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anti-angiogenic therapy in metastatic cancers.

Benzekry Sébastien∗,†

September 16, 2010

Abstract

We introduce and analyze a phenomenological model for anti-angiogenic therapy in the treatment

of metastatic cancers. It is a structured transport equation with a nonlocal boundary condition de-

scribing the evolution of the density of metastasis that we analyze first at the continuous level. We

present the numerical analysis of a lagrangian scheme based on the characteristics whose convergence

establishes existence of solutions. Then we prove an error estimate and use the model to perform

interesting simulations in view of clinical applications.

Nous introduisons et analysons un modèle phénoménologique pour les thérapies anti-angiogéniques

dans le traitement des cancers métastatiques. C’est une équation de transport structurée munie

d’une condition aux limites non-locale qui décrit l’évolution de la densité de métastases. Au niveau

continu, des estimations a priori prouvent l’unicité. Nous présentons l’analyse numérique d’un schéma

lagrangien basé sur les caractéristiques, dont la convergence nous permet d’établir l’existence de

solutions. Nous démontrons ensuite une estimation d’erreur et utilisons le modèle pour produire des

simulations intéressantes au regard de possibles applications cliniques.

AMS 2010 subject classification : 35F16, 65M25, 92C50

Keywords : Anticancer therapy modelling, Angiogenesis, Structured population dynamics, La-

grangian scheme.
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∗CMI-LATP, UMR 6632, Université de Provence, Technopôle Château-Gombert, 39, rue F. Joliot-Curie, 13453 Marseille

cedex 13, France.
†Laboratoire de Toxicocinétique et Pharmacocinétique UMR-MD3. 27, boulevard Jean Moulin 13005 Marseille. France.

E-mail:benzekry@phare.normalesup.org

1



4 Numerical simulations 19

4.1 Simulation technique and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Simulations without treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Simulations with treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Anti-angiogenic drug alone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Combination of anti-angiogenic and cytotoxic drug . . . . . . . . . . . . . . . . . . 22

5 Conclusion 22

A Proof of the proposition 1 27

2



Introduction

During the evolution of a cancer disease, a fundamental step for the tumor consists in provoking prolif-
eration of the surrounding blood vessels and migration toward the tumour. This process, called tumoral
neo-angiogenesis establishes a proper vascular network which ensures to the tumour supply of nutrients
and allow the tumor to grow further than 2-3 mm diameter. It is also important in the metastatic process
by making possible the spread of cancerous cells to the organism which then can develop in secondary
tumors (metastases). Thus, an interesting therapeutic strategy first proposed by J. Folkman [15] in the
seventies consists in blocking angiogenesis with the goal to starve the primary tumor by depriving it from
nutrient supply. This can be achieved by inhibiting the action of the Vascular Endothelial Growth Factor
molecule either with monoclonal antibodies or tyrosine kinase inhibitors. Although the concept of the
therapy seems perfectly clear, the practical use of the anti-angiogenic (AA) drugs leaves various open
questions regarding to the best temporal administration protocols. Indeed, AA treatments lead to rela-
tively poor efficacy and can even provoke deleterious effects, especially on metastases [21]. Regarding to
these therapeutic failures, it seems that the scheduling of the drug plays a major role. Indeed, as shown
in the publication [14], different schedules for the same drug can lead to completely different results.
Moreover, AA drugs are never given in a monotherapy but always combined with cytotoxic agents (also
named chemotherapy) which act directly on the cancerous cells. Again, the scheduling of the drugs seems
to be highly relevant [23] and the optimal combination schedule between these two types of drugs is still
a clinical open question. Thus, the complex dynamics of tumoral growth and metastatic evolution have
to be taken into account in the design of temporal administration protocols for anti-cancerous drugs.

In order to give answers to these questions, various mathematical models are being developed for
tumoral growth including the angiogenic process. We can distinguish between two classes of models
: mechanistic models (see for instance [8, 20]) try to integrate the whole biology of the processes and
comprise a large number of parameters; on the other hand phenomenological models aim to describe the
tumoral growth without taking into account all the complexity levels (see [24] for a review and [16, 12, 3]).
Most of these models deal only with growth of the primary tumor but in 2000, Iwata et al. [18] proposed
a simple model for the evolution of the population of metastases, which was then further studied in [2, 9].
This model did not include the angiogenic process in the tumoral growth and thus could not integrate a
description of the effect of an AA drug. We combined it with the tumoral model introduced by Hahnfeldt
et al. [16] which takes into account for angiogenesis. The resulting partial differential equation is part of
the so-called structured population dynamics (see [22] for an introduction to the theory) : it is a trans-
port equation with a nonlocal boundary condition. Its mathematical analysis is not classical because the
structuring variable is two-dimensional; as far as we know such models have only been studied in the case
where one structuring variable is the age and thus has constant velocity (see [25, 13]). This is not the
case in our situation and the theoretical analysis of the model without treatment (autonomous case) was
performed in [5].

In this paper, we present some mathematical and numerical analysis of the model in the non-
autonomous case that is, integrating both cytotoxic and AA treatments and with a general growth
field G satisfying the hypothesis that there exists a positive constant δ such that G · ν ≥ δ > 0 where
ν is the normal to the boundary. We first simplify the problem by straightening the characteristics of
the equation. We perform some theoretical analysis first at the continuous level (uniqueness and a pri-
ori estimates) using the theory of renormalized solutions. Then we introduce an approximation scheme
which follows the characteristics of the equation (lagrangian scheme). The introduction of such schemes
in the area of size-structured population equations can be found in [1] for one-dimensional models. Here,
we go further in the lagrangian approach by doing the change of variables straightening the character-
istics and discretizing the simple resulting equation, in the case of a general class of two-dimensional
non-autonomous models. We prove existence of the weak solution to the continuous problem through the
convergence of this scheme via discrete a priori L∞ bounds and establish an error estimate in the case of
more regular data.

Finally, we use this scheme to perform various simulations demonstrating the possible utility of the
model. First, as a predictive tool for the number of metastases in order to refine the existing classifica-
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tions of cancers regarding to metastatic aggressiveness. Secondly, the model can be used to test various
temporal administration protocols of AA drugs in monotherapy or combined with a cytotoxic agent.

1 Model

The model is based on the approach of [18, 2, 9] to describe the evolution of a population of metastases
represented by its density ρ(t,X) with X being the structuring variable, here two-dimensional X = (x, θ)
with x the size (=number of cells) and θ the so-called angiogenic capacity. It is a partial differential
equation of transport type. The behavior of each individual of the population (metastasis), that is the
growth rateG(t,X) of each tumor is taken from [16] and is designed to take into account for the angiogenic
process, as well as the effect of both anti-angiogenic (AA) and cytotoxic drugs (CT). Its expression will
be established in the following subsection. The model writes

(1.1)





∂tρ(t,X) + div(ρ(t,X)G(t,X)) = 0 ∀(t,X) ∈]0, T [×Ω
−G · ν(t, σ)ρ(t, σ) = N(σ)

∫
Ω
β(X)ρ(t,X)dX + f(t, σ) ∀(t, σ) ∈]0, T [×∂Ω

ρ(0, X) = ρ0(X) ∀X ∈ Ω.

where Ω, the birth rate β(X), the repartition along the boundary N(σ) and the source term f(t, σ) will
be specified in the sequel, T is a positive time and ν is the unit external normal vector to the boundary
∂Ω.

1.1 The model of tumoral growth under angiogenic control (Hahnfeldt et al.
[16])

Let x(t) denote the size (number of cells) of a given tumor at time t. The growth of the tumor is modeled
by a gompertzian growth rate modified by a death term describing the action of a CT. The equation is :

(1.2)
dx

dt
= g1(t, x) = ax ln

(
θ

x

)
− hγC(t)H(x− xmin),

where a is a parameter representing the velocity of the growth, θ the carrying capacity of the environment,
and the term hγC(t)H(x−xmin) stands for the effect of a cytotoxic drug, where γC is the concentration of
the CT, xmin is a minimal size for the drug to be effective (xmin ≥ 1) and the function H is a regularization
of the Heaviside function (for example H(t) = 1/2+1/2 tanh(t/K), with K being a parameter controlling
the slope at 0), in order to avoid regularity issues in the analysis. The idea is now to take θ as a variable
of the time, representing the degree of vascularization of the tumor and called ”angiogenic capacity”. The
variation rate for θ derived in [16] is :

(1.3)
dθ

dt
= g2(t, x, θ) = cx− dθx

2
3 − eγA(t)H(θ − θmin),

where the terms cx and −dθx2/3 represent respectively the endogenous stimulation and inhibition of the
vasculature and eγA(t)H(θ−θmin) is the effect of an anti-angiogenic drug. The factor 2/3 comes from the
analysis of [16] which concluded that the ratio of the stimulation rate over the inhibition one should be
homogeneous to the tumoral radius to the square. In the figure 1, we present some numerical simulations
of the phase plan of the system (1.2), (1.3).
Following [16], we assume a one compartmental pharmacokinetic for the AA and do the same for the CT
(in [16] there is no CT). We also assume that the drugs are administered as boli. This gives

γA(t) =

N∑

i=1

DAe
−clrA(t−tA

i )H(t− tAi )

where the tAi are the administration times of the AA, DA is the administered dose and clrA the clearance.
The expression for the CT is the same, with C instead of A.
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Figure 1: Two phase plans of the system (1.2)-(1.3), for different values of the parameters, without

treatment (h = e = 0). In green, the nullclines. In both, b :=
(

c
d

) 3
2 = 17347. A. Parameters from [16] :

a = 0.192, c = 5.85, d = 8.73 × 10−3. B. a = 0.192, c = 0.1, d = 1.4923 × 10−4

1.2 Renewal equation for the density of metastasis

We denote X = (x, θ) and G(t,X) = (g1(t, x, θ), g2(t, x, θ)). We define b =
(

c
d

) 3
2 and Ω = (1, b) × (1, b)

where b is the maximal reachable size and angiogenic capacity for (x, θ) solving the system (1.2),(1.3)
with initial size 1 (see [11] for a study of this system without the CT term). We consider that each tumor
is a particle evolving in Ω with the velocity G. Writing a balance law for the density ρ(t,X) we have

∂tρ+ div(ρG) = 0, ∀(t,X) ∈]0, T [×Ω

that we endow with an initial condition ρ0 ∈ L∞(Ω).
Metastasis do not only grow in size and angiogenic capacity, they are also able to emit new metastasis.

