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Résumé: On considere l’équation ψt − ∆ψ + c|ψ|p−1ψ = 0 avec les con-
ditions aux limites de Neumann dans un ouvert connexe borné de R

n avec
p > 1, c > 0 . On montre que si la donnée initiale est petite en norme L∞ et
si sa moyenne dépasse en valeur absolue un certain multiple de la puissance

p de sa norme L∞, alors ψ(t, ·) décroit comme t−
1

(p−1) .

Abstract: We consider the equation ψt − ∆ψ + c|ψ|p−1ψ = 0 with Neu-
mann boundary conditions in a bounded smooth open connected domain of
R

n with p > 1, c > 0 . We show that if the initial condition is small enough
and if the absolte value of its average overpasses a certain multiple of the pth

power of its L∞ norm, then ψ(t, ·) decreases like t−
1

(p−1) .
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1 Introduction and position of the problem.

In this paper we consider the following nonlinear parabolic equation

{

ψt − ∆ψ + g(ψ) = 0 in R
+ × Ω,

∂ψ

∂n
= 0 on R

+ × ∂Ω.
(1.1)

where Ω is a bounded smooth open connected domain of R
n and g ∈ C1(R)

satisfies
g(0) = 0 (1.2)

and for some p > 1

∃c > 0,∀s ∈ R, 0 ≤ g′(s) ≤ c|s|p−1. (1.3)

From (1.2)-(1.3)we deduce that g(s) has the sign of s and

∀s ∈ R, |g(s)| ≤
c

p
|s|p (1.4)

We define the operator A by

D(A) = {ψ ∈ H2(Ω),
∂ψ

∂n
= 0 on ∂Ω}

and
∀ψ ∈ D(A), Aψ = −∆ψ

On the other hand the operator B defined by

D(B) = {ψ ∈ L2(Ω),−∆ψ + g(ψ) ∈ L2(Ω) and
∂ψ

∂n
= 0 on ∂Ω}

and
∀ψ ∈ in D(B), Bψ = −∆ψ + g(ψ)

is well-known to be maximal monotone in L2(Ω. As a consequence of [2, 3]
for any ψ0 ∈ L2(Ω) there exists a unique weak solution of the equation

ψ′ +Bψ = 0 on R
+; ψ(0, x) = ψ0. (1.5)

In addition it is well known that if ψ0 ∈ L∞(Ω), ψ(t, ·) remains in L∞(Ω) for
all t > 0. Finally [9] contains an estimate of the solution in C(Ω̄) and C1(Ω̄)
for t > 0, which is valid for any sufficiently regular domain.
We recall two results from [1]
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Theorem 1.1. Let g satisfy (1.2) and (1.3). Then any solution ψ of (1.1)
satisfies the following alternative as t→ ∞: either

‖ψ(t, ·)‖∞ ≤ Ce−λ2t, (1.6)

or

∃c′ > 0,∀p > 1,∀t ≥ 1, such that
∣

∣

∣

∫

Ω

ψ(t, x)dx
∣

∣

∣
≥ c′t

−
1

p−1 , (1.7)

where λ2 > 0 is the second eigenvalue of A in D(A).

The proof of Theorem1.1 relies on the following basic fact. Defining the
orthogonal projection P : H −→ N , where H = L2(Ω) and N = ker(A) is
the set of constant functions, we recall

Proposition 1.2. Let ψ ∈ C(R+, L∞) any solution of (1.1). Assume that g
is locally Lipschitz and nondecreasing. Then we have

‖ψ(t) − Pψ(t)‖2 ≤ ‖ψ(0) − Pψ(0)‖2 e
−λ2t, (1.8)

where ‖.‖2 denotes the norm in L2(Ω) and λ2 > 0 is the second eigenvalue
of −∆ in L2(Ω) with Neumann boundary conditions .

Finally in [1] the following result was established

Proposition 1.3. Let g satisfy (1.2) and (1.3). Then if ψ(0, ·) ≥ 0 and
ψ(0, ·) does not vanish a.e in Ω, the solution ψ of (1.1) satisfies (1.7).

