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Abstract 

Recent experimental observations of Pseudomonas aeruginosa, a model bacterium in biofilm 

research, reveal that, under specific growth conditions, bacterial cells form patterns of 

interconnected microcolonies. In the present work, we use an individual-based model to assess the 

involvement of bacteria motility and self-produced extracellular substance in the formation of 

these patterns. In our simulations, the pattern of interconnected microcolonies appears only when 

bacteria motility is reduced by excreted extracellular macromolecules. Immotile bacteria form 

isolated microcolonies and constantly motile bacteria form flat biofilms. Based on experimental 

data and computer simulations we suggest a mechanism that could be responsible for these 

interconnected microcolonies.  
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Introduction 

Many bacteria have an innate propensity to form biofilms: they build structured 

multicellular communities attached to solid surfaces. Microscopic examination of 

biofilms formed by Pseudomonas aeruginosa, a model bacterium in biofilm 

research (Costerton et al., 1995, Davey et al., 2000), reveals a wide diversity of 

spatial patterns which, depending on the growth conditions, range from a flat thin 

layer of cells to a patchy pattern with interconnected microcolonies having 

complex tower or mushroom like shapes (Klausen et al., 2003b, Barken et al., 

2008). At least some explanation for the different biofilm patterns formed under 

different conditions relates to surface motility. Conditions that promote extensive 

surface motility can lead to the formation of flat, homogenous biofilms, whereas 

biofilms characterized by aggregates result from at least a subpopulation of the 

community ceasing to move at an early stage of biofilm formation (Parsek and 

Tolker-Nielsen, 2008). In P. aeruginosa biofilms, formation of initial 

microcolonies (stalks) that subsequently become colonized by cap-forming 

bacteria is necessary for the formation of mushroom-shaped multicellular 

structures (Klausen et al., 2003a; 2003b). These multicellular structures often 

provide important benefits such as a higher tolerance to adverse conditions 

(Parsek and Tolker-Nielsen, 2008), and can be crucial in industrial processes. 

Therefore, much experimental and theoretical effort is currently devoted to 

understand their mechanisms of formation. 

The formation of spatial patterns in P. aeruginosa biofilms involves a complex 

interplay between cell proliferation, surface-associated motility and the 

production of extracellular macromolecules that form a structural matrix (for a 

review see Parsek and Tolker-Nielsen (2008)). Evidence has been provided that 

arrest of type IV pili-mediated motility (twitching motility) plays a role in the 

formation of the initial microcolonies in P. aeruginosa biofilms, whereas flagella-

driven motility (swarming motility) plays a role in the subsequent formation of the 



3 

cap-portion of the mushroom-shaped structures (Klausen et al., 2003a; 2003b; 

Barken et al., 2008). The early stages of biofilm development by P. aeruginosa is 

dependent on extracellular DNA (Whitchurch et al., 2002), which is known to 

bind with high affinity to type IV pili (Aas et al., 2002, van Schaik et al., 2005), a 

fimbrae extending from the cell body and mediating surface-associated twitching 

motility. Hence it may be assumed that initially motile bacteria stop and form 

microcolonies in the regions of abundant extracellular DNA. Recently, Allesen-

Holm et al. (2006) visualized the spatial distribution of extracellular DNA and 

bacteria in P. aeruginosa biofilms, grown in flow chambers on minimal glucose 

medium. In 2-day-old biofilms the extracellular DNA was present inside the small 

microcolonies, but accumulated mainly in the outer layer of the microcolonies and 

between the microcolonies forming a grid-like structure. Zoomed views of the 

microcolonies revealed that they were often interconnected with thin strands of 

extracellular DNA covered with bacteria (see Fig. 1). In 4-day-old biofilms cap-

like multicellular structures had formed on top of the initial small microcolonies, 

and the highest concentration of extracellular DNA was present between the stalk-

portion and the cap-portion of the mushroom-shaped multicellular structures.  