We denote by b(σ, x, θ) the birth rate of new metastasis with size and angiogenic capacity σ ∈ ∂Ω by
metastasis of size x and angiogenic capacity θ, and by f(t, σ) the term corresponding to metastasis
produced by the primary tumor. Expressing the equality between the number of metastasis arriving in
Ω per unit time (l.h.s in the following equality) and the total rate of new metastasis created by both the
primary tumor and metastasis themselves (r.h.s.), we should have for all t > 0

(1.4) −

∫

∂Ω

ρ(t, σ)G(t, σ) · νdσ =

∫

∂Ω

∫

Ω

b(σ,X)ρ(t,X)dX + f(t, σ)dσ.

We assume that the emission rate of the primary and secondary tumors are equal and thus take f(t, σ) =
b(σ,Xp(t)) where Xp(t) represents the primary tumor and solves the ODE system (1.2)-(1.3). We also
assume that the new metastasis created have size x = 1 and that there is no metastasis of maximal size b
nor maximal or minimal angiogenic capacity because they should come from metastasis outside of Ω since
G points inward all along ∂Ω. An important feature of the model is to assume that the vasculature of the
neo-metastasis is independent from the one which emitted it. This means that b(σ,X) = N(σ)β(x, θ) with
N(σ) having its support in {σ ∈ ∂Ω; σ = (1, θ), 1 ≤ θ ≤ b} and describing the angiogenic distribution
of the metastasis at birth. We assume it to be uniformly centered around a mean value θ0, thus we
take N(1, θ) = 1

2∆θ 1θ∈[θ0−∆θ,θ0+∆θ], with ∆θ a parameter of dispersion of the new metastasis around θ0.
Following the modeling of [18] for the colonization rate β we take

β(x, θ) = mxα,

with m the colonization coefficient and α the so-called fractal dimension of blood vessels infiltrating the
tumor. The parameter α expresses the geometrical distribution of the vessels in the tumor. For example,
if the vasculature is superficial then α is assigned to 2/3 thus making xα proportional to the area of the
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surface of the tumor (assumed to be spheroidal). Else if the tumor is homogeneously vascularised, then
α is supposed to be equal to 1. Assuming the equality of the integrands in (1.4) in order to have the
equality of the integrals, we obtain the boundary condition of (1.1).

2 Analysis at the continuous level

In the autonomous case, that is when G depends only on X and there is no treatment, the analysis of
the equation (1.1) has been performed in [5]. It was proven the existence, uniqueness, regularity and
asymptotic behavior of solutions. We present now some analysis on the equation (1.1) with a more general
growth field G than the one defined in the section 1.2.

Let Ω be a bounded domain in R
2, with ∂Ω being piecewise C1 except in a finite number of points.

Let G : R × Ω → R
2 be a C1 vector field. We make the following assumption on G :

(2.1) ∃ δ > 0, G · ν(t, σ) ≥ δ > 0 ∀ 0 ≤ t ≤ T, σ ∈ ∂Ω.

We do the following assumptions on the data :

(2.2) ρ0 ∈ L∞(Ω), β ∈ L∞(Ω), N ∈ L∞(∂Ω), N ≥ 0,

∫

∂Ω

N(σ)dσ = 1, f ∈ L∞(]0, T [×∂Ω).

Remark 1. In the case of G being the one of the section 1.2 if there is no treatment (that is, if e = h = 0,
or t ≤ t1) then we don’t have G · ν(t, σ) ≥ m > 0 all along the boundary since G vanishes at the point
(b, b). But since the problem was solved in this case (see [5]) we consider that the time 0 is the starting
time of the treatment and that e or h is positive, which makes the assumption (2.1) true.

Definition 1 (Weak solution). We say that ρ ∈ L∞(]0, T [×Ω) is a weak solution of the problem (1.1) if
for all test function φ in C1([0, T ] × Ω) with φ(T, ·) = 0

∫ T

0

∫

Ω

ρ(t,X) [∂tφ(t,X) +G(t,X) · ∇φ(t,X)] dXdt+

∫

Ω

ρ0(X)φ(0, X)dX

+

∫ T

0

∫

∂Ω

{N(σ)B(t, ρ) + f(t, σ)}φ(t, σ) = 0(2.3)

where we denoted B(t, ρ) :=
∫

Ω
β(X)ρ(t,X)dX.

Remark 2. By approximating a Lipschitz function by C1 ones, it is possible to prove that the definition
of weak solutions would be equivalent with test functions in W 1,∞([0, T ] × Ω) vanishing at time T .

2.1 Change of variables

Let X(t; τ, σ) be the solution of the differential equation

(2.4)

{
d
dtX = G(t,X)
X(τ ; τ, σ) = σ

.

For each time t > 0, we define the entrance time τ t(X) and entrance point σt(X) for a point X ∈ Ω :

τ t(X) := inf{0 ≤ τ ≤ t; X(τ ; t,X) ∈ Ω}, σt(X) := X(τ t(X); t,X).

We consider the sets

Ωt
1 = {X ∈ Ω; τ t(X) > 0}, Ωt

2 = {X ∈ Ω; τ t(X) = 0}
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Figure 2: The two changes of variables X1 and X2 (represented only on the plane θ = 1).

and
Q1 := {(t,X) ∈ [0, T ] × Ω; X ∈ Ω

t

1}, Q2 := {(t,X) ∈ [0, T ] × Ω; X ∈ Ω
t

2}.

We also define Q̃1 := {(t, τ, σ); 0 ≤ τ ≤ t ≤ T, σ ∈ ∂Ω} = X−1(Q1) and notice that

Σ1 := [0, T ]×∂Ω = {(t,X); τ t(X) = 0}, and Σ2 = {(t,X(t; 0, σ)); 0 ≤ t ≤ T, σ ∈ ∂Ω} = {(t,X); τ t(X) = 0}.

See figure 2 for an illustration. We can now introduce the changes of variables that we will constantly
use in the sequel.

Proposition 1 (Change of variables). The maps

X1 :
Q̃1 → Q1

(t, τ, σ) 7→ X(t; τ, σ)
and X2 :

[0, T ] × Ω → Q2

(t, Y ) 7→ X(t; 0, Y )

are bilipschitz. The inverse of X1 is (t,X) 7→ (t, τ t(X), σt(X)) and the inverse of X2 is (t,X) 7→ (t, Y (X))
with Y (X) = X(0; t,X). Denoting J1(t; τ, σ) = |det(DX1)| and J2(t;Y ) = |det(DX2)|, we have :

(2.5) J1(t; τ, σ) = |G(τ, σ) · −→ν (σ)|e

∫
t

τ
div G(u,X(u;τ,σ))du

and J2(t;Y ) = e

∫
t

0
div G(u,X(u;0,Y ))du

We refer to the appendix for the proof of this result and to the figure 2 for an illustration.
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Using these changes of variables we can write for a function f ∈ L1(]0, T [×Ω)

∫ T

0

∫

Ω

f(X)dX =

∫ T

0

∫ t

0

∫

∂Ω

f(X1(t; τ, σ))J1(t; τ, σ)dσdτ +

∫ T

0

∫

Ω

f(X2(t; 0, Y ))J2(t;Y )dY.

We want to decompose the equation (1.1) into two subequations : one for the contribution of the boundary
term and one for the contribution of the initial condition since they are “independent”. Defining

(2.6) ρ̃1(t, τ, σ) := ρ(t,X(t; τ, σ))J1(t; τ, σ) and ρ̃2(t, y) := ρ(t,X(t; 0, Y ))J2(t;Y )

we have, when the solution is regular : ∂tρ̃1 = (∂tρ+ div (ρG))J1 = 0 and the same for ρ̃2. It is thus
natural to introduce the following equations

(2.7)

{
∂tρ̃1(t, τ, σ) = 0 0 < τ ≤ t < T, σ ∈ ∂Ω

ρ̃1(τ, τ, σ) = N(σ)B̃(t, ρ̃1, ρ̃2) + f(t, σ) 0 < τ < T, σ ∈ ∂Ω

where we denoted

B̃(t, ρ̃1, ρ̃2) =

∫ t

0

∫

∂Ω

β(X(t; τ, σ))ρ̃1(t, τ, σ)dσdτ +

∫

Ω

β(X(t; 0, Y ))ρ̃2(t, Y )dY,

and

(2.8)

{
∂tρ̃2 = 0 t > 0, Y ∈ Ω
ρ̃2(0;Y ) = ρ0(Y ) Y ∈ Ω.

We precise the definition of weak solutions to these equations.

Definition 2. We say that a couple (ρ̃1, ρ̃2) ∈ L∞(Q̃1)×L∞(]0, T [×Ω) is a weak solution of the equations

(2.7)-(2.8) if for all φ̃1 ∈ C1(Q̃1) with φ̃1(T, ·) = 0 we have :

∫ T

0

∫ t

0

∫

∂Ω

ρ̃1(t, τ, σ)∂tφ̃1(t, τ, σ)dσdτdt +

∫ T

0

∫

∂Ω

{
N(σ)B̃(t, ρ̃1, ρ̃2) + f(t, σ)

}
φ̃1(t, t, σ) = 0,(2.9)

and for all φ̃2 ∈ C1([0, T ] × Ω) with φ̃2(T, ·) = 0 we have

(2.10)

∫ T

0

∫

Ω

ρ̃2(t, Y )∂tφ̃2(t, Y )dt+

∫

Ω

ρ0(Y )φ̃2(0, Y )dY = 0.

Remark 3. If ρ̃1 is a regular function which solves (2.7), then the weak formulation is satisfied since we
have :

∫ T

0

∫ t

0

∫

∂Ω

ρ̃1(t, τ, σ)∂tφ̃1(t, τ, σ)dσdτdt =

∫ T

0

∫

∂Ω

φ̃1(T, τ, σ)ρ̃1(T, τ, σ)dτdσ

︸ ︷︷ ︸
=0

−

∫ T

0

∫ t

0

φ̃1(t, τ, σ)∂tρ̃1(t, τ, σ)dσdτdt −

∫ T

0

∫

∂Ω

φ̃1(t, t, σ)ρ̃1(t, t, σ)dσdt.

We prove now the following theorem, establishing the equivalence between the problem (1.1) and the
problem (2.7)-(2.8).

