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These parameters will be used as a basis to establish our model. First, a relationship between the viscous and flow time terms starting from Navier-Stokes equation is needed. Secondly, evaluations of some characteristics of the granular phase in concentrated suspensions will be obtained and inserted in our flow time equations. De Larrard's model for the calculation of the maximum packing density f m [4] will be considered. The study of the dependence of the casting time upon weak variations of the formulation and upon the choice of raw materials will make possible to compare the experimental results and those given by our model. Melt casting energetic formulations are established for use in a cylindrical tank of a total volume of 5700 cm 3 . The experiments for flow time determinations are all performed in this container.

Since the publication of Einstein analysing the viscosity of dilute suspensions of rigid spheres in a viscous liquid, numerous equations have been developed to try and extend Einstein's formula to suspensions of higher concentrations [5]. The various resulting formulas differ considerably from each other. In this study, three relationships have been selected to express the viscosity of dispersions of spherical particles as a function of the viscosity of the interstitial fluid , the volume fraction of solids f and the maximum packing density of the solids f 0 m m . Others equations are given in the literature, but the three retained hereafter seem to be the most encountered, discussed and reliable, and this is the reason why they have been chosen in this study. These equations are given in Tab. 1.

Introduction

The purpose of this article is to propose a predictive model of the flow time necessary for emptying a reactor filled with a concentrated suspension through a nozzle situated at the bottom. Similarly to our industrial process, the suspension is made out of insensitive energetic materials and flows under gravity. Experimental results are compared with three viscosity models largely used in the field of concentrated suspensions (Quemada [START_REF] Quemada | Rheology of Concentratred Disperse Systems and Minimum Energy Dissipation Principle, I : Viscosity-Concentration Relationship[END_REF], Krieger and Dougherty [START_REF] Krieger | A mechanism for non-Newtonien flow in suspensions of rigid spheres[END_REF] and Mooney [START_REF] Mooney | The Viscosity of a Concentrated Suspension of Spherical Particles[END_REF]). These models give the viscosity of a concentrated suspension as a function of the viscosity m of the pure liquid, the volume fraction f of the solid included in the paste, and the maximum packing density f 0 m .

Table 1. Rheological equations

Authors

Rheological equations

Krieger-Dougherty [2]

Quemada [START_REF] Quemada | Rheology of Concentratred Disperse Systems and Minimum Energy Dissipation Principle, I : Viscosity-Concentration Relationship[END_REF] Mooney [START_REF] Mooney | The Viscosity of a Concentrated Suspension of Spherical Particles[END_REF] 2.5 
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Relationship between Viscosity and Flow Time

The Bernoulli relationship can be written: Because of the high solid content and the low flow velocity, it is assumed here that Reynolds number is not too important, although greater than unity. The inertial term of the Navier-Stokes equation is supposed to be small enough with respect to the viscous term. The momentum equation takes the following simplified form: The mass balance gives:
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With v d , so that Eq. ( 4) could be written now:
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As the suspension flows during a relatively long time (over one minute), the state can be regarded as quasi-stationary and one can write at any time: Where .
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The integration of Eq. (6) between t=0 and , where the liquid heights are respectively and leads to Eq.7:

t = t 0 h ( ) t h
Eq. (2) implies that, for a given pressure gradient, the flow rate of a fluid is inversely proportional to its viscosity. This can be applied to the two fluids considered, the suspension with a viscosity and the interstitial fluid with a viscosity Therefore, for a given volume, the flow time t is directly proportional to the viscosity:
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Att , the tank is empty and . Finally, is given by Eq. ( 8)
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Wheret represents the flow time for the interstitial fluid. 0 With Eq. ( 3), Eq. ( 8) and one of the rheological equations given in Tab. 1, three relationships, Eq. (9), Eq. (10) and Eq. ( 11), allow us to calculate the flow time for our energetic concentrated suspensions. These relationships depend on the solid volume fraction f , the flow for the interstitial fluidt and the maximum packing densityf . 0 m

Calculation of t by Bernoulli's approach

The interstitial fluid is a mixture of trinitrotoluene TNT and additives, presenting viscosities of 11 and 48.6 mPa.s respectively. Such values are rather small, and the interstitial fluid can be assimilated to a perfect fluid: this allows us to use the Bernoulli relationship in the tank described on Fig. 1.
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Calculation of the Maximum Packing Density

Many studies aim at improving predictions of viscosity by refining the methods of calculation of the maximum packing density [6-7-8]. Many strong similarities appear between concrete and explosive made by casting process as the great number of granulometric scales, and the range of the component morphologies. In this kind of approach, the model developed by De Larrard seems very attractive [9]. This model predicts the maximum packing density of a polydisperse mix, from three parameters: the particle size distribution of the mix, its true density and the experimental packing density of the solid species. The use of software is required to determine the maximum packing density. In this study, the RENE-LCPC software developed by De Larrard and T. Sedran [10] has been selected. The details of the algorithm will not be described here but the interested reader may refer to some of the associated publications [11-12-13].

