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ABSTRACT

Recently, patch-based denoising techniques have proved to be
very effective. Indeed, they account for the correlations that
exist among patches of natural images.

Taking a variational approach, we show that the gradient
descent for the chosen entropy-based energy leads to a solu-
tion involving the mean-shift on patches. Then, we propose
a patch-based denoising process accounting for the quality of
denoising of each individual patch, characterized by a con-
fidence. The denoised patches are combined together using
each patch denoising confidence to form the denoised image.

Experimental results show the better quality of denoised
images w.r.t. NL means and BM3D. The proposed method
has also been tested on a professional benchmark photogra-
phy.

Index Terms— Denoising, image patch, confidence, en-
tropy, mean-shift.

1. INTRODUCTION

Motivated by some studies on the distribution of patches
forming natural images [1, 2, 3], patch-based processing
methods have recently been proposed, for example, for im-
age and video denoising [4, 5, 6]. Indeed, these studies
showed that there exist correlations among patches of nat-
ural images. As a consequence, the probability is high that
patches similar to a given image patch be encountered in the
image itself, offering the opportunity to recover original (un-
altered/noisefree) or missing information in the patch. As a
matter of fact, the nonlocal means algorithm (NL-means) [4]
and BM3D [6] proved to be successful in image denoising.
As in [7, 5] we rely on a conditional entropy criterion. In
this context, our contribution is twofold. (a) Establishing
a direct relation between (i) the derivative of pixel entropy
conditional to its neighboring pixels and (ii) the mean shift,
we propose a fully patch-based denoising procedure, i.e. a
denoising of patches using patches as opposed to a denois-
ing of pixels using patches. (b) We introduce a confidence
term which measures the quality of denoised of each individ-
ual patch. This patch denoising confidence is then used to
combine together each denoised patch to form the denoised
image.

2. NEIGHBORHOOD CONSTRAINED DENOISING

2.1. Entropy-based energy

The inverse problem of image restoration can be formulated
as a minimization problem. As mentioned in Section 1, natu-
ral images exhibit correlation among the patches which com-
pose them. This correlation should be accounted for in deriv-
ing a restoration procedure.

Let us consider the conditional entropy h of patches, i.e.
the uncertainty on the color of a pixel when its neighborhood
is known. Let us model an image as a random field X. Let T’
be the set of pixels of the image and let C; be a neighborhood
of pixel ¢ € T. The random vector Y (t) = {X(u)}uec,
contains the set of intensities or colors of the neighbors C; of
pixel ¢. The random vector Z(t) = (X(t),Y (t)) denotes the
corresponding patch, i.e. the pixel color combined with those
of its neighborhood. The recovered image ideally satisfies

X(t)" = argn}}n h(X|Y =Y (t)) (1)

forall t € T, where Y is the observed noisy neighborhood.
We provided a proof of adequacy of an energy such as (1)
for image denoising [7].

2.2. Derivative

Classically, we propose to use a gradient descent procedure
to solve (1). As a consequence, we need to determine the
derivative of the conditional entropy of the color of a pixel
knowing its neighborhood.

Entropy, whether conditional or not, can be approximated
by the Ahmad-Lin estimator [8]
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where the color z; is encountered at pixel ¢;, y; is the set of
(noisy) colors in the neighborhood of ¢;, and
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is the kernel-based estimate of the underlying conditional
probability density function (PDF), with T}, the set of pixels



which have the same neighborhood y;, K a symmetric ker-
nel, and x,, the color encountered at pixel ¢,,,. The derivative
of (2)is
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where p(Z) is the joint PDF of the high dimensional random
vector Z.
The solution to (1) can be computed by gradient descent
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3. CONFIDENCE-AWARE DENOISING

3.1. Patch-based denoising

Unlike denoising methods such as [5, 4] which actually im-
plement pixel-based iterative procedures relying on patches,
as done by (5), we propose to convert (5) into a patch-based it-
erative procedure. Discarding the projection term 82’1-(”) /0,
we get
Vo (")
(")
In practice, we have noticed that performing only one it-
eration is sufficient. The normalized derivative in (6) can be
approximated by a mean shift [9, 10] on the high dimensional

joint PDF of Z. In the k-th nearest neighbor (kNN) frame-
work, it can be expressed as [7]
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where d is the dimension of Z, kNN(z) denotes the set of the
k closest patches of z and py(z;) is the KNN patch distance.

By setting 3 = p7(z;)/(d + 2) and using (7), it is clear
that one iteration of the procedure (6) is equivalent to
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where the weights w; account for the fact that, among the
patches of kNN(z;), patches farther away might not corre-
spond as well to noisy versions of z; as do closer patches (they
may also be slightly structurally different).

Similarly to NL-means [4],

wj = exp(—|z — z|*/oy,), )

0., being a parameter. To reduce the effect of noise, the dis-
tances between patches are computed after a Principal Com-
ponent Analysis (PCA): |z; — z;| — [PCA(z;) — PCA(z;)|.

3.2. Confidence-based patch combination

Denoised patches obtained in (8) overlap each other. In con-
sequence, there is some redundancy in the denoising process.
Indeed, for a given pixel z;, we obtain several estimators,
one for each patch to which x; belongs (if the patch size is
N, x N, we have N estimators.).