Theorem 1 (Equivalence between problem (1.1) and problem (2.7)-(2.8)). Let ρ ∈ L∞(]0, T [×Ω) be
a weak solution of the equation (1.1). Then (ρ̃1, ρ̃2) given by (2.6) is a weak solution of (2.7)-(2.8).
Conversely, if ρ̃1 and ρ̃2 are weak solutions of (2.7) and (2.8), then the function defined by

(2.11) ρ(t,X) := ρ̃1(t, τ t(X), σt(X))J−1
1 (t, τ t(X), σt(X))1X∈Ωt

1
+ ρ̃2(t, Y (X))J−1

2 (t, Y (X))1X∈Ωt
2

is a weak solution of (1.1).
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Proof.
• Direct implication. Let ρ be a weak solution of the equation (1.1). We will prove that ρ̃2 defined

by (2.6) solves (2.8). Let φ̃2 ∈ C1([0, T ] × Ω) with φ̃2(T, ·) = 0. We define for X ∈ Q2 φ2(t,X) :=

φ̃2(t, Y (X)) ∈ W 1,∞(Q2) and we intend to extend it in a Lipschitz function of [0, T ] × Ω so that we

can use it as a test function in the weak formulation for ρ (see remark 2). We define, for (t, τ, σ) ∈ Q̃1,

φ̃ε
1(t, τ, σ) = φ̃2(t, σ)ζε(τ) with ζε(τ) being a truncature function in C1([0,+∞[) such that 0 ≤ ζε ≤

1, ζε(0) = 1, ζε(τ) = 0 for τ ≥ ε. Then φ̃ε
1 ∈ W 1,∞(Q̃1) and we set φε

1(t,X) := φ̃ε
1(t, τ t(X), σt(X)) ∈

W 1,∞(Q1) since τ t(X) and σt(X) are Lipschitz from proposition 1. We define then

φε :=

{
φε

1 on Q1

φ2 on Q2
.

The function φε is Lipschitz onQ1, Lipschitz onQ2 and φε ∈ C([0, T ]×Ω) sinceQ1∩Q2 = {(t,X); τ t(X) =
0}. Thus φε ∈ W 1,∞([0, T ] × Ω) with φε(T, ·) = 0. Using φε as a test function in (2.3), we have

∫

Q1

ρ[∂tφ
ε
1 +G · ∇φε

1]dXdt+

∫ T

0

∫

∂Ω

{N(σ)B(t, ρ) + f(t, σ)}φε
1(t, σ)dtdσ

+

∫

Q2

ρ[∂tφ2 +G · ∇φ2]dXdt+

∫

Ω

ρ0(X)φ2(0, X)dX = 0 = I1
ε + I2.

By doing the change of variables X1 in the term Iε
1 and noticing that φε

1(t, σ) = φ̃ε
1(t, t, σ) = φ̃2(t, σ)ζε(t),

we obtain

Iε
1 =

∫ T

0

∫ t

0

ρ̃1(t, τ, σ)∂tφ̃1(t, σ)ζε(τ)dσdτdt +

∫ T

0

∫

∂Ω

B(t, ρ)φ̃2(t, σ)ζε(t)dσ −−−→
ε→0

0.

Now doing the change of variablesX2 in the second term I2 and noticing that ∂tφ̃2(t, Y ) = ∂t(φ2(t,X(t; 0, Y ))) =
∂tφ2(t,X(t; 0, Y )) +G(t,X(t; 0, Y )) · ∇φ2(t,X(t; 0, Y )) gives the result. The equation on ρ̃1 is proved in
the same way.

• Reverse implication. Let ρ̃1 and ρ̃2 be solutions of (2.7) and (2.8) respectively. Define ρ(t,X) by
(2.11), and consider a test function φ ∈ C1([0, T ] × Ω) with φ(T, ·) = 0. Then φ1 := φ|Q1

∈ C1(Q1), with

φ1(T, ·) = 0, thus φ̃1(t, τ, σ) := φ1(t,X1(τ, σ)) is valid as a test function in the weak formulation of (2.7).

In the same way φ̃2(t, Y ) := φ2(t,X2(Y )) with φ2 := φ|Q2
is valid as a test function for (2.8). Thus we

have
∫

Q̃1

ρ̃1(t, τ, σ)∂tφ̃1(t, τ, σ)dσdτdt +

∫ T

0

∫

∂Ω

B̃(t, ρ̃1, ρ̃2)φ̃1(t, t, σ)dσdt

+

∫ T

0

∫

Ω

ρ̃2(t, y)∂tφ̃2(t, y)dtdy +

∫

Ω

ρ0(y)φ̃2(0, y)dy = 0

Doing the changes of variables gives the weak formulation of (1.1).

This theorem simplifies the structure of the problem (1.1). In some sense, it formalizes the method of
characteristics in the framework of weak solutions for our problem. The characteristics are straightened
(see figure 2) and the directional derivative along the field (t, G) is transformed in only a time derivative.
Moreover, integrating the jacobians (which contains the transformation of areas) in the definitions of ρ̃1

and ρ̃2, these functions are constant in time. The continuous analysis and discrete approximation of the
problem (1.1) is thus simplified.

2.2 A priori continuous estimates and uniqueness

In order to obtain a priori properties on the solutions of the equation, we will use the theory of renor-
malized solutions first initiated by DiPerna-Lions [10] in the case of Rn and further developed by Boyer
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[7] in the case of a bounded domain. Let us first recall the result that we will use, which can be found in
[7]. We need to introduce the following measure on ]0, T [×∂Ω : dµG = (G · ν)dtdσ

Proposition 2 (Renormalization property). Let ρ ∈ L∞(]0, T [×Ω) be a solution, in the distribution
sense, to the equation :

(2.12) ∂tρ+ div(ρG) = 0.

(i) The function ρ lies in C([0, T ];Lp(Ω)), for any 1 ≤ p < ∞. Furthermore, ρ is continuous in time
with values in L∞(Ω) weak-∗.

(ii) There exists a function γρ ∈ L∞(]0, T [×∂Ω; |dµG|) such that for any h ∈ C1(R), for any test
function φ ∈ C1([0, T ] × Ω), and for any [t0, t1] ⊂ [0, T ], we have

∫ t1

t0

∫

Ω

h(ρ)(∂tφ+ div(Gφ))dtdX +

∫

Ω

h(ρ(t0))φ(t0)dX −

∫

Ω

h(ρ(t1))φ(t1)dX

−

∫ t1

t0

∫

∂Ω

h(γρ)φG · νdtdσ −

∫ t1

t0

∫

Ω

h′(ρ)ρdiv(G)φdtdX = 0(2.13)

Remark 4.

• By approximating the function s 7→ |s| by C1 functions, it is possible to show that the formula (2.13)
stands with h(s) = |s|.

• The second point of the proposition implies in particular that h(ρ) has a trace which is h(γρ).
• In [7], this proposition is proved in the case of a much less regular field G but with the technical

assumption that divG = 0, which is not the case here. Though, the proof can be extended to our case.

Thanks to this result, we can prove the following proposition.

Proposition 3 (Continuous a priori estimates). Let ρ ∈ L∞(]0, T [×Ω) be a weak solution of the equation
(1.1). The following estimates stand

(2.14) ||ρ(t, ·)||L1(Ω) ≤ et||β||L∞ ||ρ0||L1(Ω) +

∫ t

0

e(t−s)||β||L∞

∫

∂Ω

|f(s, σ)|dσds

and

||ρ||L∞(]0,T [×Ω) ≤ C∞(2.15)

with
C∞ = (||N ||L∞ ||β||L∞ ||ρ||L∞ + ||f ||L∞) ||G||L∞eT ||div G||L∞ + ||ρ0||L∞eT ||div G||L∞

Proof.
• Estimate in L1. Let ρ be a weak solution of the equation (1.1). Then in particular it solves (2.12)

in the sense of distributions. Thus the proposition 2 applies and gives a trace γρ ∈ L∞(]0, T [×∂Ω; |dµG|).
Now, by using (2.13) with h(s) = s and the definition of weak solutions to the equation (1.1) we have
that for all φ ∈ C1

c ([0, T [×Ω)

∫ T

0

∫

∂Ω

γρ(t, σ)φ(t, σ)G(t, σ) · νdσdt =

∫ T

0

∫

∂Ω

{
N(σ)

∫

Ω

β(X)ρ(t,X)dX + f(t, σ)

}
φ(t, σ)dσdt

which gives

(2.16) − γρ(t, σ)G(t, σ) · ν = N(σ)

∫

Ω

β(X)ρ(t,X)dX + f(t, σ), a.e.
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In view of the remark 4, we know that |ρ| is also a weak solution to the equation (1.1), with initial
data |ρ0| and boundary data |N(σ)B(t, ρ) + f(t, σ)|. By integrating this equation on Ω and using the
divergence formula, we obtain in the distribution sense :

d

dt

∫

Ω

|ρ(t,X)|dX = −

∫

∂Ω

G(t, σ) · ν|γρ(t, σ)|dσ =

∫

∂Ω

|N(σ)B(t, ρ) + f(t, σ)| dσ

and thus
d

dt

∫

Ω

|ρ(t,X)|dX ≤ ||β||∞

∫

Ω

|ρ(t,X)|dX + |f(t, σ)|.

A Gronwall lemma concludes.
• Estimate in L∞. Using the proposition 1, we have ρ̃1 and ρ̃2 solving (2.7) and (2.8). By doing the

changes of variables, using the definitions of ρ̃1 and ρ̃2 and the formulas (2.5), we see that

||ρ(t, ·)||L1(Ω) = ||ρ̃1(t, ·)||L1(]0,t[×∂Ω) + ||ρ̃2(t, ·)||L1(Ω), ∀ t > 0

||ρ||L∞(]0,T [×Ω) ≤ ||ρ̃1||
L∞(Q̃1)

||G||L∞(∂Ω)e
T ||div G||∞ + ||ρ̃2||L∞(]0,T [×Ω)e

T ||div G||∞

But solving explicitely the equation (2.7), we have

|ρ̃1(t, τ, σ)| = |ρ̃1(τ, τ, σ)| =
∣∣∣N(σ)B̃(t, ρ̃1, ρ̃2) + f(t, σ)

∣∣∣
≤ ||N ||∞||β||∞(||ρ̃1(τ, ·)||L1 + ||ρ̃2(τ, ·)||L1) + ||f ||L∞

≤ ||N ||∞||β||∞||ρ(τ, ·)||L1 + ||f ||L∞

On the other hand, for ρ̃2 we have ||ρ̃2||L∞(]0,T [×Ω) = ||ρ̃2(0)||L∞(Ω) = ||ρ0||L∞(Ω).

Remark 5. The expression (2.16) shows that in the case of a zero boundary data f , the trace γρ has
some extra regularity, namely it is C([0, T ];L1(∂Ω)).

Corollary 1 (Uniqueness). If ρ and ρ′ are two weak solutions of the problem (1.1), then ρ = ρ′ almost
everywhere.

