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. The reliability and efficiency of the proposed estimator is confirmed by some numerical tests.

Introduction

Recent years have witnessed a growing interest in the study of diffusion problems with a sign changing coefficient. These problems appear in several areas of physics, for example in electromagnetism [START_REF] Engheta | An idea for thin subwavelength cavity resonator using metamaterials with negative permittivity and permeability[END_REF][START_REF] Ma | Modeling the microwave properties of supraconductors[END_REF][START_REF] Maystre | Perfect lenses made with left-handed materials: Alice's mirror[END_REF][START_REF] Pendry | Negative refraction makes a perfect lens[END_REF][START_REF] Ramdani | Lignes supraconductrices: analyse mathématique et numérique[END_REF]. Thus some mathematical investigations have been performed and concern existence results [START_REF] Bonnet-Bendhia | Analyse spectrale et singularités d'un problème de transmission non coercif[END_REF][START_REF] Ramdani | Lignes supraconductrices: analyse mathématique et numérique[END_REF] and numerical approximations by the finite element methods [START_REF] Ramdani | Lignes supraconductrices: analyse mathématique et numérique[END_REF][START_REF] Bonnet-Ben Dhia | Two-and three-field formulations for wave transmission between media with opposite sign dielectric constants[END_REF][START_REF] Bonnet-Ben Dhia | A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF], with some a priori error analyses. But for such problems the regularity of the solution may be poor and/or unknown and consequently an a posteriori error analysis would be more appropriate. This analysis is the aim of the present paper.

For continuous Galerkin finite element methods, there now exists a large amount of literature on a posteriori error estimations for (positive definite) problems in mechanics or electromagnetism. Usually locally defined a posteriori error estimators are designed. We refer the reader to the monographs [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Babuška | The finite element methods and its reliability[END_REF][START_REF] Monk | Finite element methods for Maxwell's equations[END_REF][START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement thecniques[END_REF] for a good overview on this topic.

1 In contrast to the recent paper [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] we will not use quasi-uniform meshes that are not realistic for an a posteriori error analysis. That is why we improve their finite element analysis in order to allow only regular meshes in Ciarlet's sense [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF].
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The paper is structured as follows: We recall in Section 2 the "diffusion" problem and the technique from [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] that allows to establish its well-posedness for sufficiently large contrast. In Section 3, we prove that the discrete approximation is well-posed by introducing an ad-hoc discrete lifting operator. The a posteriori error analysis is performed in Section 4, where upper and lower bounds are obtained. Finally in Section 5 some numerical tests are presented that confirm the reliability and efficiency of our estimator.

Let us finish this introduction with some notations used in the remainder of the paper: On D, the L 2 (D)-norm will be denoted by • D . The usual norm and semi-norm of H s (D) (s ≥ 0) are denoted by • s,D and | • | s,D , respectively. In the case D = Ω, the index Ω will be omitted. Finally, the notations a b and a ∼ b mean the existence of positive constants C 1 and C 2 , which are independent of the mesh size and of the considered quantities a and b such that a ≤ C 2 b and C 1 b ≤ a ≤ C 2 b, respectively. In other words, the constants may depend on the aspect ratio of the mesh and the diffusion coefficient (see below).

The boundary value problem

Let Ω be a bounded open domain of R 2 with boundary Γ. We suppose that Ω is split up into two sub-domains Ω + and Ω -with a Lipschitz boundary that we suppose to be polygonal in such a way that

Ω = Ω+ ∪ Ω-, Ω + ∩ Ω -= ∅,
see Figure 1 for an example. We now assume that the diffusion coefficient a belongs to L ∞ (Ω) and is positive (resp. negative) on Ω + (resp. Ω -). Namely there exists ǫ 0 > 0 such that a(x) ≥ ǫ 0 , for a. e. x ∈ Ω + ,

(1) a(x) ≤ -ǫ 0 , for a. e. x ∈ Ω -.
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In this situation we consider the following second order boundary value problem with Dirichlet boundary conditions:

-div (a ∇u) = f in Ω, u = 0 on Γ. (3) 
The variational formulation of (3) involves the bilinear form

