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RESOLVENT AT LOW ENERGY III: THE SPECTRAL

MEASURE

COLIN GUILLARMOU, ANDREW HASSELL, AND ADAM SIKORA

Abstract. Let M◦ be a complete noncompact manifold and g an asymptoti-
cally conic Riemaniann metric on M◦, in the sense that M◦ compactifies to a

manifold with boundary M in such a way that g becomes a scattering metric
on M . Let ∆ be the positive Laplacian associated to g, and P = ∆ + V ,
where V is a potential function obeying certain conditions. We analyze the
asymptotics of the spectral measure dE(λ) = (λ/πi)

(

R(λ + i0) − R(λ − i0)
)

of P
1/2
+

, where R(λ) = (P − λ2)−1, as λ → 0, in a manner similar to that

done by the second author and Vasy in [15], and by the first two authors in
[10, 11]. The main result is that the spectral measure has a simple, ‘conormal-
Legendrian’ singularity structure on a space which was introduced in [10] and
is obtained from M2

× [0, λ0) by blowing up a certain number of boundary
faces. We use this to deduce results about the asymptotics of the wave solution
operators cos(t

√

P+) and sin(t
√

P+)/
√

P+, and the Schrödinger propagator

eitP , as t → ∞. In particular, we prove the analogue of Price’s law for odd-
dimensional asymptotically conic manifolds.

In future articles, this result on the spectral measure will be used to (i) prove
restriction and spectral multiplier estimates on asymptotically conic manifolds,
and (ii) prove long-time dispersion and Strichartz estimates for solutions of the
Schrödinger equation on M , provided M is nontrapping.

1. Introduction

This paper continues the investigations carried out in [14], [15], [16], [10] and
[11] concerning the Schwartz kernel of the boundary values of the resolvent (P −
(λ ± i0)2)−1, where P is the (positive) Laplacian ∆g on an asymptotically conic
manifold (M, g), or more generally a Schrödinger operator P = ∆g + V where V
is a suitable potential function. This was done for a fixed real λ in [14] and [15]
(and valid uniformly for λ in a compact interval of (0,∞)), for λ→ ∞ in [16] and
for λ = ik, with k real and tending to zero, that is, inside the resolvent set but
approaching the bottom of the spectrum, 0, in [10] (and also in [11], where zero
eigenvalues and zero-resonances were treated). Here we treat the case λ real and
tending to zero.

One of the main reasons for doing this is to obtain results about the spectral
measure, which can be expressed in terms of the difference between the outgoing
and incoming resolvents R(λ±i0), where R(σ) = (P−σ2)−1. Very complete results
about the singularity structure of the spectral measure are known from [14], [15]
and [16] for λ ∈ [λ0,∞) for any λ0 > 0. To complete the picture we derive the
asymptotics as λ→ 0 here. We can then, at least in principle, analyze the Schwartz
kernel of any function of P by integrating over the spectral measure. In the present
paper we use our result on the low-energy asymptotics of the spectral measure to
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deduce long-time asymptotics of the wave and Schrödinger propagators determined
by P . In future articles, we will treat two aspects of functional calculus for Laplace-
type operators on an asymptotically conic manifold: (i) restriction estimates, that

is Lp → Lp′

estimates on the spectral measure, and Lp → Lp estimates for fairly
general functions of the Laplacian, and (ii) long-time dispersion and Strichartz
estimates for solutions of the Schrödinger equation on nontrapping asymptotically
conic manifolds.

1.1. Geometric setting. The geometric setting for our analysis is the same as
in [10], which we now recall. Let (M◦, g) be a complete noncompact Riemannian
manifold of dimension n ≥ 2 with one end, diffeomorphic to S × (0,∞) where S is
a smooth compact connected manifold without boundary. (The assumption that
S is connected is for simplicity of exposition; see Remark 7.2.) We assume that
M◦ admits a compactification M to a smooth compact manifold with boundary,
with ∂M = S, such that the metric g becomes a scattering metric or asymptotically
conic metric on M . That means that there is a boundary defining function x for
∂M (i.e. ∂M = {x = 0} and dx does not vanish on ∂M) such that in a collar
neighbourhood [0, ǫ)x × ∂M near ∂M , g takes the form

(1.1) g =
dx2

x4
+
h(x)

x2
=
dx2

x4
+

∑

hij(x, y)dy
idyj

x2

where h(x) is a smooth family of metrics on S. We then call M◦ an asymptotically
conic manifold, or a scattering manifold. Notice that if h(x) = h is independent of
x for small x < x0, then setting r = 1/x the metric reads

dr2 + r2h(0), r > x−1
0 ,

which is a conic metric; in this sense, the metric g is asymptotically conic. For a
general scattering metric taking the form (1.1), we view r = 1/x as a generalized
‘radial coordinate’, as the distance to any fixed point of M is given by r +O(1) as
r → ∞. A metric cone itself is not an example of an asymptotically conic manifold,
since cone points are not allowed, except in the case of Euclidean space, where the
cone point is a removable singularity. In spite of this, the methods of this paper
apply to metric cones, and in fact we analyze the resolvent kernel on a metric cone
as an ingredient of our analysis on asymptotically conic manifolds.

We let V be a real potential function on M such that

(1.2)

V ∈ C∞(M), V (x, y) = O(x2) as x→ 0,

with ∆∂M +
(n− 2)2

4
+ V0 > 0 where V0 = (x−2V )|∂M .

Here, ∆∂M is the (positive) Laplacian with respect to the metric h(0), we let (ν2j )
∞
j=0

be the set of increasing eigenvalues of ∆∂M + (n−2)2

4 +V0 and the condition is that

the lowest eigenvalue ν20 is strictly positive. Notice that V0 ≡ 0 is not allowed if
n = 2, but is allowed for n ≥ 3, and indeed then V0 could be somewhat negative: for
example, any negative constant greater than (n/2 − 1)2. We shall further assume
that

(1.3) ∆g + V has no zero eigenvalue or zero-resonance.

Let P = ∆g + V . Then P , with domain H2(M,dg), is self-adjoint on L2(M,dg)
and a consequence of (1.2) and (1.3) is that its spectrum is the union of absolutely
continuous spectrum on [0,∞) together with possibly a finite number of negative
eigenvalues. It is known that, for λ > 0 the limits

R(λ± i0) := lim
η↓0

(P − (λ± iη)2)−1
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exist as bounded operators from x1/2+ǫL2(M,dg) to x−(1/2+ǫ)L2(M,dg), for any
ǫ > 0 [33]. The Schwartz kernels of these operators determines that of the spectral

measure of P
1/2
+ , where P+ = 1l(0,∞)(P ), according to Stone’s formula

(1.4) dEP+
(λ) =

λ

πi

(

R(λ+ i0)−R(λ− i0)
)

dλ.

1.2. Asymptotics. We just mentioned above that, for any positive λ, the bound-
ary valuesR(λ±i0) of the resolvent exist as bounded operators from x1/2+ǫL2(M,dg)
to x−(1/2+ǫ)L2(M,dg), for any ǫ > 0. However, this is not true uniformly down
to λ = 0 [4]. Indeed, the limit λ → 0 of the resolvent kernel is a singular limit,
which can be seen e.g. from explicit formulae for the resolvent kernel on flat Eu-
clidean space. The outgoing resolvent kernel on Rn has (modulo constant factors)
asymptotics

λ(n−3)/2eiλ|z−z′||z − z′|−(n−1)/2 + O(|z − z′|−(n+1)/2),

for fixed λ > 0 and |z − z′| → ∞, and

|z − z′|−(n−2) +O(λ),

for λ → 0 and z, z′ fixed (provided n ≥ 3). These asymptotics do not match, and
there is a transitional asymptotic regime in which we send λ → 0 while holding
λ|z − z′| fixed. In the special case of Rn the resolvent kernel is given by

λn−2(λ|z − z′|)(n−2)/2 Ha1(n−2)/2(λ|z − z′|), z, z′ ∈ R
n,

where Ha1(n−2)/2 is the Hankel function of the first kind and order (n− 2)/2. Thus
in this case we can see explicitly the transitional asymptotic regime, interpolating
between the oscillatory behaviour of the kernel for positive λ and the polyhomoge-
neous behaviour at λ = 0.

In this paper, following [10] and more generally Melrose’s program [21], we an-
alyze the different asymptotic regimes of the resolvent kernel by working on a
compactified and blown-up version, denoted M2

k,sc, of the space

(1.5) M◦ ×M◦ × (0, λ0]

which is the natural domain of definition of the kernel R(λ±i0) for 0 < λ ≤ λ0. The
idea is to realize asymptotic regimes geometrically so that each regime corresponds
to a boundary hypersurface, and we consider the space (1.5) to be “sufficiently
blown up” when the resolvent kernel lifts to be conormal at the lifted diagonal and
either Legendrian, or polyhomogeneous conormal, at each boundary hypersurface.
That means, in particular, that there is nothing “hidden” at any of the corners, or
in other words that if we have two intersecting hypersurfaces H1 and H2, that the
expansion at H1∩H2 can be obtained by taking the expansion at H1 and restricting
the coefficients, which are functions on H1, to H1 ∩H2, or conversely by taking the
expansion at H2 and restricting the coefficients to H2 ∩H1. In the example above,
the expansions for λ → 0 for fixed z, z′ and at |z − z′| → ∞ for fixed λ do not
match, and this requires (in our approach) that the corner in between be blown up,
to create a hypersurface on which the transitional asymptotics take place.

1.3. Main results and relation to previous literature. Expansions of the re-
solvent as λ→ 0 were first considered by Jensen-Kato [18] for Schrödinger operators
on R

3 and generalized by Murata [26] to general dimension and general constant
coefficient operators. More recently, there have been several studies by Wang [32],
Bouclet [6, 7], Bony-Häfner [3, 4] and Vasy-Wunsch [31] on resolvent estimates
(based on commutator estimates and Mourre theory) at low energy, for asymptot-
ically Euclidean or asymptotically conic metrics. Wang’s paper [32] is particularly
close in spirit to the current paper, and we discuss it further in Remark 1.7.
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To describe previous results from [14], [15] and [10], we refer to figures 1 and 2
which are illustrations of the manifolds M2

k,sc and M2
k,b, two blown-up versions of

M ×M × [0, λ0]. Here, lb, rb and zf are respectively the boundary hypersurfaces
of M ×M × [0, λ0] corresponding to x = 0, x′ = 0 and λ = 0 (we use unprimed
variables to refer to the left copy of M and primed variables to refer to the right
copy ofM). The other hypersurfaces are created by blowup. Notice that zf, lb0, rb0
and bf0 are “at λ = 0”, while the others are “at positive λ”.

In [14], [15] the boundary value of the resolvent, R(λ± i0), for fixed λ > 0, was
shown to be the sum of a pseudodifferential operator (in the scattering calculus of
Melrose [23]) and a Legendre distribution of a certain specific type, with respect to
several Legendre submanifolds associated to the diagonal and to the geodesic flow
on M , or more precisely to a limiting flow at ‘infinity’. In terms of the picture in
Figure 2 this means that, on a fixed λ > 0 slice, the kernel is oscillatory at the
boundaries bf, lb, rb and can be written as an oscillatory function or oscillatory
integral with respect to phase functions determined by geodesic flow on M .

On the other hand, in [10] the resolvent (P+k2)−1 was analyzed for real k → 0 on
the space M2

k,sc. Because k is in the resolvent set whenever 0 < k < k1 where −k21
is the largest negative eigenvalue of P , the kernel of the resolvent has exponential
decay away from the diagonal, and hence vanishes exponentially at the faces bf, lb
and rb. However, the rate of exponential decay vanishes as k → 0 and, consequently,
the kernel has nontrivial expansions at lb0, rb0 as well of course at zf and bf0
(which meet the diagonal), and the focus of [10] was the precise analysis of these
(polyhomogeneous) expansions.

The point of the current paper is to unify the two constructions. A precise
statement of the result is given in Theorem 3.9, after definitions of Legendre dis-
tributions on the space M2

k,b have been given. For now, let us say that a kernel is

conormal-Legendrian on the space M2
k,b if it lies in the calculus of Legendre dis-

tributions given in Section 3; roughly this means that it is oscillatory at the faces
bf, lb, rb and polyhomogeneous conormal at the other faces, on which λ = 0.

Theorem 1.1. The boundary value of the resolvent kernel, R(λ ± i0), is the sum
of a pseudodifferential operator, i.e. a kernel on M2

k,sc, supported close to and

conormal to the diagonal ∆k,sc, and a conormal-Legendrian on M2
k,b.

We determine the structure of the spectral measure by subtracting the incoming
from the outgoing resolvent. There are two different cancellations that occur when
we do this. First the singularity along the diagonal disappears (not surprisingly,
since the spectral measure solves an elliptic equation) and secondly there is cancel-
lation in the asymptotic expansion for fixed z, z′ ∈M◦×M◦ as λ goes to zero. The
second cancellation is quite important in applications, such as in understanding the
decay of the heat kernel or propagator for long time.

Theorem 1.2. The kernel of the spectral projection (1.4) is conormal-Legendrian
on M2

k,b, and vanishes to order 2ν0 +1 as λ→ 0 with z, z′ ∈M◦ fixed, where ν20 is

the lowest eigenvalue of the operator (1.2). In particular, if V = 0 (or even if just
V0 = 0), the spectral projection vanishes to order n − 1 as λ → 0 with z, z′ ∈ M◦

fixed. More precisely, there is a solution w to Pw = 0, with w = O(xn/2−1−ν0 ) as
x→ 0, such that the expansion at λ = 0 is given by

dE(λ) =
(

λ2ν0+1w(z)w(z′)|dgdg′|1/2 +O(λmin(2ν0+2,2ν1+1))
)

dλ.

where ν21 > ν20 is the second eigenvalue of the operator (1.2).

See Theorem 3.10 for a more precise statement of this result.
We now give two corollaries of Theorem 1.2 concerning the long-time behaviour

of the wave and Schrödinger kernels associated to P . We write P+ for 1l[0,∞)(P ).
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Corollary 1.3. Let P = ∆g + V be as above, and let χ ∈ C∞
c (R), with χ(t) ≡ 1

for t near 0. Let w and ν0, ν1 be as in Theorem 1.2. Then the solution operators
for the wave equation, localized to low energy, satisfy as t→ ∞

(1.6)

χ(P )
sin(t

√

P+)
√

P+

(z, z′) = −Γ(2ν0 + 1) cos(π(ν0 + 1))t−(2ν0+1)w(z)w(z′)

+O(t−min(2ν0+2,2ν1+1)),

χ(P ) cos(t
√

P+)(z, z
′) = Γ(2ν0 + 2) cos(π(ν0 + 1))t−(2ν0+2)w(z)w(z′)

+O(t−min(2ν0+3,2ν1+2)).

Notice that the coefficient cos(π(ν0 +1)) vanishes when 2(ν0 +1) is an odd integer.
In particular if ∂M = Sn−1 and V0 = 0, then waves decay to order t−(n−1) if n is
even and O(t−n) is n is odd. The implied constant in the remainders are uniform
on compact subsets of M◦ × M◦. Moreover, if (M, g) is nontrapping, then we

can remove the energy cutoff χ(P ): the Schwartz kernels of sin(t
√

P+)/
√

P+ and

cos(t
√

P+) are given by the right hand side of (1.6).

Remark 1.4. This result is closely related to Price’s law, which is the statement
that waves on a Schwarzschild spacetime, starting with localized initial data, decay
to order t−3 (outside the event horizon) as t → ∞. This t−3 decay was predicted
in [27, 28] and has been proved recently by Donninger-Schlag-Soffer [9, 8] for exact
Schwarzschild using separation of variables and by Tataru [30] for more general set-
tings. Although our result does not apply directly to the Schwarzschild case, it does
apply to asymptotically flat manifolds which are isometric to Schwarzschild near
infinity, or more generally to asymptotically conic manifolds with a ‘gravitational’
type metric at infinity, that is, of the form near x = 0

(1.7) (1− 2Mx)
dx2

x4
+
h(x)

x2
.

