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I. INTRODUCTION

Since about one hundred years, nonlinear science has attracted the attention of
researchers to circumvent the limitation of linear theories in the explanation
of natural phenomenons. Indeed, nonlinear differential equations can model
the behavior of oceans surface (Scott, 1999), the recurrence of ice age (Benzi
et al, 1982), the transport mechanisms in living cells (Murray, 1989), the in-
formation transmission in neural networks (Nagumoet al, 1962; Scott, 1999;
Izhikevich, 2007), the blood pressure propagation in arteries (Paquerot and
Remoissenet, 1994) or the excitability of cardiac tissues (Beeler G.W. and
Reuter H., 1977; Keener, 1987). Therefore, nonlinear science appears as the
most important frontier for a better understanding of nature (Remoissenet,
1999).
In the recent field of engineering science (Zakharov and Wabnitz, 1998;
Agrawal, 2002), taking into account the nonlinearity has allowed to achieve
spectacular progresses in terms of transmission capacities in optical fibers
via the concept of soliton (Remoissenet, 1999). More recently, nonlinear
differential equation, arising in many areas of physics, biology, chemistry and
ecology, have naturally inspired unconventional methods of processing which
allow to transcend the limitations of classical linear methods (Teuscher and
Adamatzky, 2005). This growing interest for processing applications based on
the properties of nonlinear systems can be explained by the observation that
fundamental progress in several fields of computer science seems sometimes
to stagnate. Novel ideas coming from interdisciplinary fields often open
new directions of research with unsuspected applications (Teuscher and
Adamatzky, 2005).

On the other hand, complex processing tasks require intelligent systems
that are able to adapt and learn by mimicking the behaviour ofhuman
brain. Biologically inspired systems, most often described by nonlinear
reaction-diffusion equations, have then been proposed as convenient solutions
to solve very complicated problems unaccessible to modern von Neumann
computers. It was in this context that the concept ofCNN has been
introduced by L. Chua and L. Yang as a novel class of information processing
systems with potential applications in such areas as image processing and
pattern recognition (Chua and Yang, 1988; Chua and Yang, 1988). In
fact, CNN is an acronym for Cellular Neural Network when used in
the context of Brain science or Cellular Nonlinear Network in the context
of emergence and complexity (Chua, 1998). Since the pioneerwork of
L.O Chua, the CNN paradigm has rapidly evolved to cover a widerange
of applications drawn from numerous disciplines, including artificial life,
biology, chemistry, physics, information science, nonconventional methods
of computing (Holdenet al, 1991), video coding (Venetianeret al, 1995;
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Arena et al, 2003), quality control by visual inspection (Occhipintiet al,
2001), cryptography (Yu and Cao, 2006; Caponettoet al, 2003), signal-image
processing (Julián and Dogaru, 2002),... (see (Tetzlaff, 2002) for an overview
of the applications).

In summary, these latest two decades devoted to the study ofCNNs
have led scientists to solve problems of artificial intelligence by combining
the highly parallel multiprocessor architecture ofCNNs with the properties
inherited from the nonlinear bio-inspired systems. Among the tasks of high
computational complexity routinely performs with nonlinear systems, one can
cite finding the optimal path in a two dimensional vector field(Agladzeet
al, 1997), image skeletonisation (Chua, 1998), finding the shortest path in
a labyrinth (Chua, 1998; Rambidi and Yakovenchuk, 2001), orcontrolling
mobile robot (Adamatzkyet al, 2004). However, the efficiency of these
nonlinear systems for signal-image processing or pattern recognition does not
come only from their biological background. Indeed, the nonlinearity offers
an additional dimension lying in the signal amplitude, which gives rise to
novel properties not shared by linear systems. Noise removal with a nonlinear
dissipative lattice (Marquiéet al, 1998; Comteet al, 1998), contrast enhance-
ment based on nonlinear oscillators properties (Morfu and Comte, 2004), edge
detection exploiting vibration noise (Hongleret al, 1998), optimization by
noise of non-optimum problems or signal detection aided by noise via the
famous stochastic resonance phenomenon (Gammaitoniet al, 1998; Chapeau-
Blondeau, 2000; Comte and Morfu, 2003), constitute a non restrictive list of
spectacular examples where the properties of nonlinear systems have allowed
to overcome the limitation of classical linear approaches.

Owing to the rich variety of potential applications inspired by nonlinear
systems, rapidly the efforts of researchers have focused onthe experimental
realization of such efficient information processing devices. Two different
strategies were introduced (Kuhnert, 1986; Chua and Yang, 1988) and
nowadays, the fascinating challenge of artificial intelligence implementation
with CNN is still under investigation.

The first technique dates back from the late eighties with theworks of
L. Kuhnert who proposed to take benefit of the properties of Belousov-
Zhabotinsky type media for image processing purposes (Kuhnert, 1986;
Kuhnertet al, 1989). The main idea is that each mico-volume of the active
photo-sensitive chemical medium acts as a one-bit-processor corresponding
to reduced/oxidized state of the catalyst (Agladzeet al, 1997). This feature of
chemical photosensitive nonlinear media has allowed to implement numerous
tools of image processing. Edge enhancement, classical operations of math-
ematical morphology, the restoration of individual components of an image
with overlapped components (Rambidiet al, 2002), the image skeletonisation
(Adamatzkyet al, 2002), the detection of urban roads or the analysis of
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medical images (Teuscher and Adamatzky, 2005) represent a brief overview
of processing tasks computed by chemical nonlinear media. However, even
considering the large number of chemical “processors”, thevery low velocity
of trigger waves in chemical media is sometimes incompatible with real
time processing constraints imposed by practical applications (Agladzeet
al, 1997). Nevertheless, the limitations of these unconventional methods of
computing no way dismiss the efficiency and high prospects ofthe processing
developed with active chemical media (Adamatzky and de LacyCostello,
2003).

By contrast, analog circuits do not share the weakness of theprevious
strategy of integration. Therefore, because of their real-time processing
capability, electronic hardware devices constitute the most common way to
implementCNNs (Chua and Yang, 1988). The first step to electronically
develop aCNN for image processing purposes consists of designing an
elementary cell. More precisely, this basic unit ofCNNs usually contains
linear capacitors, linear resistors, linear and nonlinearcontrolled sources
(Chua and Yang, 1988; Comte and Marquié, 2003). Next, to complete
the description of the network, a coupling law between cellsis introduced.
Owing to the propagation mechanism inherited from the continuous-time
dynamics of the network, the cells do not only interact with their nearest
neighbors but also with cells that are not directly connected together. Among
the applications which can be electronically realized, onecan cite character
recognition (Chua and Yang, 1988), edge filtering (Comteet al, 2001;
Chenet al, 2006), noise filtering (Marquiéet al, 1998; Comteet al, 1998;
Julián and Dogaru, 2002), contrast enhancement and gray level extraction
with a nonlinear oscillators network (Morfu, 2005; Morfuet al, 2007).
On the other hand, the principle ofCNNs integration with discrete electronic
components is closely related to the development of nonlinear electrical
transmission lines (NLTLs) (Remoissenet, 1999). Indeed, under certain
conditions (Chua, 1998), the parallel processing of information can be ruled
by nonlinear differential equations which also describe the evolution of the
voltage at the nodes of an electrical lattice. It is then clear that considering a
one dimensional lattice allows signal filtering, while extending the concept to
a two dimensional network can provide image processing applications.

The development of NLTLs was mainly motivated by the fact that these
systems are quite simple and relatively un expansive experimental devices
allowing to study quantitatively the properties of nonlinear waves (Scott,
1970). In particular, since the pioneering works by Hirota and Suzuki (Hirota
and Suzuki, 1970) and by Nagashima and Amagishi (Nagashima and Amag-
ishi, 1978) on electrical lines simulating the Toda lattice(Toda, 1967), these
NLTLs, which can be considered as analog simulators, provide a useful way to
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check how the excitations behave inside the nonlinear medium (Jäger, 1985;
Kuusela, 1995; Marquiéet al, 1995; Yamgouéet al, 2007).

This chapter is mainly devoted to the presentation of some particular
nonlinear processing tools and to discuss their electronicimplementation with
discrete components.

After having introduced the readers into a brief mechanicaldescription of
nonlinear systems, we first present a review of the properties of both purely
inertial systems and overdamped systems. Then, in the following sections,
we take advantage of these properties to develop unconventional methods of
processing. Especially, considering the features of purely inertial systems,
we reveal the possibility to perform various image processing tasks such as
contrast enhancement of a weakly contrasted picture, the extraction of gray
levels, or the encryption of an image. The electronic sketchof the elementary
cell of this inertialCNN is proposed and the nonlinear properties which
allows the previous image processing tasks are experimentally investigated.
Next, the third part of this chapter is exclusively devoted to the filtering
applications inspired by reaction-diffusion media, like for instance, noise
filtering, edge detection or extraction of interest regionsin a weakly noisy
contrasted picture. In each case, the elementary cell of theelectronicCNN
is developed and we experimentally investigate its behavior in the specific
context of signal-image processing. We conclude by discussing the possible
microelectronic implementations of the previous nonlinear systems. In
addition, the last section contains some perspectives for future developments
inspired by recent properties of nonlinear systems. In particular, we present a
paradoxical nonlinear effect known as stochastic resonance (Benziet al, 1982;
Gammaitoniet al, 1998; Chapeau-Blondeau, 1999) which is supposed to have
potential applications in visual perception (Simonottoet al, 1997).

We trust that the multiple topics proposed in this contributions will help
the readers in better understanding the potential applications based on the
properties of nonlinear systems. Moreover, the various electronic realizations
presented in this chapter will constitute a serious background for future
experiments and studies devoted to nonlinear phenomena. Written for an
interdisciplinary readership of physicist and engineers,we finally hope that
this chapter will encourage the readers to perform their ownexperiments.



6 S. MORFU, P. MARQUIÉ, B. NOFIÉLÉ AND D. GINHAC

II. M ECHANICAL ANALOGY

In order to understand the image processing tools inspired by the properties of
nonlinear systems, we present here a mechanical analogy of these nonlinear
systems. From a mechanical point of view, we consider a chainof particles
of massM submitted to a nonlinear forcef deriving from a potentialΦ and
coupled with springs of strengthD. If Wn represents the displacement of the
particlen, the fundamental principle of the mechanics writes:

M
d2Wn

dt2
+ λ

dWn

dt
= − dΦ

dWn

+Rn, (1)

whereM
d2W

dt2
represents the inertia term andλ

dW

dt
corresponds to a friction

force. Furthermore, the resulting elastic forceRn applied to thenth particle
by its neighbors can be defined by:

Rn = D
∑

j∈Nr

(

Wj −Wn

)

, (2)

whereNr is the neighborhood, namelyNr = {n− 1, n + 1} in the case of
a one dimensional chain.

We propose to investigate separately the purely inertial case, that is

M
d2W

dt2
>> λ

dW

dt
, and the overdamped one deduced whenM

d2W

dt2
<< λ

dW

dt
.

A. Overdamped Case

In this section, an overdamped system is presented by neglecting the inertia
term of eq. (1) compared to the friction force. We specifically considerλ = 1
and the case of a cubic nonlinear force

f(W ) = −W (W − α)(W − 1), (3)

deriving from the double well potentialΦ(W ) = −
∫W

0
f(u)du as repre-

sented in figure 1 for different worths ofα. The roots of the nonlinear force
0, and1 correspond to the positions of the local minima of the potential,
namely the well bottoms, whereas the rootα represents the position of
the potential maximum. The nonlinearity thresholdα defines the potential
barrier∆ between the potential minimum with the highest energy and the
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FIGURE 1. Double well potential deduced from the nonlinear force (3). (a) Forα < 1/2 the
well bottom with highest energy is located atW = 0, the potential barrier is given by

∆ =
∫ α

0
f(u)du = φ(α) − φ(0) . (b) Forα > 1/2 the symmetry of the potential is reversed:

W = 1 becomes the position of the well bottom of highest energy andthe potential barrier is
∆ =

∫ α

1
f(u)du = φ(α) − φ(1).

potential maximum. To explain the propagation mechanism inthis chain, it is
convenient to define theexcited stateby the position of the potential minimum
with the highest energy, and therest stateby the position corresponding to the
minimum of the potential energy. As shown in figure 1.(a), the excited state
is 0 and the rest state is1 when the nonlinearity thresholdα < 1/2. In the
caseα > 1/2, since the potential symmetry is reversed, the excited state
becomes1 and the rest state is0 (figure 1.(b)). The equation which rules this
overdamped nonlinear systems can be deduced from eq. (1). Indeed, when
the second derivative versus time is neglected compared to the first derivative
and whenλ = 1, eq. (1) reduces to the discrete version of Fisher’s equation,
introduced in the 1930’s as a model for genetic diffusion (Fisher, 1937):

dWn

dt
= D(Wn+1 +Wn−1 − 2Wn) + f(Wn). (4)

1. Uncoupled case

We first investigate the uncoupled case, that isD = 0 in eq. (4) to reveal the
bistability of the system. The behavior of a single particleof displacementW
and initial positionW 0 obeys to

dW

dt
= −W (W − α)(W − 1). (5)

The zeros of the nonlinear forcef , W = 1 andW = 0 correspond to
stable steady states, whereas the stateW = α is unstable. The stability
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analysis can be realized by solving eq. (5) substituting thenonlinear force
f = −W (W − α)(W − 1) by its linearized expression near the considered
steady statesW ∗ ∈ {0, 1, α}. If fW (W ∗) denotes the derivative versusW
of the nonlinear force forW = W ∗, we are led to solve:

dW

dt
= fW (W ∗)(W −W ∗) + f(W ∗). (6)

The solution of Eq. (6) can then be easily expressed as

W (t) = W ∗ + CefW (W∗)t − f(W ∗)

fW (W ∗)
, (7)

whereC is a constant depending on the initial condition, that is theinitial
position of the particle. The solution (7), obtained with a linear approximation
of the nonlinear forcef , shows that the stability is set by the sign of the
argument of the exponential function.
Indeed, forW ∗ = 0 andW ∗ = 1, the sign offW (W ∗) is negative, involving
thatW (t 7→ ∞) tends to a constant. Therefore, the two pointsW ∗ = 0 and
W ∗ = 1 are stable steady states.
On the other hand, forW ∗ = α, fW (W ∗) is positive, inducing a divergence
for W (t 7→ ∞). W ∗ = α is an unstable steady state.

