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Abstract

Recent experimental observations Pdeudomonas aerugingsa model bacterium in biofilm
research, reveal that, under specific growth cdonbt bacterial cells form patterns of
interconnected microcolonies. In the present wasd,use an individual-based model to assess the
involvement of bacteria motility and self-producestracellular substance in the formation of
these patterns. In our simulations, the patterimtefconnected microcolonies appears only when
bacteria motility is reduced by excreted extradatlumacromolecules. Immotile bacteria form
isolated microcolonies and constantly motile baatéorm flat biofilms. Based on experimental
data and computer simulations we suggest a mechattiat could be responsible for these

interconnected microcolonies.
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Introduction

Many bacteria have an innate propensity to fornfilas: they build structured
multicellular communities attached to solid suradglicroscopic examination of
biofilms formed byPseudomonas aerugingsa model bacterium in biofilm
research (Costerton et al., 1995, Davey et al.0RQ@veals a wide diversity of
spatial patterns which, depending on the growthditmmms, range from a flat thin
layer of cells to a patchy pattern with intercortedc microcolonies having
complex tower or mushroom like shapes (Klausenl.et2@03b, Barken et al.,
2008). At least some explanation for the differbiatfilm patterns formed under
different conditions relates to surface motilityor@itions that promote extensive
surface motility can lead to the formation of flabmogenous biofilms, whereas
biofilms characterized by aggregates result fronheast a subpopulation of the
community ceasing to move at an early stage ofilbioformation (Parsek and
Tolker-Nielsen, 2008). InP. aeruginosa biofilms, formation of initial
microcolonies (stalks) that subsequently becomeoninéd by cap-forming
bacteria is necessary for the formation of mushrgbaped multicellular
structures (Klausen et al., 2003a; 2003b). Theséiaellular structures often
provide important benefits such as a higher tolsgato adverse conditions
(Parsek and Tolker-Nielsen, 2008), and can be aruni industrial processes.
Therefore, much experimental and theoretical efiertcurrently devoted to
understand their mechanisms of formation.

The formation of spatial patterns ih aeruginosabiofiims involves a complex
interplay between cell proliferation, surface-assted motility and the
production of extracellular macromolecules thainfaa structural matrix (for a
review see Parsek and Tolker-Nielsen (2008)). Ehadehas been provided that
arrest of type IV pili-mediated motility (twitchingotility) plays a role in the
formation of the initial microcolonies iR. aeruginosaiofilms, whereas flagella-

driven motility (swarming motility) plays a role the subsequent formation of the
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cap-portion of the mushroom-shaped structures @€auet al., 2003a; 2003b;
Barken et al., 2008). The early stages of biofilevelopment byP. aeruginosas
dependent on extracellular DNA (Whitchurch et aD02), which is known to
bind with high affinity to type IV pili (Aas et al2002, van Schaik et al., 2005), a
fimbrae extending from the cell body and mediasngface-associated twitching
motility. Hence it may be assumed that initially titeo bacteria stop and form
microcolonies in the regions of abundant extrat@lIDNA. Recently, Allesen-
Holm et al. (2006) visualized the spatial distribatof extracellular DNA and
bacteria inP. aeruginosabiofilms, grown in flow chambers on minimal glueos
medium. In 2-day-old biofilms the extracellular DNyas present inside the small
microcolonies, but accumulated mainly in the oldager of the microcolonies and
between the microcolonies forming a grid-like stame. Zoomed views of the
microcolonies revealed that they were often intenezted with thin strands of
extracellular DNA covered with bacteria (see Fiy.|fh 4-day-old biofilms cap-
like multicellular structures had formed on toptleé initial small microcolonies,

and the highest concentration of extracellular DM#s present between the stalk-

portion and the cap-portion of the mushroom-shapelticellular structures.

Fig. 1 Horizontal confocal laser scanning microscope eadciicquired in a 2-day-
old DDAO-stained biofilm formed by Gfp-taggdd. aeruginosaPAOLl. The
images show the green fluorescent bacteria (A)redefluorescent extracellular
DNA (B), and an overlay of the two (C). Reproducémm Molecular
Microbiology 59: 1114-1128 with permission from ddWiley & Sons, Inc.

The factors involved when bacteria shift from bemngtile to sessile in biofilms
are currently not fully understood. In the presarticle we present a simple
spatially explicit individual-based model in whiblacterial motility is reduced by
a self-produced extracellular substance.