 

 

Fig. 1 Horizontal confocal laser scanning microscope section acquired in a 2-day-

old DDAO-stained biofilm formed by Gfp-tagged P. aeruginosa PAO1. The 

images show the green fluorescent bacteria (A), the red fluorescent extracellular 

DNA (B), and an overlay of the two (C). Reproduced from Molecular 

Microbiology 59: 1114-1128 with permission from John Wiley & Sons, Inc.    

 

The factors involved when bacteria shift from being motile to sessile in biofilms 

are currently not fully understood. In the present article we present a simple 

spatially explicit individual-based model in which bacterial motility is reduced by 

a self-produced extracellular substance. 
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 Individual-based modeling is a bottom-up approach as it attempts to model a 

population or community by describing the actions and properties of the 

individuals comprising the population or the community (Grimm, 1999, Kreft et 

al., 2001). Spatially explicit IBMs, which include a representation of the spatial 

configuration of the system, allow the simulation of the spatial pattern that 

emerges from the interactions at the level of the individuals. IBMs are not the 

only bottom-up simulating approach of studying emergent spatial patterns. 

Cellular automaton (CA) modeling is another bottom-up approach used for 

simulating microcolonies patterns (Barker and Grimson, 1993) and biofilms 

(Wimpenny and Colasanty, 1997, Picioreanu et al., 1998a, 1998b, Hunt et al., 

2003). CA models are discrete grid-based models, and differ from IBMs in that 

they operate on the spatial cells instead of considering the individual settled in 

them (Ferrer et al., 2008). Comparison of IBMs and CA models showed that 

differences in the simulated biofilm structure may occur for multi-species biofilms 

due to different approaches in redistributing the surplus biomass (van Loosdrecht 

et al., 2002) but that both approaches yield similar biofilm structure for a simple 

mono-species and mono-substrate system (van Loosdrecht et al., 2002). IBMs are 

however usually preferred to CA when the individual’s variability need to be 

considered explicitly (Kreft et al., 2001, Ferrer et al., 2008).  

IBMs have been widely used for modeling spatial organization of bacteria within 

colonies (Kreft et al., 1998, Ginovart et al., 2002) and biofilms (Kreft et al., 2001, 

Xavier et al., 2005) (for a review see Ferrer et al., (2008) and Hellweger and 

Bucci (2009)). Recently, an individual-based model of surface associated 

populations of P. aeruginosa has been presented (Picioreanu et al., 2007). The 

model involves a three-dimensional space and aims to provide a proof-of-

principle of the implication of motility in the formation of biofilm structure. It 

reproduces qualitatively the tendency of motile bacteria to form flat biofilms and 

that of immotile bacteria to form microcolonies by clonal growth, and proposes 

detachment and reattachment processes of the motile bacteria as possible 

mechanisms yielding the formation of complex mushroom-shaped microcolonies. 

In our model, we focus on the interplay between extracellular DNA production 

and bacterial motility. We show that a model where bacterial migration is stopped 

due to adherence to self-produced extracellular DNA can produce complex 

patterns of interconnected microcolonies. 
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Methods 

We describe the model through the ODD protocol (Overview, Design concepts 

and Details) (Grimm et al., 2006), which was designed to facilitate descriptions of 

IBMs in ecology and social science (Polhill et al., 2008). 

 

 

Fig. 2 Schematic representation of the model entities: bacterial cells (discs) and patches (squares 

with a side ∆l). A bacterium with continuous coordinates x,y is contained in the patch 

i=floor(x/∆l,) j=floor(y/∆l). 

 

Purpose 

The model we propose is intended to qualitatively explore the role of surface-

motility reduction by self-produced macromolecules in biofilm pattern formation. 

We address this question at a rather abstract level, and the model results are not 

compared to specific experimental results.  

 

State variables and scales 

The model is a two-dimensional representation of a biofilm system and comprises 

two entities: bacterial cells and their local environment (patches) (Fig. 2). 

Bacterial cells are represented as discs. They are characterized by the state 

variables: continuous position (x,y), individual mass (m), individual diffusion 

factor (Df) and individual substrate uptake rate (r)(table 1). A Patch is 

∆l 
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characterized by the state variables: discrete position (i,j), substrate concentration 

(s), extracellular substance concentration (p) and a substrate uptake rate (rs) 

corresponding to the sum of uptake rates of the individual cells contained within 

the patch (table 1).  