We now focus our attention to the particular caseα = 1/2 since it will
allow interesting applications in signal and image processing context.

This case is intensively developed in Appendix A, where it isshown that
the displacement of a particle with initial positionW 0 can be expressed by

W (t) =
1

2

(

1 +
W 0 − 1

2
√

(W 0 − 1
2
)2 −W 0(W 0 − 1)e−

1

2
t

)

. (8)

This theoretical expression is compared in figure 2 to the numerical results
obtained solving eq. (5) using a fourth order Runge-Kutta algorithm with
integrating time stepdt = 10−3 . As shown in figure 2, when the initial
conditionW 0 is below the unstable stateα = 1/2, the particle evolves toward
the steady states0. Else, if the initial conditionW 0 exceeds the unstable state
α = 1/2, the particle evolves towards the other steady state1. Therefore, the
unstable statesα = 1/2 acts as a threshold and the system exhibits a bistable
behaviour.

2. Coupled case

We now consider the coupled case (D 6= 0). In such systems ruled by eq.
(4), the balance between the dissipation and the nonlinearity gives rise to
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FIGURE 2. Bistable behaviour of the overdamped system in the caseα = 1/2. Left: Evolution
of a particle for different initial conditions in the range[0; 1]. The solid line is plotted with the

analytical expression (8) whereas the(o) signs correspond to the numerical solution of eq.(5) for
different initial conditionsW 0 ∈ [0; 1]. The potentialφ obtained by integrating the nonlinear force

(3) is represented at the right to provide a reference.

the propagation of a kink, that is a localized wave, called diffusive soliton
which propagates with constant velocity and profile (Remoissenet, 1999). To
understand the propagation mechanism, we first consider theweak coupling
limit and the caseα < 1/2. The case of strong couplings, which corresponds
to a continuous medium, will be discussed later since it allows to theoretically
characterize the waves propagating in the medium.

1.1. Weak coupling limit As shown in figure 3.(a), initially, all particles
of the chain are located at the position0, that is at the excited state. To initiate
a kink, an external forcing allows the first particle to crossthe potential barrier
in W = α and to fall in the right well, at the rest state defined by the position
W = 1. Thanks to the spring coupling the first particle to the second one, but
despite the second spring, the second particle attempts to cross the potential

barrier with height∆(α) = −α
4

12
+
α3

6
(Morfu, 2003) (see figure 3.(b)).

According to the value of the resulting force applied to the second particle
by the two springs compared to the nonlinear forcef between[0, α[, two
behaviors may occur:

1. If the resulting elastic force is sufficiently important to allow the second
particle to cross the potential barrier∆(α), then this particle fall in the
right well and pulls the next particle down in its fall. Sinceeach particle
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FIGURE 3. Propagation mechanism.(a) Initially all particles of the chain are in the excited state
0, that is at the bottom of the well with highest energy.(b) State of the chain fort > 0. The first

particle has crossed the potential barrier∆ and attempts to pull the second particle down in its fall.

of the chain successively undergoes a transition from the excited state0 to
the rest state1, a kink propagates in the medium. Moreover, its velocity
increases versus the coupling and as the barrier decreases (namely, asα
decreases).

2. Else, if the resulting force does not exceed a critical value,(i.e. ifD <
D∗(α)), the second particle cannot cross the potential barrier and thus stays
pinned at a positionw in [0; α[: it is the well known propagation failure
effect (Keener, 1987; Erneux and Nicolis, 1993; Kladkoet al, 2000; Comte
et al, 2001).

The mechanical model associated with eq. (4) reveals that inthe weak
coupling limit the characteristics of the nonlinear systemare ruled by the
couplingD and the nonlinear thresholdα. Moreover, the propagation of a
kink is due to the transition from the excited state to the rest state and is only
possible when the couplingD exceeds a critical valueD∗(α).

1.2. Limit of continuous media The velocity of the kink and its profile
can be theoretically obtained in the limit of continuous media, that is when
the couplingD is large enough compared to the nonlinear strength.
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Then, in the continuous limit, the discrete Laplacian of eq.(4) can be
replaced by a second derivative versus the space variablez:

∂W

∂t
= D

∂2W

∂z2
+ f(W ). (9)

This equation, introduced by Nagumo in the 1940s as an elementary represen-
tation of the conduction along an active nerve fiber, has an important meaning
in understanding transport mechanism in biological systems (Nagumoet al,
1962; Murray, 1989).

Unlike the discrete equation (4), the continuous equation (9) admits prop-
agative kink solution only if

∫ 1

0
f(u)du 6= 0, which reduces toα 6= 1/2 in

the case of the cubic force (3) (Scott, 1999).
Introducing the propagative variableξ = z − ct, these kinks and anti-kinks
have the form (Fife, 1979; Henry, 1981)

W (ξ) =
1

2

[

1 ± tanh

(

1

2
√

2D
(ξ − ξ0)

)]

, (10)

whereξ0 is the initial position of the kink fort = 0 and where the kink
velocity is defined byc = ±

√

D/2(1 − 2α).

Whenα < 1/2, the excited state is0, and the rest state is1. Therefore, the
rest state1 spreads in the chain, which set the sign of the velocity according
to the profile of the kink initiated in the nonlinear system:

1. If the profile is given byW (ξ) = 1
2

[

1 − tanh

(

1

2
√

2D
(ξ − ξ0)

)]

, a kink

propagates from left to right with a positive velocityc =
√

D/2(1 − 2α)
(fig. 4.(a) left).

2. Else, if the profile is set byW (ξ) = 1
2

[

1+tanh

(

1

2
√

2D
(ξ−ξ0)

)]

, a kink

propagates from right to left with a negative velocityc = −
√

D/2(1−2α)
(fig. 4.(a) right).

Whenα > 1/2, since the symmetry of the potential is reversed , the excited
states becomes1 and the rest state is0. The propagation is then due to a
transition between1 to 0 which provides the following behaviour:

1. If W (ξ) = 1
2

[

1 − tanh

(

1

2
√

2D
(ξ − ξ0)

)]

, a kink propagates from right

to left with a negative velocityc =
√

D/2(1 − 2α) (fig. 4.(b) left).
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FIGURE 4. Propagative solution of the continuous Nagumo equation (9) with D = 1. Spatial
representation of the kink fort = 0 in dotted line and fort = 20 in solid line. The arrow indicates
the propagation direction, the corresponding potential isrepresented at the right end to provide a

reference.(a) α = 0.3. (b) α = 0.7.

2. Else ifW (ξ) = 1
2

[

1 + tanh

(

1

2
√

2D
(ξ − ξ0)

)]

, a kink propagates from

left to right with a positive velocityc = −
√

D/2(1 − 2α) (fig. 4.(b)
right).

B. Inertial systems

In this section, we neglect the dissipative term of eq. (1) compared to the
inertia term and we restrict our study to the uncoupled case.Moreover, in
image processing context, it is convenient to introduce a nonlinear forcef
under the form

f(W ) = −ω2
0(W −m)(W −m− α)(W −m+ α), (11)

where,m andα < m are two parameters which allow to adjust the width and
height∆ = ω2

0α
4/4 of the potentialΦ (fig. 5):

Φ(W ) = −
∫ W

0

f(u)du. (12)
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FIGURE 5. Double well potential deduced from the nonlinear force (11) represented for
m = 2.58, α = 1.02 andω0 = 1. A particle with an initial conditionW 0

i < m − α
√

2 evolves
with an initial potential energy above the barrier∆.

The nonlinear differential equation which rules the uncoupled chain can be
deduced by inserting the nonlinear force (11) into eq. (1) with D = 0.
Neglecting the dissipative term, the particles of unitary mass are then ruled
by the following nonlinear oscillator equations:

d2Wi

dt2
= f(Wi). (13)

1. Theoretical analysis

We propose here to determine analytically the dynamics of the nonlinear
oscillators obeying to eq. (13) (Morfu and Comte, 2004; Morfu et al, 2006).
Settingxi = Wi −m, eq. (13) can be rewritten as

d2xi
dt2

= −ω2
0xi(xi − α)(xi + α). (14)

Noting x0
i the initial position of the particlei and considering that all the

particles have initially a null velocity, the solutions of eq. (14) can be
expressed with the Jacobian elliptic functions as

xi(t) = x0
i cn(ωit, ki), (15)
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whereωi and 0 ≤ ki ≤ 1 represent respectively the pulsation and the
modulus of thecn function (see recall on the properties of Jacobian elliptic
function in Appendix B).
Deriving twice eq. (15) and using the properties (85), we get

dxi
dt

= −x0
iωisn(ωit, ki)dn(ωit, ki),

d2xi
dt2

= −x0
iω

2
i cn(ωit, ki)

[

dn2(ωit, ki) − kisn
2(ωit, ki)

]

. (16)

Using the identities (86) and (87), eq. (16) can be rewrittenas

d2xi
dt2

= −2kiω
2
i

x02

i

x

[

x2 − 2ki − 1

2ki
x02

i

]

. (17)

Identifying this last expression with eq. (14), we get the pulsation of the
Jacobian elliptic function

ωi = ω0

√

x02

i − α2, (18)

and its modulus

ki =
1

2

x02

i

x02

i − α2
. (19)

Lastly, introducing the initial conditionW 0
i = x0

i + m, the solution of eq.
(13) can be straightforwardly deduced from eqs. (15), (18) and (19):

Wi(t) = m+ (W 0
i −m)cn(ωit, ki), (20)

with

ωi(W
0
i ) = ω0

√

(W 0
i −m)2 − α2 and ki(W

0
i ) =

1

2

(W 0
i −m)2

(W 0
i −m)2 − α2

. (21)

Both the modulus and the pulsation are driven by the initial conditionW 0
i .

Moreover, the constraints to ensure the existence of the pulsationωi and of
the modulus respectively writes(W 0

i − m)2 − α2 ≥ 0 and0 ≤ ki ≤ 1.
These two conditions restrict the range of the allowed initial conditionsW 0

i

to

]

−∞; m− α
√

2

]

⋃

[

m+ α
√

2; + ∞
[

, as shown in figure 6, where
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FIGURE 6. . (a): Normalized pulsationω/ω0 versus the initial conditionW 0

i . (b) Modulus
parameterk versusW 0

i . The parameters of the nonlinearitym = 2.58, α = 1.02 impose the
allowed amplitude range] −∞; 1.137]

⋃

[4.023; + ∞[.

the pulsation and the modulus are represented versus the initial conditionW 0
i .

Note that this allowed range of initial conditions corresponds also to a particle
with an initial potential energy exceeding the barrier∆ between the potential
extrema (see figure 5).