Individual-based modeling is a bottom-up approashit attempts to model a
population or community by describing the actionsd aproperties of the
individuals comprising the population or the commygGrimm, 1999, Kreft et
al., 2001). Spatially explicit IBMs, which include representation of the spatial
configuration of the system, allow the simulatioh tbe spatial pattern that
emerges from the interactions at the level of tidividuals. IBMs are not the
only bottom-up simulating approach of studying egeet spatial patterns.
Cellular automaton (CA) modeling is another bottom-approach used for
simulating microcolonies patterns (Barker and Gams1993) and biofilms
(Wimpenny and Colasanty, 1997, Picioreanu et &984, 1998b, Hunt et al.,
2003). CA models are discrete grid-based models,daffier from IBMs in that
they operate on the spatial cells instead of cenisid the individual settled in
them (Ferrer et al., 2008). Comparison of IBMs &wW models showed that
differences in the simulated biofilm structure nwegur for multi-species biofilms
due to different approaches in redistributing thekis biomass (van Loosdrecht
et al., 2002) but that both approaches yield simblafilm structure for a simple
mono-species and mono-substrate system (van Ladadeeal., 2002). IBMs are
however usually preferred to CA when the individsialariability need to be
considered explicitly (Kreft et al., 2001, Ferrérag, 2008).

IBMs have been widely used for modeling spatialoigation of bacteria within
colonies (Kreft et al., 1998, Ginovart et al., 2p@8ad biofilms (Kreft et al., 2001,
Xavier et al., 2005) (for a review see Ferrer et @008) and Hellweger and
Bucci (2009)). Recently, an individual-based moda#l surface associated
populations ofP. aeruginosahas been presented (Picioreanu et al., 2007). The
model involves a three-dimensional space and aingrovide a proof-of-
principle of the implication of motility in the faration of biofilm structure. It
reproduces qualitatively the tendency of motiletbaa to form flat biofilms and
that of immotile bacteria to form microcolonies tignal growth, and proposes
detachment and reattachment processes of the minéibteria as possible
mechanisms yielding the formation of complex mushreshaped microcolonies.
In our model, we focus on the interplay betweenmamdlular DNA production
and bacterial motility. We show that a model wheseterial migration is stopped
due to adherence to self-produced extracellular Dédh produce complex

patterns of interconnected microcolonies.



Methods

We describe the model through the ODD protocol (@e&, Design concepts
and Details) (Grimm et al., 2006), which was desdyto facilitate descriptions of

IBMs in ecology and social science (Polhill et 2D08).

Al
«—>

Fig. 2 Schematic representation of the model entitiestdsl cells (discs) and patches (squares
with a side Al). A bacterium with continuous coordinatesy is contained in the patch
i=floor(x/4l,) j=floor(y/al).

Purpose

The model we propose is intended to qualitativelpl@re the role of surface-
motility reduction by self-produced macromoleculebiofilm pattern formation.
We address this question at a rather abstract, lanel the model results are not

compared to specific experimental results.

State variables and scales

The model is a two-dimensional representation lob&lm system and comprises
two entities: bacterial cells and their local eomiment (patches) (Fig. 2).
Bacterial cells are represented as discs. Theycheasacterized by the state
variables: continuous positiorxy), individual mass rf), individual diffusion

factor O5) and individual substrate uptake rafg(table 1). A Patch is
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characterized by the state variables: discreteipodi,j), substrate concentration
(s), extracellular substance concentratiqp) &nd a substrate uptake ratg) (

corresponding to the sum of uptake rates of thevithaial cells contained within

the patch (table 1).

Scales

We simulated the first day of the biofilm developmhéNe discretized time with a
constant time step, denotatl= 1s. A spatial patch has a size of B pmand the
whole domain contains 408 400 patches (spatial domain side 2000 um).

Bacterial cells have variable diameters () depending on their masses.

Table 1 State variables of the individual-based ehod

Variables Description
_ Continuous position of the
Bacterium state X,y
center of the bacterium
m Mass
Dy Diffusion factor
Individual substrate uptake
r rate
Patch state ] Discrete position
S Substrate concentration
Excreted product
P concentration
Reaction rate (Sum of
; substrate uptake rates of the
s

individual cells contained

within the patch)

Process overview and scheduling

In the IBM, bacteria move stochastically along ® Zurface while consuming
substrate, growing and reproducing by binary fissemd excreting a product.
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Bacteria movement is then slowed down through actgons with the excreted

product yielding different patterns of microcolagie

At each time step the following processes are perd sequentially:

= Bacteria growth: for each individual cell we (1)latdate and individual
substrate uptake rafg) which depends on the mass of the cell and the
local substrate concentration. (2) We use the Gked uptake rate to
update the mass of the cell.