The case M 6= 0 requires a minor extension to the analysis of Section 6 given in
[15, Section 5].1

The corresponding result for the Schrödinger propagator eitP+ is as follows:

Corollary 1.5. The Schwartz kernel of the propagator eitP+ , localized to low en-
ergy, satisfies

(1.8) χ(P )eitP+(z, z′) = Ct−(ν0+1)w(z)w(z′) +O(t−min(ν0+3/2,ν1+1)), t ≥ 1,

for some C 6= 0. The implied constant in the remainder term is uniform on compact
subsets of M◦ ×M◦. Moreover, if (M, g) is nontrapping, then we can remove the

energy cutoff χ(P ): the Schwartz kernel of eitP
1/2
+ are given by the right hand side

of (1.8).

Remark 1.6. Indeed, using results of [16], if the metric g is nontrapping, then the
propagator localized away from low energy satisfies

∣

∣(Id−χ(P ))eitP+(z, z′)
∣

∣ = O(t−∞), t→ ∞.

Intuitively this is because when z, z′ are fixed and t → ∞, then no signal starting
at z can end at z′ when there is a lower bound on the velocity. The same is true
with eitP+ replaced by either of the wave solution operators. We also remark that,
instead of localizing the variables (z, z′) in compact sets, we could work instead in
appropriately weighted Sobolev spaces.

1Note that, in [15, Section 5], for a metric of the form (1.7), we have ql = qr = 2Mλ2, so the
imaginary powers that show up have an exponent iα with α = O(λ) vanishing at bf0 and zf.
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Remark 1.7. X. P. Wang’s paper [32] is quite close in spirit to the present paper. He
also studies manifolds with (exactly) conical ends, and derives low energy asymp-
totics for the resolvent, as well as large time expansions for the propagator similar
to the Corollaries above. In fact, his results are more general than ours in some
respects, as he treats higher order asymptotic terms, and also allows zero modes
and zero resonances. On the other hand, our results are more complete in that
we consider expansions at all boundary hypersurfaces of M2

k,sc, while Wang only

considers (in our terminology) expansions at the zf boundary hypersurface. Our
expansions are also more explicit: for example, it does not seem easy to see from
[32] that the leading asymptotic for the propagator is a rank one operator (under
our assumptions), as in (1.8).

Corollaries 1.3 and 1.5 only use the expansion of the spectral measure at the
zf face of M2

k,b. In the sequel, [12], to this paper we shall prove the following
consequences of Theorem 1.2 that exploit the full regularity of the spectral measure,
in particular its Legendrian nature at the “positive λ” boundary hypersurfaces:

• For any λ0 > 0 there exists a constant C such that the generalized spectral
projections dE(λ) for

√
∆ satisfy

(1.9) ‖dE(λ)‖Lp(M)→Lp′(M) ≤ Cλn(1/p−1/p′)−1, 0 ≤ λ ≤ λ0

for 1 ≤ p ≤ 2(n+1)/(n+3). Moreover, if (M, g) is nontrapping, then there
exists C such that (1.9) holds for all λ > 0 and the same range of p.

• Assume that F ∈ Cc(0, T ) and that for some s > max{n(1/p− 1/2), 1/2}
‖F‖Hs <∞,

where Hs is a Sobolev space of order s. Then there exists C depending
only on T , p and s such that

(1.10) ‖F (
√
∆)‖p→p ≤ C‖F‖Hs .

Moreover, if (M, g) is nontrapping, then (1.10) can be improved to

sup
t>0

‖F (t
√
∆)‖p→p ≤ C‖F‖Hs .

2. Geometric Preliminaries

2.1. The spaces M2
k,b and M2

k,sc. The construction of the Schwartz kernel of

(∆− λ2)−1 takes place on a desingularized version of the manifold [0, 1]×M ×M
where [0, 1] is the range of the spectral parameter λ. In geometric terms, this
corresponds to an iterated sequence of blow-up of corners of [0, 1] × M × M ; it
was introduced in [22] and heavily used in [10]. For the convenience of the reader
we recall quickly its definition but we refer to Section 2.2 in [10] for a detailed
description of this manifold. We denote by [X ;Y1, . . . , YN ] the iterated real blow-
up ofX aroundN submanifolds Yi if Y1 is a p-submanifold, the lift of Y2 to [X ;Y1] is
a p-submanifold, and so on. We shall denote by ρH an arbitrary boundary defining
function for a boundary hypersurface H of X . We now define the space M2

k,sc.

Consider in [0, 1]×M ×M the codimension 3 corner C3 := {0} × ∂M × ∂M and
the codimension 2 corners

C2,L := {0} × ∂M ×M, C2,R := {0} ×M × ∂M, C2,C := [0, 1]× ∂M × ∂M.

We consider first the blow-up

M2
k,b :=

[

[0, 1]×M ×M ;C3, C2,R, C2,L, C2,C

]
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with blow-down map βb : M2
k,b → [0, 1] ×M ×M . We have 7 faces on M2

k,b, the
right, left, and zero faces

rb = closβ−1
b ([0, 1]×M × ∂M), lb := closβ−1

b ([0, 1]× ∂M ×M),

zf := closβ−1
b ({0} ×M ×M),

the ‘b-face’ (so-called because of its use in the b-calculus) bf := closβ−1
b (C2,C \C3),

and the three faces corresponding to bf, rb, lb at zero energy:

bf0 := β−1
b (C3), rb0 := closβ−1

b (C2,R \ C3), lb0 := closβ−1
b (C2,L \ C3).

The closed lifted diagonal ∆k,b = closβ−1
b ([0, 1] × {(m,m);m ∈ M◦}) intersects

bf0

zf

rb

lb

lb0

rb0
bf

Figure 1. The manifold M2
k,b

the face bf in a p-submanifold denoted ∂bf∆k,b. We then define the final blow-up

(2.1) M2
k,sc :=

[

M2
k,b; ∂bf∆k,b

]

,

and denote the new boundary hypersurface created by this blowup sc, for ‘scattering
face’.

2.2. Polyhomogeneous conormal functions and index sets. Below we use
spaces of polyhomogeneous conormal functions. These are defined on any manifold
with corners X . Let F denote its set of boundary hypersurfaces. An index family E

consists of a subset EH of C×N (an index set) for each H in the set F of boundary
hypersurfaces of X , satisfying two conditions: (a) for each K ∈ R, the number of
points (β, j) ∈ EH with Reβ ≤ K is finite and (b) if (β, j) ∈ EH then (β+1, j) ∈ EH

and if j > 0 then also (β, j−1) ∈ EH . Then the space of polyhomogeneous conormal
functions with index family E, denoted AE(X), is the space of functions f that are
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rb0

bf0

lb0

zf

rb

lb

bf

sc

Figure 2. The manifold M2
k,sc; the dashed line is the boundary

of the lifted diagonal ∆k,sc

smooth in the interior of X and possess expansions in powers and logarithms of the
form

f =
∑

z,p∈EH s.t. Re z≤s

a(z,p)ρ
z
H(log ρH)p +O(ρsH)

where ρH is a boundary defining function for the boundary hypersurface H . See
[10] or [24] for a precise definition. Condition (a) on the index set ensures that the
sum on the left hand side is finite, and condition (b) ensures that the form of the
sum is independent of the choice of local coordinates.

Let us recall from [24] the operations of addition and extended union on two
index sets E1 and E2, denoted E1 + E2 and E1∪E2 respectively:
(2.2)

E1 + E2 = {(β1 + β2, j1 + j2) | (β1, j1) ∈ E1 and (β2, j2) ∈ E2}
E1∪E2 = E1 ∪ E2 ∪ {(β, j) | ∃(β, j1) ∈ E1, (β, j2) ∈ E2 with j = j1 + j2 + 1}.

We write q for the index set

(2.3) {(q + n, 0) | n = 0, 1, 2, . . .}

for any q ∈ R; note that in this notation, 0 denotes the C∞ index set N =
{(0, 0), (1, 0), (2, 0), . . .}. For any index set E and q ∈ R, we write E ≥ q if Re β ≥ q
for all (β, j) ∈ E and if (β, j) ∈ E and Re β = q implies j = 0. We write E > q if
there exists ǫ > 0 so that E ≥ q + ǫ. We shall say that E is integral if (β, j) ∈ E
implies that β ∈ Z, and one-step if E is such that E = E′ + (α, 0) for some α ∈ C
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and some integral index set E′. We write

minE = min{β | ∃ (β, j) ∈ E}.
We say that E′ is a logarithmic extension of E if E ⊂ E′ and if (β, j) ∈ E′ implies
that (β, 0) ∈ E.

2.3. Compressed cotangent bundle. We define a ‘compressed tangent bundle’
and a ‘compressed cotangent bundle’ on M2

k,b. To define the compressed tangent

bundle, denoted k,bTM2
k,b, it is helpful first to define the single space version. Thus

we define the single space Mk,b to be

Mk,b =
[

M × [0, λ0]; ∂M × {0}
]

,

that is, M × [0, λ0] with the corner ∂M × {0} blown up. (We always ignore the
boundary at λ = λ0.) We denote the boundary hypersurfaces of Mk,b by bf, the
‘b-face’, the lift of ∂M × [0, λ0]; zf, the ‘zero face’, the lift of M × {0}, and ff, the
‘front face’, created by the blowup.

Recall that the space of scattering vector fields onM , denoted Vsc(M), are those
of the form xW , where x is a boundary defining function for ∂M and W is tangent
to the boundary (i.e. is a b-vector field, W ∈ Vb(M)). Let ρff denote a boundary
defining function for ff ⊂ Mk,b. We define the space (and Lie algebra) Vk,b(Mk,b)

to be those smooth vector fields generated by ρ−1
ff times the lift of Vsc(M) to Mk,b,

together with the vector field λ∂λ +W , where W ∈ Vb(M) is equal to x∂x near
∂M . Thus near bf ∩ ff, using coordinates2 (ρ = x/λ, y, λ), such vector fields are
smooth C∞(Mk,b)-linear combinations of

(2.4) ρ2∂ρ, ρ∂yi , λ∂λ

∣

∣

∣

ρ,y
,

while near ff ∩ zf, using coordinates (x, y, r = λ/x), such vector fields are smooth
C∞(Mk,b)-linear combinations of

(2.5) x∂x

∣

∣

∣

r,y
, ∂yi , r∂r

which in particular restrict to zf to give the b-vector fields on M . This definition
is independent of coordinates. These vector fields define a bundle k,bTMk,b, whose
space of smooth sections is precisely Vk,b(Mk,b).

We observe some geometric properties of Mk,b and k,bTMk,b:

• To see why these vector fields are chosen, note that both H and λ2 vanish
to second order at ff, in terms of k,bTMk,b. It is natural, then, to divide

the operator by a factor of ρ2ff ; we find that ρ−2
ff (H − λ2), which we can

take to be λ−2H− 1 near bf and x−2H− (λ/x)2 near zf, is ‘built’ out of an
elliptic combination of sections of k,bTMk,b. Moreover, for Euclidean space,
we have [λ∂λ + x∂x,∆ − λ2] = 2(∆ − λ2), which shows that the resolvent
and spectral measure are (in the Euclidean case) homogeneous with respect
to this vector field.

• A scattering metric (1.1) onM blows up at ff to second order. If we multiply
by λ2 and restrict to ff, then it is easy to check that we get the exact conic
metric

(2.6)
dρ2

ρ4
+
h(0)

ρ2
.

Thus a scattering metric on M induces an exact conic structure on ff.

2We use ρ to denote x/λ, and r = λ/x throughout this paper.
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• At zf, we have the Lie algebra of b-vector fields onM , but for a fixed positive
λ, the vector fields tangent to M × {λ} are the scattering vector fields.
Thus this Lie algebra interpolates between the b-calculus at λ = 0 and the
scattering calculus for positive λ. This Lie Algebra was ‘microlocalized’ to
a calculus of operators in [10], with kernels defined on M2

k,sc. This calculus
interpolates between the b-calculus at λ = 0 and the scattering calculus for
fixed positive λ.

Now to define k,bTM2
k,b, we note that there are stretched projections πL, πR :

M2
k,b → Mk,b; this can be proved by noting that M2

k,b can be constructed from

Mk,b ×M by blowing up ff × ∂M , ff ×M and bf × ∂M using Lemma 2.7 of [13].
We define k,bTM2

k,b to be that vector bundle generated over C∞(M2
k,b) by

(2.7) π∗
L(ρ

−1
ff Vsc(M)), π∗

R(ρ
−1
ff Vsc(M)) and λ∂λ + x∂x + x′∂x′ .

It is straightforward to check that the C∞(M2
k,b)-span of these vector fields is

closed under Lie bracket. We denote this Lie Algebra by Vk,b(M
2
k,b).

We now define the compressed cotangent bundle k,bT ∗M2
k,b. This is the dual

bundle to k,bTM2
k,b. Near bf and bf0, but away from zf, a basis of sections is given

by singular one-forms of the form

(2.8)
dρ

ρ2
,

dρ′

ρ′2
,

dyi
ρ
,

dy′i
ρ′
,

dλ

λ

where primed variables are coordinates on the right factor of M , and unprimed
variables on the left factor of M (lifted to M2

k,b); near bf0 and zf, but away from
bf, a basis is given by

(2.9)
dx

x
,

dx′

x′
, dyi, dy′i,

dλ

λ
;

and near zf, and away from other boundary hypersurfaces,

(2.10) dzi, dz′i,
dλ

λ
,

where z = (z1, . . . , zn) are local coordinates on the interior of M . Therefore, any
point in k,bT ∗M2

k,b can be written

(2.11) ν
dρ

ρ2
+ ν′

dρ′

ρ′2
+ µi

dyi
ρ

+ µ′
i

dy′i
ρ′

+ T
dλ

λ

in the first region,

τ
dx

x
+ τ ′

dx′

x′
+ ηidyi + η′idy

′
i + T ′dλ

λ

in the second region, and

ζidzi + ζ′iz
′
i + T ′′ dλ

λ

in the third region. These expressions define local coordinates on k,bT ∗M2
k,b in each

region.

Remark 2.1. Here the coordinates µ, ν, µ′, ν′ have a different meaning to that used
in [15], due to the scaling in λ, since for example here µi is dual to λdyi/x rather
than dyi/x. It is similar to how in the semiclassical calculus, the variable η is dual
to dy/h = λdy rather than dy, so the frequency corresponding to η scales as λ.
However, here we have the opposite situation in that λ → 0, rather than infinity,
so in a sense we are giving a meaning to the ‘semiclassical calculus with h→ ∞’ !
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2.4. Densities. We define the compressed density bundle Ωk,b(M
2
k,b) to be that

line bundle whose smooth nonzero sections are given by the wedge product of a
basis of sections for k,bT ∗(M2

k,b). For example, near bf ∩ bf0 ∩Diagb this takes the

form (using (2.8))

(2.12)
∣

∣

∣

dρdρ′dydy′dλ

ρn+1ρ′n+1λ

∣

∣

∣
∼ λ2n

∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

where dg, resp. dg′ denotes the Riemannian density with respect to g, lifted to
M2

k,b by the left, resp. right projection; near zf, a smooth nonzero section takes the
form

(2.13)
∣

∣

∣

dxdx′dydy′dλ

xx′λ

∣

∣

∣
∼

∣

∣

∣

dgbdg
′
bdλ

λ

∣

∣

∣

where dgb is the Riemannian density with respect to the b-metric

gb = x2g

on M ; near lb ∩ lb0, a smooth nonzero section takes the form

(2.14)
∣

∣

∣

dρdydx′dy′dλ

ρn+1x′λ

∣

∣

∣
∼ λn

∣

∣

∣

dgdg′bdλ

λ

∣

∣

∣
,

and so on.

Remark 2.2. This differs from the density bundle used in [10]. The density bundle

defined here is more convenient; for example, it absorbs the ρ
n/2
sc factors put in ‘by

hand’ in Definition 2.7 of [10].

2.5. Fibrations and contact structures. The Lie algebra Vk,b(M
2
k,b) gives rise

to a fibration at each boundary hypersurface of M2
k,b. The leaves of this fibration

are precisely the maximal submanifolds on which the restriction of Vk,b(M
2
k,b) is

transitive. The fibration is trivial on bf0, lb0, rb0 and zf, i.e. the Lie algebra is
transitive on these faces.