Scales 

We simulated the first day of the biofilm development. We discretized time with a 

constant time step, denoted ∆t = 1s. A spatial patch has a size of 5 × 5 µm and the 

whole domain contains 400 × 400 patches (spatial domain side l = 2000 µm). 

Bacterial cells have variable diameters (~2 µm) depending on their masses. 

Table 1 State variables of the individual-based model 

 Variables Description 

Bacterium state x, y 
Continuous position of the 

center of the bacterium 

 m Mass 

 Df Diffusion factor 

 r 
Individual substrate uptake 

rate 

Patch state i,j Discrete position 

 s Substrate concentration 

 p 
Excreted product 

concentration 

 rs 

Reaction rate (Sum of 

substrate uptake rates of the 

individual cells contained 

within the patch) 

 

 

Process overview and scheduling 

In the IBM, bacteria move stochastically along a 2-D surface while consuming 

substrate, growing and reproducing by binary fission and excreting a product. 
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Bacteria movement is then slowed down through interactions with the excreted 

product yielding different patterns of microcolonies. 

 

At each time step the following processes are performed sequentially: 

� Bacteria growth: for each individual cell we (1) calculate and individual 

substrate uptake rate (r) which depends on the mass of the cell and the 

local substrate concentration. (2) We use the calculated uptake rate to 

update the mass of the cell.   

� Substrate uptake rates for patches: given the uptake rates of each 

individual cell, we calculate an uptake rate (rs) for each patch by taking the 

sum of the uptake rates of the individual cells contained within it. 

� Division: for each individual cell we compare the cell mass to a critical 

value. If the cell mass is higher than the critical value than the cell is 

divided into two daughter cells. One of the daughter cells takes the 

position of the mother cell while the second is placed at random around 

the mother cell position at a distance (d) corresponding to the diameter of 

the daughter cell. 

� Surface motility: we model bacteria translocation as a Brownian process 

using an diffusion factor (Df) proper to each individual. For each 

individual cell, including newly formed cells, we calculate a diffusion 

factor (Df) using a decreasing function of the local product concentration 

and then move the individual cell accordingly. 

� Shoving: bacteria division and motion may produce cells overlaps. In this 

case cells are displaced using an algorithm proposed by Kreft et al. (2001) 

that mimics a shoving process. 

� Substrate and excreted product mass balances: we modeled the substrate 

and the excreted product dynamics using two diffusion-reaction equations 

discretized on the lattice formed by the patches. The reaction terms in 

these equations are calculated using the substrate uptake rate (rs) 

previously calculated for each patch. 

Design Concepts 

� Emergence: the IBM is designed such that the spatial pattern of bacteria 

and product distribution emerge from local interactions. 
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� Sensing: in our model, a bacterium senses the substrate and product 

concentration within the patch corresponding to its position. The substrate 

concentration affects the growth rate of the bacterium whereas the product 

concentration affects the motility of the bacteria. 

� Stochasticity: bacteria motility and the positioning of the daughter cells 

after a division event are the only stochastic processes that we considered 

in the IBM. 

� Observation: at each time step the state variables for bacteria and patches 

are recorded. 

 

Submodels 

Bacteria growth 

We calculate the individual substrate uptake rate (r(t)) of a cell located in (x, y) 

and having a mass m using the following Monod-like kinetic equation: 

( ) ( )
( ) sktjis

tjis
mtr

+
⋅=

,,

,,
maxµ        (1) 

Where s(i, j, t) is the substrate concentration at patch (i, j) with i = floor(x/∆l) and 

j = floor(y/∆l) and µmax and ks are Monod kinetic parameters. The growth rate of 

the bacterium is given by: 

 

( )trY
dt

dm
b ⋅=          (2) 

 