B (u, v) = Ω a∇u • ∇v
and the Hilbert space H 1 0 (Ω) = {u ∈ H 1 (Ω) : u = 0 on Γ}. Due to the lack of coercivity of B on H 1 0 (Ω) (see [START_REF] Bonnet-Bendhia | Analyse spectrale et singularités d'un problème de transmission non coercif[END_REF][START_REF] Bonnet-Ben Dhia | A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF]), this problem does not fit into a standard framework. In [START_REF] Bonnet-Ben Dhia | A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF], the proposed approach is to use a bijective and continuous linear mapping T from H 1 0 (Ω) into itself that allows to come back to the coercive framework. Namely these authors assume that B (u, Tv) is coercive in the sense that there exists α > 0 such that

B (u, Tu) ≥ α u 2 1,Ω ∀u ∈ H 1 0 (Ω). ( 4 
)
Hence given f ∈ L 2 (Ω), by the Lax-Milgram theorem the problem

B (u, Tv) = Ω f Tv ∀v ∈ H 1 0 (Ω), (5) 
has a unique solution u ∈ H 1 0 (Ω). Since T is an isomorphism, the original problem

B (u, v) = Ω f v ∀v ∈ H 1 0 (Ω), (6) 
has also a unique solution u ∈ H 1 0 (Ω). In [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF], the mapping T is built by using a trace lifting operator R from H

1/2 00 (Σ) into H 1 -(Ω -)
, where Σ = ∂Ω -∩ ∂Ω + is the interface between Ω -and Ω + ,

H 1 ± (Ω ± ) = {u ∈ H 1 (Ω ± ) : u = 0 on ∂Ω ± \ Σ}, and 
H 1/2 00 (Σ) = {u |Σ : u ∈ H 1 -(Ω -)} = {u |Σ : u ∈ H 1 + (Ω + )} is the space of the restrictions to Σ of functions in H 1 -(Ω -) (or in H 1 + (Ω + )
). This last space may be equipped with the norms

p 1/2,± = inf u∈H 1 ± (Ω ± ) p=u |Σ |u| 1,Ω ± .
With the help of such a lifting, a possible mapping T is given by (see [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF])

Tv = v + in Ω + , -v -+ 2R(v +|Σ ) in Ω -,
where v ± denotes the restriction of v to Ω ± . With this choice, it is shown in Proposition 3.1 of [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] that (4) holds if

K R = sup v∈H 1 + (Ω + ) v =0 |B -(R(v |Σ ), R(v |Σ ))| B + (v, v) < 1, (7) 
where

B ± (u, v) = Ω ± a∇u • ∇v.
For concrete applications, one can make the following particular choice for R, that we denote by R p : for any ϕ ∈ H 1/2 00 (Σ) we define R p (ϕ) = w as the unique solution

w ∈ H 1 -(Ω -) of ∆w = 0 in Ω -, w = ϕ on Σ.
With this choice, one obtains that

K Rp < 1 if the contrast min Ω -|a| max Ω + a
is large enough, we refer to Section 3 of [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] for more details.

Remark 2.1 Note that in [START_REF] Bonnet-Ben Dhia | A new compactness result for electromagnetic waves. Application to the transmission problem between dielectrics and metamaterials[END_REF][START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] the authors consider sub-domains Ω + and Ω -with a pseudo-Lipschitz boundary. However the previous arguments from [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] (shortly summarized above) are not valid in this case since the space

H 1 (Ω + ) equipped with the norm | • | 1,Ω + is not complete.