2. Nonlinear oscillators properties

To illustrate the properties of nonlinear oscillators, we consider a chain of
lengthN = 2 particles with a weak difference of initial conditions and with
a null initial velocity. The dynamics of these two oscillators is ruled by eq.
(20), where the pulsation and modulus of both oscillators are driven by their
respective initial condition. Moreover, we have restricted our study to the case
of the following nonlinearity parametersm = 2.58, α = 1.02, ω0 = 104 .
We have applied the initial conditionW 0

1 = 0 to the first oscillator, while
the initial condition of the second oscillator is set toW 0

2 = 0.2, which
corresponds to the situation of fig. 5.
Figure 7.(a) shows that the oscillations of both particles take place in the
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FIGURE 7. (a) Temporal evolution of the two oscillators. Top: evolution of the first oscillator
with initial conditionW 0

1
= 0. Bottom: evolution of the second oscillator with initial condition

W 0

2
= 0.2. (b) Temporal evolution of the displacement differenceδ between the two oscillators.

Parameters:m = 2.58, α = 1.02 andω0 = 1.

range[W 0
i ; 2m − W 0

i ] as predicted by eq. (20), that is[0; 5.16] for the
first oscillator and[0; 4.96] for the second one. Moreover, owing to their
difference of initial amplitude and to the nonlinear behavior of the system,
the two oscillators quickly attain a phase opposition for the first time at
t = topt = 1.64 × 10−3. This phase opposition corresponds to the situation
where the first oscillator has reached its minimumW1(topt) = 0, whereas
the second oscillator has attained its maximumW2(topt) = 4.96. As shown
in figure 7.(b), the displacement differenceδ(t) = W2(t) −W1(t) is then
maximum for t = topt and becomesδ(topt) = 4.96. For this optimal
time, a “contrast enhancement" of the weak difference of initial conditions
is realized, since initially the displacement difference wasδ(t = 0) = 0.2.
Note that in fig. 7.(b), the displacement difference between the two oscillators
also presents a periodic behavior with local minima and local maxima. In
particular, the differenceδ(t) is null for t = 3.96 × 10−5, t = 1.81 × 10−4,
t = 3.5 × 10−4, t = 5.21 × 10−4; minimum for t = 1.4 × 10−4,
t = 4.64 × 10−4, t = 1.47 × 10−3 and maximum fort = 3 × 10−4,
t = 6.29 × 10−4, t = 1.64 × 10−3. These characteristic times will be
of crucial interest in image processing context to define thefiltered tasks
performed by the nonlinear oscillators network.

Figure 6.(a) reveals that the maximum variation of the pulsation compared
to the amplitudeW 0

i , that is∆ω/ω0, is reached forW 0
i = m − α

√
2, that

is for a particle with an initial potential energy near the barrier ∆. Therefore,
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to quickly realize a great amplitude contrast between the two oscillators, it
could be interesting to launch them with an initial amplitude nearm− α

√
2,

or to increase the potential barrier height∆. We choose to investigate this
latter solution by tuning the parameter of the nonlinearityα, when the initial
amplitude of both oscillators remainsW 0

1 = 0 andW 0
2 = 0.2. The results
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FIGURE 8. Influence of the nonlinearity parameterα on the displacement differenceδ between
the two oscillators of respective initial conditions0 and0.2. Parametersm = 2.58 andω0 = 1. (a):

(topt = 1.75 × 10−3;α = 0.4). (b): (topt = 1.66 × 10−3;α = 1.05). (c):
(topt = 1.25 × 10−3; α = 1.5). (d): (topt = 0.95 × 10−3; α = 1.63).
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are reported in figure 8, where we present the evolution of thedifferenceδ(t)
for different worths ofα.

As expected, when the nonlinearity parameterα increases, the optimal time
is significatively reduced. However, whenα is adjusted near the critical value
(m−W 0

2 )/
√

2 as in figure 8.(d), the optimum reached by the differenceδ(t)
is reduced to4.517 for α = 1.63 instead of4.96 for α = 1.02. Even
if it is not the best contrast enhancement which can be performed by the
system, the weak difference of initial conditions between the two oscillators
is nevertheless strongly enhanced forα = 1.63.

To highlight the efficiency of nonlinear systems, let us consider the case of
a linear forcef(W ) = −ω0W in eq. (13).
In the linear case, the displacement differenceδ(t) between two harmonic
oscillators can be straightforwardly expressed as

δ(t) = ǫ cos(ω0t), (22)

where ǫ represents the slight difference of initial conditions between the
oscillators. This last expression shows that it is impossible to increase
the weak difference of initial conditions since the difference δ(t) always
remains in the range[−ǫ; ǫ]. Therefore, taking into account nonlinearity
is a convenient solution to overcome the limitation of linear system and to
enhance a weak amplitude contrast.

III. I NERTIAL SYSTEMS

In this section, we present different image processing tasks inspired by
the properties of the nonlinear oscillators presented in section II.B. Their
electronic implementation is also discussed.

A. Image processing

By analogy with a particle experiencing a double well potential, the pixel
number(i, j) is analog to a particle (oscillator) whose initial positioncorre-
sponds to the initial gray levelW 0

i,j of this pixel. Therefore, ifN×M denotes
the image size, we are led to consider a two dimensional network, or Cellular
Nonlinear Network (CNN ), consisting of uncoupled nonlinear oscillators.
The nodei, j of this CNN obeys to

d2Wi,j

dt2
= −ω2

0(Wi,j −m− α)(Wi,j −m+ α)(Wi,j −m), (23)
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with i = 1, 2...N andj = 1, 2..,M .
Note that we take into account the range of oscillations[0; 2m − W 0

i,j]
predicted in section II.B.2 to define the gray scale of the images, namely0
for the black level and2m = 5.16 for the white level.

The image to process is first loaded as initial condition at the nodes of the
CNN . Next, the filtered image for a processing timet can be deduced noting
the position reached by all oscillators of the network at this specific timet.
More precisely, the state of the network at a processing timet is obtained by
solving numerically eq. (23) with a fourth order Runge-Kutta algorithm with
integrating time stepdt = 10−6.

1. Contrast enhancement and image inversion

The image to process with the nonlinear oscillator network is the weak
contrasted image of figure 9.(a). Its histogram is restricted to the range
[0; 0.2], which means that the maximum gray level of the image(0.2) is the
initial condition of at least one oscillator of the network,while the minimum
gray level of the image(0) is also the initial condition of at least one oscillator.
Therefore, the pixels with initial gray level0 and 0.2, oscillate with the
phase differenceδ(t) predicted by figure 7.(b). In particular, as explained
in section II.B.2, their phase differenceδ(t) can be null for the processing
timest = 3.96×10−4, 1.81×10−4, 3.5×10−4, 5.21×10−4; minimum for
t = 1.4× 10−4, 4.64× 10−4, 1.47× 10−3 and maximum fort = 3× 10−4,
6.29 × 10−3, 1.64 × 10−3. As shown in figure 9.(b), (d), (f) and (h),
the image goes through local minima of contrast at the processing times
corresponding to the zeros ofδ(t) . Furthermore, the processing times
providing the local minima ofδ(t) realize an image inversion with a growing
contrast enhancement (Fig. 9.(c), (g) and (j)). Indeed, since the minima
of δ(t) are negative, for these processing times the minimum of the initial
image becomes the maximum of the filtered image and vice-versa. Lastly,
the local maxima ofδ(t) allow to achieve local maxima of contrast for the
corresponding processing times (Figs. 9.(e), (i), (k)). Note that the best
enhancement of contrast is attained at the processing timetopt for whichδ(t)
is maximum. The histogram of each filtered image in fig. 9 also reveals the
temporal dynamic of the network. Indeed, the width of the image histogram is
periodically increased and decreased, which involves thatthe contrast of the
corresponding filtered image is periodically enhanced or reduced.

Another, interesting feature of the realized contrast is determined by the
plot of the network response at the processing timetopt (Morfu, 2005). In-
deed, this curve also represents the gray level of the pixelsof the filtered image
versus their initial gray level. Therefore, the horizontalaxis corresponds to
the initial gray scale, namely[0; 0.2], whereas the vertical axis represents
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FIGURE 9. Filtered images and their corresponding histogram obtained with the nonlinear
oscillators network (23) for different processing times.(a) : Initial image(t = 0). (b) :

t = 3.96 × 10−5. (c) : t = 1.4 × 10−4. (d) : t = 1.81 × 10−4. (e) : t = 3 × 10−4. (f) :
t = 3.5 × 10−4. (g) : t = 4.64 × 10−4 . (h) : t = 5.21 × 10−4 . (i) : t = 6.29 × 10−4. (j) :
t = 1.47 × 10−3. (k) : t = topt = 1.64 × 10−3. Parameters:m = 2.58, α = 1.02, ω0 = 1.
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FIGURE 10. Response of the nonlinear system for different nonlinearity parametersα at the
corresponding optimal timetopt (solide line) compared to a uniform rescaling (dotted line). The
curves are obtained with eqs. (20) and (21) setting the time to the optimum value defined by the
maximum ofδ(t) (see fig. 8). In addition, we let the initial conditionsW 0

i varying in the range
[0; 0.2] in eqs. (20) and (21).(a): (topt = 1.75 × 10−3;α = 0.4). (b):

(topt = 1.66 × 10−3;α = 1.05). (c): (topt = 1.25 × 10−3;α = 1.5). (d):
(topt = 0.95 × 10−3;α = 1.63). ω0 = 1

the gray scale of the processed image. Such curves are plotted in figure 10
for different values of the nonlinearity parameterα, and at the optimal time
defined by the maximum ofδ(t). In fact, these times were established in
section II.B.2 at figure 8.
Moreover, to compare our nonlinear contrast enhancement toa uniform one,
we have superimposed (in dotted line) the curve resulting from a simple
multiplication of the initial gray scale by a scale factor. In fig 10.(a), since
the response of the system for the lowest value ofα is most often above the
dotted lines, the filtered image at the processing timetopt = 1.75 × 10−3

for α = 0.4 will be brighter than the image obtained with a simple rescaling.
As shown in Fig. 10.(b), increasing the nonlinearity parameterα to 1.05
involves an optimum time1.66× 10−3 and symmetrically enhances the light
and dark gray levels. When the nonlinearity parameter is adjusted to provide
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the greatest potential barrier (Figs. 10.(c) and (d)), the contrast of the
medium gray level is unchanged compared to a simple rescaling. Moreover,
the dark and light grays are strongly enhanced with a greaterdistortion when
the potential barrier is maximum, that is for the greatest value ofα (Fig. 10.
(d)).

2. Gray level extraction

Considering processing times exceeding the optimal timetopt, we propose
to perform a gray level extraction of the continuous gray scale represented
figure 11.(a) (Morfu, 2005). For a sake of clarity, it is convenient to redefine
the white level by0.2 whereas the black level remains0.
For the9 specific times presented in figure 11, the response of the system
displays a minimum which is successively reached for each level of the
initial gray scale. Therefore, time acting as a discriminating parameter, an
appropriate threshold filtering allows to extract all pixels with a gray level in
a given range. Indeed, in figure 11, the simplest case of a constant threshold
Vth = 0.25 provides9 ranges of gray at9 closely different processing times,
which constitutes a gray level extraction.

Moreover, owing to the response of the system, the width of the extracted
gray level ranges reduces in the light gray. Indeed, the range extracted in
the dark gray for the processing timet = 3.33 × 10−3 (fig. 11.(c)) is
approximatively twice greater than the range extracted in the light gray for
t = 3.51 × 10−3 (figure 11.(i)). To perform a perfect gray level extraction,
the threshold has to match with a slight offset the temporal evolution of the
minimum attained by the response of the system. Under these conditions, the
width of the extracted gray range is set by the value of this offset.

Note that, the response of the system after the optimal processing times also
allows to consecutively enhance fragment of the image with different levels
of brightness, which is also an important feature of the image processing.
For instance, in Belousov-Zhabotinsky-type media this property of the system
enabled Rambidi and co-workers to restore individual components of the pic-
ture when the components are overlapped (Rambidiet al, 2002). Therefore,
we trust that considering the temporal evolution of the image loaded in our
network could give rise to other interesting image processing operations.

3. Image encryption

Cryptography is another field of application of nonlinear systems. In fact, the
chaotic behavior of nonlinear systems can sometimes produce chaotic-like
waveforms which can be used to encrypt signals for secure communications
(Cuomo and Oppenheim, 1993; Dedieuet al, 1993). Even if many attempts
to break the encryption key of these cryptosystems and to retrieve the
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FIGURE 11. Gray level extraction. The response of the system is represented at the top of each
figure. At the bottom of each figure, a threshold filtering of the filtered image is realized replacing the
pixel gray level with 0.2 (white) if that gray level exceeds the thresholdVth = 0.25, otherwise with

0 (black). (a) : Initial gray scale(t = 0). (b) : t = 3.3 × 10−3. (c) : t = 3.33 × 10−3. (d) :
t = 3.36 × 10−3. (e) : t = 3.39 × 10−3. (f) : t = 3.42 × 10−3. (g) : t = 3.45 × 10−3. (h) :

t = 3.48 × 10−3. (i) : t = 3.51 × 10−3. (j) : t = 3.54 × 10−3. Nonlinearity parameters:
m = 2.58, α = 1.02 andω0 = 1
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information have been reported (Short and Parker, 1998; Udaltsovet al, 2003),
cryptography based on the properties of chaotic oscillators still attracts the
attention of researchers owing to the promising applications of chaos in data
transmission field (Kwok and Tang, 2007).