At bf, the Lie Algebra restricted to this face is given by multiples of λ∂λ, and
therefore, the fibration is given by projection off the λ factor. That is, in local
coordinates (y, y′, σ, λ) on this face, where3 σ = x/x′, the fibration takes the form

(y, y′, σ, λ) 7→ (y, y′, σ).

Let Zbf denote the base of this fibration, i.e. Zbf is the blowup of the corner (∂M)2

of M2
b = [M2; (∂M)2].

At lb, the Lie algebra restricts to the span of vector fields λ∂λ, ∂z′ . Hence the
fibration takes the form

(y, z′, λ) 7→ y.

Similarly at rb the fibration takes the form

(z, y′, λ) 7→ y′.

We let Zlb = Zrb = ∂M denote the base of these fibrations.
In the interior of M2

k,b, the compressed cotangent bundle is canonically isomor-
phic to the usual cotangent bundle, and hence the canonical symplectic form on
T ∗(M2

k,b) induces a canonical symplectic form ω on k,bT ∗M2
k,b. In turn, ω induces

a contact structure at each boundary hypersurface •, where • = bf, lb, or rb. In
fact, the contact structure lives on a bundle over Z•, denoted

sΦN∗Z• defined in
[14], which we recall here. Here and below we use • to denote one of bf, lb or rb.

There is a subbundle of k,bT•M
2
k,b whose fibre at p ∈ • consists of the span

of those vector fields that vanish (as an element of TpM
2
k,b) at p. (This is not

3We use the notation σ = x/x′ = ρ/ρ′ throughout the paper
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the trivial subbundle, since a vector field can vanish as an element of TpM
2
k,b while

being nonzero as an element of k,bTpM
2
k,b; for example, x2∂x is nonzero as an element

of k,bTM2
k,b at lb.) Dually, we define the annihilator subbundle k,bT ∗(F ; •)M2

k,b,

a subbundle of k,bT ∗
•M

2
k,b. Here the F stands for ‘fibre’. The quotient bundle,

k,bT ∗
•M

2
k,b/

k,bT ∗(F ; •)M2
k,b, turns out to be the lift of a bundle sΦN∗Z• over Z•

[16], which is the bundle mentioned above. For example, at • = bf, the vector
fields vanishing as an element of TpM

2
k,b, p ∈ bf, are spanned by all but the last

vector field in (2.7), the annihilator subbundle is spanned by dλ/λ, and the quotient
bundle is spanned by the remaining elements of (2.8).

Note that Zbf is a manifold with boundary; we denote its two boundary hyper-
surfaces by ∂lbZbf and ∂rbZbf . Similarly, sΦN∗Zbf is a manifold with boundary,
with boundary hypersurfaces ∂lb

sΦN∗Zbf and ∂rb
sΦN∗Zbf . There is a fibration

φbf,lb from ∂lbZbf to Zlb given in local coordinates by (y, y′) 7→ y. Similarly there

is an induced fibration φ̃bf,lb from ∂lb
sΦN∗Zbf to sΦN∗Zlb given in local coordi-

nates by (y, y′, µ, µ′, ν, ν′) 7→ (y, µ, ν). There are of course analogous fibrations at
the right boundary rb.

Next we show how ω induces contact structures on sΦN∗Z•. Contracting ω with
ρ2•∂ρ•

, where ρ• denotes a boundary defining function for •, and restricting to •
gives a one-form on k,bT ∗

•M
2
k,b that is well-defined up to scalar multiples. It can

be checked that it induces a form on sΦN∗Z• that is nondegenerate in the sense of
contact geometry (at least in the interior of sΦN∗Z•), and therefore determines a
well-defined contact structure on sΦN∗Z•.

In the case • = bf, we compute that ω is given by

(2.15)

ω = d
(

ν
dρ

ρ2
+ ν′

dρ′

ρ′2
+ µi

dyi
ρ

+ µ′
i

dy′i
ρ′

+ T
dλ

λ

)

= dν ∧ dρ

ρ2
+ dν′ ∧ dρ′

ρ′2
+ dµi ∧

λdyi
ρ

− µidyi ∧
dρ

ρ2

+ dµ′
i ∧

λdy′i
ρ′

− µ′
idy

′
i ∧

dρ′

ρ′2
+ dT ∧ dλ

λ
.

We can use ρ∂ρ + ρ′∂ρ′ (where these are lifted from the left and right factors
respectively) as a b-normal vector field at bf, and then using ρ as a boundary
defining function we obtain

ιρ(ρ∂ρ+ρ′∂ρ′ )
ω = µidyi − dν + σ(µ′

idy
′
i − dν′)

as the contact 1-form on sΦN∗Zbf . This is precisely the same contact form that
one gets from the manifold M2

k,b at a fixed energy level, as was done in [15].

This contact 1-form degenerates at ∂lb
sΦN∗Zbf : the contact form becomes de-

generate in the fibre directions of φ̃bf,• but remains nondegerate in the ‘base’ direc-
tions. In fact, over ∂lb

sΦN∗Zbf , the contact 1-form is the lift of the contact 1-form
on sΦN∗Zlb (given in local coordinates by µidyi−dν) with respect to this fibration.

Moreover, the fibres of φ̃bf,lb have a natural contact structure given in local coor-
dinates by µ′

idy
′
i − dν′. Of course, similar statements are true at the intersection

with rb. This is all explained in more detail in [14] and [16].

3. Legendre distributions on the space M2
k,b

3.1. Legendre submanifolds. We recall from [14] definitions concerning Legendre
submanifolds of sΦN∗Zbf . Let n = dimM , so that dim sΦN∗Zbf = 4n− 1. We de-
fine a Legendre submanifold Λ of sΦN∗Zbf to be a smooth submanifold of dimension
2n− 1 such that
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• the contact form vanishes on Λ.
• Λ is transversal to ∂lb

sΦN∗Zbf and ∂rb
sΦN∗Zbf , and therefore is a smooth

manifold with boundary. The boundary hypersurfaces Λ∩ ∂lbsΦN∗Zbf and
Λ ∩ ∂rbsΦN∗Zbf will be denoted ∂lbΛ, respectively ∂rbΛ.

Remark 3.1. As shown in [16, Section 4], this definition is equivalent to the more
elaborate definition given in [14], [15].

We also recall two definitions concerning two Legendre submanifolds that in-
tersect. The first applies away from lb and rb. Suppose that Λ0 and Λ are two
smooth Legendre submanifolds that intersect cleanly in a submanifold of dimension
2n− 2 (disjoint from ∂lb

sΦN∗Zbf and ∂rb
sΦN∗Zbf). In that case, each submanifold

divides the other into two parts. Let Λ+ and Λ− denote the two pieces of Λ1.
Then both (Λ0,Λ+) and (Λ0,Λ−) are said to form an intersecting pair of Legendre
submanifolds.

The second definition concerns two Legendre submanifolds Λ♯ and Λ where Λ♯

is smooth, and Λ is smooth except at Λ♯ where it has a conic singularity. We say
that (Λ,Λ♯) form an intersecting pair of Legendre submanifolds with conic points
if

• Λ♯ projects diffeomorphically to the base bf and does not meet the zero
section of sΦN∗Zbf (so that spanΛ♯ = {tq | q ∈ Λ♯, t ∈ R} is a submanifold
of dimension 2n);

• the lift Λ̂ of Λ to the blown-up manifold

(3.1)
[

sΦN∗Zbf ; spanΛ♯
]

is a smooth submanifold that meets the boundary hypersurfaces of (3.1)
(in particular, the lift of spanΛ♯) transversally.

All this is explained in more detail in [14] and [16].
In subsequent sections of this paper there are three Legendre submanifolds of

particular interest: the boundary (at bf) of the conormal bundle to the diagonal
Diagb, which following [14], [15] we denote scN∗Diagb; the ‘propagating Legendrian’

Lbf ; and the incoming/outgoing Legendrian L♯
±. We now define and describe these

three submanifolds.
The conormal to the diagonal scN∗Diagb is easy to describe: it is the Legendre

submanifold of sΦN∗Zbf given in local coordinates (σ, y, y′, ν, ν′, µ, µ′) by σ = 1, y =
y′, ν = −ν′, µ = −µ′. Analytically, it is related to pseudodifferential operators on
M2

k,b of (differential) order −∞: kernels on M2
k,sc that are smooth and rapidly

vanishing at bf are conormal to sΦN∗Diagb when viewed on M2
k,b.

The incoming/outgoing Legendrian L♯
± is also easy to describe in local coor-

dinates: it is given by ν = ν′ = ±1, µ = µ′ = 0. It is clear that this projects
diffeomorphically to the base Zbf . Analytically this corresponds to pure incom-
ing/outgoing oscillations a(y, y′, σ)e±iλ/xe±iλ/x′

= a(y, y′, σ)e±i/ρe±i/ρ′

. We write

L♯ = L♯
+ ∪ L♯

−.

The propagating Legendrian Lbf is more interesting and geometrically intricate.
It is related to the limit at ∂M of geodesic flow on M or, what is the same thing,
the Hamilton flow of the symbol of ∆g − λ2 at bf. Since this occurs purely at
x = x′ = 0 and the metric g is asymptotically conic, it is related to geodesic flow
on an exact conic metric.

One way to describe Lbf is to start with the intersection of scN∗Diagb and the
characteristic variety of H − λ2, which is the submanifold {σ = 1, y = y′, ν =
−ν′, µ = −µ′; ν2 + |µ|2h = 1}, and take the flowout by the (rescaled) Hamilton
vector field associated to the operator H − λ2 acting on either the left or the right
variables. The Hamilton vector field for this operator vanishes to first order at
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k,bT ∗
bfM

2
k,b; after dividing by ρ, we obtain a nonzero vector field on k,bT ∗

bfM
2
k,b that

descends to a contact vector field on sΦN∗Zbf . In local coordinates, the symbol of
H − λ2 acting on the left is

(3.2) σl(H − λ2) = ν2 + h− λ2, h =
∑

i,j

hij(y)µiµj ,

and the left Hamilton vector field takes the form (after dividing by ρ)

(3.3) Vl = −ν(σ ∂

∂σ
+ µ

∂

∂µ
) + h

∂

∂ν
+
∂h

∂µi

∂

∂yi
− ∂h

∂yi

∂

∂µi
,

while the symbol of H − λ2 acting on the right is

(3.4) σr(H − λ2) = ν′
2
+ h′ − λ2, h′ =

∑

i,j

hij(y′)µ′
iµ

′
j ,

and the right Hamilton vector field takes the form (after dividing by ρ′)

(3.5) Vr = ν′(σ
∂

∂σ
− µ

∂

∂µ
) + h′

∂

∂ν′
+
∂h′

∂µ′
i

∂

∂y′i
− ∂h′

∂y′i

∂

∂µ′
i

.

Let Lbf
± denote the flowout in the positive, resp. negative directions by the vector

field Vl from
scN∗Diagb ∩ Char(H − λ2). In [14] it was proved

Proposition 3.2. (i) Locally near scN∗Diagb, the pairs (scN∗Diagb, L
bf
± ) form an

intersecting pair of Legendre submanifolds.

(ii) Locally near L♯
±, the pair (Lbf

± , L
♯
±) forms a pair of intersecting Legendre

submanifolds with conic points.

A second way to describe Lbf is directly in terms of geodesic flow on the metric
cone with cross section (∂M, h). Let gconic be the conic metric

gconic = dr2 + r2h.

Write Y = ∂M . Then geodesic flow on (C(Y ), gconic), the cone over (Y, h), can
be written explicitly in terms of geodesic flow on (Y, h) as follows: Let (y(s), η(s)),
where s ∈ [0, π] is an arc-length parameter (so that |η(s)|h(y(s)) = 1), be a geodesic

in T ∗Y . Then every geodesic γ for the exact conic metric dr2+ r2h, not hitting the
cone tip, is of the form y = y(s), µ = η(s) sin s, r = r0 csc s, ν = − cos s, s ∈ (0, π),
where r0 > 0 is the minimum distance to the cone tip and − cot s/r0 ∈ (−∞,∞) is
arc length on C(Y ). We define γ2 to be the submanifold

(3.6) γ2 =
{

(y, y′, σ = x/x′, µ, µ′, ν, ν′) | y = y(s), y′ = y(s′), µ = η(s) sin s,

µ′ = −η(s′) sin s′, ν = − cos s, ν′ = cos s′, σ = sin s′/ sin s, (s, s′) ∈ [0, π]2.
}

Then Lbf is the union of the γ2 over all geodesics of length π in T ∗(∂M). The
vector fields Vl and Vr are tangent to each leaf γ2, and are given in terms of the
coordinates s and s′ by Vl = sin s∂s and Vr = sin s′∂s′ . Also, the intersection of this
leaf with scN∗Diagb is {s = s′}, and the conic singularity is at the two off-diagonal
corners s = 0, s′ = π and s = π, s′ = 0, which corresponds to the two different
ends of the geodesic. The blowup of the span of L♯ that desingularizes these conic
singularities corresponds on the leaf γ2 to blowing up these two corners.

3.2. Legendre distributions on M2
k,b. Let Λ ⊂ scT ∗

bfM
2
b be a Legendre sub-

manifold. We define a space of (half-density) functions on M2
k,b associated to Λ.

As usual n denotes the dimension of M .
Let B = (Bbf0 ,Blb,Brb,Bzf) be an index family consisting of an index set

for each of the hypersurfaces bf0, lb0, rb0, zf of M2
k,b. Also let m, rlb, rrb be real

numbers. We shall shortly define the set of Legendre (half-density) distributions
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Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ). First we give the intuitive idea: for λ > 0 it is a family

of Legendre distributions onM2
b , depending conormally on λ as λ→ 0 with respect

to the given family. Away from bf ∪ lb ∪ rb it is polyhomogeneous conormal with
respect to the given index family.

We remark that the parametrizations of Λ given in the definition below are
defined in [14] and [15].

Definition 3.3. The space Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ) consists of half-densities u on

M2
k,b that can be written as a finite sum of terms u =

∑6
j=0 uj , where

• u0 is supported in {λ ≥ ǫ} for some ǫ > 0, and u⊗|dλ/λ|−1/2 is a family of

Legendre distributions in Im,rlb,rrb(M2
b , λΛ;Ω

1/2
sc ) with symbol depending

smoothly on λ;
• u1 is supported close to bf0 ∩ bf and away from lb ∪ rb, and is given by a

finite sum of expressions

(3.7) ρm−k/2+n/2λn
∫

Rk

eiΨ(y,y′,σ,v)/ρa(λ, ρ, y, y′, σ, v) dv
∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

1/2

where σ = x/x′, Ψ locally parametrizes Λ and a is polyhomogeneous conor-
mal in λ, with respect to the index set Bbf0 , at λ = 0 and is smooth in all
other variables;

• u2 is supported close to bf0 ∩ bf ∩ lb, and is given by a finite sum of
expressions

(3.8) ρ′
m−(k+k′)/2+n/2

σrlb−k/2λn

×
∫

Rk+k′

ei
(

Ψ0(y,v)+σΨ1(y,y
′,σ,v,v′)

)

/ρa(λ, ρ′, y, y′, σ, v, v′) dv dv′
∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

1/2

;

where Ψ0+σΨ1 locally parametrizes Λ and a is polyhomogeneous conormal
in λ, with respect to the index set Bbf0 , at λ = 0 and is smooth in all other
variables;

• u3 is supported close to bf0 ∩ bf ∩ rb, and is given by a similar expression
to u2 with (x, y) and (x′, y′) interchanged, and rlb replaced by rrb;

• u4 is supported close to lb ∩ bf0 and away from bf, and is given by a finite
sum of expressions of the form

(3.9) ρrlb−k/2λn
∫

Rk

eiΨ0(y,v)/ρa(ρ, x′, 1/ρ′, y, y′, v) dv
∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

1/2

where Ψ0 locally parametrizes Λlb and a is polyhomogeneous conormal in
(x′, 1/ρ′), with respect to the index sets (Bbf0 ,Blb0

) and is smooth in all
other variables;

• u5 is supported close to rb∩bf0 and away from bf, and is given by a similar
expression to u4 with (x, y) and (x′, y′) interchanged, rlb replaced by rrb,
and Blb0

replaced by Brb0
;

• u6 is supported away from bf ∪ lb ∪ rb and is of the form aτ where τ is a

smooth nonvanishing section of Ω
1/2
k,b and a is polyhomogeneous with index

family B at bf0, lb0, rb0, zf.