3 Construction of approximated solutions and application to

the existence

In this section, we build a weak solution to the equation (1.1) which, in view of the previous considerations,
can be achieved by building a couple (ρ1, ρ2) of solutions to the equations (2.7)-(2.8) (recall proposition
1). We will achieve the existence by convergence of an approximation scheme to the problem (2.7)-(2.8)
where the difficulty is restricted to the approximation of the boundary condition. Then we establish an
error estimate in the case of more regular data. In order to avoid heavy notations, we forget about the
tilda when referring to the problem (2.7)-(2.8). We place ourselves in the case where Ω = (1, b)2.

3.1 Construction of approximated solutions of the problem (2.7)-(2.8)

Let 0 = t0 < ... < tk < .. < tK+1 = T be a uniform subdivision of [0, T ] with tk+1 − tk = δt. For
the equation (2.8), we give ourself uniform subdivisions 1 = x1 < ... < xl < ... < xL+1 = b and
1 = θ1 < ... < θm < ... < θL+1 = b, with xl+1 − xl = θm+1 − θm = δx. The scheme for the equation (2.8)
is then given by :

{
ρ0

2(l,m) = 1
(δx)2

∫ xl+1

xl

∫ θm+1

θm
ρ0(x, θ)dxdθ 1 ≤ l,m ≤ L

ρk+1
2 (l,m) = ρk

2(l,m) 1 ≤ k ≤ K, 1 ≤ l,m ≤ L
.(3.1)
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That is, ρk
2(l,m) = ρ0

2(l,m) for all k, l,m.
For the discretization of the equation (2.7), for each k let 0 = τ0 < ... < τi < ... < τk = tk with

τi+1 − τi = δt. Let σ :
[0, 1] → ∂Ω
s 7→ σ(s)

be a parametrization of ∂Ω with |σ′(s)| = 1 a.e., so that for

g ∈ L1(∂Ω) we have
∫

∂Ω
g(σ)dσ =

∫ 1

0
g(σ(s))ds. Let 0 = s1 < ... < sj < ... < sM+1 = 1 be an uniform

subdivision with sj+1 − sj = δσ. The scheme is given by





ρ0
1(0, j) = NjB

0((ρ0
2)l,m) + f0

j 1 ≤ j ≤ M

ρk+1
1 (i, j) = ρk

1(i, j) 1 ≤ k ≤ K, 0 ≤ i ≤ k, 1 ≤ j ≤ M

ρk+1
1 (k + 1, j) = NjB

k+1(ρk+1
1 , ρk+1

2 ) + fk+1
j 1 ≤ j ≤ M

(3.2)

with

Bk(ρk
1 , ρ

k
2) =

k−1∑

i=1

M∑

j=1

β1
i,jρ

k
1(i, j)δtδσ +

L∑

l,m=1

β2
l,mρ

k
2(l,m) (δx)

2

≃

∫ tk

0

∫

∂Ω

β(X(tk; τ, σ))ρ1(tk, τ, σ)dτdσ +

∫

Ω

β(X(tk; 0, Y ))ρ2(tk, Y )dY

and

(3.3)
β1

i,j := 1
δtδσ

∫ τi+1

τi

∫ σj+1

σj
β(X(tk; τ, σ))dσdτ, β2

l,m :=
∫ xl+1

xl

∫ θm+1

θm
β(X(tk; 0, (x, θ)))dxdθ

fk
j := 1

δtδσ

∫ tk+1

tk

∫ σj+1

σj
f(t, σ)dσdt, Nj := 1

δσ

∫ σj+1

σj
N(σ)dσ.

Notice that the schemes (3.1) and (3.2) are well-posed since the definition of ρk+1
1 (k+1, j) involves values

of ρk+1
1 (i, j) only with 0 ≤ i ≤ k. We denote by h = δt+ δσ + δx and define now the piecewise constant

functions ρ1,h and ρ2,h on Q̃1 and [0, T [×Ω by, for 0 ≤ k ≤ K, 1 ≤ i ≤ k, 1 ≤ j ≤ M and 1 ≤ l,m ≤ L

(3.4)
ρ1,h(t, τ, σ(s)) = ρk

1(i, j) for t ∈ [tk, tk+1[, τ ∈]τi−1, τi], s ∈ [sj , sj+1[
ρ1,h(t, τ, σ(s)) = 0 for t ∈ [tk, tk+1[, τ ∈]tk, t], s ∈ [sj , sj+1[
ρ2,h(t, x, θ) = ρk

2(l,m) for t ∈ [tk, tk+1[, x ∈ [xl, xl+1[, θ ∈ [θm, θm+1[.

See the figure 3 for an illustration. Notice that we have

t
Q̃1

0

0

0

0
Tk = K + 1

k = 0

k = 1

tk

i = 0 i = 1

τi−1 τi

i = K + 1

τ

σ

tk+1

Figure 3: Description of the discretization grid for Q̃1, only in the (τ, t) plane. The arrows indicate the
index used in assigning values to ρ1,h in each mesh (formula (3.4)).
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(3.5) ||ρ1,h(tk, ·)||L1(]0,tk[×∂Ω) =

k∑

i=1

M∑

j=1

∣∣ρk
1(i, j)

∣∣ δtδσ, ||ρ2,h(tk, ·)||L1(Ω) =

M∑

l,m=1

∣∣ρk
2(l,m)

∣∣ (δx)2.

Remark 6.

• We take the same discretization step in x and θ for ρ2 but it would work the same with two different
steps.

• For more regular data, we could take point values instead of (3.3).
• It will be clear from the following that the scheme would converge the same regardless to the value

that we give to ρ0
1(0, j).

3.2 Discrete a priori estimates

We prove the equivalent of the proposition 3 in the discrete case. Notice that there exists a con-
stant Cσ such that

∑M
j=1 Njδσ ≤

∫
∂Ω
N(σ)dσ + Cσδσ = 1 + Cσδσ := ||N ||h and

∑M
j=1 f

k+1
j δσ ≤

||f ||L∞(]0,T [;L1(∂Ω)) + Cσδσ := ||f ||h.

Proposition 4 (Discrete a priori estimates). Let
(
ρk

1(i, j)
)

k,i,j
and

(
ρk

2(l,m)
)

k,l,m
being given by (3.1)

and (3.2) respectively. Then for all k

||ρ2,h(tk, ·)||L1(Ω) = ||ρ0||L1(Ω), ||ρ2,h||L∞(]0,T [×Ω) = ||ρ0||L∞(Ω)

(3.6) ||ρ1,h(tk, ·)||L1(]0,tk[×∂Ω) ≤ etk||β||L∞ ||N ||h

{
||ρ0||L1(Ω) +

||f ||h
||β||L∞ ||N ||h

}
,

(3.7) ||ρ1,h||
L∞(Q̃1)

≤ ||N ||L∞ ||β||L∞max
k

(
||ρ1,h(tk, ·)||L1 + ||ρ0||L1

)
+ ||f ||L∞ .

Moreover, if ρ0 ≥ 0 then ρk
1(i, j), ρk

2(l,m) ≥ 0 for all k, i, j, l,m.

Proof. The non-negativity of the scheme is straightforward from the definition. The estimate for ρ2,h

follows directly from the scheme (3.2). For the L1 estimate on ρ1,h we compute, using the scheme (3.1)

||ρ1,h(tk+1, ·)||L1(]0,tk+1[×∂Ω) =

k+1∑

i=1

M∑

j=1

∣∣ρk+1(i, j)
∣∣ δtδσ

=
k∑

i=1

M∑

j=1

∣∣ρk(i, j)
∣∣ δtδσ +

∣∣Bk+1(ρk+1
1 , ρk+1

2 )
∣∣ δt

M∑

j=1

Njδσ + δt
M∑

j=1

∣∣fk+1
j

∣∣ δσ

≤ ||ρ1,h(tk)||L1(]0,tk[×∂Ω) +
∣∣Bk+1(ρk+1

1 , ρk+1
2 )

∣∣ δt||N ||h + δt||f ||h

Now from the expression of Bk+1(ρk+1
1 , ρk+1

2 )

∣∣Bk+1(ρk+1
1 , ρk+1

2 )
∣∣ ≤ ||β||L∞ ||ρ1,h(tk, ·)||L1 + ||β||L∞ ||ρ2,h(tk, ·)||L1 .

Thus we obtain

||ρ1,h(tk+1, ·)||L1 ≤ (1 + ||β||L∞δt||N ||h) ||ρ1,h(tk, ·)||L1 + ||β||L∞δt||N ||h||ρ2,h(tk, ·)||L1 + δt||f ||h

Now using a discrete Gronwall lemma we obtain

||ρ1,h(tk+1, ·)||L1 ≤ e||β||L∞ ||N ||htk

{
||ρ1,h(t0, ·)||L1 +

||β||L∞ ||N ||h||ρ2,h(tk, ·)||L1 + ||f ||h
||β||L∞ ||N ||h

}
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Using ||ρ1,h(t0, ·)||L1 = 0 and ||ρ2,h(tk, ·)||L1(Ω) = ||ρ0||L1(Ω) ends the proof of the L1 estimate.
For the L∞ estimate, we remark that

||ρ1,h||
L∞(Q̃1)

= max
k

max
i,j

|ρk
1(i, j)| = max

k
max

j

(∣∣Bk(ρk
1 , ρ

k
2)Nj + fk

j

∣∣) ≤ ||N ||L∞max
k

∣∣Bk(ρk
1 , ρ

k
2)

∣∣ + ||f ||L∞

≤ ||N ||L∞ ||β||L∞max
k

(||ρ1,h(tk, ·)||L1 + ||ρ2,h(tk, ·)||L1) + ||f ||L∞ .

3.3 Application to existence of solutions to the continuous problem (2.7)-(2.8)

Theorem 2 (Existence). Under the assumptions (2.2), there exists ρ1 ∈ L∞(Q̃1) and ρ2 ∈ L∞(]0, T [×Ω)
such that ρ1,h ⇀

h→0
ρ1 and ρ2,h ⇀

h→0
ρ2 for the weak-∗ topology of L∞. Furthermore, (ρ1, ρ2) is the unique

weak solution of (2.7)-(2.8).