The discrete approximated problem

Here we consider the following standard Galerkin approximation of our continuous problem. We consider a triangulation T of Ω, that is a "partition" of Ω made of triangles T (closed subsets of Ω) whose edges are denoted by e. We assume that this triangulation is regular, i.e., for any element T , the ratio h T /ρ T is bounded by a constant σ > 0 independent of T and of the mesh size h = max T ∈T h T , where h T is the diameter of T and ρ T the diameter of its largest inscribed ball. We further assume that T is conforming with the partition of Ω, i.e., each triangle is assumed to be either included into Ω+ or into Ω-. With each edge e of the triangulation, we denote by h e its length and n e a unit normal vector (whose orientation can be arbitrary chosen) and the so-called patch ω e = ∪ e⊂T T , the union of triangles having e as edge. We similarly associate with each vertex x, a patch ω x = ∪ x∈T T . For a triangle T , n T stands for the outer unit normal vector of T . E (resp. N ) represents the set of edges (resp. vertices) of the triangulation. In the sequel, we need to distinguish between edges (or vertices) included into Ω or into Γ, in other words, we set

E int = {e ∈ E : e ⊂ Ω}, E Γ = {e ∈ E : e ⊂ Γ}, N int = {x ∈ N : x ∈ Ω}.
Problem ( 6) is approximated by the continuous finite element space:

V h = v h ∈ H 1 0 (Ω) : v h|T ∈ P ℓ (T ), ∀T ∈ T , (8) 
where ℓ is a fixed positive integer and the space P ℓ (T ) consists of polynomials of degree at most ℓ.

The Galerkin approximation of problem ( 6) reads now: Find u h ∈ V h , such that

B (u h , v h ) = Ω f v h ∀v h ∈ V h . ( 9 
)
Since there is no reason that the bilinear form would be coercive on V h , as in [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] we need to use a discrete mapping T h from V h into itself defined by (see [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF])

T h v h = v h+ in Ω + , -v h-+ 2R h (v h+|Σ ) in Ω -,
where R h is a discrete version of the operator R. Here contrary to [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] and in order to avoid the use of quasi-uniform meshes (meaningless in an a posteriori error analysis), we take

R h = I h R, (10) 
where I h is a sort of Clément interpolation operator [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF] and R is any trace lifting operator from H

1/2 00 (Σ) into H 1 -(Ω -) (see the previous section). More precisely for ϕ h ∈ H h (Σ) = {v h|Σ : v h ∈ V h }, we set I h R(ϕ h ) = x∈N - α x λ x ,
where N -= N int ∩ Ω-, λ x is the standard hat function (defined by λ x ∈ V h and satisfying λ x (y) = δ xy ) and α x ∈ R are defined by

α x = |ω x | -1 ωx R(ϕ h ) if x ∈ N int ∩ Ω -, ϕ h (x) if x ∈ N int ∩ Σ,
where we recall that ω x is the patch associated with x, which is simply the support of λ x . Note that I h coincides with the Clément interpolation operator I Cl for the nodes in Ω - and only differs on the nodes on Σ. Indeed let us recall the definition of I Cl R(ϕ h ) (defined in a Scott-Zhang manner [START_REF] Scott | Higher-dimensional nonnested multigrid methods[END_REF] for the points belonging to Σ):

I Cl R(ϕ h ) = x∈N - β x λ x with β x = |ω x | -1 ωx R(ϕ h ) if x ∈ N int ∩ Ω -, |e x | -1 ex R(ϕ h )dσ if x ∈ N int ∩ Σ with e x = ω x ∩ Σ.

The definition of I h aims at ensuring that

I h R(ϕ h ) = ϕ h on Σ.
Let us now prove that R h is uniformly bounded.

Theorem 3.1 For all h > 0 and ϕ

h ∈ H h (Σ), one has |R h (ϕ h )| 1,Ω - ϕ h 1/2,-.
Proof: For the sake of simplicity we make the proof in the case ℓ = 1, the general case is treated in the same manner by using modified Clément interpolation operator. Since R is bounded from

H 1/2 00 (Σ) into H 1 -(Ω -), one has |R(ϕ h )| 1,Ω - ϕ h 1/2,-. (11) 
Hence it suffices to show that

|(I -I h )R(ϕ h )| 1,Ω - ϕ h 1/2,-. (12) 
For that purpose, we distinguish the triangles T that have no nodes in N int ∩ Σ to the other ones:

1. If T has no nodes in N int ∩ Σ, then I h R(ϕ h ) coincides with I Cl R(ϕ h ) on T and therefore by a standard property of the Clément interpolation operator, we have

|(I -I h )R(ϕ h )| 1,T = |(I -I Cl )R(ϕ h )| 1,T R(ϕ h ) 1,ω T , (13) 
where the patch ω T is given by ω T =