Contrary to most studies, where the dynamics of a single element is usually
considered, we propose here a strategy of encryption based on the dynamics
of a chain of nonlinear oscillators. More precisely, we consider the case of
a noisy image loaded as initial condition in the inertia network introduced in
section II.B. In addition, we add a uniform noise over[−0.1; 0.1] to the weak
contrasted picture of the coliseum represented in Fig. 9.(a). Since the pixels
of the noisy image take a gray level in the range[−0.1; 0.3], an appropriate
change of scale is realized to reset the dynamics of the gray levels to[0; 0.2].
The resulting image is then loaded as initial condition in the network. For a
sake of clarity, the filtered images are presented at different processing times
with the corresponding system response in figure 12.

Before the optimal time, we observe the behavior described in section
III.A.1: the image goes through local minima and maxima of contrast until
the optimum timetopt = 1.64 × 10−3, where the best contrast enhancement
is realized (Fig 12.(a)).

Next, for processing times exceedingtopt, the noisy part of the image seems
to be amplified while the coherent part of the image begins to be less and
less perceptible (see Fig. 12.(b) and 12.(c) obtained fort = 3.28 × 10−3

and t = 6.56 × 10−3). Lastly, for greater processing times, namelyt =
8.24 × 10−3 and t = 9.84 × 10−3, the noise background has completely
hidden the coliseum which constitutes an image encryption.

Note that this behavior can be explained with the response ofthe system, as
represented below each filtered image of Fig. 12. Indeed, until the response
of the system versus the initial condition does not display a“periodic-like"
behavior, the coherent part of the image remains perceptible (Fig. 12.(a) and
(b)). By contrast, as soon as a“periodicity" appears in the system response,
the coherent image begins to disappear (Fig. 12.(c)). Indeed, the response
of Fig. 12.(c) shows that 4 pixels of the initial image with 4 different gray
levels take the same final value in the encrypted image (see the arrow lines).
Therefore, the details of the initial image, which corresponds to quasi-uniform
area of the coherent image, are merged and thus disappear in the encrypted
image. Despite the previous merging of gray levels, since noise induces
sudden changes in the gray levels of the initial image, the noise conserves
its random feature in the encrypted image. Moreover, since the system tends
to enlarge the range of amplitude, the weak initial amount ofnoise is strongly
amplified whatever the processing time exceedingtopt. The periodicity of the
system response can then be increased for larger processingtimes until only
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FIGURE 12. Encrypted image and the corresponding response of the nonlinear oscillators
network for different times exceedingtopt. (a) : Enhancement of contrast of the initial image for

t = topt = 1.64× 10−3. (b) : t = 3.28× 10−3. (c) : t = 6.56 × 10−3. (d) : t = 8.24 × 10−3.
(e) : t = 9.84 × 10−3. Parameters:m = 2.58, α = 1.02, ω0 = 1.

the noisy part of the image is perceptible (Fig. 12.(d) and(e)). A perfect
image encryption is then realized.

To take advantage of this phenomenon for image encryption, the coherent
information, that is the enhanced image of Fig. 12.(a), must be restored using
the encrypted image of Fig. 12.(e). Fortunately, owing to the absence of
dissipation, the nonlinear systems is conservative and reversible. It is thus
possible to go back to the optimal time that is when the information was the
most perceptible.

However, the knowledge of the encrypted image is not sufficient to com-
pletely restore the coherent information, since at the encryption time, the
velocity of the oscillators was not null. Consequently, it is necessary to know
both the position and the velocity of all particles of the network at the time
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FIGURE 13. Sketch of the elementary cell of the inertial system.m andα are adjusted with
external DC sources whereas−K is the inverting amplifier gain obtained usingTL081CN

operational amplifier. The1N4148 diode allows to introduce the initial conditionsW 0

i .

of encryption. The information can then be restored solvingnumerically eq.
(23) with a negative integrating time stepdt = −10−6.

Under these conditions, the time of encryption constitutesthe encryption
key.

B. Electronic implementation

The elementary cell of the purely inertial systems can be developed according
to the principle of figure 13 (Morfuet al, 2007). First, a polynomial source
is realized with analogAD633JNZ multipliers and classical inverting
amplifier with gain−K. Taking into account the scale factor1/10 V −1 of
the multipliers, the response of the nonlinear circuit to aninput voltageWi is
given by

P (Wi) =
K2

100
(Wi −m)(Wi −m− α)(Wi −m+ α), (24)

where the rootsm, m − α, m + α of the polynomial circuit are set with
three different externalDC sources. As shown in figure 14, the experimental
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FIGURE 14. Theoretical cubic law (24) in solid line compared to the experimental characteristic
plotted with crosses. Parameters:m = 2.58 V , α = 1.02 V , K = 10.

characteristic of the nonlinear source is then in perfect agreement with its
theoretical cubic law (24).
Next, a feedback between the input/output of the nonlinear circuits is ensured

by a double integrator with time constantRC such that

W = − K2

100R2C2

∫ ∫

(Wi −m+ α)(Wi −m− α)(Wi −m)dt. (25)

Deriving twice eq. (25), the voltageWi at the input of the nonlinear circuit
obeys to

d2Wi

dt2
= − K2

100R2C2
(Wi −m+ α)(Wi −m− α)(Wi −m), (26)

which corresponds exactly to the equation of the purely inertial system (13)
with

ω0 = K/(10RC). (27)

Lastly, the initial conditionW 0
i is applied to the elementary cell via a

1N4148 diode with threshold voltageVT = 0.7 V . Indeed, we adjust the
diode anode potential toW 0

i + VT with an external DC source involving that
the diode cathode potential is initially set toW 0

i . Then, according to section
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FIGURE 15. : (a): Temporal evolution of two elementary cells of the chain with respective initial
conditionsW 0

1
= 0V (top) andW 0

2
= 0.2V (bottom).(b): Evolution of the voltage difference

between the two oscillators. Parameters:K = 10, R = 10KΩ, C = 10nF , m = 2.58V ,
α = 1.02V , topt = 1.46ms.

III, the circuit begins to oscillate in the range[W 0
i ; 2m − W 0

i ], while the
potential of the diode anode remainsVT +W 0

i . Assuming thatm > W 0
i /2,

which is the case of our experiments, the diode is instantaneously blocked
once the initial condition is introduced. Note that using a diode to set
the initial condition presents the main advantage to “balance" the effect of
dissipation inherent in electronic devices. Indeed, the intrinsic dissipation of
the experiments tends to reduce the amplitude of the oscillationsW 0

i . As
soon as the potential of the diode cathode is belowW 0

i , the diode conducts
instantaneously, introducing periodically the same initial condition in the
elementary cell. Therefore, the switch between the two states of the diode
presents the advantage to refresh the oscillations amplitude to their natural
worths as in absence of dissipation.

In summary, the oscillations are available at the diode cathode and are
represented in figure 15. (a) for two different initial conditions, namely
W 0

1 = 0V (top) andW 0
2 = 0.2V (bottom). As previously explained,

the way to introduce the initial condition allows to balancethe dissipative
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FIGURE 16. Response of the system to a set of initial conditionsW 0

i ∈ [0; 0.2] at the optimal
time. The solid line is obtained with eqs. (20), (21) and (27)setting the time to the theoretical
optimal value1.64ms, the initial condition varying in[0; 0.2V ]. The crosses are obtained

experimentally for the corresponding optimal time1.46ms. Parameters:R = 10KΩ, C = 10nF ,
m = 2.58V , α = 1.02V , K = 10.

effects since the oscillation remains with the same amplitude, namely in
the range[0V ; 5.34V ] for the first oscillator with initial condition0, and
[0.2V ; 5.1V ] for the second one. Moreover, these ranges match with a
fairly good agreement the theoretical predictions presented in section II.B.2,
that is [0V ; 5.16V ] for the first oscillator and[0.2V ; 4.96V ] for the
second one. Figure 15.(a) also reveals that the two oscillators quickly
achieve a phase opposition at the optimal timetopt = 1.46ms instead
of 1.64ms as theoretically established in section II.B.2. The oscillations
difference between the two oscillators in figure 15.(b) reaches local minima
and maxima in agreement with the theoretical behaviour observed in section
III. A maximum of 5.1V is obtained corresponding to the phase opposition
W1(topt) = 0V andW2(topt) = 5.1V . Therefore, the weak difference of
initial conditions between the oscillators is strongly increased at the optimal
time topt. Despite a slight discrepancy of11% for the optimal time, mainly
imputable to the component uncertainties, a purely inertial nonlinear system
is then implemented with the properties of section III.

To perfectly characterize the experimental device, we now focus on
the response of the nonlinear system to different initial conditions in the
range [0V ; 0.2V ]. The plot of the voltage reached at the optimal time
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topt = 1.46ms versus the initial condition is compared in figure 16 to
the theoretical curve obtained for the optimum time defined in section
II.B.2, namely1.64 ms. The experimental response of the system is then
qualitatively confirmed by the theoretical predictions, which allows to valid
the experimental elementary cell for the contrast enhancement presented in
section III.A.1.

Lastly, we also propose to investigate the response of the system after
the optimum time, since it allows the extraction of gray levels. In order to
enhance the measures accuracy, we extend the range of initial conditions to
[0, 0.5V ] instead of[0, 0.2V ]. The corresponding experimental optimal
time becomestopt = 564µs, whereas the theoretical ones, deduced with the
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FIGURE 17. Theoretical response of the purely inertial system (solid line) compared to the
experimental ones (crosses) for 4 different times and for a range of initial conditions[0; 0.5V ].

Parameters:R = 10KΩ, C = 10nF , m = 2.58V , α = 1.02V , K = 10. (a) experimental time
t = 564µs corresponding to the theoretical timet = 610µs. (b) experimental timet = 610µs and

theoretical time713µs. (c) experimental timet = 675µs and theoretical time789µs. (d)
experimental timet = 720µs and theoretical time841µs.
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methodology exposed in section II.B.2, is610µs. The resulting theoretical
and experimental responses are then plotted in figure 17.(a) where a better
agreement is effectively observed compared to figure 16 .
We have also reported the experimental device response for three different
times beyond the optimal timetopt = 564µs in figure 17.(b), (c), (d), namely
for the experimental timest = 610µs, t = 675µs andt = 720µs. Since
a time scale factor610/564 = 1.1684 exists between the experimental and
the theoretical optimal time, we apply this scale factor to the three previous
experimental times. It provides the theoretical times713µs, 789µs, 841µs.
For each of these 3 times, we are then able to compare the experimental
response to the theoretical one deduced by letting the initial condition vary in
[0; 0.5V ] in eqs. (20), (21) and (27). Despite some slight discrepancies, the
behaviour of the experimental device is in good agreement with the theoretical
response of the system for the three processing times exceeding the optimal
time. Therefore, the extraction of gray levels, presented in section III.A.2, is
electronically implemented with this elementary cell.

IV. REACTION-DIFFUSION SYSTEMS

A. one dimensional lattice

The motion equation (4) of the nonlinear mechanical chain can also describe
the evolution of the voltage at the nodes of a nonlinear electrical lattice. This
section is devoted to the presentation of this nonlinear electrical lattice.
The nonlinear lattice is realized by coupling elementary cells with linear
resistorsR according to the principle of figure 18.(a). Each elementarycell

R R R RU nU n - 1 U n + 1

CR
N L R

N L
CR

N L
C

(a)

U

i

R

R

R

R

R

D

D

D

1

3

4

1

2

2

4

+ V c c

- V c c

0

(b)

FIGURE 18. (a) Nonlinear electrical lattice.(b): The nonlinear resistorRNL.



32 S. MORFU, P. MARQUIÉ, B. NOFIÉLÉ AND D. GINHAC

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2
- 6 0
- 5 0
- 4 0
- 3 0
- 2 0
- 1 0
0
1 0
2 0
3 0
4 0

No
nli

ne
ar 

Cu
rre

nt 
(mA

)

V o l t a g e  ( V )
FIGURE 19. Current-Voltage caracteristics of the nonlinear resistor. The theoretical law (28) in

solid line is compared to the experimental data plotted withcrosses. The dotted lines represent the
asymptotic behavior of the nonlinear resistor. Parameters: R0 = 3.078KΩ, Vb = 1.12V ,

Va = 0.545V , β = 1.

consists of a linear capacitorC in parallel with a nonlinear resistor whose
current-voltage characteristic obeys to the cubic law

INL(u) = βu(u− Va)(u− Vb)/(R0VaVb), (28)

where0 < Va < Vb are two voltages,β is a constant andR0 is analog to a
weighting resistor.