It is a natural question, since constant initial data give rise to solutions
which satisfy (1.7), to wander what can be said when the initial datum is close
to a constant in some sense. One way of expressing proximity to a constant
would be to assume that the average is large compared to the projection on
the subspace of functions with average 0. The main result of this paper will
show that such a condition actually implies (1.7) at least if ψ(0) is small
enough in L∞(Ω). Actually our main result is more general and contains the
fact that all solutions with constant non-zero initial data satisfy (1.7).
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2 Main result.

Theorem 2.1. Let g satisfy (1.2) and (1.3) and φ ∈ L∞(Ω) . Then under
the conditions

‖φ‖p−1
2p−2‖(I − P )φ‖2 <

(p− 1)|Ω|

2p2

(

pλ2

c

)
p

p−1

(2.1)

|Pφ| >
2pc

(p− 1)λ2|Ω|
‖φ‖p−1

2p−2‖(I − P )φ‖2 (2.2)

the solution ψ of (1.1) such that ψ(0) = φ satisfies

∃δ > 0,∀t ≥ 1,
∣

∣

∣

∫

Ω

ψ(t, x)dx
∣

∣

∣
≥ δt

−
1

p−1

Proof. Following the notation from [1] we set ψ = u + w, where u = Pψ

and w = (I − P )ψ. By projecting (1.1) on N we have

u′ + P (g(ψ)) = 0,

which can be rewritten as

u′ + g(u) = −P (g(ψ) − g(u)).

By the assumption (1.3), we deduce that

|P (g(ψ) − g(u))| ≤
1

|Ω|
‖g(ψ) − g(u)‖1 ≤

c

|Ω|
(‖ψ‖p−1

2p−2 + ‖u‖p−1
2p−2)‖w‖2.

By Proposition 1.2 and the fact that P is contractive in all Lp spaces we have
the estimate

|P (g(ψ) − g(u))| ≤ Ke−λ2t,

with

K =
2c

|Ω|
‖ψ(0)‖p−1

2p−2‖w(0)‖2 (2.3)

Assuming, by contradiction, that ψ does not satisfy (1.7), we observe that u
is an exponentially decaying solution of

u′ + g(u) = f(t) in R
+

where
|f(t)| ≤ Ke−λ2t.

4



It is not difficult to check that such an exponentially decaying solution
is unique since the difference of two solutions of this type is either 0 or
bounded away from 0. From this information we shall get an estimate on u

by a refinement of the fixed point argument used in [1] . More precisely we
shall establish the following

Lemma 2.2. Let c > 0, γ > 0, p > 1 and g satisfying (1.2) and (1.3) Let
c1 > 0 be such that

c1 < c∗ :=
γ(p− 1)

p

(pγ

c

)
1

p−1
(2.4)

then for every function f satisfying

|f(t)| ≤ c1e
−γt, (2.5)

there exists a unique function v ∈ C1(R+) satisfying

∀t ≥ 0, v′ + g(v) = f(t) (2.6)

and
sup

t∈(0,+∞)

{

eγt|v(t)|
}

≤
pc1

(p− 1)γ
(2.7)

Proof. As in [1] we look for a solution of the integral equation

v(t) = −

∫ +∞

t

(f(s) − g(v(s))ds. (2.8)

in the function space :

X = {v ∈ C(0,+∞); sup
t∈(0,+∞)

eγt|v(t)| ≤M},

equipped with the distance associated to the norm

‖v‖γ = sup
t∈(0,+∞)

eγt|v(t)|. (2.9)

We consider the operator T : X → C(0,+∞) defined by

T v(t) = −

∫ +∞

t

(f(s) − g(v(s))ds.
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First we will show that under condition (2.4), we can find M in order to
achieve T (X) ⊂ X. Let v ∈ X, then for all t ≥ 0,

|T v(t)| ≤

∫ +∞

t

|f(s)|ds+

∫ +∞

t

|g(v(s))|ds

≤

∫ +∞

t

|f(s)|ds+
c

p

∫ +∞

t

|v(s)|pds

≤
c1

γ
e−γt +

c

p
Mp

∫ +∞

t

e−pγsds

≤

(

c1

γ
+
cMp

p2γ

)

e−γt

We just need to check the condition

c1

γ
+
cMp

p2γ
≤M

In order for his condition to be fulfilled for someM > 0 it is clearly neccessary
to assume

c1

γ
≤ max

t>0

(

t−
ctp

p2γ

)