Proof. Uniqueness of the solution is straightforward for the problem (2.8) and follows from the L1 estimate
on ρ1 which can be derived following the proof of the proposition 3. The proof for the existence is rather
classical and consists in passing to the limit in discrete weak formulations of (2.7) and (2.8). From the
previous proposition, we obtain that the families {ρ1,h}δt, δσ and {ρ2,h}δt, δx are bounded in L∞ and

thus there exist ρ1 ∈ L∞(Q̃1), ρ2 ∈ L∞(]0, T [×Ω) and some subsequences ρ1,hn
and ρ2,hn

such that
ρ1,hn

⇀
hn→0

ρ1 and ρ2,hn
⇀

hn→0
ρ2 for the weak-∗ topology of L∞. We have to prove now that (ρ1, ρ2)

is a weak solution of (2.7)-(2.8). The uniqueness of solutions to the equation implies then by standard
argument that the whole sequence converges. It remains to prove that (ρ1, ρ2) solves (2.7)-(2.8).

•The function ρ2 is a weak solution of (2.8). Let φ2 be a test function for (2.8). We have

∫ T

0

∫

Ω

ρ2,hn
(t, Y )∂tφ2(t, Y )dY dt =

K∑

k=0

L∑

l,m=1

ρk
2(l,m)

∫ tk+1

tk

∫ xl+1

xl

∫ θm+1

θm

∂tφ2(t, x, θ)dθdxdt

=

K∑

k=0

L∑

l,m=1

ρk
2(l,m)Φ2(tk+1, l,m)(δx)2 −

K∑

k=0

L∑

l,m=1

ρk
2(l,m)Φ2(tk, l,m)(δx)2

where we denoted Φ2(tk, l,m) := 1
(δx)2

∫ xl+1

xl

∫ θm+1

θm
φ2(tk, x, θ)dθdx. Using the scheme (ρk

2(l,m) is constant

in k) and Φ2(tK+1, l,m) = 0 since tK+1 = T , we obtain

∫ T

0

∫

Ω

ρ2,hn
(t, Y )∂tφ2(t, Y )dY dt =

L∑

l,m=1

ρK
2 (l,m)Φ2(T, l,m)(δx)2 −

L∑

l,m=1

ρ0
2(l,m)Φ2(0, l,m)(δx)2

= −

L∑

l,m=1

ρ0
2(l,m)Φ2(0, l,m)(δx)2 = −

∫

Ω

ρ0
2,hn

(Y )φ(0, Y ) −−−−→
hn→0

−

∫

Ω

ρ0(Y )φ(0, Y )dY

since ρ0
2,hn

L1

−−−−→
hn→0

ρ0. Observing that the left hand side converges to
∫ T

0

∫
Ω ρ2∂tφ2(t, Y )dY dt gives the

result.
•The function ρ1 is a weak solution of (2.7). Let φ1 be a test function for (2.7). Then the same calcula-

tion as above shows, with Φ1(tk, i, j) := 1
δtδσ

∫ τi

τi−1

∫ σj+1

σj
φ1(tk, τ, σ)dσdτ and using that Φ1(tK+1, i, j) = 0
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as well as ρk+1
1 (i, j) = ρk

1(i, j) for 1 ≤ i ≤ k and 1 ≤ j ≤ M

∫

Q̃1

ρ1,hn
(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt =

K∑

k=1

k∑

i=1

M∑

j=1

ρk
1(i, j)Φ1(tk+1, i, j)δtδσ −

K∑

k=1

k∑

i=1

M∑

j=1

ρk
1(i, j)Φ1(tk, i, j)δtδσ

=

K∑

i=1

M∑

j=1

ρK
1 (i, j)Φ1(tK+1, i, j)δtδσ +

K−1∑

k=1

k∑

i=1

M∑

j=1

ρk
1(i, j)Φ1(tk+1, i, j)δtδσ

−

K−1∑

k=1

k+1∑

i=1

M∑

j=1

ρk+1
1 (i, j)Φ1(tk+1, i, j)δtδσ −

M∑

j=1

ρ1
1(1, j)Φ1(t1, 1, j)δtδσ

= −

K−1∑

k=1

M∑

j=1

ρk+1
1 (k + 1, j)Φ1(tk+1, k + 1, j)δtδσ −

M∑

j=1

ρ1
1(1, j)Φ1(t1, 1, j)δtδσ

= −
K∑

k=1

M∑

j=1

(
NjB

k(ρk
1 , ρ

k
2) + fk

j

)
Φ1(tk, k, j)δtδσ

Defining the following piecewise constant functions : Bh(t, ρ1,h, ρ2,h) = Bk(ρk
1 , ρ

k
2), Nh(σ(s)) = Nj , fh(t, σ(s)) =

fk
j and Φ1,h(t, σ(s)) = Φ1(tk, k, j) on [tk, tk+1[×[sj , sj+1[, the previous equality reads

∫

Q̃1

ρ1,hn
(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt =

∫ T

δt

∫

∂Ω

(Bhn
(t, ρ1,hn

, ρ2,hn
)Nhn

(σ) + fhn
(t, σ))Φ1,hn

(t, σ)dσdt.

We need the following lemma in order to conclude.

Lemma 1. We have
Bhn

(t, ρ1,hn
, ρ2,hn

) ⇀
hn→0

B̃(t, ρ1, ρ2) ∗ −L∞(]0, T [).

Proof. We define the piecewise constant function β1
h(τ, σ) as for Nh and fh and β2

h(X) = β2
l,m for X ∈

[xl, xl+1[×[θm, θm+1[. Let t ∈ [tk, tk+1[, then

Bh(t, ρ1,h, ρ2,h) = Bk(ρk
1 , ρ

k
2) =

∫ t

0

∫

∂Ω

β1
h(τ, σ)ρ1,h(t, τ, σ)dτdσ−

M∑

j=1

β1
k,jρ

k
1(k, j)δtδσ+

L∑

l,m=1

β2
l,mρ

k
2(l,m)(δx)2

since we defined ρh(t, τ, σ) = 0 for τ ∈]tk, t]. Thus, for ψ ∈ L1(]0, T [) we have

∫ T

0

Bh(t, ρ1,h, ρ2,h)ψ(t)dt =

∫ T

0

∫ t

0

∫

∂Ω

β1
h(τ, σ)ρ1,h(t, τ, σ)ψ(t)dσdτdt − δt

K∑

k=0

M∑

j=1

β1
k,jρ

k
1(k, j)

∫ tk+1

tk

ψ(t)dtδσ

+

∫ T

0

∫

Ω

β2
h(X)ρ2,h(t,X)ψ(t)dXdt

and we obtain the result by using ρ1,hn
⇀

hn→0
ρ1 ∗−L∞, ρ2,hn

⇀
hn→0

ρ2 ∗−L∞, βhn

L1

−−−−→
hn→0

β, ||βhn
||L∞ ≤ C

and noticing that the second term goes to zero in view of the L∞ bounds on ρ1,h (proposition 4) and
β.

Using the lemma as well as Nhn
, fhn

⇀
hn→0

N, f ∗ −L∞, ||Nhn
||L∞ ≤ C and Φ1,hn

C([0,T ]×∂Ω)
−−−−−−−−→

hn→0
φ(t, t, σ),

the previous calculations give
∫

Q̃1

ρ1,hn
(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt −−−→

h→0
−

∫ T

0

∫

∂Ω

{
N(σ)B̃(t, ρ1, ρ2) + f(t, σ)

}
φ(t, t, σ)dσdt.

On the other hand the left hand side also goes to
∫

Q̃1
ρ̃1(t, τ, σ)∂tφ1(t, τ, σ)dσdτdt. This proves that ρ1

verifies the definition 2 and ends the proof.
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3.4 Error estimate

We establish now an error estimate for the approximation of the equations (2.7)-(2.8). For this section,
we make the following assumptions on the data :

(3.8) ρ0 ∈ W 1,∞(Ω), β ∈ W 1,∞(Ω), N ∈ W 1,∞(∂Ω), N ≥ 0,

∫

∂Ω

N(σ)dσ = 1, f ∈ W 1,∞(]0, T [×∂Ω)

It can be noticed that in order to perform the weak convergence of the approximated solutions and estab-
lish theoretical existence to the continuous problem, we did not need to approximate the characteristics
X(t; τ, σ) of the equation. In view of the error estimate though, we need to use another approxima-
tion of the data than (3.3). For β(X(t; τ, σ)) we have to introduce an approximation Xh(t; τ, σ) of the
characteristics given by a numerical integrator of the ODE system (1.2)-(1.3). Then we define

(3.9)
β1

i,j := β(Xh(tk; τi, σj)), β2
l,m := β(Xh(tk; 0, (xl, θm))

fk
j := f(tk, σj), Nj := N(σj).

For g1 and g2 being two continuous functions on Q̃1 and ]0, T [×Ω respectively, we define

P1g1(t, τ, σ(s)) = g1(tk, τi, σj) for t ∈ [tk, tk+1[, τ ∈]τi−1, τi], s ∈ [sj , sj+1[
P1g1(t, τ, σ(s)) = 0 for t ∈ [tk, tk+1[, τ ∈]tk, t], s ∈ [sj , sj+1[
P2g2(t, x, θ) = g2(tk, xl, θm) for t ∈ [tk, tk+1[, x ∈]xl, xl+1], θ ∈ [θm, θm+1[

.

Lemma 2 (Projection error). Let (g1, g2) ∈ W 1,∞(Q̃1) × W 1,∞(]0, T [×Ω). Then there exists CP1 and
CP2 such that

||g1(tk, ·) − P1g1(tk, ·)||L∞(]0,tk[) ≤ CP1h, ||g2(tk, ·) − P2g2(tk, ·)||L∞(Ω) ≤ CP2h.(3.10)

We don’t give the proof of this lemma since it is classical. We define e1,h := ρ1,h − P1ρ̃1 and e2,h :=
ρ2,h − P2ρ̃2 the errors of the schemes, with (ρ̃1, ρ̃2) solving the problem (2.7)-(2.8). From the equation
(2.7) we have

{
ρ̃1(tk+1, τi, σj) = ρ̃1(tk, τi, σj), 0 ≤ k ≤ K, 0 ≤ i ≤ k, 1 ≤ j ≤ M

ρ̃1(tk+1, τk+1, σj) = N(σj)B̃(tk+1, ρ̃1, ρ̃2) + f(tk, σj)

and thus, subtracting this to (3.1) and denoting ek
1(i, j) = e1,h(tk, τi, σj) we obtain

(3.11)

{
ek+1

1 (i, j) = ek
1(i, j), 0 ≤ k ≤ K, 0 ≤ i ≤ k, 1 ≤ j ≤ M

ek+1
1 (k + 1, j) = NjE

k+1 + rk+1
j

with

Ek+1 =

k∑

i=1

M∑

j=1

β1
i,je

k+1
1 (i, j)δtδσ +

L∑

l,m=1

β2
l,me

k+1
2 (l,m)(δx)2

rk+1
j = Nj

(
Bk+1

(
(ρ̃1(tk+1, τi, σj))

i,j
, (ρ̃2(tk+1, xl, θm))

l,m

)
− B̃(tk+1, ρ̃1, ρ̃2)

)
.