T ′ ∩T =∅ T ′ .
2. If T has at least one node in N int ∩ Σ, by the triangle inequality we may write

|(I -I h )R(ϕ h )| 1,T ≤ |(I -I Cl )R(ϕ h )| 1,T + |(I Cl -I h )R(ϕ h )| 1,T .
For the first term of this right-hand side we can still use [START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF] and therefore it remains to estimate the second term. For that one, we notice that

(I Cl -I h )R(ϕ h ) = x∈T ∩Σ (α x -β x )λ x on T. Hence |(I Cl -I h )R(ϕ h )| 1,T x∈T ∩Σ |α x -β x |.
Since R(ϕ h ) = ϕ h on Σ and due to the definition of I Cl , it follows that for x ∈ T ∩ Σ,

|α x -β x | = ϕ h (x) -|e x | -1 ex ϕ h dσ .
Since all norms are equivalent in finite dimensional spaces, we have for all v h ∈ P 1 (e x ),

|v h (x)| |e x | -1/2 v h ex . (14) 
Moreover,

|e x | -1/2 ϕ h -|e x | -1 ex ϕ h dσ ex |ϕ h | 1/2,ex , (15) 
where here | • | 1/2,ex means the standard H 1/2 (e x )-seminorm. Thus Inequalities [START_REF] Ern | Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems[END_REF] with

v h = ϕ h -|e x | -1 ex ϕ h dσ and (15) imply that |α x -β x | |ϕ h | 1/2,ex .
All together we have shown that

|(I -I h )R(ϕ h )| 1,T R(ϕ h ) 1,ω T ∩ Ω-+ |ϕ h | 1/2,ω T ∩Σ . ( 16 
)
Taking the sum of the square of ( 13) and of ( 16), we obtain that

|(I -I h )R(ϕ h )| 2 1,Ω - R(ϕ h ) 2 1,Ω -+ |ϕ h | 2 1/2,Σ .
We conclude thanks to [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF] and to the fact that

|ϕ h | 1/2,Σ ϕ h 1/2,-.
This Theorem and Proposition 4.2 of [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] allow to conclude that (9) has a unique solution provided that (7) holds, in particular if the contrast is large enough. Note that the advantage of our construction of R h is that we no more need the quasiuniform property of the meshes imposed in [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF].

The a posteriori error analysis

Error estimators can be constructed in many different ways as, for example, using residual type error estimators which measure locally the jump of the discrete flux [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement thecniques[END_REF]. A different method, based on equilibrated fluxes, consists in solving local Neumann boundary value problems [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF] or in using Raviart-Thomas interpolant [START_REF] Ainsworth | A posteriori error estimation for discontinuous Galerkin finite element approximation[END_REF][START_REF] Cochez-Dhondt | Equilibrated error estimators for discontinuous Galerkin methods[END_REF][START_REF] Ern | An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems[END_REF][START_REF] Ern | Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems[END_REF]. Here since the coercivity constant is not explicitly known, we chose the simplest approach of residual type. The residual estimators are denoted by

η 2 R = T ∈T η 2 R,T , η 2 J = T ∈T η 2 J,T , (17) 
where the indicators η R,T and η J,T are defined by

η R,T = h T f T + div (a∇u h ) T , η J,T = e∈E int :e⊂T h 1/2 e [[a∇u h • n e ]] e ,
when f T is an approximation of f , for instance

f T = |T | -1 T f. Note that η 2 R,T is meaningful if a |T ∈ W 1,1 (T )
, for all T ∈ T .

Upper bound

Theorem 4.1 Assume that a ∈ L ∞ (Ω) satisfies ( 1)-( 2) and that a |T ∈ W 1,1 (T ), for all T ∈ T . Assume further that [START_REF] Bonnet-Bendhia | Analyse spectrale et singularités d'un problème de transmission non coercif[END_REF] holds. Let u ∈ H 1 0 (Ω) be the unique solution of Problem [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF] and let u h be its Galerkin approximation, i.e. u h ∈ V h a solution of [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF]. Then one has

∇(u -u h ) η R + η J + osc(f ), ( 18 
)
where

osc(f ) = T ∈T h 2 T f -f T 2 1 2
.