Where Yb is the biomass yield (expressed in mass of bacteria per mass of 

consumed substrate). The time derivative is discretized using an Euler explicit 

scheme and the new mass of the cell is calculated by: 

 

( ) ( ) ( )trYttmttm b ⋅⋅∆+=∆+        (3) 

 

With ∆t the time step. The product excretion rate rp(t) of the considered individual 

cell is given by: 

 



9 

( ) ( )trYtr pp ⋅=          (4) 

 

Substrate Uptake rates 

For each patch we calculate a substrate uptake rate rs(t,i,j) by summing the 

individual substrate uptake rates of the cells contained within the patch: 

( ) ∑∆
=

k
ks tr

l
jitr )(

1
,,

2
       (5) 

where k is the number of cells in patch i,j .  

Bacteria division 

If the mass of a focal individual (a mother cell) becomes greater than twice the 

initial mass of an individual(m ≥ 2m0) it divides into two daughter cells each with 

a mass m/2. The first daughter cell takes the position of the mother cell while the 

second daughter cell is placed randomly at a distance d (distance between the 

centers of both cells) corresponding to the diameter of the daughter cells (both 

daughter cells have the same diameter). 

Bacteria motility 

The motility of the cells is modeled as a Brownian motion process with an 

apparent diffusion factor (Df) which is specific to each individual cell. For a given 

bacterium located at x, y at time t, the position of the bacterium at the instant t + 

∆t is given by: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1,0,2

1,0,2

NtyxDtytty

NtyxDtxttx

f

f

⋅∆+=∆+

⋅∆+=∆+
     (6) 

    

where N(0, 1) draws a number from a centered normal distribution of standard 

deviation 1 (generated using the Mersenne Twister pseudo-random number 

generator). As we assumed that bacteria motility was reduced by the excreted 

product, we calculate diffusion factor (Df) as a decreasing function of the excreted 

product concentration in the corresponding patch (i, j). We use the following 

function: 
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( )tjip
DD ff ,,1

1
max ⋅+

⋅=
β

       (7) 

 

where Dfmax is the maximum diffusion factor of the bacterium, β is a binding 

affinity factor and p(i, j, t) is the product concentration at patch (i,j). The 

parameter β rules the sensitivity of Df to the variation of p(i, j, t) as shown by 

figure 3. 
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Fig. 3 Motility dependence on the excreted product concentration for different values of β 

 

We use periodic boundary conditions for the individuals such that an individual 

that exits the domain from one side appears from the opposite side. 

 

Bacteria shoving 

Bacteria shove each other when they overlap. If a bacterium with radius a is 

overlapped with n neighboring cells, it is displaced with a shoving vector d 

calculated using the following equation adapted from Kreft et al. (2001): 

 

knk

kk u
daa

d ∑ =

−+
=

:1 2
       (8) 
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ak is the radius of the neighbor cell k, dk is the Euclidean distance from the center 

of the bacterium to the center the kth neighboring cell and uk is a vector directed 

from the center of neighbor bacterium k towards the center of the bacterium and 

having a unitary norm. We consider periodic boundary conditions for the search 

of overlapping neighbors and for the repositioning of the shoved individuals. 

Substrate and excreted product mass balance equation  

The distribution of the substrate is the solution of the following continuous 

diffusion-reaction equation: 

ss rsD
t

s −∇=
∂
∂ 2         (9) 

with periodic boundary conditions: 

( ) ( )ylxtsyxts ,,,0, ===        (10) 

( ) ),,(0,, lyxtsyxts ===        (11) 

and having as initial conditions: 

( ) 0,,0 syxts ==          (12) 

The excreted product dynamic is also given by a diffusion-reaction equation: 

spp rYpD
t

p +∇=
∂
∂ 2         (13) 

with periodic boundary conditions: 

( ) ( )ylxtpyxtp ,,,0, ===        (14) 

( ) ( )lyxtpyxtp === ,,0,,        (15) 

and having as initial conditions 

( ) 0,,0 == yxtp          (16) 

Yp in (eq. 13) is the product yield expressed in mass of excreted product per mass 

of consumed substrate. We discretize the substrate and the product mass balance 

equations with respect to space on the lattice formed with the patches using a 

four-point scheme. The reaction term has already been calculated for each patch 

(eq. 5). We discretize the time derivative term in the substrate and the product 

mass balance equations using an implicit scheme for the diffusion term. Note that 
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the reaction term is calculated on the basis of an explicit scheme. The obtained 

discretized system is a sparse linear system that we solve using the conjugate 

gradient method (Hestenes and Stiefel, 1952). This gives the new substrate and 

product concentrations in each patch. 