This model deals with grain mixtures in which linear combinations of packing densities allow to predict the packing density of a mixture of monosized particles d i (d 1 <d 2 <…<d n ) from:
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3 Raw Materials and Experimental Set-up

Raw Materials

The compounds used in this study are listed in Tab. 2. 

Rheology of the Liquid Phase

The liquid phase is composed of TNT and a fusible additive A. The Newtonian viscosity of the additive is measured by a viscometer presenting a"Couette" geometry (Rheomat 30, Contrave). A thermo-regulated bath is used to control the temperature. Results show that the additive has a Newtonian behaviour and its Newtonian viscosity is equal to 48.6 mPa.s at 85°C. The TNT Newtonian viscosity is calculated with Eq. (14) established by [14] on temperature as follows:
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Where T is the absolute temperature in Kelvin and and .
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With these parameter values, at 85°C.
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Solid Phase Characterization

The solid phase is made out of two species: NTO and aluminium. Four batches of NTO, labelled NTO 1, NTO 2, NTO 3, NTO 4 and two batches of aluminium, Al 1, Al 2 are used. They differ by their packing densities, grain size distributions and morphologies.

Where f i is the packing density of class; a i is the volume fraction of belonging to class i; b i is the residual packing density i.e. when the class i is alone and fully packed. To compute the packing density of the overall mixture, one considers that the bulk volume of the class i fills the porous space around the coarser grains; moreover, the volume of finer classes inserted in the voids of class i must be added. Two interaction effects must be taken into account in this calculation: the wall effect, a ij , exerted by the coarser particles and the loosening effect, b ij , exerted by the finer particles. Finally, f m is given by Eq. ( 13).

The experimental packing density C is calculated from the true and bulk densities. The true density is measured with a helium pycnometer from Micromeritics and the true bulk density with a volumenometer. C is defined by Eq. (15):
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The particle size distribution is determined by sifting under vibrations NTO particles, and for aluminium particles with a laser granulometer (Malvern Mastersizer 2000). Grain morphologies are determined by scanning electron microscopy. Average sizes of NTO particles reach 350-400 µm and 13 µm for aluminium particles. SEM analysis shows spherical morphology for Al 2. 

Experimental Set-Up

Nine insensitive explosive formulations are elaborated with different volume fractions of raw materials. These formulations are given in the left hand side of Tab. 4. The flow time of 5700 cm 3 of each suspension has been measured and the texture of these energetic pastes has been observed. For the energetic formulations exhibiting a high apparent viscosity, the measurements of the flow time has been made several times to get significant results. The measurement precision decreases when explosive formulations are highly concentrated. In this case, we repeated twice the measurement of the flow time.

As in our industrial process, suspensions flow through a nozzle situated at the bottom of a tank under gravity. The dimensions of the cylindrical tanks are represented on Fig. 4. The flow time and texture of each formulation is reported in the right hand side of Tab. 4 and depicted on Fig. 5. The last formulation (Formulation 9) represents the interstitial fluid, composed of TNT and additive only. 

Comparison between Experimental and Modelling Results

The maximum packing densityf and the ratio between the maximum packing density and the solid volume fraction f are given in the left hand side of Tab. 5. m Theoretical flow times are calculated Eq. (9), Eq. (10) and Eq. (11). Final results are listed in the right hand side of Tab. 5. Results from Eq. ( 10), which are a direct application of Quemeda's model, are in agreement with our experimental results. 

Figure 6. Comparison between theoretical and experimental results

Discussion

We assumed that the interstitial fluid can be considered as inviscid; this seems to be quite realistic since the experimental flow time (11 s) for 5700 cm 3 corresponds to the theoretical time (13 s) calculated by Eq. (8). Moreover, the fair agreement between our experimental results for concentrated suspensions and the theoretical predictions from Quemada's model seems to support our second, intuitive, assumption that the loss of energy due to viscous effects remains negligible. The ratio of the maximum packing density to the solid volume fraction (left hand side of Tab 5) gives an interesting information to be compared with the texture of insensitive energetic pastes (Fig 5). When it is close to 1 (Formulations 3 and 4), i.e. near the jamming of the structure, the texture is very pasty. On the opposite side, when f /f m decreases (Formulations 1, 2 and 5) or far from 1, energetic pastes present a more liquid behaviour.

