, until the threshold
value of 0.84V is reached. At this value, electrons in-
jected at the contact Fermi level will have enough energy
to ionize bound electrons from the wells by Coulomb in-
teraction. A rough approximation will locate the hot
electrons at an energy ∆E above the top of the barriers,
where ∆E = E2 − E1 ∼ 29meV is the transition energy
between bound and resonant levels in the QW. Each ex-
tracted electron will leave an unscreened donor impurity
in the well, resulting in a positive charge and an electric
field discontinuity. At this stage the I(v) and V (i) curves
show different behaviors. If bias is imposed, the energy
difference between the two contacts is clamped. The only
way for the structure to satisfy both constraints -bias and
field discontinuity- is to breakdown the upstream barrier
of the ionized well. This leads to a large shift of the
current and the switching of the sample from the ’down’
to the ’up’ regime, where the current flows through the
continuum of states over the barriers. On the contrary,
if current is imposed, the injection field is set to a fixed
value. The field discontinuity will simply lower the down-
stream field, and the whole ’S’ pattern will be observed.

Several experimental features should be noticed. The
relative current step in V (i) measurements is 10−4. The
threshold bias stretches over the whole instability area
from 0.80V to 0.87V. Secondly both the positions,
around (0.85 V, 3 × 10−6 A), (0.70V, 5 × 10−5 A) and
(0.75 V, 10−3 A), and the shapes of the three fluctua-
tion areas are reproducible. These fluctuations will be
explained in a future work.

In reference 7, a qualitative interpretation shows that
impact ionization happens in the first wells of the struc-
ture. Two main microscopic pieces of evidence advocate
for this statement. The wells in this structure are in



2

FIG. 1: I(v) (dashed) and V (i) (plain) dark measurements
for positive bias at T = 4K, for upwards and downwards
sweeps. Top: whole curves. Bottom: zoom onto the hysteresis
pattern. The current discontinuity reaches here three orders
of magnitude, from 2.4× 10−6 to 4.7× 10−3 A.

under-populated regimes. There are fewer electrons than
positive donors in the wells, which means the downstream
electric field is lower than the upstream one. Hence the
first wells of the structure sustain the highest fields (i.e.
energy drops), and impact ionization is more likely to
occur there. Moreover from the current level where the
transition stands, an energy drop above the first period
of the structure can be calculated: it is comparable to
∆E. Therefore the first wells after the contact are those
involved in the regime transition.

The model presented in this work finds its justifica-
tion in the following fact. A macroscopic V (i) curve car-
ries all the information about a phenomenon happening
above a few wells. In order to get a better insight into the
physics at stake, we translated this information to a mi-
croscopic scale. Two equations can describe the behavior
of one well. The field discontinuity D between upstream

and downstream fields is linked to the well population
by the Poisson equation (1). The conservation equation
(2) states that in steady state the current of particles Jin
that flows into the well equals Jout that flows out of it:

D = Fdown − Fup =
−e(1− n)Ndop

ε
(1)

dn

dt
= 0

= Jin(Fup, Fdown, n)− Jout(Fup, Fdown, n) (2)

Ndop is the number of Si donors in a well, e the el-
ementary charge, ǫ the dielectric permittivity, Fup and
Fdown the upstream and downstream electric fields, and
n = N/Ndop the relative well population (n = 1 when
the well is neutral). These three variables D, Fup and
n linked by two equations can be merged into one law:
D = f(Fup). This discontinuity law will be the object of
interest in the rest of this paper.
For a given current I flowing through the structure,

it is possible to calculate the injection field F0(I) as de-
scribed in section II. The D = f(Fup) law iteratively
applied enables to calculate all the fields Fk along the
structure, and their sum gives the bias value. Let g
be the unknown function that gives Fdown = g(Fup)

(g(x) = f(x) + x), thus Fk = g(k)(F0). We solve the
functional equation:

Vexp(I) = Lb ×

40∑

k=0

g(k)(F0(I)) (3)

It is impossible to solve (3) analytically because
Vexp(I) is extracted from experimental data. Therefore
section III will be dedicated to the discontinuity law
D = f(Fup) through the analysis of its impact on the
Vexp(I) curve. In section IV we will present and discuss
the solution obtained by numerical optimization.