IBM parameters 

Unless explicitly specified, we use the parameters values in table 2 for the 

individual-based model. 

 

Table 2 Individual-based model parameters. (*): assumed, (**): adapted from [30], (***) adapted 

from [22] 

 

Parameter Description Units Value 

l Domain side  µm 2000 (*) 

∆l Spatial step  µm 5 (*) 

Ds  Substrate diffusion constant  m2/s 10−10 (**) 

Dp  Product diffusion constant  m2/s 10−16 (*) 

Dfmax  
Maximum diffusion factor 

for the bacteria  

m2/s 
10−12 (*) 

µmax  Maximum growth rate  kg substrate/(kg biomass s) 10−4 (**) 

ks  Affinity constant  kg substrate/m
2 0.01 (**)  

Yp  Product yield  (kg product/kg substrate) 0.1 (*) 

Yb  Biomass yield  (kg biomass/kg substrate) 0.9 (*) 

ρb  Density of a bacterial cell  (kg biomass/m
2) 290 10-6 (***)  

β Binding affinity factor  (m2/kg product) variable 

 

Initialization 

We initialize all simulations with: 

� a uniform initial substrate concentration s0 

� a uniformly null concentration of excreted product 

� N0 bacterial cells drawn at random in the domain each with the same initial 

mass m0. 

Initial conditions are detailed in table 3. 
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Table 3 Initial conditions of the individual-based model  

 

Parameter Description Units Value 

s0  Initial substrate concentration in all patches kg/m2 10.0 

p0  Initial product concentration in all patches  kg/m2 0.0 

N0  Initial number of bacterial cells  
# 
 

100 

m0 Initial mass of a bacterium kg 10-15 

 

Model implementation 

We implemented the model using the Java programming language and the Mason 

framework. Mason is a discrete event multiagent simulation library code 

developed at the George Mason University for implementing multi-agent models 

(Luke et al., 2004). 

Results 

We simulate the patterns formed by the spatial distribution of bacteria and the 

excreted product displayed after 9 and 18 hours for different values of β (the 

parameter determining the impact of the excreted product on bacteria motility) 

and for the case of immotile bacteria. Two extreme cases can be identified. In the 

first case, bacteria are motile and their motility is independent from the excreted 

product (β = 0) while in the second case bacteria are immotile Dfmax = 0. Figures 4 

and 5 show the patterns obtained in these limiting cases. Motile cells disperse over 

the spatial domain (Fig. 4) in contrast with immotile cells that form isolated 

microcolonies (Fig. 5). These results are consistent with previous theoretical 

(Picioreanu et al., 2007) and experimental (Klausen et al., 2003b) studies of P. 

aeruginosa showing that motile cells tend to form flat biofilms while immotile 

bacteria form round shaped microcolonies.  
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Fig. 4 Overall and zoomed view of the spatial pattern formed by the bacteria (black dots) and the 

excreted macromolecules (gray scale) for motile bacteria for β= 0 at time 9 and 18 hours 
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We also simulated intermediate cases where the bacteria motility depends on the 

local concentration of the excreted product. Figure 6 and 7 show examples of 

spatial pattern obtained after 9 and 18 hours for a small and a large value of the 

parameter β respectively. As the system evolves over time, the patterns of 

microcolony formation under the two parameterizations begin to diverge. A large 

value of β results in microcolonies that are more spatially discrete with higher 

densities of individuals within them (Figure 7), while the smaller value of β 

results in a pattern of microcolonies that are more amorphous in size and shape, 

are more connected with each other, and densities of bacteria within them are 

lower (Figure 6).  