As shown on Fig. 6, theoretical values of the flow time resulting from Eq. (9) and Eq. (11) show significant deviations from experimental results. We find that Eq. (10) derived from Quemada's model reflects our experimental results more nicely.

Overall, this result completely ignores the non-Newtonian nature of these energetic suspensions. Typically, energetic suspensions exhibit yield stresses, wall slip and sensitivity to shearing stresses. For more details of the viscoplastic behaviour of concentrated energetic materials, the reader will be able to refer to last work of Kalyon [15-16].

Conclusions

For suspensions of different formulations, various experiments of casting under gravity have been carried out and the time required by a given volume to pass through a nozzle has been measured.

Considering that the suspension flow proceeds under conditions where the inertial term of the Navier-Stokes equation is negligible compared to the viscous term, we find the suspension flow time to be directly proportional to its viscosity. Consequently, the cast time can be calculated from the suspension viscosity. Three models, frequently used in rheology, make possible to calculate this viscosity as a function of the interstitial fluid Newtonian viscosity and the ratio f/f m where f m is calculated with De Larrard's model. The relatively low viscosity of the interstitial fluid allows us to consider perfect fluids and apply the Bernoulli relationship. Comparison between theoretical values and experimental results shows that Quemada's model gives a satisfactory modelling. In the configuration studied, the flow time can be estimated by the following relationship: 

Figure 1 .

 1 Figure 1. Tank geometry Where V [m 3 ] is the suspension volume; and [m/s] are the fluid velocities; and [Pa] are the top and bottom pressures; and [m] are the diameters of sections 1 and 2; [m] is the fluid height; g [m/s²] is the acceleration of gravity equal to 9.81 m/s².1 v

Figure 2 .Figure 3 .

 23 Figure 2. Al and NTO particle size distributions

Figure 4 .

 4 Figure 4. Left: Industrial process; Right, scheme of the tank with some key dimensions

Table 2 .

 2 Studied compounds

	Compounds	Name	True Density Melting Point (g/cm 3 ) (°C)	Physical state at exp. Conditions
	TNT	2,4,6-trinitrotoluene	1.65	81	liquid
	A	Additive	1	83	liquid
	Al	Aluminium	2.7	660	solid
	NTO 3-nitro-1,2,4-triazol-5-one 1.92	279	solid

Table 3 .

 3 NTO and Al experimental packing densities

	Batches	r t (g/cm	3 )	r b (g/cm	3 )	C
	NTO 1	1.92		0.99		0.52
	NTO 2	1.92		0.97		0.51
	NTO 3	1.92		0.75		0.39
	NTO 4	1.92		0.79		0.41
	Al 1	2.7		1.1		0.41
	Al 2	2.7		1.2		0.44

Table 4 .

 4 Composition and flow time of each insensitive energetic formulation

	Formulation	Al	Batche	NTO	TNT	Volume Fraction f i A	Al	NTO	t (s)
	1	1		2	0.33	0.13	0.09	0.45	72
	2	1		1	0.33	0.13	0.09	0.45	168
	3	1		3	0.33	0.13	0.09	0.45	720
	4	1		3	0.33	0.13	0.09	0.45	1200
	5	2		2	0.33	0.13	0.09	0.45	64
	6	1		4	0.35	0.14	0.07	0.44	330
	7	1		4	0.35	0.14	0.07	0.44	303
	8	2		4	0.35	0.14	0.07	0.44	220
	9	N / A		N / A	0 . 7 2	0 . 2 8		0	0	1 1
	Figure 5. Texture of insensitive energetic pastes			

Table 5 .

 5 Maximum packing density of each formulation and comparison between theoretical (ttheo) and experimental results (texp)

	Formulation f m f / f m	Quémada Krieger-Dougherty Mooney t theo (s)	t exp (s)
		1	0,79 0,68		128		124		912	72
		2	0,79 0,68		128		124		912	168
		3	0,61 0,89		972		348		1645790	720
		4	0,61 0,89		972		348		1645790	1200
		5	0,79 0,68		121		121		815	64
		6	0,63 0,81		353		174		10334	330
		7	0,63 0,81		353		174		10334	303
		8	0,63 0,81		353		174		10334	220
		9	0	0		1 3		1 3		1 3	1 1
				R²		0,942		0,914		0,910
		2000							
								Eq. (9)	
		1800						Eq. (10) Eq. (11)	
								Experimental results
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