The nonlinear resistor can be developed according to two different method-
ologies. The first way to obtain a cubic current is to considerthe circuit of
figure 18.(b) with three branches (Comte, 1996; Binczaket al, 1998). A linear
resistorR3, a negative resistor and another linear resistorR1 are successively
added in parallel thanks to1N4148 diodes. Due to the switch of the diodes,
the experimental current-voltage characteristic of figure19 asymptotically
displays a piecewise linear behaviour with successively a positive slope, a
negative one and lastly a positive one.

This piecewise linear characteristics is compared to the cubic law (28)
which presents the same rootsVa, Vb and0 but also the same area below
the characteristic between0 andVa. This last conditions leads toβ = 1 and
R0 = 3.078 KΩ (Morfu, 2002c).
An alternative way to realize a perfect cubic nonlinear current is to use
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FIGURE 20. Realization of a nonlinear resistor with a polynomial generation circuit.
β = 10VaVb

a nonlinear voltage source which provides a nonlinear voltage P (u) =
βu(u−Va)(u−Vb)/(VaVb)+u as shown in figure 20 (Comte and Marquié,
2003).

This polynomial voltage is realized withAD633JNZ multipliers and
classicalTL081CN operational amplifiers. A resistorR0 ensures a feedback
between the input/output of the nonlinear source such that the Ohm’s law
applied toR0 corresponds to the cubic current (28):

P (u) − u

R0

= INL(u). (29)

As shown in Fig. 21, this second method gives a better agreement with the
theoretical cubic law (28).

Applying the Kirchhoff laws, the voltageUn at thenth node of the lattice
obeys to

C
dUn
dτ

=
1

R
(Un+1 + Un−1 − 2Un) − INL(Un), (30)

whereτ denotes the experimental time andn = 1...N represents the node
number of the lattice.
Moreover, we assume zero-flux or Neumann boundary conditions, which
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FIGURE 21. . Current-Voltage characteristics of the nonlinear resistor of fig. 20. Parameters:

β = −10VaVb, Va = −2V , Vb = 2V .

involves forn = 1 andn = N respectively

C
dU1

dτ
=

1

R
(U2 − U1) − INL(U1), (31)

C
dUN
dτ

=
1

R
(UN−1 − UN) − INL(UN ). (32)

Next, introducing the transformations

Wn =
Un
Vb
, D =

R0

R
αβ, t =

τ

R0αCβ
, (33)

yields the discrete Nagumo equation in its normalized form,

dWn

dt
= D(Wn+1 +Wn−1 − 2Wn) + f(Wn). (34)

Therefore, an electronic implementation of the overdampednetwork pre-
sented in section II.A is realized.
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B. Noise filtering of a 1D signal

One of the most important problem in signal or image processing is probably
to remove noise from a coherent information. In this section, we intensively
develop the principle of nonlinear noise filtering inspiredby the overdamped
systems (Marquiéet al, 1998). In addition, using the electrical nonlinear net-
work introduced in section IV.A, we also present an electronic implementation
of the filtering tasks .

1. Theoretical analysis

To investigate the response of the overdamped network to a noisy signal
loaded as initial condition, we first consider the simple case of a constant
signal with a sudden change of amplitude. Therefore, we study the discrete
normalized Nagumo equation

dWn

dt
= D(Wn+1 +Wn−1 − 2Wn) + f(Wn), (35)

with f(Wn) = −Wn(Wn − α)(Wn − 1) in the specific caseα = 1/2.
Furthermore, the initial condition applied to the celln is assumed to be
uniform for all cells, except for the cellN/2 where a constant perturbation
b0 is added; namely:

Wn(t = 0) = V 0 ∀n 6= N

2
WN/2(t = 0) = V 0 + b0. (36)

The solution of eq. (35) to the initial condition (36) can be expressed under
the following form

Wn(t) = Vn(t) + ǫbn(t) (37)

Inserting eq. (37) in eq. (35), we collect the terms of order 0and 1 inǫ with
the reductive perturbation methods to obtain the set of differential equations
(Taniuti and Wei, 1968; Taniuti and Yajima, 1969):

dVn
dt

= D(Vn+1 + Vn−1 − 2Vn) + f(Vn) (38)

dbn
dt

= D(bn+1 + bn−1 − 2bn) − (3V 2
n − 2Vn(1 + α) + α)bn (39)
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Assuming thatVn is a slow variable, eq. (38) reduces to

dVn
dt

= f(Vn), (40)

which provides the response of the system to a uniform initial conditionV 0

(see details in Appendix A):

V (t) =
1

2

(

1 +
V 0 − 1

2
√

(V 0 − 1
2
)2 − V 0(V 0 − 1)e−

t
2

)

. (41)

Next, to determine the evolution of the additive perturbation, it is convenient
to consider a perturbation under the following form

bn(t) = In(2Dt)g(t), (42)

whereIn is the modified Bessel functions of ordern (Abramowitz and Stegun,
1970). Substituting eq. (42) in eq. (39), and using the property of the modified
Bessel function:

dIn(2Dt)

dt
= D(In+1 + In−1), (43)

we obtain straightforwardly

dg

dt
= −2Dg −

[

3V 2
n − 2Vn(1 − α) + α

]

g, (44)

that is

dg

g
= −2Ddt−

[

3V 2
n − 2Vn(1 − α) + α

]

dt. (45)

Noting that

df(Vn)

dt
= −

[

3V 2
n − 2Vn(1 − α) + α

]

dVn
dt

, (46)

and deriving eq. (40) versus time, we get

V ′′
n

V ′
n

= −
[

3V 2
n − 2Vn(1 − α) + α

]

, (47)
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whereV ′
n etV ′′

n denote the first and second derivative versus time.
Combining eq. (47) and eq. (45) allows to expressg(t) as:

g(t) = Ke−2DtdVn
dt

(48)

where K is an integrating constant.
Deriving eq. (41), we obtaing(t) and thus the evolution of the perturbation:

bn(t) = K
In(2Dt)e

−2Dte−t/2

8

V 0(V 0 − 1
2
)(V 0 − 1)

[

(V 0 − 1
2
)2 − V 0(V 0 − 1)e−t/2

]3/2
(49)

Writing bn(t = 0) = b0n, provides the value of the integrating constantK.
The evolution of the perturbationbn(t) is then ruled by:

bn(t) =
b0n
8

In(2Dt)e
−2Dte−

t
2

[

(V0 − 1
2
)2 − V0(V0 − 1)e−

t
2

]
3

2

. (50)

Lastly, in the case of multiple perturbations, the perturbation at thenth node
of the lattice obeys to

bn(t) =
∑

n′

b0n′

8

In′−n(2Dt)e
−2Dte−

t
2

[

(V0 − 1
2
)2 − V0(V0 − 1)e−

t
2

]
3

2

, (51)

whereIn′−n is the modified Bessel function of ordern′ − n.
Eq. (41) shows that the evolution of the constant backgrounddoes not depends
on the couplingD. By contrast, eq. (51) reveals that the couplingD can
be tuned to speed-up the diffusion of the perturbation without affecting the
constant background. Therefore, in signal processing context, this property
can be used to develop a noise filtering tool.

2. Theoretical and numerical results

In order to valid the theoretical analysis developed in section IV.B.1, we have
solved numerically eq. (35) using a fourth order Runge-Kutta algorithm with
an integrating time stepdt = 10−3. Moreover, a uniform initial condition
V 0 = 0.4 is loaded for all theN = 48 cells of the network excepted for
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FIGURE 22. (a) Temporal evolution of a uniform initial conditionU0 = 0.4 applied to the
whole network.(b) Temporal evolution of the perturbation applied to the celln = 24 for D = 0.5

andb0 = 0.2. (c) Temporal evolution of the perturbation applied to the celln = 24 for D = 5 and
b0 = 0.2. Solid line: theoretical expressions (41) and (51),(o) signs: numerical results.

the 24th cell. Indeed, for this cell, an additive perturbationb0 = 0.2 is
superimposed onto the constant backgroundV 0 in order to match exactly the
initial condition (36) considered in the theoretical section IV.B.1.
We have first investigated the evolution of both the constantbackground and
the perturbation versus time. In fig. 22, the numerical results plotted with(o)
signs match with a perfect agreement the theoretical results predicted by eqs.
(41) and (51).
Moreover, the curves(a) of Fig. (22) shows that the constant background
given by eq. (41) is unaffected by the nonlinear systems whatever the coupling
valueD. By contrast, the behaviour of the system for the additive perturbation
b0 depends on the coupling parameterD (curves(b) and(c)). Indeed, for
weak coupling values, namelyD = 0.5, the perturbation slowly decreases
and seems to be quasi-unchanged, whereas forD = 5, the curve(c) exhibits
a greater decreasing behavior. After the timet = 0.4, the perturbation is
significantly reduced forD = 5. Therefore, the coupling parameterD can
be tuned to speed up the diffusion of the perturbation without disturbing the
constant background. Furthermore, the time acts as a parameter which adjusts
the filtering of the perturbation.
The state of the lattice for two different processing times is represented in fig.
23 (a) and(b) for the previous coupling values, that isD = 5 andD = 0.5
respectively. The initial perturbation represented in dotted line (curve(I))
has almost disappeared for the specific value of the couplingD = 5 and for
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FIGURE 23. Response of the lattice to a uniform initial condition corrupted by a constant
perturbation at two different processing times.(o) signs: numerical results; solid line: theoretical

expression (51).(a): D = 5; (b): D = 0.5. (I) initial condition fort = 0, (II) state of the lattice
for t = 1 , (III) state of the lattice fort = 2.

a processing timet = 2 (Fig. 23.(a) curve(III)). As expected, the curve
(III) of Fig. 23.(b) shows that the perturbation is not filtered forD = 0.5
and for the same processing timet = 2. Furthermore, in both cases the
constant background is slowly attracted by the nearest stable state, that is0 in
our case.
Note that the spatiotemporal views of fig. 24 also reveal thatthe noise filtering
is performed forD = 5 and a processing timet = 2.
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FIGURE 24. Spatio-temporal view of the response of the lattice to the previous initial condition.
(a): D = 5. (b): D = 0.5.
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FIGURE 25. Noise filtering of a one dimensional signal with an overdamped nonlinear network.
(a) : noisy sinusoidal signal sampled and loaded as initial condition at the nodes of the lattice.

σ = 0.15, N = 48 andA = 0.264. (b), (c), (d), (e) correspond to the filtered signal obtained for
the following couples of processing timet and couplingD: (b) (t = 0.4, D = 0.5); (c)

(t = 1, D = 0.5); (d) (t = 0.4, D = 5); (e) (t = 1, D = 5).

Lastly, to valid the processing task realized by the overdamped system,
we propose to remove the noise from a more complex signal, that is a noisy
sinusoïdal signal. The signal is first sampled with a total number of samples
corresponding to the size of the overdamped network, namelyN . Next, a
serial to parallel conversion is realized to load theN samples at the nodes
of the1D lattice. Therefore, we are led to consider the distributionof initial



NONLINEAR SYSTEMS FOR IMAGE PROCESSING 41

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6
0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1

n o r m a l i z e d  t i m e

W ( a )

( b )
( c )

FIGURE 26. (a) Temporal evolution in normalized units of a uniform initialcondition
W 0 = 0.4 applied to the network.(b) Temporal evolution of the perturbation applied to the cell

n = 24 for b0 = 0.2 andD = 0.5 corresponding to a coupling resistorR = 3KΩ. (c) Temporal
evolution of the perturbation applied to the celln = 24 for b0 = 0.2 andD = 5 corresponding to a

coupling resistorR = 300Ω. C = 33nF , Nonlinearity parametersβ = 1, Vb = 1.12V ,
Va = 0.545V involvingα = 0.49.

conditions of figure 25.(a) obeying to

xn = A cos

(

2π
2n

N

)

+
1

2
+ ηn, (52)

whereηn is a discrete white gaussian noise ofRMS amplitudeσ = 0.15.
A and 2/N represent respectively the amplitude and the frequency of the
coherent signal.
We first numerically investigate the response of the networkwith the coupling
D = 0.5. As in the case of a constant background corrupted by a local
perturbation, the system is unable to remove the noise from the sinusoidal
signal for both the processing times presented in fig. 25.(b) and (d). By
contrast, for the favorable value of the couplingD = 5, the noise is
completely filtered at the processing timet = 1 as shown in fig. 25.(e).