Proof: By the coerciveness assumption (4), we may write

∇(u -u h ) 2 B (u -u h , T(u -u h )). ( 19 
)
But we notice that the Galerkin relation 19) may be written

B (u -u h , v h ) = 0 ∀v h ∈ V h holds. Hence by taking v h = I Cl T(u -u h ), (
∇(u -u h ) 2 B (u -u h , (I -I Cl )T(u -u h )). ( 20 
)
Now we apply standard arguments, see for instance [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement thecniques[END_REF]. Namely applying element-wise Green's formula and writing for shortness w = (I -I Cl )T(uu h ), we get

∇(u -u h ) 2 - T ∈T T div (a∇(u -u h ))w + e∈E int e [[a∇(u -u h ) • n]]w dσ,
reminding that w = 0 on Γ. By Cauchy-Schwarz's inequality we directly obtain

∇(u -u h ) 2 T ∈T f + div (a∇u h ) T w T + e∈E int [[a∇u h • n]] e w e .
By standard interpolation error estimates, we get

∇(u -u h ) 2 T ∈T h 2 T f + div (a∇u h ) 2 T + e∈E int h e [[a∇u h • n]] 2 e 1/2 |T(u -u h )| 1,Ω .
Since T is an isomorphism, we conclude that

∇(u -u h ) T ∈T h 2 T f + div (a∇u h ) 2 T + e∈E int h e [[a∇u h • n]] 2 e 1/2
. This leads to the conclusion due to the triangle inequality.

Lower bound

The lower bound is fully standard since by a careful reading of the proof of Proposition 1.5 of [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement thecniques[END_REF], we see that it does not use the positiveness of the diffusion coefficient a. Hence we can state the Theorem 4.2 Let the assumptions of Theorems 4.1 be satisfied. Assume furthermore that a |T is constant for all T ∈ T . Then for each element T ∈ T the following estimate holds

η R,T + η J,T |u -u h | 1,ω T + osc(f, ω T ),
where

osc(f, ω T ) 2 = T ′ ⊂ω T h 2 T ′ f -f ′ T 2 T ′ .
5 Numerical results

The polynomial solution

In order to illustrate our theoretical predictions, this first numerical test consists in validating our computations on a simple case, using an uniform refinement process. Let Ω be the square (-1, 1) 2 , Ω + = (0, 1) × (-1, 1) and Ω -= (-1, 0) × (-1, 1). We assume that a = 1 on Ω + and a = µ < 0 on Ω -. In such a situation we can take

R(v + )(x, y) = v + (-x, y) ∀(x, y) ∈ Ω -.
With this choice we see that

K R = |µ|,
and therefore for |µ| < 1, (4) holds and Problem (6) has a unique solution. We further easily check that the corresponding mapping T is an isomorphism since (T) 2 = T. Similarly by exchanging the role of Ω + and Ω -, (4) will also hold if |µ| > 1. Now we take as exact solution u(x, y) = µx(x + 1)(x -1)(y + 1)(y -1) ∀(x, y) ∈ Ω + , u(x, y) = x(x + 1)(x -1)(y + 1)(y -1) ∀(x, y) ∈ Ω -, f being fixed accordingly. Let us recall that u h is the finite element solution, and set e L 2 (u h ) = uu h and e H 1 (u h ) = uu h 1 the L 2 and H 1 errors. Moreover let us define η(u h ) = η R + η J the estimator and CV L 2 (resp. CV H 1 ) as the experimental convergence rate of the error e L 2 (u h ) (resp. e H 1 (u h )) with respect to the mesh size defined by DoF -1/2 , where the number of degrees of freedom is DoF , computed from one line of the table to the following one. Computations are performed with µ = -3 using a global mesh refinement process from an initial cartesian grid. First, it can be seen from Table 1 that the convergence rate of the H 1 error norm is equal to one, as theoretically expected (see [START_REF] Bonnet-Ben Dhia | Time harmonic wave diffraction problems in materials with sign-shifting coefficients[END_REF]). Furthermore the convergence rate of the L 2 error norm is 2, which is a consequence of the Aubin-Nitsche trick and regularity results for Problem [START_REF] Babuška | The finite element methods and its reliability[END_REF]. Finally, the reliability of the estimator is ensured since the ratio in the last column (the so-called effectivity index), converges towards a constant close to 6.5. 

k DoF e L 2 (u h ) CV L 2 e H 1 (u h ) CV H 1 η(u h ) e H 1 (u h ) 1 289 2.