Hence the truncation error of the scheme rk+1
j comes only from the quadrature error coming from the

approximation of the integral in B̃(tk, ρ̃1, ρ̃2).

Lemma 3 (Truncation error). Assume (3.8) and that (β◦X1)ρ̃1 ∈ W 1,∞(Q̃1), (β◦X2)ρ̃2 ∈ W 1,∞(]0, T [×Ω).
Then there exists Cr such that

max
k,j

|rk
j | ≤ Crh.
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Proof. We have

rk
j = Nj [

k−1∑

i=1

M∑

j=1

(
β1

i,j − β(X1(tk; τi, σj))
)
ρ̃1(tk, τi, σj)δtδσ +

L∑

l,m=1

(
β2

l,m − β(X2(tk;xl, θm))
)
ρ̃2(tk, xl, θm) (δx)

2

+

k−1∑

i=1

M∑

j=1

β(X1(tk; τi, σj))ρ̃1(tk, τ, σ)δtδσ +

L∑

l,m=1

β(X2(tk;xl, θm))ρ̃2(tk, xl, θm) (δx)
2

−

∫ tk−1

0

∫

∂Ω

β(X1(tk; τ, σ))ρ̃1(tk, τ, σ)dτdσ −

∫

Ω

β(X2(tk, Y ))ρ̃2(tk, Y )dY

−

∫ tk

tk−1

∫

∂Ω

β(X1(tk; τ, σ))ρ̃1(tk, τ, σ)dτdσ].

Thus
∣∣rk

j

∣∣ ≤||N ||L∞{||β||W 1,∞ (||X1,h − P1X1||L∞ ||P1ρ̃1||L1 + ||X2,h − P2X2||L∞ ||P2ρ̃2||L1)

+

k−1∑

i=1

M∑

j=1

∫ τi

τi−1

∫ σj+1

σj

|P1 [(β ◦X1) ρ̃1] (tk, τ, σ) − (β ◦X1) ρ̃1(tk, τ, σ)| dτdσ

+

L∑

l,m=1

∫ xl+1

xl

∫ xm+1

xm

|P2 [(β ◦X2) ρ̃2] (tk, Y ) − (β ◦X2) ρ̃2(tk, x, θ)| dxdθ + ||(β ◦X1) ρ̃1||L∞ h}.

Using the lemma 2 and the L1 a priori estimate of proposition 3 gives the result.

Remark 7 (Order of the truncation error). In order to have a better order for the truncation error we
could use a more sophisticated quadrature method like for instance the trapezoid method on Ω for ρ̃2 and
on [0, tk−1[×∂Ω for ρ̃1 (completed by a left rectangle method on [tk−1, tk[×∂Ω). Adapting the previous
proof shows that if the numerical integrator used for the characteristics has order larger than 2, then the
truncation error would have order 2 (order of the trapezoid method).

Proposition 5 (Error estimate). Assume (3.8) and that (ρ̃1, ρ̃2) ∈ W 1,∞(Q̃1) × W 1,∞(]0, T [×Ω) is a
regular solution of (2.7)-(2.8). Let ρ1,h and ρ2,h solve (3.1) and (3.2). Then there exists some constants

C̃1 and C̃2 such that

||ρ1,h(tk, ·) − ρ̃1(tk, ·)||L1(]0,tk[) ≤ C̃1h, ||ρ2,h(tk, ·) − ρ̃2(tk, ·)||L1(Ω) ≤ C̃2h(3.12)

Proof. In view of the lemma 2, it is sufficient to prove the proposition with Psρ̃s(tk, ·) instead of ρ̃s(tk, ·)
(with s = 1, 2). For the second estimate, we notice that

||ρ2,h(tk, ·)−P2ρ̃2(tk, ·)||L1(Ω) = ||e2,h(tk, ·)||L1(Ω) =
∑

l,m

∣∣ek
2(l,m)

∣∣ (δx)2 =
∑

l,m

∣∣ρ0
2(l,m) − ρ0(xl, θm)

∣∣ (δx)2

and the result follows from the definition of ρ0
2(l,m). For the first one, we have

||ρ1,h(tk, ·) − P1ρ̃1(tk, ·)||L1(]0,tk[) = ||e1,h(tk, ·)||L1(]0,tk[) =

k∑

i=1

M∑

j=1

∣∣ek
1(i, j)

∣∣ δtδσ.

We can compute, using (3.11)

||e1,h(tk+1, ·)||L1 ≤

k∑

i=1

M∑

j=1

∣∣ek+1
1 (i, j)

∣∣ δtδσ +
∣∣Ek+1

∣∣ δt
M∑

j=1

Njδσ + δt

M∑

j=1

∣∣rk+1
j

∣∣ δσ

≤ ||e1,h(tk, ·)||L1 + δt||β||∞||N ||h {||e1,h(tk, ·)||L1 + ||e2,h(tk+1, ·)||L1 } + Crhδt

≤ (1 + δt||β||∞||N ||h)||e1,h(tk, ·)||L1 + C̃2||β||∞||N ||hh
pδt+ Crhδt

and conclude using a discrete Gronwall lemma.
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Remark 8 (Order of the error).
• By looking more carefully at the propagation of errors in the proof, we see that if we set ρ0

2(l,m) =
ρ0(l,m) (which is valid under (3.8)), the error on ρ̃2 comes only from the projection error.

• If in addition, we follow the remark 7 for the approximation of the data, then the error between ρ1,h

and P1ρ̃1 would be of order 2 if we had used a trapezoid method for the integral term in B̃(tk, ρ̃1, ρ̃2).

3.5 Application to the approximation of the problem (1.1)

We explain now how we approximate the solution of (1.1) from the approximation of the solutions of
equations (2.7)-(2.8) given by the schemes (3.1), (3.2). We translate formula (2.11) at the discrete level
thanks to ρ̃1,h, ρ̃2,h given by (3.4) and the solutions ρ̃k

1(i, j), ρ̃k
2(i, j) of the schemes (3.1) and (3.2) :

ρh(t,X) := ρ̃1,h(t, τ t(X), σt(X))J−1
1,h(t, τ t(X), σt(X))1X∈Ωt

1︸ ︷︷ ︸
:=ρ1,h

+ ρ̃2,h(t, Y (X))J−1
2,h(t, Y (X))1X∈Ωt

2︸ ︷︷ ︸
:=ρ2,h

.(3.13)

The jacobians of the changes of variables J1(t; τ, σ) = |G(τ, σ) ·−→ν (σ)|e

∫
t

τ
div G(u,X(u;τ,σ))du

and J2(t;Y ) =

e

∫
t

0
div G(u,X(u;0,Y ))du

are approximated respectively by J1,h and J2,h, piecewise constant functions con-
structed similarly as in (3.4) through Jk

1 (i, j) := eT1(k,i,j) and Jk
2 (l,m) := eT2(k,l,m), where T1 and T2 are

one-dimensional quadrature methods such that T1(k, i, j) ≃
∫ tk

τi
divG(X(s; τi, σj))ds and T2(k, l,m) ≃∫ tk

0 divG(X(s; 0, (xl, θm)))ds. The errors of these quadrature methods are denoted by r1, r2 and are
assumed to be of order α1, α2 :

r1 := max
k,i,j

|r1(k, i, j)| ≤ Cq(δt)α1 , r2 := max
k,l,m

|r2(k, l,m)| ≤ Cq(δt)α2 .

Hence, we have

(3.14) Jk
1 (i, j) = J1(tk, τi, σj)e−r1(k,i,j), Jk

2 (l,m) := eT2(k,l,m) = J2(tk, xl, θm)e−r2(k,l,m).

We define the following meshes :

V1(k, i, j) = {(t,X(t; τ, σ(s))); t ∈ [tk, tk+1[, τ ∈]τi−1, τi], s ∈ [sj , sj+1[}
V2(k, l,m) = {(t,X(t; 0, (xl, θm))); t ∈ [tk, tk+1[, x ∈ [xl, xl+1[, θ ∈ [θm, θm+1[}

and, for a function g ∈ C([0, T ] × Ω)

(3.15) Pg(t,X) = g(tk, X(tk; τi, σj))1(t,X)∈V1(k,i,j) + g(tk, X(tk; 0, (xl, θm)))1(t,X)∈V2(k,l,m).

Remark 9. In the same way as the lemma 2, there exists a constant CP such that for all function
g ∈ W 1,∞(]0, T [×Ω)

||g − Pg||L1(]0,T [×Ω) ≤ CPh.

Theorem 3. Suppose that ρ ∈ W 1,∞(]0, T [×Ω) is a regular solution of the equation (1.1) and let ρh be
defined by (3.13). Then there exists a constant C such that

sup
t∈[0,T ]

||ρh(t, ·) − ρ(t, ·)||L1(Ω) ≤ Ch.

Proof. In view of the remark 9, it is again sufficient to prove the proposition with Pρ instead of ρ. Let t ∈
[tk, tk+1[, then ||ρh(t, ·) −Pρ(t, ·)||L1(Ω) = ||ρ1,h(tk, ·) −Pρ1(tk, ·)||L1(Ω

tk
1 )

+ ||ρ2,h(tk, ·) −Pρ2(tk, ·)||L1(Ω
tk
2 )

with ρs(t,X) := ρ(t,X)1X∈Ωt
s

(s = 1, 2). We do the proof only for ρ1 since it is similar for ρ2. We
also don’t write the dependency in σ in order to avoid heavy notations. To obtain the complete proof it
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suffices to add integrals with respect to σ in the following and σ in all the functions. Doing the change
of variables X1 we have, noticing that Pρ1(tk, X(tk; τ)) = P1ρ̃1(tk, τ)P1J

−1
1 (tk, τ)

||ρ1,h(tk, ·) − Pρ1(tk, ·)||L1(Ω
tk
1 )

=

∫ tk

0

∣∣∣ρ̃1,h(tk, τ)J−1
1,h(tk, τ) − P1ρ̃1(tk, τ)P1J

−1
1 (tk, τ)

∣∣∣ J1(tk, τ)dτ

≤

∫ tk

0

|ρ̃1,h(tk, τ)|
∣∣∣J−1

1,h(tk, τ)J1(tk, τ) − 1
∣∣∣ dτ +

∫ tk

0

|ρ̃1,h(tk, τ) − P1ρ̃1(tk, τ)| dτ+

+

∫ tk

0

|P1ρ̃1(tk, τ)|
∣∣1 − P1J

−1
1 (tk, τ)J1(tk, τ)

∣∣ dτ.