 

In our simulations, microcolony formation is initiated by the local accumulation 

of the product excreted by the cells along their Brownian trajectories. The product 

excretion rate is maximal (~Yp µmax, see Equations 1 and 6) at the beginning of the 

simulation when the substrate (S>> ks in Equation 1) is abundant and accumulates 

due to its low diffusion factor. For large values of β bacteria are rapidly entrapped 

within the locations containing the excreted product and their daughter cells tend 

to accumulate locally yielding dense and discrete microcolonies. In the opposite 

for small values of β, bacteria and their daughter cells tend to disperse and the 

yielded microcolonies have amorphous shape. Analogously, simulation with 

different values of the product excretion ratio Yp (Equation 6), at a constant value 

of β, between the two extreme cases of Yp=0 (no product excretion) and Yp =1.0 

(no growth, all the substrate is released back on the form of product) yields 

patterns that vary respectively from uniform distribution of the bacteria to the 

formation of isolated, round-shaped microcolonies (data not shown). This 

suggests that the binding affinity factor (β) and the product excretion rate may 

have a significant impact on the patterns of spatial distribution of the bacteria. In 

our model, the substrate concentration impacts the rate of product excretion. An 

initial low substrate level yields low rates of product excretion of the individuals 

which may not be sufficient to reduce the motility of the bacteria and the 

formation of microcolonies. In our simulation the initial substrate level is 

relatively high and only 90% of this initial stock is consumed by the end of the 

simulation. 
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Fig. 5 Overall and zoomed view of the spatial pattern formed by the bacteria (black dots) and the 

excreted macromolecules (gray scale) for immotile bacteria at time 9 and 18 hours 
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Fig. 6 Overall and zoomed view of the spatial pattern formed by the bacteria (black dots) and the 

excreted macromolecules (gray scale) for motile bacteria for β = 100 at time 9 and 18 hours 
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Fig. 7 Overall and zoomed view of the spatial pattern formed by the bacteria (black dots) and the 

excreted macromolecules (gray scale) for motile bacteria for β = 500 at time 9 and 18 hours 

 

We investigate how the interconnections between the microcolonies form in the 

case of large value of binding affinity parameter (β=500). Figure 8 shows a 
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zoomed view of the formation of the interconnection between two neighboring 

microcolonies.  

 

 

Fig. 8 Zoomed view of interconnection formation between two microcolonies for a binding 

affinity β = 500 at time 9 and 18 hours. Bacteria are represented with green dots and the excreted 

product concentration with gray scale.  
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The interconnection seems to be created by bacteria which go from a microcolony 

to a neighboring one, and which progressively accumulate excreted product on the 

path. The resultant pattern is formed with dense and discrete microcolonies 

interconnected with relatively thin strands of bacteria and excreted product. 

Discussion 

In this work we abstract experimental observations on P. aeruginosa biofilm 

development (Whitchurch et al., 2002, Klausen et al., 2003a; 2003b; Allesen-

Holm et al., 2006; Barken et al., 2008) in an individual-based model and 

investigate how bacteria motility reduction due to a self-produced substance 

yields different spatial patterns during the early stages of biofilm development. 

Our simulation results suggest that self-produced substance-mediated motility 

reduction does play a role in microcolony formation. Furthermore, in some cases, 

these simulated microcolonies build interconnections, similar to interconnected 

microcolonies observed during the early stages of P. aeruginosa biofilm 

development in flow chambers (Allesen-Holm et al., 2006), and also in biofilms 

formed by Pseudomonas species in marine environments (Dalton et al., 1994, 

Dalton et al., 1996). 