A singular solution

Here we analyze an example introduced in [START_REF] Bonnet-Bendhia | Analyse spectrale et singularités d'un problème de transmission non coercif[END_REF] and precise some results from [START_REF] Bonnet-Bendhia | Analyse spectrale et singularités d'un problème de transmission non coercif[END_REF]. The domain Ω = (-1, 1) 2 is decomposed into two sub-domains Ω + = (0, 1) × (0, 1), and Ω -= Ω \ Ω+ , see Figure 1. As before we take a = 1 on Ω + and a = µ < 0 on Ω -. According to Section 3 of [START_REF] Bonnet-Bendhia | Analyse spectrale et singularités d'un problème de transmission non coercif[END_REF], Problem (6) has a singularity S at (0, 0) if µ < -3 or if µ ∈ (-1/3, 0) given in polar coordinates by

S + (r, θ) = r λ (c 1 sin(λθ) + c 2 sin(λ( π 2 -θ))) for 0 < θ < π 2 , S -(r, θ) = r λ (d 1 sin(λ(θ - π 2 ) + d 2 sin(λ(2π -θ))) for π 2 < θ < 2π,
where λ ∈ (0, 1) is given by

λ = 2 π arccos 1 -µ 2|1 + µ| ,
and the constants c 1 , c 2 , d 1 , d 2 are appropriately defined. Now we show using the arguments of Section 2 that for -1 3 < µ < 0 and µ < -3, the assumption (4) holds. As before we define

R(v + )(x, y) =    v + (-x, y) ∀(x, y) ∈ (-1, 0) × (0, 1), v + (-x, -y) ∀(x, y) ∈ (-1, 0) × (-1, 0), v + (x, -y) ∀(x, y) ∈ (0, 1) × (-1, 0).
This extension defines an element of

H 1 -(Ω -) such that R(v + ) = v + on Σ.
Moreover with this choice we have sup

v∈H 1 + (Ω + ) v =0 |B -(R(v), R(v))| B + (v, v) = 3|µ|,
and therefore for 3|µ| < 1, we deduce that (4) holds.

To exchange the role of Ω + and Ω -we define the following extension from Ω -to Ω + : for

v -∈ H 1 -(Ω -), let R(v -)(x, y) = v -(-x, y) + v -(x, -y) -v -(-x, -y) ∀(x, y) ∈ Ω + .
We readily check that it defines an element of

H 1 + (Ω + ) such that R(v -) = v -on Σ.
Moreover with this choice we have (using the estimate (a + b + c) 2 ≤ 3(a 2 + b 2 + c 2 ) valid for all real numbers a, b, c)

sup v∈H 1 -(Ω -),v =0 B + (R(v), R(v)) |B -(v, v)| ≤ 3/|µ|,
and therefore for 3/|µ| < 1, we deduce that (4) holds.

For this second test, we take as exact solution the singular function u(x, y) = S(x, y) for µ = -5 and µ = -100, non-homogeneous Dirichlet boundary conditions on Γ are fixed accordingly. First, with uniform meshes, we obtain the expected convergence rate of order λ (resp. 2λ) for the H 1 (resp. L 2 ) error norm, see Tables 2 and3. There, for sufficiently fine meshes, we may notice that the effectivity index varies between 1 and 0.6 for µ = -5 or between 9 and 6 for µ = -100. From these results we can say that the effectivity index depends on µ, this is confirmed by the numerical results obtained by an adaptive algorithm (see below).

k DoF e L 2 (u h ) CV L 2 e H 1 (u h ) CV H 1 η(u h ) e H 1 (u h )
Secondly, an adaptive mesh refinement strategy is used based on the estimator η T = η R,T + η J,T , the marking procedure η T > 0.5 max T ′ η T ′ and a standard refinement procedure with a limitation on the minimal angle.