II. MODELING THE CONTACT

In THz QWIPs, the transition energy is around
10meV, a value comparable to the corrections introduced
by many-body interactions. Guo et al. showed that pho-
toresponse peak positions cannot be explained without
including their contribution9. As shown in equation (2),
an accurate model linking the current and the injection
field is required. Therefore it is critical to develop a good
model of the band structure close to the contact. An-
other difficulty arises from the nature of the problem:
while the contact is described by a 3D model, the quan-
tum confinement in the wells is treated with a 2D one.
This section is organized as follows. First we will deter-
mine the band structure at zero bias, by assuming that all
the band structure rearrangements happen upon the first
well. The criterion is that no total electric charge shall
be present over the whole contact/first-well area. This
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will give the value F0(I)|0V of the injection field when
no current flows through the structure. Subsequently we
shall calculate the band structure and the current for dif-
ferent values of F0, and use these points to interpolate
the whole F0(I) law.
The effective mass m∗(z) and parabolic band approx-

imations lead to the following Schrödinger equation for
the electron:

{
−
~
2

2

∂

∂z

[
1

m∗(z)

∂

∂z

]
+V (z)

}
ϕl (z) = ǫlϕl (z) (4)

where the total electron wave function is written as
a product of a plane wave parallel to the layers, and a
one-dimensional envelope function in the epitaxy growth
direction z: ψl,k//

(
r//, z

)
= eik//.r//ϕl (z). The energy of

the electron is El,k//
= ~

2k2///2m
∗ + ǫl, where l is the

subband index. V (z) is the bottom of the conduction
band. The difference between 3D and 2D models lies in
the way the electron density n(z) is calculated. Assuming
a Fermi-Dirac distribution, we write for the contact:

n3D(z) =
1

2π

(
2m∗

~2

)3/2 ∫ V (z)

∞

√
E − V (z)dE

1 + exp
(

E−EF

kBT

) (5)

with T the temperature and EF the Fermi level. Be-
yond the middle of the first barrier, the density is con-
sidered two-dimensional:

n2D(z) =
m∗kBT

π~2
log

(
1 + exp

(
EF − ǫl
kBT

))
|ϕl (z)|

2

(6)
Three contributions are taken for the potential term:

V (z) = VQW (z) + VH (z) + VXC (z). VQW (z) repre-
sents the potential of the quantum wells. VH (z) is the
Hartree potential that accounts for the Coulomb interac-
tion between electrons and ionized donors, and is calcu-
lated thanks to the Poisson equation:

∂2

∂z2
VH (z) =

e2

ε
(Nd (z)− n (z)) (7)

where ε is the dielectric constant and Nd (z) the doping
density. VXC (z) accounts for the fermionic nature of the
electrons, and the many-body wave function should be
written as a Slater determinant: theoretically, it cannot
be factorized in one-electron wave functions. We use the
local density approximation (LDA)10 to express it:

VXC (z) =
e2

4π2εaB (z) rs (z)

(
9π

4

)1/3

×

{
1 + 0.0545rs (z) log

[
1 +

11.4

rs (z)

]} (8)

with aB = ε~2/e2m∗(z) is the effective Bohr radius and

rs (z) =
{
(3/4π)(a3Bn(z))

−1
}1/3

. The charge neutrality
condition gives the last equation of this close set (eq 4-9):

∫ L

0

(Nd (z)− n (z)) = 0 (9)

FIG. 2: Band diagram of the contact and first period of v265
calculated including Hartree and exchange-correlation correc-
tions. At zero bias the injection field is 2.061 kV.cm−1

FIG. 3: Band diagram of the contact and first period
of v265 calculated with and without exchange-correlation
correction(VXC). An error of 7.6meV on the height of the
barriers is made if VXC is not taken into account. ∆E is
shifted from 28.63meV to 32.25meV. For clarity reasons VXC

has been offset by −15meV

Because of the mixed-dimensionality of the problem, a
numerical method was chosen to solve it and is presented
in appendix. The main physical approximation is that we
do not take into account the triangular quantum confine-
ment at the end of the contact. This condition limits the
validity of this model to small electric fields, relevant in
the THz range. The band structure of the contact and
the first period at zero bias is shown in figure 2. Fig-
ure 3 highlights the impact of many-body effects in THz
QWIPs, as previously shown in 2D calculations9.