Clearly, among all the patches containing x;, some will
lead to an accurate denoising at x;, some might not while
leading to an accurate denoising in other pixels.

Since the noise is assumed to be uncorrelated, the syn-
chronous summation (8) reduces the amount of noise (as char-
acterized by its variance) by a factor of 1/¢;, where
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We call ¢; the patch denoising confidence.

In summary, for each patch z; of the noisy image, we
are able to compute with the confidence c¢; (see (10)) a de-
noised patch z; (see (8)). These patches are then combined
(or aggregated) according to their confidence term. Among
a plethora of methods for combining estimators, we used, as
in [6], a linear combination of denoised patches.

The denoised patches z; are then aggregated as follows:
starting from an aggregation image of zeros and a confidence
map of zeros, a denoised patch 2 is added, after weighting
by c;, to the aggregation image at its original location, and
a constant patch equal to ¢; is added to the confidence map
at the same location. After dealing with all the patches, the
denoised image is defined as the pointwise division between
the aggregation image and the confidence map.

For a given pixel ¢, the aggregation writes

N2

1 - N
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where ¢; , is the confidence of patch ¢ among the NI? patches
which contain pixel :.

In Figure 1 a block diagram of the proposed PCkKNN al-
gorithm is sketched.

4. EXPERIMENTS

4.1. Synthetic noisy images

We tested our method on several images and compared to
BM3D and NL means algorithms. Each image was corrupted
with four levels of AWGN noise. We set BM3D in normal
profile with standard parameters provided by authors. We
chose for both PCKNN and NL means a patch radius of 7
and a search radius of 15. Furthermore, as suggested from
authors, we set h = o, h being the filtering parameter of NL
means and o the noise standard deviation.
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Fig. 1. Block diagram for PCkNN algorithm.

Fig. 4. Professional benchmark image (Courtesy of DxO Labs). RAW image (left) and denoised image (right).

Figure 2 shows results on Elaine image for ¢ = 25.
PCKNN outperforms NL-means and is very close to BM3D
in terms of PSNR. However, the image quality of PCKNN
is definitely better than the other algorithms. In particular,
the residual noise is quite natural and does not exhibit spu-
rious patterns, thus leading to a denoised image with a very
natural appearance. NL-means is clearly oversmoothed and
BM3D presents many flattened regions in smoothly varying
areas (see Fig. 3), giving a somewhat unnatural, cartoon ef-
fect to the denoised image. This is the major drawback of
this algorithm for high noise levels that might be due to the
thresholding in the wavelet domain. To illustrate the cartoon
effect, Figure 3 shows a close-up on the image Elaine and
the corresponding isolevel lines. The orientation and density
of these lines provide an indication on the direction and the
norm of the gray level gradient. PCKkNN preserved very well
the original isolevel line configuration while BM3D created a
“patchwork” of flattened regions.

4.2. Real world noisy image

Digital camera noise is very well approximated with an in-
dependent Gaussian stochastic process. However, contrary to
the classical additive white Gaussian noise model with con-
stant variance (used in Section 4.1 for comparison purposes),

the variance of the digital camera noise can be modeled as an
affine function of the signal intensity x: o%(z) = vy + 0.
Moreover, most digital cameras acquire images using a single
image sensor overlaid with a color filter array (CFA) which
produces images with a single red, blue, or green component
per pixel. The process of computing the missing 2 color com-
ponents at each pixel is called demosaicing. Unfortunately,
demosaicing introduces correlation among neighborhood pix-
els and hence correlates the noise. The result is a “structured
noise” which is not Gaussian and not independent anymore.
Removing this noise is a harder task since algorithms usually
rely on a hypothesis of independence. Thus, we applied it to
each color channel of the raw image, i.e., before demosaicing.
Furthermore, we adapted our denoising algorithm to the vary-
ing variance model by making o2, in (9) equal to yZ +4, 7 be-
ing the average patch intensity. After denoising the image has
been demosaiced. Figure 4 shows a result on a 1024x1024-
crop out of a 4416x3312-DxO Labs benchmark image taken
with a Canon G10 at ISO 1600. Again, the denoised image
has a very natural appearance without flattened regions.

5. DISCUSSION

This paper presented PCKNN a fully patch-based denoising
algorithm. Denoised patches are provided with a confidence
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Fig. 2. In lexicographic order: Noisy, Original, BM3D,
PCKNN, NL-means, and PSNR plot. The image Elaine was
corrupted with an additive white Gaussian noise with standard
deviation of o = 25.

term which measures the quality of denoising. These con-
fidence terms are then combined together with (denoised)
patches in order to reconstruct the denoised image. Exper-
imental results clearly show the better quality of PCKNN
denoised images w.r.t. state of the art denoising techniques.
In particular, denoised images have a very natural appear-
ance. Image details are well preserved and there is no cartoon
effect even in high levels of noise. PCKNN has also been
tested on a professional DxO Labs benchmark image giving
very good and promising result. As mentioned in Section 4.2,
digital cameras image denoising is a challenging task since
noise variance is function of the signal.
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Fig. 3. A close-up on the image Elaine. From left to right:
Original, BM3D, and PCkNN. First row: image alone; second
row: isolevel lines superimposed on the image.
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