Now we have, using the definition (3.14)
∣∣∣J−1

1,hJ1 − 1
∣∣∣ =

∣∣PJ−1
1 e−r1J1 − 1

∣∣ ≤
∣∣er1

∣∣ 1

|PJ1|
|J1 − PJ1| +

∣∣e−r1 − 1
∣∣

Thus, since
∣∣∣
∣∣∣ 1

J1

∣∣∣
∣∣∣
L∞

< ∞ from formula (2.5) and the fact that G ·ν ≥ m > 0, and using |e−r1 − 1| ≤ 2r1,

there exists CJ such that

||J−1
1,h(tk, τ)J1(tk, τ) − 1||L∞ ≤ CJh, and ||1 − P1J

−1
1 (tk, τ)J1(tk, τ)||L∞ ≤ CJh.

The last inequality comes from the lemma 2 since J1 ∈ W 1,1((0,+∞) ; L1(Γ))1,∞ from the formula (2.5).
Using then the continuous and discrete a priori L1 estimates and the proposition 5 gives the result.

Remark 10. In the case of less regularity on the solution, we still have ρh ⇀
h→0

ρ, ∗ − L∞(]0, T [×Ω).

Indeed, we write ρh = ρ̃1,hJ
−1
1,h + ρ̃2,hJ

−1
2,h = ρ̃1,hJ

−1
1 + ρ̃2,hJ

−1
2 + ρ̃1,h(J1,h −J1)+ ρ̃2,h(J2,h −J2). Then we

use that for s = 1, 2 J−1
s,h

L1

−−−→
h→0

J−1
s as well as

∣∣∣
∣∣∣J−1

s,h

∣∣∣
∣∣∣
L∞

≤ Cers with C a constant. Using the theorem 2

for the convergence of ρ̃1,h and ρ̃2,h gives the result.

Remark 11. In practical situations we are often only interested in the number of metastases and not in
the density ρ itself. Notice that thanks to the formula

∫
Ω ρ(t,X)dX =

∫ t

0

∫
∂Ω ρ̃1(t, τ, σ)dσdτ+

∫
Ω ρ

0(X)dX,
we don’t have to compute the jacobians J1, J2 to get the number of metastases. Yet, we still have to
compute the characteristics since they are requested in the computation of the boundary condition (see
formula (3.9)).

4 Numerical simulations

4.1 Simulation technique and parameters

Since our equation is two-dimensional, the computational cost can be relatively high because of the
integral term in the boundary, especially for large-time simulations. In order to take into account that the
metastases are born with a vasculature very close to a given value θ0, we examine replacing the function
N(σ) by a dirac measure. In [6], we demonstrate that if we take N(1, θ) = Nε(1, θ) = 1

2ε1θ∈[θ0−ε, θ0+ε]

and let ε go to zero the solution of the problem (1.1), in the case of an autonomous velocity field G
and initial condition equal to zero, converges to the measure solution of a limit problem consisting in
replacing N by a dirac measure in (1, θ0). We use here these considerations to reduce the computational
cost and simulate only along the characteristic passing through (1, θ0), that is to say the scheme (3.1)
with only one discretization point σ0 on ∂Ω and N(σ) = 1σ=σ0 . Moreover, we use a Runge-Kutta method
of order 4 for the approximation of the characteristics and a trapezoid method for the approximation of
the boundary condition.
The values of the parameters for the tumoral growth are taken from [16], where they were fitted to mice
data. Following [18] and [2], we take α = 2/3 and fix the value of m arbitrarily. The values of the
parameters (without the treatment) are gathered in the table 1. The size (= volume) is expressed in
mm3 though until now it was thought as the number of cells.
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a c d x0 (initial x) θ0 (initial θ) m α

(day−1) (day−1) (day−1vol−2/3) (vol) (vol) (Nb of meta)(day−1)(vol−α)
0.192 5.85 8.73 × 10−3 10−6 625 10−3 2/3

Table 1: Values of the parameters without treatment.

4.2 Simulations without treatment

A very important issue for clinicians is to determine the number of metastases which are not visible with
medical imaging techniques (micro-metastases). Having a model for the density of metastases structured
in size allows us to compute the number of visible and non-visible metastases. We took as threshold for
a metastasis to be visible a size of 108 cells, that is 100 mm3 by using the conversion 1 mm3 ≃ 106 cells.
In the figure 4, we plotted the result of a simulation showing both the total number of metastases as well
as only the visible ones. We observe that at day 20 the model predicts approximately one metastasis
though it is not visible. At the end of the simulation, the total number of metastases is much bigger than
the number of visible ones.
Thus, an interesting application of the model would be to help designing a predictive tool for the total
number of metastases present in the organism of the patient. In this perspective, we define a metastatic
index as the integral of ρ on Ω :

MI(t) :=

∫

Ω

ρ(t,X)dX.

Of course, this index depends on the values of the parameters, for example on the parameter m, as shown
in the table 2. The larger m, the larger the metastatic index. In this table, we remark that at least for

MI(1.5) MI(7.5) MI(15)
m = 10−4 5.80 × 10−3 6.60 × 10−2 2.79 × 10−1

m = 10−3 5.80 × 10−2 6.60 × 10−1 2.81
m = 10−2 5.80 × 10−1 6.62 30.1

Table 2: Variation of the number of metastases with respect to m.

times less than 15 days, it seems that the metastatic index is linear in m. Indeed, this can be explained
by the fact that at the beginning, most of the metastases come from the primary tumor and not by the
metastases themselves (see figure 5.A). This means that the renewal term in the boundary condition of
(1.1) could be neglected for small times and that the solution of (1.1) is close to the one of





∂tρ+ div(ρG) = 0
−G · νρ(t, σ) = N(σ)β(Xp(t))
ρ0(X) = 0.

But then, integrating the equation on Ω gives MI(t) =
∫ t

0 β(Xp(s))ds = m
∫ t

0 xp(s)αds, where Xp(s) =
(xp(s), θp(s)) represents the primary tumor and solves the system (1.2)-(1.3) with initial condition (x0, θ0).
The figure 5.B shows that for larger times metastases emitted by the metastases themselves are more
important than the ones emitted by the primary tumor. The metastatic index for large time is then not
anymore linear in m (result not shown).

4.3 Simulations with treatment

4.3.1 Anti-angiogenic drug alone

We present various simulations of treatments, first involving an anti-angiogenic drug (AA) alone,
in order to investigate the difference in effectiveness of various drugs regarding to their pharmacoki-
netic/pharmacodynamic parameters. The first result shown in figure 6 takes the three drugs which were
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Figure 4: Evolution of the total number of metastases and of the number of visible metastases, that is
whose size is bigger than 100mm3(≃ 108 cells).
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Figure 5: Number of metastases emitted by the primary tumor and by the metastases themselves. A.
T=50. B. T=100

used in [16] where only the effect on tumor growth was investigated, and simulates the effect on the metas-
tases. The three drugs are TNP-470, endostatine and angiostatine and each drug is characterized by two
parameters in the model : its efficacy e and its clearance rate clrA. These parameters were retrieved in
[16] by fitting the model to mice data. The administration protocols are the same for endostatine and
angiostatine (20 mg every day) but for TNP-470 the drug is administered with a dose of 30 mg every
two days. We observe that TNP-470 seems to have the poorest efficacy due to its large clearance. As
noticed in [16], the ratio e/clrA should govern the efficacy of the drug and its value is 0.13 for TNP-470
and 0.39 for both endostatine and angiostatine. The model we developed is now able to simulate efficacy
of the drugs on the metastatic evolution (figure 6.C). Interestingly, the drug which seems to be more
efficient regarding to the tumor size at the end of the simulation (day 15), namely angiostatine, is not
the one which gives the best result on the metastases. Indeed, the lower efficacy of endostatine regarding
to ultimate size is due to a relatively high clearance provoking a quite fast rebound of the angiogenic
capacity once the treatment stops. But since the tumor size was lower for longer time, the metastatic
evolution was better contained. This shows that the model could be a helpful tool for the clinician since
the response to a treatment can differ from the primary tumor to metastases, but the clinician has no
data about micro-metastases which are not visible with imagery techniques.

One of our main postulate in the treatment of cancer is that for a given drug, the effect can vary
regarding to the temporal administration protocol of the drug, due to the combination of the pharma-
cokinetic of the drug and the intrinsic dynamic of tumoral and metastatic growth. To investigate the
effect of varying the administration schedule of the drug, we simulated various administration protocols
for the same drug (endostatine). The results are presented in figure 7. We gave the same dose and the
same number of administrations of the drug but either uniformly distributed during 10 days (endostatine
2), concentrated in 5 days (endostatine 1) or in 2 days and a half (endostatine 3). We observe that the
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tumor is better stabilized with a uniform administration of the drug (endostatine 2) but the number of
metastases is better reduced with the intermediate protocol (endostatine 1). It is interesting to notice
that again if we look at the effects at the end of the simulation, the results are different for the tumor size
and for the metastases. The two protocols endostatine 1 and endostatine 2 give the same size at the end,
but not the same number of metastases. Moreover, the best protocol regarding to minimization of the
final number of metastases (endostatine 1) is neither the one which provoked the largest regression of the
tumor during the treatment (endostatine 3) nor the one with the most stable tumor dynamic (endostatine
2). In the figure 8, we investigate the influence of the AA dose (parameter DA) on tumoral, vascular and
metastatic evolution. We observe that the model is consistent since it exhibits a monotonous response
to variation of the dose.

4.3.2 Combination of anti-angiogenic and cytotoxic drug

An important question in clinical oncology is to determinate how to combine a cytotoxic drug (CT) that
kills the proliferative cells and an anti-angiogenic (AA) drug which acts on the angiogenic process, either
by blocking the angiogenic factors like VEGF (monoclonal antibodies, e.g. Bevacizumab) or by inhibiting
the receptors to this molecule. The AA drugs are classified as part of the cytostatic drugs as they aim to
stabilize the disease. For instance, in the treatment of breast cancer, patients which express the receptor
HER receive a combination of Docetaxel (CT) and Herceptine (a tyrosine kinase inhibitor, AA). Two
questions are still open : which drug should come before the other and then what is the best temporal
repartition for each drug? Here, we perform a brief in silico study of the first question. Since we don’t
have real parameters for the cytotoxic drug we fix arbitrarily the value of each parameter h, clrC and
DC to 1, and perform simulations of the model to investigate combination of the CT and the AA. In the
figure 9, we present the results of two simulations : one giving the AA before the CT (fig. 9.A) and the
other one doing the opposite (fig. 9.B). Although in both cases the effect on the metastases is very good
since the growth seems stopped (fig. 9.D), it appears that the qualitative behaviors of the tumoral and
metastatic responses are different regarding to the order of administration of the drugs (fig. 9.C and 9.D).
According to the model, it would be better to administrate first the CT in order to reduce the tumor
burden and then use the AA to stabilize the disease. Indeed, the number of metastasis at the end of the
simulation is lower when the CT is applied first than in the opposite case. Of course, this conclusion
depends on the tumoral growth and drugs parameters but this simulation shows that the model is able
to exhibit different responses regarding to the order of administration between CT and AA drugs.