We use a similar method to determine the band struc-
ture for every given value of the injection field. The cur-
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FIG. 4: I(F0) curves with three different levels of approxi-
mations. The cusps around 6 − 7 kV.cm−1 appear when the
barrier becomes triangular.

rent is then calculated with a transfer-matrix method
and WKB approximation detailed in reference 11. Be-
cause of the triangular quantum confinement, we assume
that the only electrons contributing to the current are
the ones whose energies are comprised between 0 and
EF , for whom the 3D model is justified. This will lead
to a slight under-evaluation of the current. For the other
electrons, their contribution to the current is exponen-
tially decreasing with the height of the barrier, thus is
expected to be small. For the sake of simplicity, we also
only considered the current flowing from the contact to
the first well, neglecting the current going back upstream.
Our evaluation for the current is therefore erroneous for
very low fields (F0 < 4 kV.cm−1), but we can cope with
the issue. As will be shown later we are only interested
in the highest regimes (F0 > 8 kV.cm−1) of our fields
range (F0 < 20 kV.cm−1). Figure 4 plots the current
versus injection field for three different models: without
any correction, with Hartree potential, and with both
Hartree and exchange-correlation contributions. Com-
pared to the zeroth order calculation, the Hartree cor-
rection lowers the height of the barrier because of the
electric field continuity condition. The current is then
increased up to one order of magnitude (from 0.16mA to
2.17A at F0 = 20 kV.cm−1). Moreover the 7.6meV rise
in the height of the barrier due to exchange-correlation
effects makes the current to drop by one or two orders of
magnitude. This clearly demonstrates how critical it is to
consider those corrections in order to have a quantitative
interpretation in THz QWIPs.

The inverse function of the high-field part (≥
8 kV.cm−1) of the circle-marked curve on figure 4 gives
the F0(I) law that will be implemented in the model.

III. ANALYZE OF THE DISCONTINUITY LAW

This section is dedicated to giving a practical insight
into the shape of the discontinuity law. A sample D law is
implemented in the model in order to calculate the cor-
responding V (i) curve. The macroscopic modifications
induced by the modification of microscopic parameters
are then analyzed. Figures 5 to 8 present different D
laws and the corresponding current variations induced
in the structure. The aim is to highlight the impact of
each feature of the shape of the D law on the V (i) curve.
This work is fundamental to parameterize the upcoming
optimization in section IV.
The ’up’ and ’down’ regimes are separated by the

threshold field Fc. Below it, no electrons are present
above the barriers, so the well is almost full, and the
discontinuity is very small. For higher values of the up-
stream field, the well starts to be drained. If no capture
mechanism is taken into account, the well will reach ei-
ther of the following limit values. For low fields, the dis-
continuity is capped at a zero downstream field, in order
for electrons to be extracted efficiently. For higher fields,
the discontinuity cannot exceed the value of an empty
well, which depends on the doping amount. These two
values are labeled respectively Fdown = 0 and Dmax in
figures 5 to 8. We will not consider the doping value
as a varying parameter because its nominal amount has
explained response peak in previous work9.
Figure 5 shows that the current at the transition Ic

goes up with the value of the threshold field Fc. The
injection field value controls both the current flowing
through the structure and the amount of energy acquired
by the electrons of the continuum over the first period.
It shall be noticed that the usual threshold fields are far
below the value where the Fdown = 0 and Dmax straight
lines cross.
Figure 6 shows that even in the down regime a slight

ionization of the wells has to be considered. Indeed, the
bias at the transition Vc decreases when this ’down’ ion-
ization increases. If the D law is capped at zero, the
structure will be rigid and strong bias modulations will
occur. On the contrary at higher ionization levels the
structure will look bent like a chain of pearls, and bias
effects will be attenuated. At a given Fc this parameter
directly sets the value of Vc.
Another interesting feature is the height of the transi-

tion, or more precisely the evolution of the relative dis-
tance between the D law and the Fdown = 0 curves across
and after the transition. Figure 7 proves that the ’S’
pattern on the V (i) widens when the ’up’ ionization gets
more effective. As a matter of fact if the relative distance
shrinks to zero, the bias on the structure will only be the
one applied upstream of the ionizing well. On figure 1,
the ’S’ is thin (0.18V wide), which can be explained in
two ways. Either a well at the end of the structure is
strongly drained, or a well at the beginning of the struc-
ture is lightly drained. We already mentioned that ion-
ization occurs on one of the first wells of the structure.
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FIG. 5: Top: sample D laws with varying threshold fields Fc.
The ionization degree of the well is given on the right axis.
Bottom: corresponding V (i) curves. The value of Fc sets the
level of the transition current.