3. Experimental results

To valid the electronic implementation of the nonlinear noise filtering tool,
we consider the nonlinear electrical lattice introduced insection IV.A with
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FIGURE 27. Response of the lattice to a uniform initial condition corrupted by a constant
perturbation at two different processing times. Parameters: C = 33nF , Vb = 1.12V ,

Va = 0.545V , α = 0.49. (a): R = 300Ω that isD = 5;(b): R = 3KΩ that isD = 0.5. (I)
initial condition for t=0,(II) state of the lattice fort = 2 (τ = 0.1ms), (III) state of the lattice for

t = 4 (τ = 0.2ms).

the nonlinear resistor of figure 18.(b). In order to match the coupling value
D = 5 andD = 0.5, the coupling resistorR is set toR = 300Ω and
R = 3KΩ respectively. Moreover, all results are presented in normalized
units using the transformation (33) to allow a direct comparison with the
theoretical analysis of section IV.B.2. First, we experimentally report in fig 26
the temporal evolution of the set of initial conditions consisting of a constant
signal locally corrupted by a perturbation. As predicted inthe theoretical
section, the constant background is unaffected whatever the coupling value
(curve (a)) whereas when the coupling is adjusted to its favorable value
D = 5, the perturbation can be removed after a normalized processing time
t = 0.4 (curve(c)). This results is also confirmed by the spatial response of
the system at two different processing times. Indeed, as shown in Fig. 27,
the state of the lattice fort = 2 andt = 4 provides the signal without the
perturbation only if the couplingD is chosen equal to5.

Lastly, we propose to filter the noisy sinusoidal signal of fig. 28.(a).
After a processing timet = 0.6, the noise is completely removed for the
couplingD = 5 (fig. 28.(c)), which is not the case if the coupling is set to
D = 0.5 (fig. 28.(b)). Therefore, with a suitable choice of both processing
time and resistor coupling, a noise filtering tool inspired by the properties of
the nonlinear overdamped network is electronically implemented. Moreover,
according to the transformation (33), the processing time could be adjusted
by the worth of the capacitorC to match real time processing constraints.
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FIGURE 28. Noise filtering of a one dimensional signal with an electrical nonlinear lattice.(a) :
normalized noisy sinusoidal signal given by eq. (52) loadedas initial condition at the nodes of the
lattice. σ = 0.15, N = 48 andA = 0.264. (b) : Filtered signal obtained for a processing time

t = 0.6 (τ = 92.3µs) and a couplingD = 0.5 (that isR = 3KΩ). (c) : Filtered signal obtained
for a processing timet = 0.6 (τ = 92.3µs) and a couplingD = 5 (that isR = 300Ω). Parameters:

C = 100nF , β = 1, Vb = 1.12V , Va = 0.545V .

C. 2D filtering: Image processing

We now numerically extend the properties of the one dimensional lattice to
a two dimensional network. We are led to consider aCNN whose cell
stateWi,j , representing the gray level of the pixel numberi, j, obeys to the
following set of equations:

dWi,j

dt
= f(Wi,j) +D

∑

(k,l)∈Nr

(Wk,l −Wi,j), i, j = 2...N − 1, 2...M − 1, (53)

whereNr = {(i− 1; j), (i + 1, j), (i, j + 1), (i, j − 1)} is the set of the
four nearest neighbors,N × M the image size andf(Wi,j) represents the
nonlinearity. The boundary conditions for the edges of the image express

dW1,j

dt
= f(W1,j) +D(W1,j−1 +W2,j +W1,j+1 − 3W1,j), j = 2..M − 1
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dWN,j

dt
= f(WN,j) +D(WN,j−1 +WN−1,j +WN,j+1 − 3WN,j), j = 2..M − 1

dWi,1

dt
= f(Wi,1) +D(Wi−1,1 +Wi+1,1 +Wi,2 − 3Wi,1), i = 2..N − 1

dWi,M

dt
= f(Wi,M ) +D(Wi−1,M +Wi+1,M +Wi,M−1 − 3Wi,M ), i = 2..N − 1

while for the image corners, we consider the two nearest neighbors, that is

dW1,1

dt
= f(W1,1) +D(W2,1 +W1,2 − 2W1,1),

dWN,M

dt
= f(WN,M) +D(WN,M−1 +WN−1,M − 2WN,M),

dWN,1

dt
= f(WN,1) +D(WN−1,1 +WN,2 − 2WN,1),

dW1,M

dt
= f(W1,M) +D(W2,M +W1,M−1 − 2W1,M ).

1. Noise filtering

The initial condition applied to the celli, j of the network corresponds to the
initial gray levelW 0

i,j of the noisy image represented in fig. 29. The image
after a processing timet is obtained noting the stateWi,j(t) of all cells of the
network at this specific timet (Comteet al, 1998).

In fig. 30, we have reported the filtered image obtained at the processing
timest = 1, t = 3, t = 6, t = 9 and for the coupling valuesD = 0.075,
D = 0.1, D = 0.2 andD = 0.3 respectively. The bistable behaviour of the
system established in section II.A.1 involves a natural evolution of the image

FIGURE 29. Noisy image of the Coliseum.
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towards the two stable states of the system, namely 0 and 1. Itmeans that,
as time grows, the image evolves to a black and white pattern.Therefore,
to realize a correct noise filtering, the coupling parameterand the processing
time must be adjusted.

For the lowest coupling valueD = 0.075, fig. 30 shows that the noise
is not removed before the image is binarized. For the coupling parameter
D = 0.2 andD = 0.3, even if the noise is quickly removed, the filtered
image becomes blurred fort = 6 and t = 9 (Fig. 30.(k),(l), (o),(p)).
Therefore, these settings of the coupling parameter are unappropriate. In fact,
in fig 30.(f) and(g), we have obtained the filtered image with the best setting
of the coupling and of the processing time, that is a couplingD = 0.1 and
the processing timest = 3 or t = 6. Indeed, the filtered images are neither
blurred nor binarized. Moreover, the system does not only remove the noise,
it also enhances the contrast of the initial image.

2. Edge Filtering

Because of a strong relationship between edge and object recognition, edge
detection constitutes one of the most important steps for image recognition.
Indeed, scene information can often be interpreted thanks to the edges. Clas-
sical edge detection algorithms are based on a second order local derivative
operator (Gonzalez and Wintz, 1987) while nonlinear techniques of edge
enhancement are mainly inspired by the properties of reaction-diffusion media
(Rambidiet al, 2002; Chua and Yang, 1988).

We propose here a strategy of edge detection based on the propagation
properties of the nonlinear diffusive medium (Comteet al, 2001). The image
loaded in the 2-Dimensional network is the black and white picture of fig.
31.(a).

We have established in section II.A.2 that a 1D lattice modeled by the
Nagumo equation supports kink and anti-kink propagation owing to the
bistable nature of the nonlinearity. Indeed, if the nonlinearity threshold
parameterα < 1/2, the stable state1 propagates, while ifα > 1/2 the stable
state0 propagates. Therefore, extending this property to a 2 Dimensional
network allows to perform either erosion forα > 1/2 or dilation for
α < 1/2, which are basic mathematical morphology operations, commonly
performed in image processing (Serra, 1986). Moreover, if the initial image
is subtracted to the image obtained with the network obeyingto eq. (53) ,
we can deduce after a processing timet, the contours of the image. We have
reported in Fig. 31.(b) the contour of a black and white image and its profile
obtained with this method. The profile of the contour shows that its resolution
is about 10 pixels, which is too important to allow a good edgeenhancement
of a more complex image.
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FIGURE 30. : Noise filtering of the image represented in Fig. 29.(a), (b), (c), (d). Filtered
image obtained forD = 0.075 and for the respective processing timest = 1, t = 3, t = 6 and
t = 9. (e), (f), (g), (h) Filtered image obtained forD = 0.1 and for the respective processing

timest = 1, t = 3, t = 6 andt = 9. (i), (j), (k), (l) Filtered image obtained forD = 0.2 and for
the respective processing timest = 1, t = 3, t = 6 andt = 9. (m), (n), (o), (p) Filtered image

obtained forD = 0.3 and for the respective processing timest = 1, t = 3, t = 6 andt = 9.
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This poor resolution is mainly imputable to the spatial expansion of the kink
which results from the initial condition loaded in the lattice. Since the kink
expansion reduces with the coupling, a natural solution consists in lowering
the coupling. Unfortunately, the existence of the propagation failure effect
provides a lower bound of the couplingD∗ and thus hinder a contour detection
with a good resolution. An alternative solution can be developed by using
a nonlinearity which forbids the existence of the propagation failure effect.
Indeed, it has been shown for dissipative media (Bressloff and Rowlands,
1997) or for systems where both inertia and dissipation are taken into account
(Comte et al, 1999), that an inverse method allows to define a nonlinear
function for which exact discrete propagative kinks exists. Especially, in the
purely dissipative case, such function expresses

f(Wi,j) = Dǫ

[

(1 − a2/2) − (a0Wi,j + a1)
2

]

− Da2(a0Wi,j + a1)

1 − (a0Wi,j + a1)2
+ 2D(a0Wi,j + a1),(54)
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FIGURE 31. Contour detection of a black square in a white background. (a) initial image and its
profile. (b) Edge detection of the object and its profile obtained with thestandard cubic nonlinearity

(5) with thresholdα = 1/3. Processing timet = 4, D = 1. (c) contour and the corresponding
profile obtained with the nonlinearity (54). Processing time t = 4, D = 1.
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whereǫ = 0.5, a2 = 0.9, a0 = 1.483 anda1 = −0.742 to ensure that
the zeros of the nonlinearity remain0, 1/3 and1. As expected, when this
new nonlinearity is numerically implemented, the resolution of the detected
contour in Fig 31.(c) reduces to 3 pixels.
Note that edge enhancement with the nonlinear overdamped network is not

restricted to a black and white image. Indeed, the concept isbased on the
propagation properties of the system and can be extended to the case of an
image with 256 gray levels. For instance, we numerically propose to show the
contour enhancement of Fig. 32.(a) by considering the methodology used for
the edge detection of the black and white picture.
The simulation results are summarized in Fig. 32 for different processing
times in the favorable case of the nonlinear function (54). It is clear that
once again the time allows to adjust the quality of the processing. Indeed, for
processing times belowt = 1, the edges of the image details are not revealed,
whereas for processing times exceeding1.33, the details begin to disappear.
Furthermore, as times grows, the contours of the image are less and less thin
owing to the propagation mechanism. The best contour enhancement is thus
performed when the image details have not yet disappeared and when the
enhanced contours remain sufficiently thin. In fact, this situation corresponds
to the intermediate processing timet = 1.33 (Fig. 32.(e)).

3. Extraction of regions of interest

As explained in the previous subsections, in the case of the cubic nonlinearity,
a nonlinearity thresholdα = 0.5 allows to perform noise filtering, while
consideringα 6= 0.5 provides the contour of an image with a poor resolution.
Moreover, the nonlinearityf(W ) can be determined using an inverse method
to optimize the filtering task. Therefore, the choice of the nonlinearity is of
crucial interest to develop interesting and powerful imageprocessing tools. In
this section, we go one step further by proposing a new nonlinearity to extract
the regions of interest of an image representing the soldering between two
rods of metal (Morfuet al, 2007).

The noisy and weakly contrasted image of Fig. 33 presents 4 regions of
interest:

• First, the two rods of metal constitute the background of theimage in light
gray;

• The stripe in medium gray at the center of the image represents the
“soldered joint";

• A white spot corresponds to a “projection" of metal occurring during the
soldering of the two rods of metal;

• A dark gray spot represents a gaseous inclusion inside the soldering joint.
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(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

FIGURE 32. Contour enhancement of a an image with 256 gray levels realized with the modified
nonlinearity (54).(a) Initial image.(b), (c), (d), (e), (f), (g), (h), (i) and(j) Filtered image for
the respective processing timest = 0.33, t = 0.66, t = 1, t = 1.33, t = 1.66, t = 2, t = 2.33,

t = 2.66 andt = 3.
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FIGURE 33. Noisy and weakly contrasted image of a soldering betweentwo rods of metal. The

image histogram is represented at the right.