= Substrate uptake rates for patches: given the aptaites of each
individual cell, we calculate an uptake rétg for each patch by taking the
sum of the uptake rates of the individual cellstagred within it.

= Division: for each individual cell we compare thellanass to a critical
value. If the cell mass is higher than the critigalue than the cell is
divided into two daughter cells. One of the daughtells takes the
position of the mother cell while the second iscpth at random around
the mother cell position at a distanck ¢orresponding to the diameter of
the daughter cell.

= Surface motility: we model bacteria translocatianaaBrownian process
using an diffusion factor O}) proper to each individual. For each
individual cell, including newly formed cells, wealculate a diffusion
factor Os) using a decreasing function of the local prodtaricentration
and then move the individual cell accordingly.

= Shoving: bacteria division and motion may produekscoverlaps. In this
case cells are displaced using an algorithm prapbgereft et al. (2001)
that mimics a shoving process.

= Substrate and excreted product mass balances: wel@dothe substrate
and the excreted product dynamics using two difiaigseaction equations
discretized on the lattice formed by the patchdse Teaction terms in
these equations are calculated using the substrptake rate(rg)

previously calculated for each patch.

Design Concepts

= Emergence: the IBM is designed such that the dpadithern of bacteria
and product distribution emerge from local inteits.



= Sensing: in our model, a bacterium senses the ratsand product
concentration within the patch corresponding tgiusition. The substrate
concentration affects the growth rate of the bamemhereas the product
concentration affects the motility of the bacteria.

= Stochasticity: bacteria motility and the positiagniof the daughter cells
after a division event are the only stochastic psses that we considered
in the IBM.

= Observation: at each time step the state varidblelkacteria and patches

are recorded.

Submodels

Bacteria growth

We calculate the individual substrate uptake ref@) (of a cell located inx; y)

and having a mass using the following Monod-like kinetic equation:

_ sfi,i.t)
r(t)— Hmax Dms(i, j,t)+ks 1)
Whereg(i, |, t) is the substrate concentration at patch (vith i = floor(x/Al) and

j = floor(y/Al) andumax @andks are Monod kinetic parameters. The growth rate of

the bacterium is given by:

a0=v, 1) )

Where Y, is the biomass yield (expressed in mass of bacteer mass of
consumed substrate). The time derivative is dig@@tusing an Euler explicit
scheme and the new mass of the cell is calculated b

mt +At) = m(t) + At LY, [ (t) (3)

With At the time step. The product excretion ng(é) of the considered individual

cell is given by:



ro(t)=Y, () (4)

Substrate Uptake rates

For each patch we calculate a substrate uptakergfg)) by summing the
individual substrate uptake rates of the cells aimtd within the patch:
o 1
I’S(t,l, J)z_zzrk(t)
AP (5)

where k is the number of cells in paigh

Bacteria division

If the mass of a focal individual (a mother celcbmes greater than twice the
initial mass of an individuaih > 2my) it divides into two daughter cells each with
a masan/2. The first daughter cell takes the position & thother cell while the
second daughter cell is placed randomly at a distdn(distance between the
centers of both cells) corresponding to the diametehe daughter cells (both
daughter cells have the same diameter).

Bacteria motility

The motility of the cells is modeled as a Browniamotion process with an
apparent diffusion factoDf) which is specific to each individual cell. Fogaen
bacterium located &, y at timet, the position of the bacterium at the instamt

At is given by:

v at) =)+ 25, [ vt N (02

y{t+8t) = y{1)+ 2D [ vt n(03) ©)

whereN(0, 1) draws a number from a centered normal Oistion of standard
deviation 1 (generated using the Mersenne Twistsgugo-random number
generator). As we assumed that bacteria motilitg weduced by the excreted
product, we calculate diffusion factddd as a decreasing function of the excreted
product concentration in the corresponding paich)( We use the following

function:



1

Df = Dfmax G—
1+ Bp(i, j,t)

(7)

where Dimax IS the maximum diffusion factor of the bacteriupjs a binding
affinity factor andp(i, j, t) is the product concentration at patdl}).( The

parameter rules the sensitivity oDs to the variation ofo(i, j, t) as shown by

figure 3.
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Fig. 3 Motility dependence on the excreted product comedinh for different values of

We use periodic boundary conditions for the indisl$ such that an individual

that exits the domain from one side appears frarofiposite side.