Remark 3.4. Recall that, away near bf, a smooth nonvanishing section of Ω
1/2
k,b is

given by λn|dgdg′dλ/λ|1/2; this accounts for the factors of λn in (3.7), (3.8) and
(3.9).

Remark 3.5. We have chosen here a different order convention from that used in [16].

Our convention here has the advantage that if u ∈ Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ) then



16 COLIN GUILLARMOU, ANDREW HASSELL, AND ADAM SIKORA

for λ > 0, u is a smooth family of Legendre distributions in Im,rlb,rrb(M2
b , λΛ;Ω

1/2
sc )

(tensored with dλ/λ|1/2); i.e., the orders do not change. Our orders m, rlb, rrb here
corresponds to orders m+ 1/4, rlb + 1/4, rrb + 1/4 in [16].

In an analogous way, we can define intersecting Legendrian distributions and
distributions associated to intersecting pairs of Legendre submanifolds with conic
points on M2

k,b, based on the definitions given in [15] for such distributions on M2
b .

Definition 3.6. Let (Λ0,Λ+) be an intersecting pair of Legendre submanifolds in
sΦN∗Zbf , which do not meet the left and right boundaries of sΦN∗Zbf . The space

Im,rlb,rrb;B(M2
k,b, (Λ0,Λ+); Ω

1/2
k,b ) consists of half-density functions u on M2

k,b that

can be written as a finite sum of terms u =
∑3

j=0 uj, where

• u0 is supported in {λ ≥ ǫ} for some ǫ > 0, and u ⊗ |dλ/λ|−1/2 is a family

of Legendre distributions in Im,rlb,rrb(M2
b , (λΛ0, λΛ+); Ω

1/2
sc ) with symbol

depending smoothly on λ;

• u1 is an element of Im,rlb,rrb;B(M2
k,b,Λ0; Ω

1/2
k,b ), microsupported away from

Λ+;

• u2 is an element of Im−1/2,rlb,rrb;B(M2
k,b,Λ+; Ω

1/2
k,b ), microsupported away

from Λ0;
• u3 is supported close to bf0 ∩ bf and away from lb ∪ rb, and is given by a

finite sum of expressions
(3.10)

ρm−(k+1)/2+n/2λn
∫ ∞

0

ds

∫

Rk

eiΨ(y,y′,σ,v,s)/ρa(λ, ρ, y, y′, σ, v, s) dv
∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

1/2

where Ψ locally parametrizes (Λ0,Λ+) and a is polyhomogeneous conormal
in λ, with respect to the index set Bbf0 , at λ = 0 and is smooth in all other
variables.

Definition 3.7. Let (Λ,Λ♯) be an pair of intersecting Legendre submanifolds with

conic points in sΦN∗Zbf . The space Im,p;rlb,rrb;B(M2
k,b, (Λ,Λ

♯); Ω
1/2
k,b ) consists of

half-density functions u on M2
k,b that can be written as a finite sum of terms u =

∑5
j=0 uj , where

• u0 is supported in {λ ≥ ǫ} for some ǫ > 0, and u ⊗ |dλ/λ|−1/2 is a family

of Legendre distributions in Im,p;rlb,rrb(M2
b , (λΛ, λΛ

♯); Ω
1/2
sc ) with symbol

depending smoothly on λ;

• u1 is an element of Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ), microsupported away from

Λ♯;

• u2 is an element of Ip,rlb,rrb;B(M2
k,b,Λ

♯; Ω
1/2
k,b ), microsupported away from

Λ;
• u3 is supported close to bf0 ∩ bf, and away from lb ∪ rb, and is given by a

finite sum of expressions

(3.11) λn
∫ ∞

0

ds

∫

Rk

eiΨ(y,y′,σ,v,s)/ρ
(ρ

s

)m−(k+1)/2+n/2
sp+n/2−1

× a(λ,
ρ

s
, y, y′, σ, v, s) dv

∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

1/2

where Ψ locally parametrizes (Λ,Λ♯) and a is polyhomogeneous conormal
in λ, with respect to the index set Bbf0 , at λ = 0 and is smooth in all other
variables;
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• u4 is supported close to bf0∩bf∩lb and is given by a finite sum of expressions

(3.12) λn
∫ ∞

0

ds

∫

Rk

eiΨ(y,y′,σ,v,s)/ρ
(ρ′

s

)m−(k+1)/2+n/2
sp+n/2−1σrrb

× a(λ,
ρ′

s
, y, y′, σ, v, s) dv

∣

∣

∣

dgdg′dλ

λ

∣

∣

∣

1/2

where Ψ locally parametrizes (Λ,Λ♯) and a is polyhomogeneous conormal
in λ, with respect to the index set Bbf0 , at λ = 0 and is smooth in all other
variables;

• u5 is supported close to bf0 ∩ bf ∩ rb and is given by a finite sum of ex-
pressions analogous to (3.12), with (x, y) and (x′, y′) interchanged, and rlb
replaced by rrb.

Remark 3.8. There are typos in the expression [15, equation (2.23)] corresponding
to (3.12). These have been fixed here. For purposes of comparison, notice that in
[15, equation (2.23)], in the exponent of x1, N/4 − fi/2 vanishes (in the present
situation).

3.3. The boundary hypersurface bf0. The boundary hypersurface bf0 of M2
k,sc

or M2
k,b plays a crucial role in our analysis. This is because it corresponds to

the transitional asymptotics between zero energy and positive energy behaviour.
Section 5 is devoted to the analysis of the model operator induced by P on bf0,
namely the conic Schrödinger operator (5.2). Here we note the geometric structures
on bf0 ⊂ M2

k,b induced from M2
k,b. (Unless specifically indicated, we work on M2

k,b

rather than M2
k,sc below.)

We first observe that bf0 is a blown-up version of ff × ff, where ff is the front
(blown-up) face of Mk,b. The front face ff is given by ∂M × [0,∞]r where r =
1/ρ = λ/x. Indeed, the interior of bf0 admits smooth coordinates (r, y, r′, y′), where
y, y′ ∈ ∂M , r, r′ ∈ (0,∞), and we can easily check that bf0 is obtained from ff × ff
by performing b-blowups at the diagonal corners {r = r′ = 0} and {ρ = ρ′ = 0}.
Moreover, if we work on M2

k,sc, then the scattering blowup (2.1) has the effect of

performing the scattering blowup on bf0, i.e. blowing up {ρ = ρ′ = 0, y = y′}.
(Recall that we have already observed in (2.6) that the metric g induces an exact
conic metric on the front face of Mk,b, hence a scattering metric at ρ = 0 and
conformal to a b-metric at r = 0.)

Next consider the vector fields Vk,b(M
2
k,b) restricted to bf0. First, on the single

space, the vector fields Vk,b(Mk,b) restrict to ff to be scattering vector fields near
ρ = 0, and b-vector fields near r = 0. These vector fields on ff can be lifted to bf0 via
either the left or right stretched projections bf0 → ff, and generate a space of vector
fields on bf0 that coincide with the restriction of Vk,b(M

2
k,b) to bf0. In turn, this

space of vector fields in bf0 defines a vector bundle over bf0 for which such vector
fields are the smooth sections. Its dual bundle b,kT ∗bf0 can be identified with the
subbundle of k,bT ∗

bf0
M2

k,b annihilated by the vector field λ∂λ+x∂x+x
′∂x′ . In terms

of coordinates (2.11), this bundle is given by {λ = 0, T = 0}. As this is a symplectic
reduction of the bundle k,bT ∗M2

k,b, there is a symplectic form induced on b,kT ∗bf0
by the form ω, which, as in Section 2.5, induces a contact structure on b,kT ∗

bf∩bf0
bf0,

i.e. when we restrict to the boundary hypersurface bf0 ∩bf. This restricted bundle
is isomorphic (as a bundle and as a contact manifold) to sΦN∗Zbf . Therefore, we
can define Legendre submanifolds, Legendre distributions, etc, for bf0. However,
this is nothing new — this precisely reproduces the structure described in [14] and
[15] for a manifold with boundary; we could alternatively derive it by treating ff as
a scattering manifold by ignoring the ‘b’-boundary at r = 0, and working locally
near the scattering boundary ρ = 0, or equivalently working locally near bf0 ∩ bf.
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A consequence of the isomorphism between sΦN∗Zbf and b,kT ∗
bf∩bf0

bf0 is that

Legendre distributions, as defined above, on M2
k,b induce Legendre distributions on

bf0, essentially by restriction to bf0 — see Proposition 4.5 for a precise statement.

3.4. Statement of main results. The main result of this paper is a rather precise
description of the resolvent kernel on the space M2

k,sc.

Theorem 3.9. There is an index family B = (Bzf ,Bbf0 ,Blb0
,Brb0

) such that the
outgoing resolvent kernel R(λ + i0), for λ ≤ λ0, can be represented as the sum of
four terms R1 +R2 +R3 +R4, where

• R1 ∈ Ψ−2,(−2,0,0),(M, Ω̃
1/2
b ) is a pseudodifferential operator of order −2 in

the calculus of operators defined in [10];

• R2 ∈ Im,B(M2
k,b, (

scN∗Diagb, L
bf
+ ; Ω

1/2
k,b ) is an intersecting Legendre distri-

bution on M2
k,b, microsupported close to scN∗Diagb;

• R3 ∈ Im,p;rlb,rrb;B(M2
k,b, (L

bf
+ , L

#
+); Ω

1/2
k,b ) is a Legendre distribution on M2

k,b

associated to the intersecting pair of Legendre submanifolds with conic points

(Lbf
+ , L

#
+), microsupported away from scN∗Diagb;

• R4 is supported away from bf and is such that e−i/ρe−i/ρ′

R4 is polyho-
mogeneous conormal on M2

k,b with index family B ∪ (Blb,Brb,Bbf), where

Blb0
= Brb0

= (n− 1)/2 and Bbf = ∅.
We have m = −1/2, p = (n− 2)/2, rlb = rrb = (n− 1)/2, minBzf = 0, minBbf0 =
−2, minBlb0

= minBrb0
= ν0 − 1. Moreover, the leading asymptotics of R(λ+ i0)

at bf0, zf, lb0, rb0 are given by (6.9).

There is a corresponding statement about the incoming resolvent, with Lbf
+ and

L#
+ replaced by Lbf

− and L#
−. Subtracting the incoming from the outgoing resolvent

we obtain our result about the spectral measure:

Theorem 3.10. The difference between the outgoing and incoming resolvents is a
conormal-Legendre distribution on M2

k,b associated to the intersecting pair of Le-

gendre submanifolds with conic points (Lbf , L#). More precisely, we have

R(λ+ i0)−R(λ− i0) ∈ Im,p;rlb,rrb;B
′

(M2
k,b, (L

bf , L#); Ω
1/2
k,b ),

where B′
• = B• for • = lb0, rb0, bf0, but

B′
zf ⊂ Bzf \ {(β, j) | β < 2ν0}

and B′
zf \ {2ν0} ≥ min(2ν0 + 1, 2ν1). Consequently, the spectral measure (1.4) of

P
1/2
+ satisfies

dE
P

1/2
+

(λ) ∈ Im,p;rlb,rrb;B
′′

(M2
k,b, (L

bf , L#); Ω
1/2
k,b )⊗ |λdλ|1/2

where B′′
• = B′

•+(1, 0); in particular, the spectral measure vanishes to order 2ν0+1
for fixed z, z′ ∈ M◦. The leading asymptotic of the spectral measure at zf is given
by (7.7).

4. Symbol calculus for Legendre distributions

The symbol calculus follows in a straightforward way from that given for Legen-
drian distributions on M2

b given in [15]. We state the results for M2
k,b here without

proof. (One reason for stating the results here is to correct some typos in [15]; for
example, in the exact sequence of Proposition 3.4 of [15], ρm−r should be ρr−m,
and Proposition 3.5 has a similar typo.)

The principal symbol map is defined on the space Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ) of

Legendre distributions associated to Λ and maps to bundle-valued half-densities on



RESOLVENT AND SPECTRAL MEASURE AT LOW ENERGY 19

Λ× [0, λ0]. Here the bundle in question is the symbol bundle S[m](Λ), pulled back
to Λ (which we continue to denote S[m](Λ)), defined in [15] or [16] :

(4.1) S[m](Λ) =M(Λ)⊗ E ⊗ |N∗
bf(∂M

2
k,b)|m−(2n+1)/4

(where M(Λ) is the Maslov bundle, and the other bundles are defined in [15] or
[16]). Let C denote the index family for the boundary hypersurfaces of Λ× [0, λ0)
that assigns Bbf0 at Λ × {0}, the one-step index set rlb −m at ∂lbΛ × [0, λ0) and
the one-step index set rrb − m at ∂rbΛ × [0, λ0). Thus C depends on the data

(B,m, rlb, rrb). Then the principal symbol σm(u) of u ∈ Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b )

takes values in the polyhomogeneous space AC(Λ × [0, λ0];S
[m](Λ) ⊗ Ω

1/2
b ). It is

defined by continuity from the symbol map given in [15].
The following propositions follow straightforwardly from the corresponding re-

sults in Section 3 of [15].

Proposition 4.1. There is an exact sequence

0 → Im+1,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ) → Im,rlb,rrb;B(M2

k,b,Λ;Ω
1/2
k,b ) →

AC(Λ× [0, λ0],Ω
1/2
b ⊗ S[m](Λ)) → 0.

If u ∈ Im,rlb,rrb;B(M2
k,b,Λ;Ω

1/2
k,b ), then (H−λ2)u ∈ Im,rlb,rrb;B+2(M2

k,b,Λ;Ω
1/2
k,b ) and

σm((H − λ2)u) = σl(H − λ2)σm(u).

Thus, if σl(H − λ2) vanishes on Λ, (H − λ2)u ∈ Im+1,rlb,rrb;B+2(M,Λ;Ω
1/2
k,b ). The

symbol of order m+ 1 of (H − λ2)u in this case is given by

(4.2)
(

− iLVl
− i

(

1/2 +m− 2n+ 1

4

)

ν + psub

)

σm(u)⊗ |dx|,

where Vl is the vector field (3.3) and psub is the boundary subprincipal symbol of
H − λ2.

Remark 4.2. The boundary subprincipal symbol psub is defined in [15, Section 2.1].
Here it is sufficient to note that it is a smooth function on sΦN∗Zbf which vanishes
on L♯.

In the next proposition, Λ̃ = (Λ0,Λ1) is an pair of intersecting Legendre subman-
ifolds as in Proposition 3.2 of [15]. We are assume that they do not meet scT ∗

lbM
2
b

or scT ∗
rbM

2
b . Therefore we are left with the order, m, at Λ0, and the index family

B. We refer to [15, Section 3.1, equation (3.8)] for the definition of the bundle over

Λ̃.

Proposition 4.3. The symbol map on Λ̃ yields an exact sequence

0 → Im+1,B(M2
k,b, Λ̃; Ω

1/2
k,b ) → Im,B(M2

k,b, Λ̃; Ω
1/2
k,b ) →

ABbf0
(Λ̃× [0, λ0],Ω

1/2
b ⊗ S[m]) → 0.

Moreover, if we consider just the symbol map to Λ1, there is an exact sequence

(4.3)

0 → Im+1;B(M2
k,b, Λ̃; Ω

1/2
k,b ) + Im+1/2;B(M2

k,b,Λ0; Ω
1/2
k,b ) → Im;B(M2

k,b, Λ̃; Ω
1/2
k,b )

→ ABbf0
(Λ1 × [0, λ0],Ω

1/2 ⊗ S[m]) → 0.

If u ∈ Im;B(M2
k,b, Λ̃; Ω

1/2
k,b ), then (H − λ2)u ∈ Im;B(M2

k,b, Λ̃; Ω
1/2
k,b ) and

σm((H − λ2)u) = σl(H − λ2)σm(u).
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Thus, if the symbol of H−λ2 vanishes on Λ1× [0, λ0], then (H−λ2)u is an element

of Im+1;B(M2
k,b, Λ̃; Ω

1/2
k,b )+ Im+1/2;B(M2

k,b,Λ0; Ω
1/2
k,b ). The symbol of order m+1 of

(H − λ2)u on Λ1 × [0, λ0] in this case is given by (4.2).