This clearly advocates for a partial ionization of the wells.
Figure 8 highlights the impact of the last critical pa-

rameter of the D law: the local slope. When it is inferior
to −1 in the ’up’ regime, an increase of the upstream
field will cause a decrease of the downstream field. The
structure is then in the negative differential resistance
(NDR) regime. The rest of the ’S’ pattern is shaped by
the steepness of the D law.

IV. OPTIMIZATION AND DISCUSSION

The fit of the experimental curve uses the quasi-
Newton method BFGS scheme12. The arguments of sec-
tion III prove that the D law features have quite uncorre-
lated effects on the V (i) curve. This allows for a partially
sequential resolution, much simpler than a raw multi-
dimensional optimization. Firstly the threshold field Fc

is found by adjusting the transition current. Secondly
the ’down’ regime is calculated to fit the transition bias
Vc. The third calculated parameter is the height of the
transition, given by the width of the ’S’ pattern. To finish
with, the shape of the ’S’ grants access to the rest of the

FIG. 6: Top: sample D laws with varying ’down’ regime be-
havior. Bottom: corresponding V (i) curves. The value of the
threshold bias decreases when the wells are more ionized in
the ’down’ regime.

’up’ regime shape of the D law. The main result given
by this first model is that the well entering its regime
transition is only partially ionized. As will be shown in
figure 9 even at the highest field, the wells are barely half
drained. A refill mechanism attributed to capture by LO
phonon emission has to balance the draining process.
A model with a single D law for all the wells (as con-

sidered in section III) cannot explain the V (i) curve,
and at the same time satisfy the impact ionization hy-
pothesis. In this model the first well should be ionized
first. The injection field should account for the amount
of current at the transition (4.2 × 10−6 A), which gives
F0 = 9.2 kV.cm−1. However it should also grant enough
energy to electrons over the first period for impact ion-
ization, which gives F0 ≈ 11 kV.cm−1. This means that
it is not the first well of the structure that gets ionized
at this transition.
Another fact advocates for the ionization of several

wells: the second cusp on the V (i) curve of figure 1,
at 0.72V and 9 × 10−5 A. This cusp is the signature
of another well entering its ionized regime. The band
structure calculations of section II highlight the differ-
ences between the D laws of the first and the other wells.
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FIG. 7: Top: sample D laws with varying amplitudes of the
drain at the transition. Bottom: corresponding V (i) curves.
A wide ’S’ will follow an effective ionization of the wells.

Figure 2 shows that at zero bias (a single Fermi level
throughout the whole structure), there is already a non
zero injection field (F0(I)|0V = 2.061 kV.cm−1). Due to
quantum confinement, the first well will be more ionized
than the other wells in the down regime, and its threshold
field will be higher.

Dwell 1
down = Dother wells

down − F0(I)|0V

Fwell 1
c = F other wells

c + F0(I)|0V + Feff

where F0(I)|0V = 2.061 kV.cm−1 is the value of the
injection field calculated at zero bias, and Feff stands
for the fact that all the electrons that can potentially
ionize the first well are injected from the contact quasi
Fermi level. On the other hand the remaining wells see
not only electrons injected at the upstream well quasi
Fermi level, but also electrons already flowing through
the continuum over the barriers. We complete our model
by considering two different D laws: one for the first well
after the contact, and one for all the other wells.
Figure 9 shows the optimized D laws and the com-

parison between experimental and calculated V (i). The
latter shows an extremely good agreement, which should

FIG. 8: Top: sample D laws with varying negative differential
resistance thresholds. These are indicated by the −1 slope
tangents. Bottom: corresponding V (i) curves.

not be given too much credit: equation 3 has an infinite
number of solutions. The sensitivity of the calculated
V (i) towards variations of the D laws is very acute next
to the regimes-switch zone. Consequently the relevance
of the adjusted D laws reaches its maximum around Fc.
The good fit means that the objective of translating the
information from the V (i) to the D law curves has been
fulfilled.
The returned threshold field value is Fc = 10.94 ±