Bacteria shoving

Bacteria shove each other when they overlap. laetdsium with radiusa is
overlapped withn neighboring cells, it is displaced with a shovingctor d

calculated using the following equation adaptednfiéreft et al. (2001):

a+a —-d
d=Y, . ®
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ax is the radius of the neighbor cklldi is the Euclidean distance from the center
of the bacterium to the center tk neighboring cell andi is a vector directed
from the center of neighbor bacteridntowards the center of the bacterium and
having a unitary norm. We consider periodic bougidanditions for the search

of overlapping neighbors and for the repositiomdfighe shoved individuals.

Substrate and excreted product mass balance equation

The distribution of the substrate is the solutidntlme following continuous

diffusion-reaction equation:

% =D 0%s-r, 9)

with periodic boundary conditions:

slt,x=0,y)=sft,x=1,y) (20)

slt,x, y=0)=s(t,x, y=1) (11
and having as initial conditions:
s(t =0,x, y)= So (12)

The excreted product dynamic is also given by fusiibn-reaction equation:

%=mezp+vprs (13)

with periodic boundary conditions:
p(t,x=0,y) = p(t, x =1,y) (14)
p(t.x, y=0)=p(t,x, y=1) (15)

and having as initial conditions
p(t =0,x, y) =0 (16)

Yp in (eq. 13) is the product yield expressed in nudssxcreted product per mass
of consumed substrate. We discretize the subsaratethe product mass balance
equations with respect to space on the lattice édrwith the patches using a
four-point scheme. The reaction term has already lmalculated for each patch
(eq. 5). We discretize the time derivative termthie substrate and the product

mass balance equations using an implicit schemthéodiffusion term. Note that
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the reaction term is calculated on the basis oéxlicit scheme. The obtained
discretized system is a sparse linear system tleasalwe using the conjugate
gradient method (Hestenes and Stiefel, 1952). @ives the new substrate and

product concentrations in each patch.

IBM parameters

Unless explicitly specified, we use the parametabies in table 2 for the

individual-based model.

Table 2 Individual-based model parameters. (*): assumey; &dapted from [30], (***) adapted
from [22]

Parameter  Description Units Value

I Domain side um 2000

Al Spatial step um 50)

Ds Substrate diffusion constant fs 1010

D, Product diffusion constant s 1010

Drres Maximum diffusion factor —m?%s 10120)
for the bacteria

Lmax Maximum growth rate Kelbstrard(KQ biomasss) 1077

ke Affinity constant KGsubstraidm? 0.01"

Y, Product yield (K@roduclKg substrap ~ 0.10

Yo Biomass yield (K@iomastkg substrap ~ 0.99

Db Density of a bacterial cell (Kghmasdm?) 290 10° ™

Vi Binding affinity factor (M/KG produc) variable

Initialization

We initialize all simulations with:
= a uniform initial substrate concentratign
= a uniformly null concentration of excreted product
» N bacterial cells drawn at random in the domain eitih the same initial
massm.
Initial conditions are detailed in table 3.
12



Table 3 Initial conditions of the individual-based model

Parameter Description Units  Value
S Initial substrate concentration in all patches Kg/m 10.0
Po Initial product concentration in all patches k&/m 0.0
No Initial number of bacterial cells # 100
My Initial mass of a bacterium kg 10

Model implementation

We implemented the model using the Java programiamguage and the Mason
framework. Mason is a discrete event multiagent usation library code
developed at the George Mason University for imgeting multi-agent models
(Luke et al., 2004).

Results

We simulate the patterns formed by the spatialridigion of bacteria and the
excreted product displayed after 9 and Hdirs for different values of (the
parameter determining the impact of the excretestlyet on bacteria motility)
and for the case of immotile bacteria. Two extrerages can be identified. In the
first case, bacteria are motile and their motiigyindependent from the excreted
product f = 0) while in the second case bacteria are immbiigx= 0. Figures 4
and 5 show the patterns obtained in these limitagpes. Motile cells disperse over
the spatial domain (Fig. 4) in contrast with imnetcells that form isolated
microcolonies (Fig. 5). These results are consisteith previous theoretical
(Picioreanu et al., 2007) and experimental (Klauseal., 2003b) studies .
aeruginosashowing that motile cells tend to form flat biaf$é while immotile

bacteria form round shaped microcolonies.