For µ = -5 (resp. µ = -100), Table 4 (resp. 5) displays the same quantitative results as before. There we see that the effectivity index is around 3 (resp. 34), which is quite satisfactory and comparable with results from [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF][START_REF] Ern | Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems[END_REF]. As before and in these references we notice that it deteriorates as the contrast becomes larger. On these tables we also remark a convergence order of 0.76 (resp. 1) in the H 1 -norm and mainly the double in the L 2 -norm. This yields better orders of convergence as for uniform meshes as expected, the case µ = -5 giving less accurate results due to the high singular behavior of the solution (a similar phenomenon occurs in [START_REF] Cochez-Dhondt | A posteriori error estimators based on equilibrated fluxes[END_REF] 
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 1 Figure 1: The domain Ω

Table 1 :

 1 The polynomial solution with µ = -3 (uniform refinement).

		37E-02	5.33E-01	6.70
	2 1089	5.95E-03 2.08 2.67E-01 1.04	6.59
	3 4225	1.49E-03 2.04 1.34E-01 1.02	6.53
	4 16641 3.73E-04 2.02 6.68E-02 1.01	6.49
	5 32761 1.89E-04 2.01 4.75E-02 1.01	6.48
	6 90601 6.79E-05 2.01 2.85E-02 1.00	6.47
	7 251001 2.45E-05 2.00 1.71E-02 1.00	6.47

Table 2 :

 2 The singular solution, µ = -5, λ ≈ 0.46 (uniform refinement).(u h ) CV L 2 e H 1 (u h ) CV H 1 η(u h ) e H 1 (u h )

	1 289	1.60E-02	2.84E-01	2.57
	2 1089	8.66E-03 0.93 2.10E-01 0.45	1.94
	3 4225	4.63E-03 0.92 1.55E-01 0.45	1.46
	4 16641 2.47E-03 0.92 1.13E-01 0.45	1.09
	5 32761 1.80E-03 0.92 9.69E-02 0.46	0.95
	6 90601 1.13E-03 0.92 7.68E-02 0.46	0.76
	7 251001 7.08E-04 0.92 6.08E-02 0.46	0.61
	k DoF e L 2 1 289 6.12E03	1.54E-01	18.77
	2 1089	2.59E-03 1.29 9.91E-02 0.66	15.04
	3 4225	1.08E-03 1.29 6.35E-02 0.66	12.06
	4 16641 4.46E-04 1.29 4.04E-02 0.66	9.66
	5 32761 2.88E-04 1.29 3.24E-02 0.66	8.65
	6 90601 1.49E-04 1.30 2.32E-02 0.66	7.33
	7 251001 7.66E-05 1.30 1.66E-02 0.66	6.21

Table 3 :

 3 

The singular solution, µ = -100, λ ≈ 0.66 (uniform refinement).

Table 4 :

 4 for instance). L 2 (u h ) CV L 2 e H 1 (u h ) CV H 1 η(u h ) e H 1 (u h ) The singular solution, µ = -5, λ ≈ 0.46 (local refinement). k DoF e L 2 (u h ) CV L 2 e H 1 (u h ) CV H 1 η(u h ) e H 1 (u h )

	k DoF e 1 81 2.92E-02	3.79E-01	3.39
	5 432	3.49E-03 2.54 1.40E-01 1.19	4.18
	7 1672	1.25E-03 1.52 8.04E-02 0.82	4.07
	10 5136	4.26E-04 1.92 4.90E-02 0.88	3.63
	13 20588 1.64E-04 1.37 3.14E-02 0.64	3.32
	18 80793 5.50E-05 1.60 1.80E-02 0.81	3.23
	24 272923 2.39E-05 1.37 1.17E-02 0.71	2.5

Table 5 :

 5 The singular solution, µ = -100, λ ≈ 0.66 (local refinement).