In the last of these propositions, Λ̃ is an intersecting pair of Legendre sub-
manifolds (Λ,Λ♯) with conic points, as defined above. Now Λ̂ is a manifold with
codimension 2 corners since the blowup (3.1) creates a new boundary hypersurface

at the intersection with Λ♯, which we denote ∂♯Λ̂. So Λ̂× [0, λ0] has codimension 3

corners. We define the index family C′ for Λ̂× [0, λ0] to be that which assigns Bbf0

at Λ̂× {0}, the one-step index set rlb −m at ∂lbΛ̂× [0, λ0), the one-step index set

rrb −m at ∂rbΛ̂ × [0, λ0), and the one-step index set p−m at ∂♯Λ̂.

Proposition 4.4. There is an exact sequence

(4.4) 0 → Im+1,p;rlb,rrb;B(M2
k,b, Λ̃; Ω

1/2
k,b ) → Im,p;rlb,rrb;B(M2

k,b, Λ̃; Ω
1/2
k,b )

→ AC′(Λ̂× [0, λ0],Ω
1/2
b ⊗ S[m](Λ̂)) → 0.

If u ∈ Im,p;rlb,rrb;B(M2
k,b, Λ̃; Ω

1/2
k,b ), then (H − λ2)u ∈ Im,p;rlb,rrb;B(M2

k,b, Λ̃; Ω
1/2
k,b )

and

σm((H − λ2)u) = σl(H − λ2)σm(u).

If the symbol of H−λ2 vanishes on Λ, then (H−λ2)u ∈ Im+1,p;rlb,rrb;B(M2
k,b, Λ̃; Ω

1/2
k,b ).

The symbol of order m+ 1 of (H − λ2)u in this case is given by (4.2).

We next consider the operation of restricting to bf0. We are mainly interested
in this in a neighbourhood of bf, so for simplicity we assume that the index family
B is such that the index sets at lb0, rb0 and zf are empty, i.e. the half-densities
vanish rapidly at these faces. We also assume for simplicity that the index set Bbf0

satisfies

Bbf0 = (b, 0) ∪B′
bf0

with B′
bf0

≥ b + ǫ for some ǫ > 0. Let B′ denote B with B′
bf0

substituted for

Bbf0 . Also recall from Section 3.3 that a Legendre submanifold Λ for M2
k,b induces

one, also denoted Λ, for bf0. Here Λ could be a smooth Legendre submanifold, an
intersecting pair of Legendre submanifold, or a Legendre conic pair.

Proposition 4.5. Assume that B satisfies the conditions above. Then there is an
exact sequence

0 → Im,rlb,rrb;B
′

(M2
k,b,Λ;Ω

1/2
k,b ) → Im,rlb,rrb;B(M2

k,b,Λ;Ω
1/2
k,b ) →

Im,rlb,rrb;∅(bf0,Λ;Ω
1/2
b,sc) → 0

where the last map on the first line is multiplication by λ−b and restriction to

bf0, and the empty set in the exponent of Im,rlb,rrb;∅(bf0,Λ;Ω
1/2
k,b ) indicates rapid

vanishing at lb0, rb0, zf.

5. The resolvent for a metric cone

Let (Y, h) be a closed Riemannian manifold of dimension n − 1, and let C(Y )
denote the metric cone over Y ; that is, the manifold (0,∞)× Y with Riemannian
metric gconic = dr2 + r2h. This metric is singular at r = 0, except in the special
case that (Y, h) is Sn−1 with its canonical metric, in which case C(Y ) is Euclidean
space minus one point, with its standard metric (expressed ‘in polar coordinates’).
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In this section we analyze the operator Pconic = ∆conic + V0r
−2 on C(Y ), where

V0 is a smooth function of y ∈ Y satisfying

(5.1) ∆Y +
(n− 2)2

4
+ V0 > 0,

as in (1.2). As is evident from (5.4), under this condition Pconic is a positive
operator. Acting initally with domain C∞

c ((0,∞)× Y ), it is essentially self-adjoint
in dimensions n ≥ 4; for n = 3 we use the Friedrichs extension of the corresponding
quadratic form. We construct the resolvent kernel (Pconic − (1 + i0))−1.

The operator Pconic on C(Y ) as a differential operator has the form

(5.2) Pconic = −∂2r − n− 1

r
∂r +

1

r2
∆Y +

V0(y)

r2
.

In terms of the variable x = 1/r, this reads

−(x2∂x)
2 + (n− 1)x3∂x + x2∆Y + x2V0(y),

and is an elliptic scattering differential operator near x = 0. In the remainder
of this section we regard this operator as acting on half-densities, using the flat
connection on half-densities that annihilates the Riemannian half-density. Now let

(5.3) Pb,conic = r Pconic r

and compute
(

rPconicr
)(

f |dgcyl|1/2
)

= r−n/2
(

r1+n/2
(

− ∂2r − n− 1

r
∂r +

1

r2
∆Y +

V0(y)

r2
)

r1−n/2
)(

f |dgconic|1/2
)

=
(

(

− (r∂r)
2 +∆Y + V0 + (n/2− 1)2

)

f
)

|dgcyl|1/2

from which we deduce that, using the connection on the half-density bundle which
annihilates the cylindrical half-density,

(5.4) Pb,conic = −(r∂r)
2 +∆Y + V0 + (n/2− 1)2.

Hence, after pre- and post-multiplying by r, our operator is equivalent to an elliptic
b-differential operator Pb,conic endowed with the flat connection that annihilates

|dgcyl|1/2. It follows from this formula for Pb,conic that we can separate the r and
y variables and express the resolvent kernel (Pb,conic + k2r2)−1, for k > 0, as an
infinite sum
(5.5)

∞
∑

j=0

ΠEj (y, y
′)
(

Iνj (kr)Kνj (kr
′)H(r′ − r) + Iνj (kr

′)Kνj (kr)H(r − r′)
)

∣

∣

∣

∣

dr dr′

rr′

∣

∣

∣

∣

1
2

where Iν ,Kν are modified Bessel functions (see [10, Section 4]). This formula
analytically continues to the imaginary axis; setting k = −i, and using the formulae

Iν(−iz) = e−νπi/2Jν(z), Kν(−iz) =
πi

2
eνπi/2 Ha(1)ν (z),

we see that the kernel of (Pconic − (1 + i0)2)−1 is
(5.6)

πirr′

2

∞
∑

j=0

ΠEj (y, y
′)
(

Jνj (r)Ha
(1)
νj (r

′)H(r′−r)+Jνj(r′)Ha(1)νj (r)H(r−r′)
)

∣

∣

∣

∣

dr dr′

rr′

∣

∣

∣

∣

1
2

where ΠEj is projection on the jth eigenspaceEj of the operator ∆Y +V0+(n/2−1)2

(on half-densities) on Y and ν2j is the corresponding eigenvalue; also Jν ,Ha
(1)
ν are



22 COLIN GUILLARMOU, ANDREW HASSELL, AND ADAM SIKORA

standard Bessel and Hankel functions. This expression converges only distribution-
ally, and is of very little help in revealing the asymptotic behaviour of the kernel,
say as both r and r′ tend to ∞. For the purposes of this paper, we need very precise
information on the kernel in this region. Therefore we give a different construction,
based on the construction for scattering metrics in [15] and [10] together with the
construction for b-metrics in [20]. First we define compactifications of C(Y ) and
C(Y )2, on which the construction takes place.

5.1. Compactifications of C(Y ) and C(Y )2. We begin by defining compactifi-
cations of C(Y ) and C(Y )2. These constructions are parallel to those in Section 2.1
for M × [0, λ0].

Let us compactify C(Y ) to Z = [0,∞]r × Y , where we use [0,∞]r to denote
the one-point compactification of [0,∞)r with boundary defining function x = 1/r
at r = ∞. As we have seen, Z is the same as the boundary hypersurface ff of
Mk,b. We denote the boundary hypersurfaces of Z at r = 0 and r = ∞ by ∂0Z
and ∂∞Z, respectively. To define the double space, we start from Z2 and perform
a ‘b-blowup’; that is, we blow up the codimension 2 corners of Z2 that meet the
diagonal, yielding the b-double product Z2

b :

Z2
b =

[

Z2; ∂0Z × ∂0Z; ∂∞Z × ∂∞Z
]

.

Let Diagb(Z) denote the lift of the diagonal submanifold to Z2
b . We then perform a

‘scattering blowup’ near r = ∞. Specifically, we blow up the boundary ∂∞Diagb(Z)
of Diagb(Z) lying over r = r′ = ∞, obtaining a space we call Z2

b,sc:

Z2
b,sc =

[

Z2; ∂0Z × ∂0Z; ∂∞Z × ∂∞Z; ∂∞Diagb(Z)
]

.

zf

rb0

lb0

sc

lb

bf

rb

Figure 3. The manifold Z2
b,sc; the dashed line is the lifted di-

agonal of Z2. The coordinate r vanishes at zf and rb0, while r
′

vanishes at zf and lb0. It is canonically isomorphic to the face bf0
in Figure 2.

If Y = ∂M , then Z2
b is canonically diffeomorphic to the boundary hypersurface

bf0 of M2
k,b, and Z2

b,sc is canonically diffeomorphic to the boundary hypersurface

bf0 of M2
k,sc. Accordingly, we label the boundary hypersurfaces of Z2

b and Z2
b,sc

consistently with those of M2
k,b and M2

k,sc: the boundary hypersurfaces of Z2 at

r′ = 0, r = ∞, r = 0, r′ = ∞ will be denoted lb0, lb, rb0, rb respectively,4 and
the boundary hypersurfaces created by blowing up ∂0Z × ∂0Z, ∂∞Z × ∂∞Z, and

4This is not a typo; it is really the case that lb0 corresponds to r′ = 0 and rb0 corresponds to
r = 0; see figure.
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∂∞Diagb(Z) will be denoted by zf, bf and (in the case of Z2
b,sc) sc, respectively. The

lift of Diagb(Z) to Z
2
b,sc we denote Diagb,sc(Z).

5.2. Resolvent on metric cones. Recall (from Section 3.3) that there is an iso-
morphism between sΦN∗Zbf and b,kT ∗

bf∩bf0
bf0. Consequently, the Legendre sub-

manifolds sΦN∗Diagb, L± and L♯ introduced in Section 3.1 induce Legendre sub-
manifolds in b,kT ∗

bf∩bf0
bf0. To avoid excessive notation, these will be denoted by

the same symbols. In terms of these, the main result of this section is

Theorem 5.1. The kernel of (∆conic+V0r
−1−(1+ i0))−1 is the sum of four terms

R1 +R2 +R3 +R4, where

• R1 is a pseudodifferential operator on Z2
b,sc (in the b-calculus near ∂0Diagb,sc,

and in the scattering calculus near ∂∞Diagb,sc), supported near Diagb,sc and
vanishing to second order at zf;

• R2 ∈ I−1/2(Z2
b , (

scN∗Diagb, L+);
scΩ1/2) is an intersecting Legendre distri-

bution of order −1/2, supported near ∂∞Diagb;
• R3 ∈ I−1/2,p;rlb,rrb(Z2

b , (L+, L
♯); scΩ1/2) is a Legendre distribution associ-

ated to the intersecting pair of Legendre submanifolds with conic points
(L+, L

♯), with p = (n− 2)/2, rlb = rrb = (n− 1)/2, supported near bf; and

• R4 is supported away from bf and is such that e−ire−ir′R4 is polyhomoge-
neous conormal on Z2

b vanishing to order 2 at zf, n/2 at lb0 and rb0, and
(n− 1)/2 at lb and rb.

The proof of this theorem will occupy the rest of this section.

5.3. Parametrix construction. To construct the kernel of (∆ + V0r
−2 − (1 +

i0))−1, we follow the method of [15]: we first define a parametrix G on the space
Z2
b,sc and show that it gives a good approximation in the sense that

(∆ + V0r
−2 − 1)G = Id+E

with E relatively ‘small’. We then correct G by a finite rank term to obtain a new
parametrix G′ such that Id+E′ = (∆conic + V0r

−2 − 1)G′ is invertible, to obtain
(∆+V0r

−2− (1+ i0))−1 = G′(Id+E′)−1. This is all done in a calculus of operators
that gives us very good control over the behaviour of the kernel at the boundary of
the space Z2

b,sc, allowing us to prove Theorem 5.1.

To construct G, we use the construction near sc and bf from [15], which applies
verbatim, as this construction is all local near infinity. Let us recall that this
construction is made in four stages. First, we take an interior parametrix, i.e. a
distribution G1 conormal to and supported close to Diagb,sc(Z) ⊂ Z2

b,sc whose full
symbol is the inverse of the full symbol of ∆conic− 1. If we apply ∆conic− 1 to such
an interior parametrix we are left with an error term that, in a neighbourhood of
r = r′ = ∞, is smooth and supported close to Diagb,sc. If we view the error term on

Z2
b , then it is Legendrian with respect to sΦN∗Diagb (see Section 4.1 of [15]). In the

second stage, this error is solved away microlocally with an intersecting Legendre

distribution on Z2
b lying in I−1/2(Z2

b , (
scN∗(∂∞Diagb), L+),Ω

1/2
b,sc), associated to

the conormal bundle of the boundary of ∆b(Z) and to the outgoing half of the
‘propagating Legendrian’ L+ described in the previous section. This gives us a
parametrix G2 with error term E2 that is Legendrian with respect to L+ and
microsupported away from ∂∞

scN∗Diagb (see Section 4.2 of [15]). In the third
stage, the error E3 is solved away using a Legendrian conic pair associated to
(L,L♯), giving a parametrix G3 with error term E3 Legendrian with respect to L♯

only; thus, at this stage, the errors at L have been solved away completely (see
Sections 4.3 and 4.4 of [15]). In the fourth stage, the error term E3 is solved away
to infinite order at bf and at lb (we recall that we can solve away to infinite order
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at lb but not rb since we apply the operator ∆conic+V0r
−2−1 in the left variables,

so we obtain a Taylor series calculation which is easily solved order by order at lb,
while at rb we are left with a global problem which we cannot hope to solve). This
yields a parametrix G4 with error term E rapidly vanishing at the boundary of
Z2
b,sc except at rb where it has the form A(r, y, y′)(r′)−(n−1)/2eir

′ |dgconicdg′conic|1/2,
where A = O(r−∞) as r → ∞ (see Section 4.5 of [15]).

We take the kernel G to be equal to G4 in a neighbourhood of sc∪bf∪Diagb,sc of

Z2
b,sc, and supported away from lb0 and rb0. We now need to specify the parametrix

near the boundary hypersurfaces zf, lb0, rb0.
At zf, where r = r′ = 0, we use the b-calculus. Any b-pseudodifferential operator

on half-densities has a ‘normal operator’, that is, the restriction of the kernel of the
operator to the ‘front face’ (here the face zf), which has a natural interpretation
as a dilation-invariant operator on a half-cylinder (here ∂M × (0,∞)σ, where σ =
r′/r). In the present case, we write ∆conic + V0r

−2 − 1 = r−1
(

Pb,conic − r2
)

r−1,

so the b-operator of interest is Pb,conic − r2, and its normal operator is precisely
Pb,conic, given by (5.4), which is manifestly dilation-invariant. In the b-calculus, the
normal operator of the inverse of a b-elliptic operator is the inverse of the normal
operator [20]. We therefore specify that G vanishes to second order at zf, and the
restriction of (rr′)−1G to zf is equal to Pb,conic

−1. (We remark that this inverse
exists due to assumption (5.1).) This has a distributional expansion in terms of the
eigenfunctions on ∂M as

(5.7)

∞
∑

j=0

ΠEj (y, y
′)

1

2νj

(

(r/r′)νjH(r′ − r) + (r′/r)νjH(r − r′)
)

∣

∣

∣

∣

drdydr′dy′

rr′

∣

∣

∣

∣

1
2

.