=
(p− 1)

p

(pγ

c

)
1

p−1

The corresponding strict inequality is just equivalent to c1 < c∗. On the
other hand if we choose

M :=
pc1

(p− 1)γ

we obtain

c1

γ
+
cMp

p2γ
=
c1

γ

(

1 +
c

p2

(

p

(p− 1)γ

)p

c1
(p−1)

)

≤
c1

γ

(

1 +
c

p2

(

p

(p− 1)γ

)p

c∗
(p−1)

)

=
c1

γ

(

1 +
c

p2

(

p

(p− 1)γ

)p
pγ

c

(

(p− 1)γ

p

)(p−1)
)

= M

Secondly, we prove that T is a contraction on X. In fact, ∀v, v̄ ∈ X, for all
t ≥ 0

|T v(t) − T v̄(t)| ≤

∫ +∞

t

|g(v(s)) − g(v̄(s))|ds

≤ cMp−1

∫ +∞

t

e−pγseγs|v(s) − v̄(s)|ds

≤
cMp−1

pγ
‖v − v̄‖γe

−γt.
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Then we have

|T v(t) − T v̄(t)|eγt ≤
cMp−1

pγ
‖v − v̄‖γ.

Therefore ∀v, v̄ ∈ X

‖T v − T v̄‖γ ≤
cMp−1

pγ
‖v − v̄‖γ.

But we have

Mp−1 =

(

p

(p− 1)γ

)p−1

c1
p−1 <

(

p

(p− 1)γ

)p−1

c∗
p−1 =

pγ

c

Thus T is a strict contraction on the complete metric space X and the result
follows from the Banach fixed point theorem.

In order to apply the estimate (2.7) to u we need to assumeK <
γ(p−1)

p

(

pγ

c

)
1

p−1

where γ = λ2, which reduces to

‖ψ(0)‖p−1
2p−2‖w(0)‖2 <

(p− 1)|Ω|

2p2

(

pλ2

c

)
p

p−1

hence (2.1). Then u, being equal to v, satisfies

|u(t)| ≤
2pc

(p− 1)λ2|Ω|
‖ψ(0)‖p−1

2p−2‖w(0)‖2e
−λ2t

Making t = 0 in this inequality we find

|Pφ| ≤
2pc

(p− 1)λ2|Ω|
‖φ‖p−1

2p−2‖(I − P )φ‖2

contradicting the hypothesis.

3 Applications

Since the appearance of our main result is a bit involved, we derive a few
simple consequences.
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Corollary 3.1. Let φ ∈ L∞(Ω) be such that

∫

Ω

φ(x)dx 6= 0

For ε > 0 small enough the solution of (1.1) with initial condition ψ(0) = εφ

satisfies (1.7).

Corollary 3.2. Let φ ∈ L∞(Ω) be such that

‖φ‖∞ <

(

p− 1

2p2

)
1
p

(

pλ2

c

)
1

p−1

(3.1)

|Pφ| >
2pc

(p− 1)λ2|Ω|
1
2

‖φ‖p−1
∞

‖(I − P )φ‖2 (3.2)

Then the solution of (1.1) with initial condition ψ(0) = φ satisfies (1.7).

Corollary 3.3. Let φ ∈ L∞(Ω) satisfying (3.1) and

|Pφ| >
2pc

(p− 1)λ2

‖φ‖p
∞

(3.3)

Then the solution of (1.1) with initial condition ψ(0) = φ satisfies (1.7).

We close this section by a concrete example

Corollary 3.4. Let n = 1, Ω = (0, π), g(s) = s3 and φ ∈ L∞(Ω) be such
that

‖φ‖∞ < 3−
2
3 (3.4)

and either
|Pφ| > 9‖φ‖2

∞
‖(I − P )φ‖∞ (3.5)

or
|Pφ| > 9‖φ‖3

∞
(3.6)

Then the solution of (1.1) with initial condition ψ(0) = φ satisfies (1.7).

Proof. Obvious consequence of the previous corollaries with c = 3 and
λ2 = 1.
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