5 Conclusion

In this paper, we combined the models of [18] and [16] to obtain a model aiming at describing the effect
of anti-angiogenic drugs on the metastatic growth. We established the well-posedness of the model and
developed an efficient numerical scheme to perform simulations, which could be adapted to similar models
in higher dimensions. The model can now be used in order to rationalize the temporal administration of
the anti-angiogenic drugs. To achieve this, we have to implement the various pharmacokinetic models of
the different AA drugs and then compare the in silico predictions to real patient data.
An important open problem in this direction is the mathematical parameter identifiability of the model,
that is to say the inverse problem of uniqueness of the parameters resulting in a given observation. It
is also important to develop efficient numerical methods able to achieve the parameter identification
from the data. Indeed, identifying the parameters m and α in a given patient could determine the
metastatic aggressiveness of its cancer, through the metastatic index. This could lead to interesting
clinical applications such as a refinement of the existing classifications like TNM or SBR, which deal only
with the visible metastases.
As shown in [14], the metastatic response to AA treatment depends on the time schedule of the drug.
The results of the simulations are encouraging in the perspective of using the model as a tool able
to test various real temporal administration protocols of the drugs and to perform predictions of the
mathematically optimized schedule for a given drug. Moreover, AA are never used in a monotherapy but
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Figure 6: Effect of the three drugs from [16]. The treatment is administered from days 5 to 10. Endo-
statine (e = 0.66, clrA = 1.7) 20 mg every day, TNP-470 (e = 1.3, clrA = 10.1) 30 mg every two days
and Angiostatine (e = 0.15, clrA = 0.38) 20 mg every day. A : Tumor size. B : Angiogenic capacity. C :
Number of metastasis.
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Figure 7: Three different temporal administration protocols for the same drug (Endostatine). Same
dose (20 mg) and number of administrations (6) but more or less concentrated at the beginning of the
treatment. Endostatine 1 : each day from day 5 to 10. Endostatine 2 : every two days from day 5 to 15.
Endostatine 3 : twice a day from day 5 to 7.5. A : Tumor size. B : Angiogenic capacity. C : Number of
metastasis.
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: Number of metastasis.
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Figure 9: Combination of an anti-angiogenic drug (AA) : endostatine (e = 0.66, clrA = 1.7 and DA =
20mg) and a cytotoxic one (CT). The parameters for the CT are : h = 1, clrC = 1, and DC =
1. A. AA from day 5 to 10 then CT from day 10 to 15, every day. Tumor growth and angiogenic
capacity. B. CT from day 5 to 10 then AA from day 10 to 15, every day. Tumor growth and angiogenic
capacity. C : Comparison between both combinations on the tumor growth. D : Comparison between
both combinations on the metastatic evolution.

rather combined with a cytotoxic drug, and determining the best way to combine both drugs is still a
clinical open question [23]. As shown in the figure 9, the model could help in this direction, regarding both
to tumor regression and metastatic evolution of the disease. We should also develop further the modeling
in order to take into account for the competition effects between CT and AA. Indeed, by reducing the
vasculature AA drugs should induce worse supply of both drugs and on the contrary some arguments
are expressed in favor of a normalization effect on the tumor vasculature by AA therapy [19], at least at
the beginning of the treatment. These elements should be incorporated to the model via nonlinear terms
involving the drugs concentrations in the equations (1.2)-(1.3). The relative simplicity of the model (6
parameters without treatment) is a great advantage in view of concrete applications since we have to be
able to fit the model to patients’ data in order to retrieve their parameters and then perform predictions
about the optimal schedule.
A fundamental problem that we have to integrate in our model is the one of toxicities which have to be
dynamically controlled to optimize the scheduling of the drug. In the case of CT and on the tumoral
growth, a model dealing with hematological toxicities is used to drive phase I clinical trials [26, 3]. In
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our case, we also have to integrate a module to control the toxicity and address the resulting problem of
optimization under constraints.
Eventually, our model can be used to run in silico tests about the paradigm of metronomic chemotherapies
which consists in delivering a cytotoxic drug at low doses and uniformly distributed in the treatment cycle
rather than administrating the maximum tolerate dose (MTD) at the beginning of the cycle. Indeed,
these metronomic protocols seem to have a dynamical anti-angiogenic effect [17, 4] that can be integrated
in the model of [16] for the tumour growth and in our model for the effect on metastases.

A Proof of the proposition 1

The result for the second map is classical. For the first one, we have to deal with irregular points of the
boundary ∂Ω. We denote by χ the set of such points and set χt := {X(t; τ, ξ); ξ ∈ χ, 0 ≤ τ ≤ t}. In
order to prove the result, it is sufficient to prove that the map

Xt
1 :

]0, t[×∂Ω \ χ → Ωt
1 \ χt

(τ, σ) 7→ X(t; τ, σ)

is a diffeomorphism, that globally the map Xt
1 : [0, t] × ∂Ω → Ω

t

1 is bilipschitz and that its inverse is
X 7→ (τ t(X), σt(X)). For the first point, since we avoid the irregular points of the boundary by excluding
the set χ, we have the C1 regularity. It remains to prove that Xt

1(τ, σ) is one-to-one and onto, and that
its inverse is C1.

• The map Xt
1 is one-to-one and onto. Let t > 0 and X ∈ Ωt

1. We have Xt
1(τ t(X), σt(X)) =

X(t; τ t(X), σt(X)) = X(t; τ t(X), X(τ t(X); t,X)) = X(t; t,X) = X .
For the injectivity, we remark that if we have X(t; τ, σ) = X(t; τ ′, σ′) with for instance τ ′ < τ , then
σ = X(τ ; τ ′, σ′) which is prohibited by the assumption that G ·ν(τ, σ) > 0. Thus Xt

1 is one-to-one and we
have, for (τ, σ) ∈ [0, t] × ∂Ω : X(t; τ t(Xt

1(τ, σ)), σ(Xt
1(τ, σ))) = X(t; τ, σ) which implies τ t(Xt

1(τ, σ)) = τ .
Thus, we have proven that the inverse of Xt

1 is X 7→ (τ t(X), σt(X)).
• The map Xt

1 is a diffeomorphism. We will prove the formula (2.5) for J1 which will conclude the
proof by using the local inversion theorem. We have J1(t; τ, σ) = |∂τX

t
1 ∧∂σX

t
1|, with ∂σX

t
1 := DY X ◦σ′

for σ being a parametrization of ∂Ω and DY X ∈ M2(R) the derivative in Y of X(t; τ, Y ) viewed as the
flow on Ω. We compute

∂t(∂τX
t
1 ∧ ∂σX

t
1) = ∂τ∂tX

t
1 ∧ ∂σX

t
1 + ∂τX

t
1 ∧ ∂t(DY X

t
1 ◦ σ′) = ∂τ (G ◦Xt

1) ∧ ∂σX
t
1 + ∂τX

t
1 ∧DG ◦DY X

t
1 ◦ σ′

= DG ◦ ∂τX
t
1 ∧ ∂σX

t
1 + ∂τX

t
1 ∧DG ◦ ∂σX

t
1 = div(G)(∂τX

t
1 ∧ ∂σX

t
1).

We compute now directly the value of J1(t; t, σ). We define

T (h) =
Xt

1(t; t+ h, σ) −Xt
1(t; t, σ)

h

and now notice that we can write

Xt
1(t; t, σ) = Xt

1(t; t+ h,Xt
1(t+ h; t, σ))

= Xt
1(t; t+ h, σ) +DY X

t
1(t; t+ h, σ)(Xt

1(t+ h; t, σ) −Xt
1(t; t, σ)) + o(h)

= Xt
1(t; t+ h, σ) + hDY X

t
1(t; t+ h, σ) ◦G(t, σ) + o(h).

Now when h goes to zero DY X
t
1(t; t+ h, σ) → DY X

t
1(t; t, σ) = Id since Xt

1(t; t, Y ) = Y . Finally, we have
T (h) → −G(t, σ), thus ∂τX

t
1(t; t, σ) = −G(t, σ) and ∂τX

t
1 ∧ ∂σX

t
1(t; t, σ) = −G(t, σ) ∧σ′ = G(t, σ) · ν(σ).

Solving the differential equation between times τ and t and taking the absolute value then gives the
formula (2.5).

• Globally, Xt
1 is bilipschitz. It is possible to show that |||DXt

1|||L∞([0,t]×∂Ω) ≤ e
t|||DG|||

L∞([0,T ]×Ω .

On the other hand, using the formula (DXt
1)−1 = J−1

1
tCom(DXt

1) and the fact that from (2.5) J−1
1 is
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bounded on Ω
t

1 thanks to the assumption (2.1) we have |||(DXt
1)−1|||

L∞(Ω
t

1)
< ∞. Thus Xt

1 and (Xt
1)−1

are Lipschitz on [0, t]×∂Ω\χ and Ωt
1 \χt respectively, and they are both globally continuous on [0, t]×∂Ω

and Ω
t

1. Hence they are globally Lipschitz.

Remark 12. Using the same technique than in the previous proof, we can calculate the derivative of
X1(t; τ, σ) in the τ direction. Indeed we compute, for all t, τ, σ

X1(t; τ, σ) = X1(t; τ + h,X1(τ + h; τ, σ))

= X1(t; τ + h, σ) +DY X1(t; τ + h, σ)(X1(τ + h; τ, σ) −X1(τ ; τ, σ)) + o(h)

= X1(t; τ + h, σ) + hDY X1(t; τ + h, σ) ◦G(τ, σ) + o(h)

which gives

(A.1) ∂τX1(t; τ, σ) = lim
h→0

X1(t; τ + h, σ) −X1(t; τ, σ)

h
= −DYX1(t; τ, σ) ◦G(τ, σ).
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