13



Time 9h

] R (¢
. . 275
00F . . :

B *-280

e S T ey 2500 . v 28Q°
150 [ i T o, AR e g _,-0-_-_ ¥, ;

r 40.25

y—position
N
o
=]
T

260 i T g R T o TR e
- 015

00R L Te T T et

350 Do R R L o =

a0 Lo i foo 5 | e LA e e ol L S Ry o
50 100 150 200 250 300 350 400
X—position

Time 18h

100

150

B 10.25

y—position
N
o
S

250

B 10.15
300

350
B 10.05

400 0
50 100 150 200 250 300 350 400

X—position

Fig. 4 Overall and zoomed view of the spatial pattern fedrby the bacteria (black dots) and the

excreted macromolecules (gray scale) for motiladyégcfors= 0 at time 9 and 18 hours
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We also simulated intermediate cases where thef@achotility depends on the
local concentration of the excreted product. Figarand 7 show examples of
spatial pattern obtained after 9 and 18 hours femall and a large value of the
parameters respectively. As the system evolves over time, plagterns of
microcolony formation under the two parameterizaitegin to diverge. A large
value of # results in microcolonies that are more spatialgciete with higher
densities of individuals within them (Figure 7), Mehthe smaller value of
results in a pattern of microcolonies that are mar®rphous in size and shape,
are more connected with each other, and densifigsacteria within them are
lower (Figure 6).

In our simulations, microcolony formation is intta by the local accumulation
of the product excreted by the cells along theovidrian trajectories. The product
excretion rate is maximal ¥ lmax S€€ Equations 1 and 6) at the beginning of the
simulation when the substrat8>> ks in Equation 1) is abundant and accumulates
due to its low diffusion factor. For large valudsfdacteria are rapidly entrapped
within the locations containing the excreted prdadard their daughter cells tend
to accumulate locally yielding dense and discreteranolonies. In the opposite
for small values ofs, bacteria and their daughter cells tend to disparsd the
yielded microcolonies have amorphous shape. Analklgp simulation with
different values of the product excretion ratjp(Equation 6), at a constant value
of B, between the two extreme casesygfO (no product excretion) ang, =1.0
(no growth, all the substrate is released back henform of product) yields
patterns that vary respectively from uniform dlsmtition of the bacteria to the
formation of isolated, round-shaped microcolonietatd not shown). This
suggests that the binding affinity factgh) @nd the product excretion rate may
have a significant impact on the patterns of spdigtribution of the bacteria. In
our model, the substrate concentration impactgdtes of product excretion. An
initial low substrate level yields low rates of duwt excretion of the individuals
which may not be sufficient to reduce the motilay the bacteria and the
formation of microcolonies. In our simulation thaitial substrate level is
relatively high and only 90% of this initial stoc& consumed by the end of the

simulation.
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We investigate how the interconnections betweenntlfezocolonies form in the

case of large value of binding affinity parametgr500). Figure 8 shows a
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zoomed view of the formation

microcolonies.

of the interconnecthmtween

two neighboring
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affinity g = 500at time 9 and 18 hours. Bacteria are representédgseen dots and the excreted

product concentration with gray scale.
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The interconnection seems to be created by baatéiizh go from a microcolony
to a neighboring one, and which progressively aedata excreted product on the
path. The resultant pattern is formed with densd discrete microcolonies

interconnected with relatively thin strands of legiet and excreted product.

Discussion

In this work we abstract experimental observationsP. aeruginosabiofilm
development (Whitchurch et al., 2002, Klausen et 2003a; 2003b; Allesen-
Holm et al., 2006; Barken et al., 2008) in an imdl)al-based model and
investigate how bacteria motility reduction due aoself-produced substance
yields different spatial patterns during the eastgiges of biofilm development.
Our simulation results suggest that self-producelstance-mediated motility
reduction does play a role in microcolony formatiBarthermore, in some cases,
these simulated microcolonies build interconneatjogsimilar to interconnected
microcolonies observed during the early stages Pof aeruginosa biofilm
development in flow chambers (Allesen-Holm et 2006), and also in biofilms
formed by Pseudomonas species in marine envirorsm@dlton et al., 1994,
Dalton et al., 1996).