0.06 kV.cm−1 for the first well. The ionizing electrons
injected at the contact Fermi energy arrive with an en-
ergy of Ec = 68meV above the bound level. The energy
condition for ionization Ec > 2∆E = 64.5meV is satis-
fied. For the second well at the transition, the threshold
field value is Fc = 6.83± 0.03 kV.cm−1. In the hypothe-
sis of a ballistic transport from the contact, this gives an
incident energy of 103meV above the bound level. Con-
sidering LO phonon emission, the same energy condition
Ec = 67meV arises. The theory stating that impact ion-
ization causes the regime transition in THz QWIPs is
further backed up by this feature. Further work will be
published on these considerations about the continuum
electrons distribution.
It shall be noticed that both the D laws of the first and
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FIG. 9: Top: Adjusted D laws with the first well singled out.
Bottom: Experimental and adjusted V (i) curves.

other wells have the same shape, modulo the Ddown and
Fc translations. This is consistent with the same mech-
anism being responsible for the ’up’ regime part in both
cases: balance between impact ionization and electron
capture.

In this sample, the second well of the structure will
be ionized before the first one. In the latter case no
NDR regime is observed. This counter-intuitive order of
regime transitions highlights the critical importance of
having a precise model of the contact. In Fig. 9, there
is a small discrepancy in the shapes of the two D laws at
the beginning of the ’up’ regime part. When the first well
begins to be ionized, the effective energy of the electrons
arriving above the second well is increased, which down-
shifts the threshold field Fc) of the second well. In order
to avoid complicating further the model by introducing
another D law for the second well, we chose to add a
small correction on the D law of the first well to keep a
good fit of the V (i).

Focusing back to the I(v), it is possible to understand
the asymmetry of the hysteresis pattern. When sweeping

bias upwards, the breakdown of the second barrier drags
along the first well into ionization. The third well is ex-
pected to be ionized at higher bias, out of the measure-
ment range. When sweeping down the bias, the electric
fields configuration allows the first well of the structure
to shift to the ’down’ regime without dragging along the
second one.

V. CONCLUSION

We developed a model that successfully explains a
regime transition in THz QWIPs. Impact ionization is re-
sponsible for partially draining the wells of the structure
at high electric fields. In the studied sample the second
well enters its ionized regime before the first one. A pre-
cise 3D-2D model of the contact considering many-body
effects highlights the difference in behavior between the
first well and the other ones in the structure. Adjusted
discontinuity laws explain the shape of the V (i) measure-
ments. These experimental discontinuity laws are a tool
to investigate electronic transport in THz QWIPs. Ab

initio calculations of these laws are expected to give a
good insight into the electron distribution in the contin-
uum above the barriers. Using the regime switch caused
by impact ionization allows to optimize the design of very
high sensitivity (up to one-photon) fast THz detectors.
When the structure is polarized just below the thresh-
old bias Vc, a few photons absorbed in the second well
can trigger the shift to the ’up’ regime. The main ob-
stacle in the way of effective detectors is the fluctuations
area near the transition, wherein the regime shift is not
controllable. Understanding and deleting this area is the
focus point for future work.

APPENDIX

This appendix presents the numerical method used to
solve the set of equations 5-9. The wave function of
the well ground level is first calculated with a shooting
method13. If VXC is set to zero, equations 5-7 and 9 can
be fused in the charge condition Θ(EF , VH) = 0. Θ is
a decreasing function of EF , so a simple way to solve
this equation is to find two EF values where Θ is posi-
tive and negative, and use dichotomy. The key for the
success of the method is the nature of equation 7 that
allows to calculate the correction VH(zi) thanks to the
density at the previous step n(zi−1). This is not possible
while introducing the exchange correlation term. After
getting a band structure V (1)(z) obeying to the Poisson

equation (see figure 3), equation 8 gives the V
(1)
XC correc-

tion. It is then input along V (1)(z) to recalculate the
wave function and resolve Θ = 0 to get V (2)(z). The re-
sult will be considered satisfactory as long as the change
of the band structure in the second step is not significant:

V (2)(z) ≈ V (1)(z) + V
(1)
XC , which is always the case.



8

A similar method is used to calculate the band struc-
ture for any given value of F0. The new criterion for the

Θ̃ function is the value of the injection field. The 2D part
of the problem is simplified: no calculations are made for
the well area, except that its contribution to VXC at zero

bias is added to the 3D exchange-correlation potential.
This slightly modifies the shape of the end of the barrier,
and has a noticeable effect only at low fields when the
barrier is not yet triangular.
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