Several authors already explored the mechanisms yielding microcolonies in 

biofilms (Alpkvist et al., 2006, Picioreanu et al., 2007). However, the pattern of 

interconnected microcolonies cannot be obtained with these usual mechanisms: 

immotile bacteria form isolated microcolonies and constantly motile bacteria form 

flat biofilms. Based on experimental data and computer simulations we suggest a 

mechanism that could be responsible for the observed patterns. Our model shows 

that microcolonies may result from bacteria motility reduction by self-produced 

macromolecules. The analysis of the simulation results suggests that cells on the 

edge of a microcolony occasionally detach and undergo a surface-associated 

motility until being captured by a neighboring microcolony. The path of the 

migrating cell is marked by the excreted macromolecules and is progressively 

reinforced by other migrating cells. This results in the formation of an 

interconnection between the neighboring microcolonies. However, more 

investigation is necessary to strengthen or falsify this hypothesis. 

This investigation could be important for a better understanding of biofilm 

functions. Indeed, it is well accepted that the presence of different subpopulations 
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in microcolonies can favor the survival of one or more subpopulations under 

adverse conditions (Parsek and Tolker-Nielsen, 2008, Johnson, 2008). However, 

recent observations suggest that in some cases the matrix of extracellular DNA 

(and possibly other products) may guide migration of the cells between 

microcolonies (Lu et al., 2005, Barken et al., 2008) favoring a type of 

collaboration between distinct subpopulations within a biofilm. This may be 

related to studies in landscape ecology where this pattern of interconnected 

habitats is recognized as particularly important (Burel and Baudry, 2003). 

Individual-based models are appealing to microbiologists because of the emphasis 

on the individual cell as the fundamental unit and the richness of their dynamic. 

However when they are too complex they often become difficult to analyze which 

limits their practical payoff (Grimm and Railsback, 2005). Therefore, we have 

attempted to keep our model as simple as possible and inspired by the 

phenomenological results mentioned in the introduction, but rich enough to 

produce patterns of interconnected microcolonies. Johnson (2008) proposed a 

model based on the assumption of the “direct” interaction between individual cells 

through attractive (and repulsive) forces arguing that forces between cells can be a 

proxy for the behavior we expect to see due to chemotaxis in response to 

chemicals released by other cells (Johnson, 2008). The assumption simplifies the 

model as the dynamic of the excreted product is not considered explicitly. This is 

a reasonable assumption when the dynamics of the chemical being produced is 

fast (high diffusion) compared to the dynamic of the bacteria (motility and 

growth) (Lee et al., 2001). Our model is based on the assumption that the excreted 

macromolecules like DNA and exopolymers diffuse at low rates and persist on the 

path of the motile bacteria. This seems to play a role in the formation of the 

interconnected microcolonies as microcolonies yielded by Johnson’s model 

through attractive/repulsive forces seem not to be interconnected (Johnson, 2008). 

Our study included, however, some limitations that should be acknowledged for 

future research in this area. Examples, inherent to individual-based modeling 

approach, include the question of how to measure the “goodness” of an IBM. 

Grimm and Railsback (2005) suggested that testing an IBM against multiple 

observed patterns is a powerful way to assess the IBM capacity to capture 

system’s essential characteristics. In this work we assessed the “goodness” of our 

IBM through comparison of an observed pattern (connected microcolonies in 
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fig.1) to a simulated one (fig.8). Despite the similarities between the experimental 

and simulated patterns (thin path of bacteria and product connecting neighboring 

microcolonies) there are still differences. For example cells surrounded the thin 

path in figure 1 while they are contained in the area with high amount of product 

in figure 8. Therefore, additional patterns should be identified and compared to 

the simulated ones in order to strengthen or falsify the hypothetical implication of 

self-excreted product in motility reduction and formation of interconnected 

microcolonies. Another limitation of our model is the determination of parameters 

like the binding affinity factor (β) and cell diffusion (Df).  These parameters may 

be difficult to obtain from experimental observations and their impact should be 

assessed through sensitivity analysis. 

Finally, our work can be extended beyond its basic premise and valuable research 

remains to be conducted. For instance the model can be extended to investigate 

the effect of other macromolecules like exopolymers on the bacteria motility and 

microcolonies formation. Another potential extension is to include additional 

processes like bacteria detachment and substrate feeding which allow 

investigating the effect of the interactions between cell motility and excreted 

macromolecules on the architecture of mature biofilms. 
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