Thus G = (rr′)Pb,conic
−1 + O(ρ3zf) will be polyhomogeneous conormal at lb0 and

rb0 with index set

(5.8) Blb0
= Brb0

= {(νj + 1, 0) | j = 0, 1, 2, . . .}
with νj as in (5.6); in particular, minBlb0

= minBrb0
= ν0 + 1. We also observe

that this specification of G near zf is compatible with the interior parametrix. This
follows from the fact that the full singularity (modulo C∞) at the diagonal, both
for the interior parametrix and for (5.7), is uniquely determined by the full symbol
of the operator. Explicitly, we can construct a kernel near zf as follows: we take our
interior parametrix, which is supported close to the diagonal, and let Ezf denote
the difference between this parametrix (restricted to zf) and (5.7). As explained
above, the difference is C∞. We extend this C∞ half-density function in some
smooth manner from zf to C(Y ), and add this to our interior parametrix. The
result agrees with our specifications both at the diagonal and at zf.

Next we specify what happens at lb0 and rb0. To do this, we note that in the
expansion (5.6), the terms are vanishing more and more rapidly at lb0 and at rb0 as
j → ∞, since Jν(z) = O(zν) as z → 0. Therefore, we can form a Borel sum at these
boundary hypersurfaces. To do this, choose boundary defining functions ρlb0

, ρrb0

for these boundary hypersurfaces (for example we could take ρlb0
= r′〈r〉/r, and

ρlb0
= r〈r′〉/r′). Then we specify that G is equal to

(5.9)

(

π

2i
(rr′)

∑

j

ΠEj (y, y
′)Ha(1)νj (r)Jνj (r

′)ϕ
(ρlb0

ǫj

)

+O(ρ∞lb0
)

)

∣

∣

∣

dr dr′

rr′

∣

∣

∣

1/2

near lb0, for some ϕ ∈ C∞
c [0,∞) equal to 1 near 0, and some sequence ǫj tending

to zero sufficiently fast, and

(5.10)

(

π

2i
(rr′)

∑

j

ΠEj (y, y
′)Ha(1)νj (r

′)Jνj (r)ϕ
(ρrb0

ǫj

)

+O(ρ∞rb0
)

)

∣

∣

∣

dr dr′

rr′

∣

∣

∣

1/2
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near rb0
5. (We remark that in these formulae the ΠEj (y, y

′) terms contain half-
density factors in the (y, y′) variables.) To check that this is compatible with the
behaviour specified at zf, we take the leading behaviour of these expressions at zf.
To do this we need the leading behaviour of Bessel and Hankel functions at r = 0,
given by [1]

(5.11)

Jν(z) =
1

Γ(ν + 1)

(z

2

)ν
+O(zν+1),

Ha(1)ν (z) =
1

iπ
Γ(ν)

(z

2

)−ν
+O(z−ν+1).

This implies that at the leading behaviour of (5.9) at zf is

(rr′)
∑

j

ΠEj

1

2νj

(r′

r

)νj
,

which is equal to (5.6) modulo O(ρ∞lb0
), and the leading behaviour of (5.10) at zf is

(rr′)
∑

j

ΠEj

1

2νj

( r

r′
)νj
,

which is equal to (5.6) modulo O(ρ∞rb0
). This proves that all our specifications at

zf, lb0, rb0 are compatible.
We next observe that the asymptotic formulae for Hankel functions for large

argument, namely

Ha(1)ν (r) = r−1/2eir−iνπ/2+iπ/4hν(r), r ≥ 1,

where hν(r) is a classical symbol of order zero, i.e. with an expansion as r → ∞
in nonpositive integral powers of r, implies that, near lb0 ∩ lb, (5.9) is of the form
r−(n−1)/2eir|dgconicdg′cyl|1/2 times a polyhomogeneous conormal function with C∞

index set at lb and index set Blb0
at lb0. A similar statement is valid for (5.10)

near rb0 ∩ rb.

Remark 5.2. So far, we have found a parametrix G which is the sum of a number
of pieces:

• a pseudodifferential operator, i.e. a kernel conormal at Diagb,sc and sup-
ported close to Diagb,sc (this is in the scattering calculus near ∂∞Diagb,sc
and in the b-calculus near ∂0Diagb,sc);

• an intersecting Legendre distribution supported close to ∂∞Diagb;
• a conic Legendre pair supported near bf; and
• a kernel which is supported away from bf and is eireir

′

times a polyhomo-
geneous conormal half-density, with index sets Blb0

= Brb0
at lb0, rb0, and

one-step index sets 2 at zf, (n− 1)/2 at lb, rb.

In particular, our parametrix G satisfies the conditions of Theorem 5.1. It re-
mains to find the correction term and show that it also satisfies the conditions of
Theorem 5.1.

5.4. Correction term. Define E = (∆conic+V0r
−2−1)G−Id. Then E is eir times

a kernel that is conormal on Z2
b and vanishes to order 1 at zf, ∞ at rb0, lb0, lb and

bf and to order (n−1)/2 at rb. Thus, E is a compact operator acting on 〈r〉−lL2(Z)
for any l > 1/2. It is not necessarily the case that Id+E is invertible on any of

5Note the confusing fact that lb0 is the face where r′ = 0, which rb0 is the face where r = 0!
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these spaces, however. To arrange this, for some (and then, it turns out, every) l,
we add, following [15], a finite rank term to G, of the form

N
∑

i=1

φi〈ψi, ·〉.

Here N is the common value of the dimension of the kernel and cokernel of Id+E
on 〈r〉−lL2(Z) (where l is a fixed real number > 1/2). We choose ψi to span the
null space of Id+E and φi to span a subspace supplementary to the range of Id+E.
Note that, due to the rapid vanishing of the kernel of E as r → ∞, if ψ = −Eψ,
then ψ vanishes rapidly at r → ∞. Also, since E vanishes to first order at r = 0,
ψ must vanish to infinite order at r = 0 also. Hence each ψi ∈ Ċ∞(Z).

To choose the φi, we prove an analogue of Lemma 6.1 in [15]:

Lemma 5.3. Let l > 1/2, and let Ċ∞(Z) denote smooth functions on Z vanish-

ing to infinite order at the boundary. Then the image of Pconic − 1 on Ċ∞(Z) +

G(Ċ∞(Z)) is dense in 〈r〉−lL2(Z).

Proof. This is proved in a similar way as Lemma 6.1 in [15]. Let M be the subspace

spanned by (Pconic−1)(Ċ∞(Z) and (Pconic−1)(G(Ċ∞(Z))), and let f be a function
in 〈r〉−lL2(Z) orthogonal (in the inner product on 〈r〉−lL2(Z)) toM. We shall prove
that f = 0.

With 〈·, ·〉 denoting the inner product on L2, we have

(5.12)
〈〈r〉lf, 〈r〉l(Pconic − 1)u〉 = 0 ∀ u ∈ Ċ∞(Z)

=⇒ 〈(Pconic − 1)(〈r〉2lf), u〉 = 0 ∀ u ∈ Ċ∞(Z)

which implies, setting h = 〈r〉2lf , that (Pconic − 1)h = 0. Now we apply the same

argument setting this time u = Gv, where v ∈ Ċ∞(Z), and the operator identity
(Pconic − 1)G = Id+E, to deduce that (Id−E∗)h = 0, or equivalently h = E∗h.
But E∗ vanishes to order 1 at zf and to infinite order at lb0, rb0, which shows
that h(r, y) vanishes to infinite order at r = 0. Similarly, E∗ maps 〈r〉2lL2(Z) to
r−(n−1)/2e−irC∞(Z) for r ≥ 1, so we deduce that h has this behaviour for r → ∞.
Let h = r−(n−1)/2e−irh0(y) + O(r−(n+1)/2). Then applying Green’s identity to h
and its complex conjugate, we find that

0 =

∫

Z

(

((Pconic − 1)h)h− h(Pconic − 1)h
)

rn−1drdy

=

(

lim
r→∞

∫

Y

(

(∂rh)h− h∂rh
)

rn−1dy − lim
r→0

∫

Y

(

(∂rh)h− h∂rh
)

rn−1dy

)

= −2i

∫

Y

|h0(y)|2 dy.

This shows that h0 = 0. This implies that actually h = O(r−(n+1)/2) as r → ∞,
so h ∈ L2(Z). But Pconic + V0r

−2 has a dilation symmetry, so it has no point
spectrum. Therefore h = 0, which finishes the proof. �

Having established this density result, it follows that we can find φi, i = 1 . . .N ,
spanning a space supplementary to the range of Id+E, each of which is the sum of
a function in Ċ∞(Z) and one in G(Ċ∞(Z)). By the mapping properties of G, such
functions are smooth in (0,∞) and having the form r−(n−1)/2eirC∞(Z) as r → ∞,
while polyhomogeneous with index set Blb0

as r → 0. Thus, when we add this finite
rank term to G, it does not change any of properties of G as listed in Remark 5.2.
Let the resulting kernel be denoted G′. We then have (Pconic − 1)G′ = Id+E′,
with E′ having the same structure as above and with Id+E′ invertible on 〈r〉−lL2.
Notice that the same G′ works for all l > 1/2.
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Let (Id+E′)−1 = Id+S. Then, since E′ is Hilbert-Schmidt on 〈r〉−lL2, and we
can write S = −E +E2 + ESE, S is also Hilbert-Schmidt on 〈r〉−lL2. To analyze
finer properties of S, we introduce the following spaces of operators:

Definition 5.4. Let Ψ0
j , j = 0, 1, 2, . . . , be the algebra of operators (acting on half-

densities) whose kernels are smooth on Z2
b,sc, vanishing to order j at zf and vanishing

to infinite order at all other boundary hypersurfaces; thus, we can think of these
operators as b-pseudodifferential operators of order −∞, vanishing to order j at zf.
Also, let Ψ∞ be the algebra of operators (acting on half-densities) whose kernels

are smooth on C(Y ), and on Z2
b,sc are of the form r′

−(n−1)/2
eir

′

C∞(Z2
b,sc) near rb

and vanish to infinite order at all other boundary hypersurfaces.

It is straightforward to check the composition properties (the first following from
composition properties of the b-calculus)

(5.13)

Ψ0
j ◦Ψ0

k ⊂ Ψ0
j+k

Ψ0
j ◦Ψ∞ ⊂ Ψ∞

Ψ∞ ◦Ψ0
j ⊂ Ψ0

k ∀ k, i.e. Ψ∞ ◦Ψ0
j ⊂ Ċ∞(M2

k,b)

Ψ∞ ◦Ψ∞ ⊂ Ψ∞.

In terms of these algebras, we can write E ∈ Ψ0
1 +Ψ∞. Iterating the identity

S = −E + E2 + ESE,

we obtain

(5.14) S = −E + E2 − E3 + · · ·+ E4N + E2NSE2N .

Applying (5.13) iteratively, we see that Ej ∈ Ψ0
j + Ψ∞. Therefore, −E + E2 −

E3 + · · ·+ E4N ∈ Ψ0
1 +Ψ∞. Next we analyze E2NSE2N .

Lemma 5.5. The operator E2NSE2N has a kernel of the form

(5.15)
( r

〈r〉
)N( r′

〈r′〉
)N

〈r′〉−(n−1)/2eir
′

C2N (Z × Z)

as a multiple of the half-density |dgconicdg′conic|1/2. Here CN (Z × Z) denotes the
space of functions on Z × Z with N continuous derivatives.

Proof. In this proof, all kernels are understood to be multiples of the Riemannian
half-density |dgconicdg′conic|1/2.

First, we know that S is Hilbert-Schmidt on the space 〈r〉lL2(Z), so its kernel is
in the space

〈r〉l〈r′〉lL2(Z × Z).

However, rearranging the identity (Id+E)(Id+S) = Id, we find that S = −(E +
ES). Since the kernel of E vanishes to infinite order as r → ∞, we find that this is
true for S as well. In particular, we see that

S ∈ 〈r〉−l〈r′〉lL2(Z × Z).

Next, we have E2N (z, z′′) ∈ Ψ0
2N +Ψ∞. If we differentiate this kernel N times,

it still vanishes to order N at zf, and to infinite order as r → ∞. Therefore we can
say that E2N has a kernel which is of the form

( r

〈r〉
)N

〈r〉−NCN
(

Z; 〈r′〉lL2(Z ′)
)

;

that is, it is CN in the first variable, vanishing to order N as r → 0 and infinite
order as r → ∞, as a L2 function (weighted by 〈r′〉l) in the second variable. (The
prime on Z ′ in the formula above indicates the right factor; lack of prime indicates
the left factor.)
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Equally, we can describe E2N as being in the space
( r′

〈r′〉
)N

〈r′〉−(n−1)/2CN
(

Z ′; 〈r〉−lL2(Z)
)

;

that is, a CN function of the second variable, vanishing to order N as r′ → 0
and order (n − 1)/2 as r′ → ∞, with values in L2 (weighted by 〈r〉−l) in the first
variable.

The composition E2NSE2N is therefore, using the descriptions above and ap-
plying the Cauchy-Schwartz inequality, in the space (5.15). �

It follows from the Lemma and (5.14) that S lies in the sum of the spaces Ψ0
1+Ψ∞

and (5.15) for every N . But the intersection of these spaces is just Ψ0
1 +Ψ∞, so we

conclude that S ∈ Ψ0
1 +Ψ∞.

The exact outgoing resolvent kernel on Z is G′+G′S. We need to determine the
nature of the correction term G′S. Recall that G′ is the sum of a pseudodifferential
operatorGΨ and a distribution that is Legendrian at bf, lb, rb and polyhomogeneous
at the remaining boundaries. It is not hard to check that

GΨ ◦Ψ0
1 ⊂ Ψ0

1, GΨ ◦Ψ∞ ⊂ Ψ∞.

Therefore GΨ ◦ S ∈ Ψ0
1 +Ψ∞.

The composition of G′−GΨ with S can be analyzed using Melrose’s Pushforward
Theorem [24]. To do this, we view the composition as the result of lifting the kernels
of G′ −GΨ and S to the b-‘triple space’

Z3
b =

[

Z3; (∂0Z)
3; ∂0Z × ∂0Z × Z; ∂0Z × Z × ∂0Z;Z × ∂0Z × ∂0Z;

(∂∞Z)
3; ∂∞Z × ∂∞Z × Z; ∂∞Z × Z × ∂∞Z;Z × ∂∞Z × ∂∞Z

]

in which all of the boundary hypersurfaces of codimension 2 and 3 that meet the
diagonal are blown up; see for example [23, Section 23]. This space has three
stretched projections πL, πC , πR to M2

b according as they omit the left, centre or
right variable, respectively. The product of kernels A and B on M2

b can be repre-
sented as

A ◦B = (πC)∗

(

π∗
RA · π∗

LB
)

.

Let A = e−ir(G − GΨ) and B = e−ir′S. The product of π∗
RA and π∗

LB on Z3
b is

polyhomogeneous conormal, since the rapid vanishing of B as lb and bf kills the
oscillations (Legendrian behaviour) of A at bf and rb. The pushforward theorem

then shows that e−ir(G′ − GΨ)Se
−ir′ is polyhomogeneous on Z2

b with index sets
starting at 1 at zf, (n−1)/2 at lb and rb, ∞ at bf, and ν0 at lb0 and rb0. Therefore
G′S is a kernel satisfying the conditions of R4 in the statement of Theorem 5.1.
This completes the proof of Theorem 5.1.

6. Low energy resolvent construction

We now construct the low energy asymptotics of the outgoing resolvent R(λ +
i0) = (P − (λ+ i0)2)−1 of P = ∆+V , for an asymptotically conic manifold (M, g),
with g as in (1.1) and with potential function V as in (1.2), (1.3).

It is convenient to split this construction into two parts, the ‘b’-part and the
‘scattering’ part. To do this we choose a cutoff function χ such that χ(t) = 1 for
t ≤ 1 and χ(t) = 0 for t ≥ 2. We then look for two kernels Gsc and Gb, solving the
equations

(6.1) (H − λ2)(Gsc) = χ(x/λ), (H − λ2)(Gb) = 1− χ(x/λ)

where the functions on the right hand side act as multiplication operators. We shall
continue to use the notation ρ = x/λ, ρ′ = x′/λ, σ = x/x′ = ρ/ρ′.
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6.1. Construction of Gb. We start with Gb, which is an approximation to R(λ+
i0)(1− χ(ρ′)). This is supported away from bf and rb, see figure 4. Our ansatz is
that e−i/ρGb is conormal at the diagonal Diagb and polyhomogeneous conormal at
the remaining faces. We specifyGb by giving a certain number of compatible models
for e−i/ρGb at each of these faces. We use the boundary defining function λ for (the
interior of) zf, lb0, rb0, bf0 and write (Gb)

k
• for the coefficient of λk in the expansion

of Gb at these faces. For the leading order coefficient we have (Gb)
k
• = λ−kGb|•

(note that the operation of restriction of a half-density has the effect of cancelling
a factor of dλ/λ).

rb

lb

bf

rb0

bf0

lb0

zf

Figure 4. The support of Gb at the boundary is located on the
right of the dashed line.