Several authors already explored the mechanismislinge microcolonies in
biofilms (Alpkvist et al., 2006, Picioreanu et €007). However, the pattern of
interconnected microcolonies cannot be obtaineth Wiese usual mechanisms:
immotile bacteria form isolated microcolonies anastantly motile bacteria form
flat biofilms. Based on experimental data and cot@psimulations we suggest a
mechanism that could be responsible for the obdepatterns. Our model shows
that microcolonies may result from bacteria matilieduction by self-produced
macromolecules. The analysis of the simulationltesuggests that cells on the
edge of a microcolony occasionally detach and wwe surface-associated
motility until being captured by a neighboring nucolony. The path of the
migrating cell is marked by the excreted macromdks and is progressively
reinforced by other migrating cells. This results the formation of an
interconnection between the neighboring microc@eni However, more
investigation is necessary to strengthen or falify hypothesis.

This investigation could be important for a betterderstanding of biofilm

functions. Indeed, it is well accepted that thespree of different subpopulations
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in microcolonies can favor the survival of one oorm subpopulations under
adverse conditions (Parsek and Tolker-Nielsen, 200Bnson, 2008). However,
recent observations suggest that in some casesdh@x of extracellular DNA
(and possibly other products) may guide migration tlee cells between
microcolonies (Lu et al., 2005, Barken et al., 20G8voring a type of
collaboration between distinct subpopulations wtla biofilm. This may be
related to studies in landscape ecology where plaigern of interconnected
habitats is recognized as particularly importanir@B and Baudry, 2003).
Individual-based models are appealing to microlgisis because of the emphasis
on the individual cell as the fundamental unit dinel richness of their dynamic.
However when they are too complex they often becdiffieult to analyze which
limits their practical payoff (Grimm and Railsback)05). Therefore, we have
attempted to keep our model as simple as possibtk iaspired by the
phenomenological results mentioned in the intraduactbut rich enough to
produce patterns of interconnected microcoloniefingon (2008) proposed a
model based on the assumption of the “direct” axteon between individual cells
through attractive (and repulsive) forces argulmag forces between cells can be a
proxy for the behavior we expect to see due to dtaexis in response to
chemicals released by other cells (Johnson, 200®&).assumption simplifies the
model as the dynamic of the excreted product isconsidered explicitly. This is
a reasonable assumption when the dynamics of temichl being produced is
fast (high diffusion) compared to the dynamic o€ tbacteria (motility and
growth) (Lee et al., 2001). Our model is basedhanassumption that the excreted
macromolecules like DNA and exopolymers diffuséoat rates and persist on the
path of the motile bacteria. This seems to playla in the formation of the
interconnected microcolonies as microcolonies wdldoy Johnson’s model
through attractive/repulsive forces seem not tsmberconnected (Johnson, 2008).
Our study included, however, some limitations tsladuld be acknowledged for
future research in this area. Examples, inherenindividual-based modeling
approach, include the question of how to measuee“gjoodness” of an IBM.
Grimm and Railsback (2005) suggested that testmgBiM against multiple
observed patterns is a powerful way to assess Biv t¢apacity to capture
system’s essential characteristics. In this workassessed the “goodness” of our

IBM through comparison of an observed pattern (ected microcolonies in

21



fig.1) to a simulated one (fig.8). Despite the $amiies between the experimental
and simulated patterns (thin path of bacteria aiodlyct connecting neighboring
microcolonies) there are still differences. Forrapée cells surrounded the thin
path in figure 1 while they are contained in theaawith high amount of product
in figure 8. Therefore, additional patterns sholbé&lidentified and compared to
the simulated ones in order to strengthen or fatsié hypothetical implication of
self-excreted product in motility reduction and rfation of interconnected
microcolonies. Another limitation of our model ietdetermination of parameters
like the binding affinity factorf) and cell diffusion ;). These parameters may
be difficult to obtain from experimental observasoand their impact should be
assessed through sensitivity analysis.

Finally, our work can be extended beyond its bps&tnise and valuable research
remains to be conducted. For instance the modebeaextended to investigate
the effect of other macromolecules like exopolymmrsthe bacteria motility and
microcolonies formation. Another potential extemsis to include additional
processes like bacteria detachment and substragelinfe which allow
investigating the effect of the interactions betwesell motility and excreted
macromolecules on the architecture of mature ol
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