3.1. Limit of the bistable Network We first discuss the inability of the
bistable overdamped network ruled by eq. (53) to extract the4 objects of the
image. As explained in section II.A.1, the bistability is ensured by using the
cubic nonlinearity (3). According to the mechanical description of the bistable
system presented in section II, a pixel of the image is analogto a particle
experiencing a double well potentialφ(W ) = −

∫W

0
f(u)du and coupled to

its four nearest neighbors by springs of strengthD. As schematically shown
in Fig 34, the particle with initial positionW 0

i,j is attracted in one of the two
wells of potential depending on the competition between theresulting elastic
force

j - 1                     j                    j + 1

i - 1

i

i + 1

(a)
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0 . 0 0 4

0 . 0 0 8

0 . 0 1 2
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,j)

W 0 i , j

? ?
P a r t i c l e

(b)

FIGURE 34. Mechanical point of view of the bistable overdamped network used for image
processing.(a): The pixel with coordinatesi, j and gray levelWi,j is analog to an overdamped

particle coupled by springs of strengthD to its 4 nearest neighbors.(b) : The particle is attracted in
one of the two wells of the bistable potential according to the resulting elastic force applied by the 4

coupled particles.
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(a) (b) (c)

FIGURE 35. Filtered images obtained with the bistable overdamped network described by eq. (3)
and (53) in the caseα = 1/2. Coupling parameter:D = 0.05. Processing times:(a) t = 4; (b) :

t = 10; (c) : t = 3000.

D
∑

(k,l)∈Nr

(

Wk,l −Wi,j

)

, (55)

and the nonlinear forcef(Wi,j).
This property of the system involves that for sufficiently large time, the
network is organized near the two stable states set by the nonlinearity, namely
0 and1. In image processing context, it means that the resulting filtered image
tends to an almost black and white pattern. Fig. 35 confirms this evolution of
the filtered image versus the processing time since, when a cubic nonlinearity
is considered, a quasi- black and white image is obtained at the timet = 3000
(Fig. 35.(c)).

Note that for none of the proposed processing times, the bistable system
was able to properly remove the noise and to enhance the contrast of the
regions of interest. Indeed, fort = 4 the noise is reduced but the details
of the image begin to disappear (Fig. 35.(a)). Especially, the projection is
merged into the background fort = 10, revealing that the bistable nature of
the system destroys the coherent information of the initialimage (Fig. 35.(b)).
Therefore, the inability of the overdamped system to extract the regions of
interest is directly imputable to the bistable nonlinear forcef(W ).

3.2. The multistable network To solve this problem and to keep the
coherent structure of the image, we introduce a nonlinearity with a multistable
behavior. For instance, the following nonlinear force

f(W ) = −β(n− 1) sin

[

2π(n − 1)W

]

, (56)
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FIGURE 36. Multistable potential represented forβ = 9.82 × 10−2 andn = 5. The potential
barrier between two consecutive extrema isβ/π.

derives from a potentialφ(W ) = −
∫W

0
f(u)du which presentsn wells and

a potential barrier height between two consecutive potential extrema defined
by β/π. This potential is represented in Fig 36 in the case ofn = 5 wells of
potential.
The multistable behavior of the network obeying to eq. (53) with the
sinusoidal force (56) can be established by considering theuncoupled case.
SettingD = 0 in eq. (53), we obtain

dWi,j

dt
= −β(n− 1) sin

[

2π(n − 1)Wi,j

]

. (57)

The stability analysis of the system can be performed with the methodology
developed in section II.A.1 by considering the roots of the sinusoidal force
(56). According to the sign of the derivative of the sinusoidal force, we
can straightforwardly deduce that the unstable steady states of the system are
given by

Wthk = (2k + 1)/(2(n − 1)) with k ∈ Z, (58)

while the stable steady states are defined by

W ∗
k = k/(n− 1) with k ∈ Z. (59)

The eq. (57) is solved in Appendix C to give the temporal evolution of an
overdamped particle experiencing the multistable potential of fig. 36 in the
uncoupled case.
If k denotes the nearest integer of(n − 1)W 0

i,j , andW 0
i,j the initial position

of the particle, the displacementWi,j(t) of the particle obeys to

Wi,j(t) =
1

π(n− 1)

[

arctan

(

tan(π(n− 1)W 0
i,j)e

−β(n−1)22πt

)]

+
k

n− 1
. (60)
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The multistable behaviour of the system is illustrated in fig. 37, where we
have reported the temporal evolution of a particle submitted to different initial
conditions in the range[0; 1]. It is clear that the unstable steady states of the
systemWthk act as thresholds, while the stable steady statesW ∗

k correspond
to attractors. Indeed, the final state of the particle depends on the value of the
initial condition compared to the thresholdsWthk. Especially, if we neglect
the transient, the asymptotic behavior of the uncoupled network reduces to
the following rules

if
2k − 1

2(n− 1)
< W 0

i,j <
2k + 1

2(n− 1)
Wi,j(t 7→ +∞) =

k

(n− 1)
. (61)

Therefore, the asymptotic functioning (61) of the uncoupled network proves
the multistable behavior of the system.
We now numerically use this multistable feature to extract the regions of
interest of the image. In the coupled case, a pixel with initial gray level
W 0
i,j can take one of then possible stable states according to the competition

between the sinusoidal force and the resulting elastic force. The specific case
n = 5 is numerically reported in Fig. 38.
Unlike the bistable network, the noise is quickly removed without disturbing
the coherent structure of the image consisting of “the projection", “the
gaseous inclusion", “the background" and the “soldered joint" (Fig. 38.(a)
for t = 0.2 and (b) for t = 2). Next, for sufficiently large time, namely

0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5         0 . 0 4      0       - 0 . 0 4
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1 W 5 *

W 4 *
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W 3 *

FIGURE 37. Temporal evolution of an overdamped particle experiencing the multistable
potential. Parameters:n = 5 andβ = 0.25. Solid line: theoretical expression (60),(o) signs:

numerical results obtained solving eq. (57)
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(a) (b) (c)

FIGURE 38. Filtered images obtained with the multistable overdamped network described by
eqs. (53) and (56). Nonlinearity parameters:β = 9.82 × 10−2, n = 5. Coupling parameter:

D = 1.6. Processing times:(a) t = 0.2; (b) : t = 2; (c) : t = 5000.

t = 5000, the image no longer evolves and each defect of the soldering
appears with a different mean gray level corresponding to one of the5 stable
steady states of the system (Fig. 38.(c)). An extraction of the interest regions
of the image is then performed with this overdamped network.

3.3. Electronic implementation of the multistable network The elec-
tronic implementation of the multistable network is realized according to the
methodology of Fig. 39, by coupling elementary cells with linear resistors.
Each elementary cell includes a capacitor in parallel with anonlinear resistor

j - 1                     j                    j + 1

i - 1

i

i + 1

R N L
C

RR
R

R

RR

R

I N L ( U i , j )

U i , j

U i - 1 , j + 1U i - 1 , jU i - 1 , j - 1

U i + 1 , j + 1U i + 1 , jU i + 1 , j - 1

U i , j + 1
U i , j - 1

R

R

R

FIGURE 39. Electronic sketch of the multistable nonlinear network. R Represents the coupling
resistor,C a capacitor andRNL a nonlinear resistor.
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whose current-voltage characteristics can be approximated by the sinusoïdal
law on the range[−2V ; 2V ]:

INL(U) ≃ IM sin(2πU). (62)

The methodology detailed in the section IV.A to realize the cubic nonlinearity
with a polynomial source can be once again used to obtain the sinusoidal law
(62). First, a least square method at the order15 allows to fit the sinusoidal
expression (62) by a polynomial lawP (U) in the range[−2V ; 2V ]. It
provides the coefficients of the polynomial sourceP (U) to generate the
sinusoidal current

INL(U) = P (U)/R0. (63)

The experimental current-voltage characteristics is compared in Fig. 40.(b)
to the theoretical expression (62). The weak discrepanciesobserved between
the theoretical and experimental laws can be reduced by increasing the order
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FIGURE 40. (a) : Response of an elementary cell of the multistable network todifferent initial
conditions in the uncoupled case. The plot of the theoretical expression (60) in solid line is compared

to the experimental results represented by crosses.(b) : Nonlinear current-voltage characteristics.
The sinusoidal law (62) in solid line matches the experimental characteristics in+ signs. The

Components values areR0 = 2KΩ, C = 390nF , IM = 2mA. The zeros of the sinusoidal current
defines the4 unstable statesUth1, Uth2, Uth3, Uth4 which correspond to thresholds and the5
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of the least square method. However, enhancing the agreement with the
sinusoidal law presents the main disadvantage to considerably increase the
number of electronic components used for the realization ofthe nonlinear
resistor. Nevertheless, at the order15, the experimental nonlinear current
presents9 zeros and its derivative ensures the existence of5 stable steady
states and4 unstable steady states. It is thus not of crucial interest toincrease
the order of the approximation, provided that the nonlinearresistor exhibits
the multistability.
Applying the Kirchhoff laws to the electrical network of Fig. 39, we deduce
the differential equation, which rules the evolution of thevoltageUi,j at the
nodes(i, j)

C
dUi,j
dτ

= −INL(Ui,j) +
1

R

∑

(k,l)∈Nr

(Uk,l − Ui,j). (64)

In eq. (65),Nr = {(i; j − 1), (i; j + 1), (i− 1; j), (i+ 1; j)} denotes the
neighborhood andτ represents the experimental time.
Next, the transformations

τ = tR0C, β =
IMR0

(n− 1)2
, Ui,j = Wi,j(n− 1) − 2 and D =

R0

R
, (65)

lead to the normalized equation

dWi,j

dt
=
P (Wi,j(n− 1) − 2)

n− 1
+D

∑

(k,l)∈Nr

(Wk,l −Wi,j). (66)

The normalization is completed by noting that forWi,j ∈ [0; 1], that is for
Ui,j ∈ [−2V ; 2V ],

P

[

Wi,j(n− 1) − 2

]

= −R0INL

[

Wi,j(n− 1) − 2

]

≃ −β(n− 1)2 sin(2π(n − 1)Wi,j). (67)

The experimental network described by eq. (66) appears as ananalog
simulation of the normalized multistable network used for image processing.

Let us finally reveal the multistable behaviour of the elementary cell of
the experimental network by investigating its response to different initial
conditions in the uncoupled case. In addition, to allow a direct comparison
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with the theoretical expression (60), all the results are presented in normalized
units in Fig. 40.(a). First, we note that the component uncertainties does
not explain the observed discrepancies. The poor matching between the
experimental results and the theoretical prediction is rather imputable to the
nonlinearity provided by the nonlinear resistor, which does not follow exactly
the sinusoidal law (62). Nevertheless, the multistable property of the system is
experimentally established. Indeed, there exist4 threshold values,Uth1,Uth2,
Uth3 andUth4 which allow to determine the final state of the elementary cell
among the5 possible stable steady states,U∗

1 , U∗
2 , U∗

3 , U∗
4 , U∗

5 . Therefore,
the image processing task inspired by the multistable property of the system
is implemented with the electronic device of Fig. 39.

V. CONCLUSION

In this chapter, we have reported a rich variety of image processing operations
inspired by the properties of nonlinear systems. Considering a mechanical
analogy, we have split the class of nonlinear systems into purely inertial
systems and overdamped systems. Using this original description, we have
established the properties of nonlinear systems in the context of image
processing.

For purely inertial systems, image processing tasks such ascontrast en-
hancement, image inversion, gray level extraction or imageencryption can
be performed. The applications of the nonlinear techniquespresented in
this review are similar to those developed by mean of chemical active
media (Teuscher and Adamatzky, 2005), even if these last media are rather
overdamped than inertial. In particular, the dynamics of the nonlinear
oscillators network, which enables contrast enhancement,can also be used to
reveal “hidden images". Indeed, “hidden images" are definedas fragment of
picture with brightness very close to the brightness of the image background.
Despite a weak difference of brightness between the hidden image and the
image background, our nonlinear oscillators network will take advantage of
its properties to reveal the hidden image.
Another interesting property of this network is to reveal consecutively fields
of the image with increasing or decreasing brightness at different processing
times. We trust that this feature, also shared by Belousov-Zhabotinsky chem-
ical media, may have potential applications in image analysis in medicine
(Teuscher and Adamatzky, 2005).
Lastly, the noise effects in this purely inertial network leads to cryptography
applications. Unlike classical cryptography devices, built with chaotic oscilla-
tors, we have proposed an encryption scheme based on the reversibility of our
inertial system. Moreover, the encryption key, which ensures the restoration
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of the initial data, is the time of evolution of the data loaded in the nonlinear
network. Therefore, the main advantage of our device is to allow an easy
change of the encryption key.

On the other hand, the properties of strongly dissipative oroverdamped
systems can also give rise to interesting image processing tools. For instance,
we have shown the possibility to realize noise filtering, edge detection, or
extraction of regions of interest of a weakly contrasted picture. Concerning
noise filtering applications based on reaction-diffusion media, the processing
is based on the transient behavior of the network since the filtered image
depends on the processing times. By contrast, the extraction of regions of
interest presents the main advantage to be independent fromthe processing
time since the filtering is realized when the network reachesa stationary
pattern. Therefore, this feature can allow an automatic implementation of
the processing task.