6.1.1. Terms at zf. Similarly to the previous section, and following [10], we write
∆ + V = xPbx for some b-elliptic operator in the sense of [20]

Pb = −(x∂x)2 +∆∂M + (n/2− 1)2 + V0(y) + xW, W ∈ Diff2
b(M)

where ∆∂M denotes the Laplacian on the boundary ∂M equipped with the metric
h(0) and Diffm

b (M) denotes the space of m-th order b-differential operators, i.e.
those obtained from the enveloping algebra of the Lie algebra of smooth vector
fields tangent to ∂M . (Here we are writing derivatives with respect to the flat
connection annihilating the half-density |dgb|1/2 = |xndg|1/2.)

The theory of b-elliptic operators given by Melrose [20, Sec. 5.26] (see also
the discussion in [10]) shows that there is a generalized inverse Qb, which is a
b-pseudodifferential operator of order −2, for the operator Pb on L2

b , such that

PbQb = QbPb = Id−Πb.
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where Πb is orthogonal projection on the L2
b kernel of Pb. A zero mode of Pb would

be either a zero mode, or a zero-resonance, of P . However, assumption (1.3) is that
P has no resonance nor eigenvalue at 0. Hence we have PbQb = Id. The kernel Qb is
conormal at the b-diagonal ∆k,sc ∩ zf, uniformly up to zf ∩bf0 (as a multiple of the

half-density |dgbdg′b|1/2), and is polyhomogeneous conormal to the three boundary
faces of zf (ie. rb0, lb0 and bf0). The index sets giving the exponents and logs
in the expansion at the faces are E(Qb) = (Ebf0(Qb),Erb0

(Qb),Elb0
(Qb)) where

Erb0
(Qb) = Elb0

(Qb) are a logarithmic extension of the index set

{(

νj + k, 0
)

|, k ∈ N0, ν
2
j ∈ spec∆∂M + V0 + (n/2− 1)2

}

and

Ebf0 = N0 × {0}.
We set (Gb)

0
zf = x−1Qbx

−1.

6.1.2. Term at bf0. As noted above, the face bf0 of M2
k,sc is canonically the same

as Z2
b,sc where Z = (0,∞)ρ × ∂M . Following Subsection 3.4 of [10], the operator

H − λ2 vanishes at order 2 at bf0 as a b-differential operator on M2
k,b and the

induced operator at bf0, Ibf0(λ
−2(∆+V −λ2)), is given by the operator Pconic − 1

acting on the left variable on Z2
b,sc. We therefore set (Gb)

−2
bf0

to be 1− χ(ρ′) times
its inverse constructed in Section 5:
(6.2)

(Gb)
−2
bf0

:= (1 − χ(ρ′))(Pconic − (1 + i0))−1 =

iπ(1− χ(ρ′))

2ρρ′

∞
∑

j=0

ΠEj (y, y
′)
(

Jνj (
1

ρ
)H(1)

νj (
1

ρ′
)H(ρ− ρ′) + Jνj (

1

ρ′
)H(1)

νj (
1

ρ
)H(ρ′ − ρ)

)

.

This matches with G0
zf at zf ∩ bf0, since, as shown in the previous section, the

operator Pconic−1 can be written as ρPb,conic ρ where Pb,conic is as in (5.4), and the
normal operator of Pb,conic (in the sense of the b-calculus) agrees with the normal
operator N(Pb) of Pb defined at zf. We have seen that both the normal operators
of x(Gb)

0
zfx and of ρ−1(Gb)

−2
bf0
ρ−1 are the inverse of N(Pb), which is precisely the

matching conditions for these two models.

6.1.3. Terms at rb0 and lb0. We take as the leading terms at rb0 and lb0, the
models given in [10, Section 4.5] with k replaced by iλ, which amounts to replacing

the modified Bessel function Kνj in [10] by the Hankel function Ha(1)νj . We also

have to multiply by 1 − χ(ρ′) (which only affects rb0). Therefore we take, for all
νj ≤ 1,

(6.3)

(Gb)
νj−1
lb0

=
iπ

2
(x′ρ)−1vj(y, z

′)Ha(1)νj (1/ρ)
∣

∣

∣

dρdy

ρ
dg′b

∣

∣

∣

1/2

,

(Gb)
νj−1
rb0

=
iπ

2
(1− χ(ρ′))(xρ′)−1vj(z, y

′)Ha(1)νj (1/ρ
′)
∣

∣

∣

dρ′dy′

ρ′
dgb

∣

∣

∣

1/2

where vj(z, y
′) is the unique function on M × ∂M such that

(6.4) Pbvj = 0, vj(x, y, y
′) =

ΠEj (y, y
′)

2νjΓ(νj + 1)
x−νj +O(x−νj−1 log x), x→ 0.

The existence and uniqueness of vj , and the matching of terms (6.3) with the leading
models at zf and bf0 is shown in [10].
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6.1.4. Terms at lb. Let τ be the half-density in (2.14). Near lb, we choose G
such that e−i/ρG is polyhomogeneous. More precisely, we choose G of the form
aei/ρρ(n−1)/2|τ |1/2 where a is polyhomogeneous, with index sets Fbf0 = Ebf0(Qb)−
2,Flb0

= Elb0
(Qb)−1 at bf0, lb0 and with the C∞ index set 0 at lb, and with leading

behaviour at bf0 and at lb0 chosen to match the models already specified at those
boundary hypersurfaces. This is possible since the models at adjacent faces bf0 and
lb0 are both of the form ei/ρ times a polyhomogeneous half-density; for bf0 this
follows from the Legendrian description of the kernel in Section 5, while for lb0 it
follows from standard asymptotics of Hankel functions as their argument tends to
infinity, as observed above Remark 5.2.

A standard computation in scattering theory (see [15, (4.30) – (4.31)] for exam-
ple) shows that if we apply (P − λ2) to a kernel of the form

ãei/ρρ(n−1)/2+k|τ |1/2,
with ã polyhomogeneous and with index set 0 at lb, the result is a kernel of the
form

λ2bei/ρρ(n−1)/2+k+1|τ |1/2,
where b |lb = −2ika |lb. Using this iteratively, we can solve away the error term
at lb to infinite order. In fact, applying this with k = 0 shows that the result of
applying P − λ2 to

aei/ρρ(n−1)/2|τ |1/2
with a is as above vanishes to 3 orders better at lb0 and bf0, and 2 orders better
at lb. (We gain three orders at lb0 and bf0 since the operator itself vanishes to
second order, and the leading models at these faces are killed by the corresponding
induced operator, which leads to a gain of an additional order.) This error term
can be solved away iteratively at lb with terms of the form

ãei/ρρ(n+1)/2+k|τ |1/2, k = 2, 3, . . .

and where ã vanishes 1 order better at bf0 and one order better at lb0 compared to
a, i.e. the correction terms do not affect the leading models at bf0 and lb0 at all.
In this way we can remove the error term at lb completely, i.e. so that it vanishes
to infinite order there.

We conclude that we can construct a kernel Gb such that

(H − λ2)(Gb)− (1− χ(ρ)) = Eb ∈ AE(M
2
k,b; Ω

1/2
k,b (M

2
k,b)),

such that minEzf = 1, minEbf0 = 1, minElb0
= ν0 +2, minErb0

= ν0, Elb = ∅, and
vanishing in a neighbourhood of bf, rb.

6.2. Construction of Gsc. This is supported away from lb0 ∪ zf. Initially, we
work in a smaller region, which is supported close to bf — say in the region where
ρ, ρ′ < ǫ. In these coordinates, the metric can be written

g = λ−2(dρ2/ρ4 + h(λρ)/ρ2) ≡ λ−2dgλ.

Our operator P − λ2 can be written in the (ρ, y) coordinates as λ2(∆λ + V0ρ
2 +

λρ3W − 1) in the ρ coordinates, where ∆λ is the Laplacian with respect to the
metric gλ. Thus, our equation (P − λ2)G = Id is equivalent to

(∆λ + V0ρ
2 + λρ3W − 1)G = λ−2 Id .

Since this operator has coefficients depending smoothly on λ down to λ = 0 in this
region, we can perform the first part of the parametrix construction in [15] (that part
in Section 4) uniformly in λ, obtaining a Legendre distribution polyhomogeneous
in λ with index set −2 at bf0. We give just a sketch of this construction here,
referring to [15] for full details.
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6.2.1. Pseudodifferential term. We begin by choosing a pseudodifferential operator

Gsc
1 ∈ Ψ−2,(−2,0,0);∗(M ; Ω

1/2
k,b ), in the calculus defined in [10], that solves away the

singularity along the diagonal, in the equation

(H − λ2)G1 = χ(ρ′).

See Section 4.1 of [15] and Section 3.1 of [10].

6.2.2. Intersecting Legendre term. Next we consider the error term Esc
1 = (H −

λ2)Gsc
1 . On the space M2

k,b, it is a Legendre distribution associated to scN∗Diagb.

We can solve this away (using Proposition 4.3 in place of Proposition 3.2 from [15])
by adding to Gsc

1 an intersecting Legendre distribution

Gsc
2 ∈ I−1/2,∞,∞;B(M2

k,b, (
scN∗Diagb, L

bf); Ω̃
1/2
b ),

obtaining a parametrix Gsc
2 with an error term E2 ∈ I−1/2,∞,∞;E(M2

k,b, L
bf ; Ω̃

1/2
b )

that is Legendre with respect to Lbf
+ , microsupported away from scN∗Diagb, and

supported away from lb and rb. Here, Bbf0 = −2, but Ebf0 = 0 (we gain two orders
at bf0 because the operator P −λ2 vanishes to second order there). See Section 4.2
of [15].

6.2.3. Conic Legendre term. We can solve away the error term Esc
2 by adding to Gsc

2

a Legendre distribution in the space Im,p;rlb,rrb;B(M2
k,b, (L

bf , L♯), with m = −1/2,

p = (n − 2)/2, rlb = rrb = (n − 1)/2, associated to the conic pair of Legendre
submanifolds (Lbf , L♯) (using Proposition 4.4 in place of Proposition 3.5 from [15]).
We then obtain a parametrix Gsc

3 with error term Esc
3 Legendre with respect to L♯

only: Esc
3 ∈ Ip,rlb+2,rrbE;B(M2

k,b, L
♯; Ω̃

1/2
b ). See Sections 4.3 and 4.4 of [15].

6.2.4. Correction at bf0. Now we make a step that is absent from the argument in
[15]; we correct the leading behaviour at bf0 to the exact conic resolvent. We ob-
serve that the pseudodifferential singularities of the parametrix constructed above
as well as those at sΦN∗Diagb and at the propagating Legendrian Lbf

+ are uniquely

determined. By contrast, the singularities at L♯ are not uniquely determined (al-
though the singularities of the symbol on L♯ where L♯ meets Lbf

+ are determined
— this subtle point is explained in [25]). Thus, the difference

F−2
bf0

= (Gsc
3 )−2

bf0
− (Pconic − (1 + i0)2)−1,

is Legendre with respect to L♯ only. By Proposition 4.5, this is the boundary value

of a term F ∈ Ip;rlb,rrb;B(M2
k,b, L

♯
+; Ω

1/2
k,b (M

2
k,b)). Let G

sc
4 = Gsc

3 +F . Now the error

term Esc
4 = (H − λ2)(Gsc

4 ) is better: it vanishes to order 1 at bf0, i.e. we may now
take Ebf0 = 1.

6.2.5. Leading terms at rb0. To match with (Gsc
4 )−2

bf0
, we define (Gsc)ρνj−1, for all j

such that νj ≤ 1, to be given by the second line of (6.3), with the factor 1 − χ(ρ′)
replaced by χ(ρ′).

6.2.6. Solving away outgoing errors at bf and lb. We now solve away all outgoing
errors at bf and lb as in Section 4.5 of [15] and Section 6.1.4 above, by adding
to Gsc

4 a suitable Legendre distribution associated to the outgoing Legendrian L♯,
obtaining Gsc

5 . Since the error term Esc
4 already vanishes to order 1 at bf0, the

correction terms will be at order −1 at bf0 and therefore do not affect the leading
behaviour of Gsc

4 at bf0 (which are at order −2) at all. The new error term Esc
5 is

such that e−i/ρ′

Esc
5 is polyhomogeneous on M2

k,b and vanishes to order order 1 at

bf0, order ∞ at lb and bf, order ν0 at rb0 and (n− 1)/2 at rb.
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6.3. True resolvent. Let our parametrix G be given by G = Gb +Gsc
5 . Then the

error term E = (H − λ2)G − Id is such that e−i/ρ′

E ∈ AE(M
2
k,b; Ω

1/2
k,b (M

2
k,b)) is

polyhomogeneous on M2
k,b such that minEzf = 1, minEbf0 = 1, minElb0

= ν0 + 2,

minErb0
= ν0, minErb = (n− 1)/2, and Ebf = Elb = ∅. If we express this in terms

of a half-density of the form |dgbdg′bdλ/λ|1/2, which lifts to M2
k,b to be a smooth

nonvanishing b-half-density, then the orders of vanishing are as above except at
rb, where it changes to −1/2. (Note: by changing to a b-half-density the order
of vanishing is reduced by n/2 at lb and rb, and by n at bf; however, because we
already have infinite order vanishing at lb and bf, only the change at rb is visible.)
Since b-half-densities are square-integrable precisely when the order of vanishing is
positive, it follows that the error term E is Hilbert-Schmidt on xlL2(M) for every
l > 1/2 and each λ > 0, with the Hilbert-Schmidt norm tending to zero as λ → 0.
In particular, it is compact, and invertible for sufficiently small λ. Consequently
the true resolvent R(λ) = (H − (λ+ i0)2)−1 is given by G(Id+E)−1.

We next analyze the structure of the correction term. Let (Id+E)−1 = Id+S;

then the correction term is GS. Let us define Ẽ to be the kernel E conjugated by
ei/ρ: Ẽ = ei/ρEe−i/ρ′

. Also let S̃ = ei/ρSe−i/ρ′

. Formally, we have

S̃ =

∞
∑

j=1

(−1)jẼj .

By the results of [10], Ẽj is polyhomogeneous conormal with index family E(j)

where index family E(j+1) is given at bf0, lb0, rb0, zf inductively by

(6.5)

(E
(j)
lb0

+ Ezf)∪̄(E(j)
bf0

+ Elb0
) at lb0,

(E
(j)
rb0

+ Ebf0)∪̄(E(j)
zf + Erb0

) at rb0,

(E
(j)
bf0

+ Ebf0)∪̄(E(j)
lb0

+ Erb0
) at bf0, and

(E
(j)
zf + Ezf)∪̄(E(j)

rb0
+ Elb0

) at zf.

From (6.5) it is straightforward to prove by induction that

(6.6)

minE
(j)
lb0

≥ ν0 + 2 + j, minE
(j)
bf0

≥ 1 + j,

minE
(j)
rb0

≥ ν0 + j, E
(j)
zf ≥ j,

E
(j)
bf = E

(j)
lb = ∅, E

(j)
rb = (n− 1)/2.

It follows that the index family E defined by E• = ∪jE
(j)
• is well-defined. We show

Lemma 6.1. The kernel S̃ is polyhomogeneous on M2
k,b with index family E.

Proof. Let QN be the differential operator

QN = χ(ρ′)

N−1
∏

j=0

(

ρ′
d

dρ′
− n− 1

2
− j

)

,

where χ(ρ′) is a smooth function equal to 1 for ρ′ ≤ 1 and 0 for ρ′ ≥ 2. This

operator has the property that it maps a function of ρ′ of the form ρ′
(n−1)/2

C∞(ρ′)

into a function of the form ρ′
(n−1)/2+N

C∞(ρ′), that is, it kills the first N terms of

the expansion of a function in ρ′(n−1)/2C∞(ρ′) at ρ′ = 0. Using the definition of
polyhomogeneous conormality given in [24], it is enough to show, for every positive

integerN , that S̃ can be written as a sum S̃N,1+S̃N,2, where S̃N,1 ∈ A
E
(M2

k,b; Ω
1/2
k,b ),

and QN S̃N,2 is conormal (as opposed to polyhomogeneous conormal) on M2
k,b with

respect to a multiweight r = rN , all of whose entries tend to infinity with N .
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To do this, we write

(6.7) S̃ =

2N
∑

j=1

(−1)jẼj + ẼN S̃ẼN := S̃N,1 + S̃N,2.

Clearly, S̃N,1 is polyhomogeneous conormal with respect to the index set E. We

claim that QN S̃N,2 is conormal with respect to multiweights rlb0
= ν0 + N + 2,

rrb0
= ν0+N , rbf0 = 1+N , rzf = N , rbf = rlb = ∞, rrb = (n− 1)/2+N . To show

this, we consider m vector fields W1, . . . ,Wm on M2
k,b, tangent to the boundary,

where m ∈ N is arbitrary. We must show that

(6.8) W1 . . .Wm

(

QN S̃N,2

)

∈ ρrL∞(M2
k,b).

Here we are employing compact notation in which ρ stands for a product of bound-
ary defining functions on M2

k,b and ρr stands for the product of ρr•• over boundary

defining functions ρ• for boundary hypersurfaces • of M2
k,b.

We next observe that vector fields on M2
k,b tangent to the boundary are gener-

ated, over C∞(M2
k,b), by b-vector fields on M , lifted to M2

k,b by either the left or

the right projection, and by λ∂λ. So it is sufficient to prove (6.8) when the Wi are

generating vector fields as just described. Notice that, writing S̃N,2 = ẼN S̃ẼN ,
the Wi lifted from M by the left, resp. right, factor act on the left, resp. right,
factor of ẼN . Notice also that the operator QN acts only on the right factor of ẼN

and increases the order of vanishing at rb to order (n − 1)/2 + N . However, the

vector field λ∂λ acts on all three factors of S̃N,2, including the middle factor S̃.

We have already seen that S̃ is, for each fixed λ > 0, a Hilbert-Schmidt operator
on xlL2(M), l > 1/2, with uniformly bounded Hilbert-Schmidt norm. The same is

true for (λ∂λ)
jS̃ for every j. In fact, using the identity

(Id+Ẽ)(Id+S̃) = Id =⇒ Ẽ + ẼS̃ + S̃ = 0,

we compute

λ∂λS̃ = −(Id+S̃)
(

λ∂λẼ
)

(Id+S̃),

from which it follows (using the polyhomogeneity of Ẽ) that λ∂λS̃ is Hilbert-
Schmidt on xlL2(M), l > 1/2, with uniformly bounded Hilbert-Schmidt norm.

Proceeding inductively we can deduce this for (λ∂λ)
jS̃ for every j.

It then follows, by applying the vector fields Wi (assumed without loss of gen-
erality to be either b-vector fields on M lifted from the left or right factors, or the
vector field λ∂λ) to the product
∫

M×M

(

ρ−l
w ρlw′ẼN (z, w)

(

(QN )z′ẼN (w′, z′)
)

)(

ρlwρ
−l
w′ S̃(w,w

′)
)

dg(w) dg(w′), l >
1

2
,

applying Cauchy-Schwarz, and using the conormality of ẼN , that (6.8) is satisfied.
�

Now we analyze GS. Define G̃ = e−i/ρGe−i/ρ′

(not a conjugation!). Then

e−i/ρGSe−i/ρ′

= G̃S̃.

Note that G̃ is not polyhomogeneous at bf (that is, as both ρ and ρ′ tend to zero),

but is at all other boundary hypersurfaces. However, in the product G̃S̃, this non-
polyhomogeneity is killed by the rapid decrease of the kernel of S̃ at bf and lb, i.e.
as its left ρ variable tends to zero. Hence we can apply [10, Proposition 2.10] to

the composition G̃S̃. We find that e−i/ρGSe−i/ρ′

is polyhomogeneous and vanishes
to order (at least) 1 at zf and bf0, order ν0 + 1 at lb0 and rb0, (n − 1)/2 at lb
and rb and n − 1 at bf. In particular, this correction term vanishes to one order
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higher than G at bf0, zf, lb0, rb0. Therefore, writing R
k
• for the coefficient of λk in

the expansion of the resolvent at •, we have, with v0 given by (6.4),

(6.9)

R−2
bf0

= G−2
bf0

=
(

Pconic − (1 + i0)2
)−1

;

R0
zf = G−1

zf = (xx′)−1P−1
b ;

Rν0−1
lb0

= Gν0−1
lb0

=
iπ

2
(x′ρ)−1v0(y, z

′)Ha(1)ν0 (1/ρ)
∣

∣

∣

dρdy

ρ
dg′b

∣

∣

∣

1/2

,

Rν0−1
rb0

= Gν0−1
rb0

=
iπ

2
(xρ′)−1v0(z, y

′)Ha(1)ν0 (1/ρ
′)
∣

∣

∣

dρ′dy′

ρ′
dgb

∣

∣

∣

1/2

7. Spectral measure

In this section we study the spectral measure dE
P

1/2
+

(λ) of the operator P
1/2
+ and

prove Theorem 3.10. The spectral measure is related to the resolvents R(λ± i0) by

(7.1) dE
P

1/2
+

(λ) =
d

dλ
E

P
1/2
+

(λ) dλ =
λ

πi

(

R(λ+ i0)−R(λ− i0)
)

dλ.

The resolvent kernel R(λ± i0) is invariant under involution, i.e. R(λ± i0)(z, z′) =
R(λ± i0)(z′, z), and the formal adjoint of R(λ+ i0) is R(λ− i0), i.e.

R(λ− i0)(z, z′) = R(λ+ i0)(z′, z).

It follows that the spectral measure can be expressed

(7.2) dE
P

1/2
+

(λ)(z, z′) =
2λ

π
Im

(

R(λ+ i0)(z, z′)
)

dλ.

We now discuss cancellations that occur when the two resolvent kernels are sub-
tracted.

7.1. Behaviour at diagonal. The diagonal singularity of the resolvent kernel
is completely determined by the full symbol of P . Consequently, the diagonal
singularity cancels in the expression (7.1), and the spectral measure is smooth
across the diagonal. Another way to see this is that the spectral measure satisfies
an elliptic equation (P − λ2)dE(λ) = 0, so it cannot have any local singularities.

Moreover, the difference between the outgoing “R2” piece and the incoming
“R2” piece (in the terminology of Theorem 3.9), which are intersecting Legendre
distributions associated to (sΦN∗Diagb, L

bf
+ ) and (sΦN∗Diagb, L

bf
− ) respectively, is a

Legendrian associated to the propagating Legendrian Lbf alone. This is because the
left Hamilton vector field (3.3) is nonzero at Lbf ∩ sΦN∗Diagb, and tangent to Lbf .
Since Legendrian regularity propagates on Lbf along the Hamilton vector field, the
spectral measure is Legendre across sΦN∗Diagb, i.e. it is a Legendre distribution on
M2

k,b associated to the intersecting pair of Legendre submanifolds with conic points

(Lbf , L♯
+ ∪ L♯

−).

7.2. Leading asymptotics at bf0, lb0, rb0. We start by giving the leading asymp-
totics of the spectral measure at the boundary hypersurfaces bf0, lb0, rb0. At bf0
(and also at lb0, rb0) we have already determined the leading asymptotic of the

outgoing resolvent — see (6.9). Since the imaginary part of iHa(1)ν (r) is Jν(r), we
see from (7.2) that the leading asymptotic of the spectral measure dE

P
1/2
+

(λ) at bf0

is at order −1, and is given by Im(G−2
bf0

), that is

(7.3) (dE)−1
bf0

= dE
P

1/2
conic

(1) = rr′
∞
∑

j=0

ΠEj (y, y
′)Jνj (r)Jνj (r

′)

∣

∣

∣

∣

dr dr′

rr′

∣

∣

∣

∣

1
2

.
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Similarly, at lb0, 2/π times the imaginary part of the resolvent kernel yields, as the
leading asymptotic of the spectral measure at lb0,

(7.4) (dE)ν0lb0
= (x′ρ)−1v0(y, z

′)Jνj (1/ρ)
∣

∣

∣

dρdy

ρ
dg′b

∣

∣

∣

1/2

,

where v0 is as in (6.4). The rb0 leading asymptotic has the same form by symmetry
of the resolvent kernel.

(7.5) (dE)ν0rb0
= (xρ′)−1v0(y

′, z)Jνj (1/ρ
′)
∣

∣

∣

dρ′dy′

ρ′
dgb

∣

∣

∣

1/2

.

7.3. Expansion at zf. We will show that the expansion of the resolvent kernel at
zf is real up to the term at order λ2ν0 . An immediate consequence is a determination
of the rate of vanishing of the spectral measure at zf:

Proposition 7.1. The spectral measure dE
P

1/2
+

(λ) for the operator P
1/2
+ vanishes

to order 2ν0 + 1 at zf. More particularly, it has expansion at zf of the form

dE
P

1/2
+

(λ) =
(

λ2ν0+1w(z)w(z′)|dgdg′|1/2 +O(λmin(2ν0+2,2ν1+1))
)

dλ

where w is a solution of Pw = 0, and w ∼ xn/2−1−ν0W (y) as x → 0 for some
smooth function W on ∂M .

Proof. We first show that we may choose the parametrix G so that its expansion at
zf up to order λ2ν0 is real. This is certainly true for the pseudodifferential part of G;
indeed, the real part of any pseudodifferential parametrix is also a pseudodifferential
parametrix, since P has real coefficients. Now consider the expansion of Im(G−2

bf0
)

at the face zf. We see from the expansion of modified Bessel functions Jν(z) at
z = 0 and (7.3) that the imaginary part of G−2

bf0
has index set Z at zf of the form

Z = ∪νj≤ν0+1/2(2νj +2)∪Z′ where Z′ ≥ 2ν0+3 and has no log terms; in particular

if ∂M = Sn−1 and V0 = 0, one has Z = n + N0. Similarly, we see from (7.5) and

(7.4) that Gν0−1
lb0

and Gν0−1
rb0

have a real expansion at zf up to order ν0+1 and their

imaginary part has index set at zf of the form Y = ∪νj≤ν0+1(νj + 1) ∪ Y′ where

Y′ ≥ ν0 + 2 is an index set with no log terms and Y = n/2 +N0 if ∂M = Sn−1 and
V0 = 0. Also, G0

zf is real, and the higher order terms Gα
zf , for α > 0, can be chosen

arbitrarily provided that they are compatible with terms specified at bf0, lb0, rb0.
It follows that we may choose G so that the expansion at zf is real up to order λ2ν0

(in the sense that λ2ν0 is the first non-real term occurring), actually with imaginary
part having index set at zf of the form X = ∪νj≤ν0+1/22ν0 ∪X′ where X′ ≥ 2ν0 +1

has no log terms and X = n− 2 +N0 if ∂M = Sn−1 and V0 = 0. We will choose G
so that its imaginary part has expansion at zf

(7.6) Im(G) = λ2ν0A(z, z′) +O(λmin(2ν0+2,2ν1))

for some smooth kernel A on zf satisfying PA = 0, which can be done as long as the
expansion matches with the imaginary parts of Gν0−1

rb0
, Gν0−1

lb0
, G−2

bf0
at rb0, lb0, bf0.

To determine the kernelA(z, z′) on zf, we note that the eigenvalue ν20 for ∆∂M+V0+
(n/2−1)2 is simple, and the eigenfunction does not change sign, so there is a unique
positive normalized eigenfunction W (y)|dh|1/2 for this eigenvalue. Therefore, using
Melrose’s b-calculus as outlined in [10, Section 2.1], there is a unique half-density
w̃|dgb|1/2 such that Pbw̃ = 0 and w̃(x, y) = x−ν0W (y) + O(x−ν0+ǫ) as x → 0 for
some ǫ > 0; moreover, this is the only solution to Pbu = 0 (up to scaling) in the
space x−ν0−ǫL2

b , if ǫ > 0 is sufficiently small, and we have v0(z, y
′) = w̃(z)W (y).

We then set

A(z, z′) = (xx′)−1w̃(z)w̃(z′)|dgbdg′b|1/2.
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and from the expansion of (7.3), (7.5), (7.4) at zf, we see that the expansion of
λ2ν0A(z, z′) matches with the asymptotic of (7.3), (7.5), (7.4) at zf. Moreover, if
ν1 ≥ ν0 +1, the expansion of (7.3), (7.5), (7.4) at zf involve no power of λ between
λ2ν0 and λmin(2ν0+2,2ν1), therefore G can be chosen so that Im(G) satisfies (7.6).

Since P has real coefficients, the error term E = (P − λ2)G − 1 has the same
property as G, i.e. it has a real expansion at zf in powers of λ up to λ2ν0 , and
since PA = 0, the expansion at zf of (P − λ2)Im(G) = Im(E) is actually of order
min(2ν0 + 2, 2ν1).

We next claim that the same is true for the powers Ej . To see this, we use (6.5)
to show inductively that the expansion at zf is real to order min(2ν0+2, 2ν1), since
the terms at lb0 and rb0 do not affect the expansion at zf until order 2ν0 + 2.

Since S in (??) is given by a finite sum of the form
∑4N

j=1(−1)jEj up to a term
that vanishes to high order ∼ N at zf, the same property holds true for S. By the
same arguments, GEj has a real kernel up to order min(2ν0 + 1, 2ν1).

Finally we can show, using exactly the same method as for the powers Ej , that
the composition GS has a real expansion at zf in powers of λ up to λ2ν0 , and since
GS = G

∑

j≥1(−1)jEj , we see that the resolvent R(λ) itself has the property that

it has a real expansion at zf up to order 2ν0 and the leading term of dE
P

1/2
+

(λ) is

given by (transforming back to the original scattering metric g)

(7.7) (dE)2ν0+1
zf = w(z)w(z′)|dgdg′|1/2,

where Pw = 0, and w = xn/2−1−ν0W (y) + O(xn/2−1−ν0+ǫ), x → 0. For example,
if the potential function V vanishes, then W is constant, ν0 = (n/2− 1), and w is
just a constant function. Moreover the next asymptotic term in the expansion of
dE

P
1/2
+

(λ) is at order min(2ν0 + 1, 2ν1). �

Proof of Theorem 3.10. Theorem 3.10 follows directly from Theorem 3.9 and the
cancellations proved in Section 7.1 and Proposition 7.1. �

Proof of Corollaries 1.3 and 1.5. Using the spectral measure, we write

(7.8) χ(P )Ft(P ) =

∫

R+

χ(λ)Ft(λ)dEP
1/2
+

(λ)

with Ft(λ) = eitλ
2

, cos(tλ) or sin(tλ)/λ. Then the leading asymptotic of the kernel
χ(P )Ft(P )(z, z

′) as t→ ∞ for z, z′ ∈M0 is straightforward by using Theorem 1.2:
the leading term λ2ν0+1w(z)w(z′) of dE

P
1/2
+

(λ) at λ = 0 contributes to the leading

term as t→ ∞, while the error O(λmin(2ν0+2,2ν1+1))) contributes to the error as t→
∞ by using the fact that dE

P
1/2
+

(λ; z, z′) is smooth in z, z′ and polyhomogeneous

conormal at λ = 0. Moreover, putting Ft(λ) = e−iλt, and using [17, Example
7.1.17], we find that

∫ ∞

0

χ(λ)e±itλλ2ν0+1 dλ = Γ(2ν0 + 2)e±iπ(ν0+1)t−2(ν0+1) +O(t−∞), t→ ∞,

which gives the constants in (1.6). �

Remark 7.2. If we do not assume that the boundary ∂M is connected, then our
analysis works much as above. However, if ∂M has more than one component, the
lowest eigenvalue ν0 of the operator ∆∂M +V0+(n/2−1)2 need not be simple, and
the leading asymptotic (dE)2ν0+1

zf would then have rank equal to the multiplicity
of ν0. Similarly, the expansion (1.8) of the propagator as t → ∞ would have rank
equal to the multiplicity of ν0.
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