VI. OUTLOOKS

A. Outlooks on microelectronic implementation

For each nonlinear processing example, we have attempted topropose an
electronic implementation using discrete electronic components. Even if these
macroscopic realizations are far from real practical applications, they present
the main advantage to valid the concept of integration of CNNfor future
development in microelectronics.

Indeed, in recent years, the market for solid-state image sensors has been
experiencing explosive growth due to the increasing demands for mobile
imaging systems, video cameras, surveillance, or biometrics. Improvements
in this growing digital world continue to be made with two main image
sensor technologies: charge coupled devices (CCD) and CMOSsensors. The
continuous advances in CMOS technology for processors and DRAMs have
made CMOS sensor arrays a viable alternative to the popular CCD sensors.
New technologies provide the potential for integrating a significant amount
of VLSI electronics into a single chip, greatly reducing thecost, power con-
sumption, and size of the camera (Fossum, 1993; Fossum, 1997; Seitz, 2000;
Litwiller, 2001). In past years, most of the work on complex CMOS systems
have dealt with the integration of sensors providing a processing unit at chip
level (system-on-chipapproach) or at column level by integrating an array of
processing elements dedicated to one or more columns (Yadid, 2003; Acosta,
2004; Kozlowski, 2005; Sakakibara, 2005). Indeed, pixel-level processing is
generally dismissed because pixel sizes are often too largeto be of practical
use. However, as CMOS image sensors scale to 0.18µm processes and
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under, integrating a processing element at each pixel or group of neighboring
pixels becomes feasible. More significantly, employing a processing element
per pixel offers the opportunity to achieve massively parallel computations
and thus the ability to implement full image systems requiring significant
processing such as digital cameras and computational sensors (Loinaz, 1998;
Smith, 1998; Gamal, 1999). The last significant progress in CMOS technolo-
gies make possible the realization of vision systems on chip(VSoCs). Such
VSoCs are eventually targeted to integrate within a semiconductor substrate
the functions of optical sensing, image processing in spaceand time, high-
level processing, and the control of actuators. These chipsconsist of arrays
of mixed-signal processing elements (PEs) which operate inaccordance with
single instruction multiple data (SIMD) computing architectures.

The main challenge when designing a SIMD pixel parallel sensor array is
the design of a compact, low-power, but versatile and fully programmable
processing element. For this purpose, the processing function can be based
on the paradigm of Cellular Neural Networks (CNN). CNN can beviewed
as a very suitable framework for systematic design of image processing
chips (Roska, 2000). The complete programmability of the interconnection
strengths, its internal image-memories, and other additional features make
this paradigm a powerful front-end for the realization of simple and medium-
complexity artificial vision tasks (Espejo, 1996). Some proof-of-concept
chips operating on preloaded images have been designed (Rekeczky, 1999;
Czuni, 2001). Only a small amount of researches have integrated CNN on
real vision chips. As an example, Espejo (Espejo, 1998) reports a64 × 64
pixel programmable computational sensor based on a CNN. This chip is the
first fully operational CNN vision-chip reported in literature which combines
the capabilities of image-transduction, programmable image-processing and
algorithmic control on a common silicon substrate. It has successfully
demonstrated operations such as low-pass image filtering, corner and border
extraction, and motion detection. More recently, other works have focused
on the development of CMOS sensors including the CNN paradigm (Petras,
2003; Carmona, 2003). The chip consists of 1024 processing units arranged
into a 32 × 32 grid, and contains approximatively 500000 transistors in a
standard 0.5µm CMOS technology. However, in these pioneering vision
chips, the pixel size is often over than 100µm x 100 µm. Obviously,
these dimensions can not be considered as realistic dimensions for a real
vision chip. A major part of this crucial problem should be resolved in
future years by using the new emergent CMOS technologies. Indeed, CMOS
image sensors directly benefit from technology scaling by reducing pixel size,
increasing resolution and integrating more analog and digital functionalities
on the same chip with the sensor. We expect that further scaling of CMOS
image sensor technology and improvement in their imaging performances will
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eventually allow the implementation of efficient CNN dedicated to nonlinear
image processing.

B. Outlooks on processing applications

The nonlinear processing tools developed in this chapter are inherited from
the properties of homogeneous media. In the case of applications based on
the properties of reaction-diffusion media, it could be interesting to consider
the effects of both nonlinearity and structural inhomogeneities. Indeed, novel
properties inspired by biological systems, which are rather inhomogeneous
than homogeneous (Keener, 2000; Morfuet al, 2002a; Morfuet al, 2002b;
Morfu, 2003), could allow to optimize the filtering tools developed in this
chapter.

For instance, in section IV.C.1, the noise removal method based on the
homogeneous Nagumo equation provides a blurry filtered image. It con-
stitutes an additional difficulty to extract the edge of the image with an
accurate location. Indeed, noting that the contours of the image corresponds to
step-like profiles, the diffusive process increases the spatial expansion of the
contours. To avoid this problem, anisotropic diffusion hasbeen introduced in
order to reduce the diffusive effect across the image contour. This method has
been proposed by Perona and Malik to encourage intraregion smoothing in
preference to interregion smoothing (Perona and Malik, 1990). To obtain this
property, Perona and Malik replaced the classical linear isotropic diffusion
equation

∂I(x, y, t)

∂t
= div(∇I), (68)

by

∂I(x, y, t)

∂t
= div(g(‖∇I‖)∇I), (69)

in order to adapt the diffusion with the image gradient. In eqs. (68) and
(69), I(x, y, t) represents the brightness of the pixel located at the spatial
position(x, y) for a processing timet, while‖∇I‖ is the gradient amplitude.
Moreover, the anisotropy is ensured by the functiong(‖∇I‖) which “stops"
the diffusion across the edges. For instance, Perona and Malik considered the
function

g(x) =
1

1 + x2

K2

, (70)
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whereK is a positive parameter.
Noting that whenx 7→ ∞, g(x) 7→ 0, the effect of anisotropic diffusion

is to smooth the original image while the contours are preserved. Indeed,
the edge of the image corresponds to brightness discontinuities which lead
to strong values of the image gradient (Blacket al, 1998). This interesting
property of anisotropic diffusion is illustrated in Fig 41.

For a sake of clarity, the algorithm developed by Perona and Malik is
rather extensively detailed in Appendix D and we only discuss here the results
obtained by filtering the noisy picture of fig 41.(a). Contrary to the isotropic
nonlinear diffusion based on the Nagumo equation, the edge of the image
remains well localized for all the processing times presented in Fig. 41.
However, although the noise seems removed for processing times exceeding
t = 5, the contrast of the image is never enhanced. Therefore, anisotropic
diffusion and nonlinear diffusion do not share the same weakness and it could
be interesting to attempt to circumvent the limitations of this two techniques.

For instance, if we compare the continuous equation (9) of nonlinear
diffusion with the anisotropic equation (69) proposed by Perona and Malik, it
is clear that the anisotropy can be introduced in our system via the coupling
parameterD. Moreover, with the Perona and Malik’s method, the pixels
brightness does not directly experiences the nonlinearityas in our method.
Therefore, the nonlinear noise filtering tool presented in section IV.C.1 could
be more efficient if the interesting properties of anisotropic diffusion were
also considered by introducing a coupling law. Especially,we expect that the
anisotropy preserves the location of the image edges, whilethe nonlinearity
enhances the image contrast and removes the noise in the sametime.

Lastly, we close this chapter by presenting another interesting and non-
intuitive phenomenon, which takes place in nonlinear systems under certain
conditions. This effect, known as Stochastic Resonance effect (SR), has been
introduced in the eighties to account for the periodicity ofice ages (Benziet
al, 1982). Since then, SR has been widely reported in a growing variety of
nonlinear systems (Gammaitoniet al, 1998), where it has been shown that
adding an appropriate amount of noise to a coherent signal ata nonlinear
system input enhances the response of the system. Detectionof subthreshold
signal using noise has been proven in neural information process (Longtin,
1993; Nozakiet al, 1999; Stocks and Manella, 2001) and in data transmis-
sion fields (Barbay, 2001; Zozor and Amblard, 2003; Morfuet al, 2003;
Comte and Morfu, 2003; Duan and Abbott, 2005) as well as information
transmission in array of such coupled stochastic resonator(Lindner et al,
1998; Chapeau-Blondeau, 1999; Básconeset al, 2002; Morfu, 2003). Recent
studies have also shown that noise can enhance image perception (Simonotto
et al, 1997; Mosset al, 2004), autostereograms interpretation (Ditzingeret
al, 2000), visual perception via eyes micro-saccade in retina(Hongleret al,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 41. : Noise filtering based on anisotropic diffusion. The filtering image are obtained
using the algorithm detailed in Appendix D with the parameters dt = 0.01 andK = 0.09. (a)

initial image,(b), (c), (d), (e), (f), (g), (h), (i) image for the respective processing timest = 1,
t = 2, t = 3, t = 4, t = 5, t = 6, t = 7, t = 8.

1998), image processing (Vaudelleet al, 1998; Chapeau-Blondeau, 2000;
Histace and Rousseau, 2006; Blanchardet al, 2007). The investigation of
noise effects in nonlinear systems is undoubtedly of great interest in nonlinear
signal processing or in image processing context (Zozor andAmblard, 1999;
Zozor and Amblard, 2005).

We thus propose to present the phenomenon of S.R. using the methodology
exposed in (Chapeau-Blondeau, 2000). Moreover, to show a visual perception
of the S.R. effect, we consider the black and white image of fig.42.(a), where
we note the probabilityp1 to have a white pixel andp0 = 1 − p1 the
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probability to have a black one.
A gaussian white spatial noiseηi,j with R.M.S. amplitude valueσ is added in
each pixelIi,j of the initial image. The resulting noisy image is then threshold
filtered with a thresholdVth to obtain the imageIb, according to the following
threshold filtering rule:

if Ii,j + ηi,j > Vth then Ibi,j
= 1

else Ibi,j
= 0. (71)

The similarity between the two imagesI andIb can then be quantified by the
cross-covariance (Chapeau-Blondeau, 2000)

CIIb
=

〈

(I − 〈I〉)(Ib − 〈Ib〉)
〉

√

〈

(I − 〈I〉)2

〉〈

(Ib − 〈Ib〉)2
〉

, (72)
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FIGURE 42. : (a) : Initial black and white image withp1 = 0.437. (b) : similarity measures
(72) and (73) versus the noise RMS amplitude valueσ for Vth = 1.1.
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or by

RIIb
=

〈

IIb

〉

√

〈

I2

〉〈

I2
b

〉

, (73)

where< . > corresponds to an average over the images.
These two similarity measures are defined by

RIIb
=

p1(1 − Fη(Vth − 1))
√

p1

[

p1

(

1 − Fη(Vth − 1)

)

+

(

1 − p1

)(

1 − Fη(Vth)

)]

.

and

CIIb
=
p1(1 − Fη(Vth − 1)) − p1q1

√

(p1 − p2
1)(q1 − q2

1)
.

with q1 = p1(1 − Fη(Vth − 1)) + (1 − p1)(1 − Fη(Vth)) and whereFη is
the cumulative distribution function of the noise.
In the case of a gaussian white noise ofR.M.S. amplitudeσ, the cumulative
distribution function can be expressed under the form

Fη(u) =
1

2
+

1

2
erf

(

u√
2σ

)

. (74)

In eq. (74) the error function is defined byerf(u) = 2√
π

∫ u

0
exp(−t2)dt.

The two quantities (72) and (73) are plotted versus the RMS noise amplitudeσ
in figure 42.(b), where a resonant-like behavior reveals the standard stochastic
resonance signature. Indeed, there exists an optimum amount of noise that
maximizes the similarity measures (72) and (73). Accordingto fig.42.(b),
this optimal noiseRMS value isσ = 0.4.
To valid the similarity measures, we qualitatively analyzethe pictures ob-
tained for different noise amplitudes . It is confirmed in fig.43 that the
noise optimal valueσ = 0.4 allows the best visual perception of the coliseum
through the nonlinear systems.

Even if the model of human visual perception is more complex than a
standard threshold filtering (Bályaet al, 2002), this simple representation
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(a) (b) (c) (d)

FIGURE 43. :(a), (b), (c), (d), Threshold filtered image with the rules (71) and a threshold
Vth = 1.1 and with white gaussian noise with respective RMS noise amplitudeσ = 0.1, σ = 0.4,

σ = 0.8, σ = 1.4.

is convenient to determine analytically the optimum amountof noise that
provides the best visual perception of images via Stochastic Resonance.
Moreover, the S.R. phenomenon is shared by a wide class of nonlinear
systems including neural networks which also intervenes inthe process
of images perception. Since neurons are basically threshold devices that
are supposed to work in a noisy environment, the interest of considering
noise effect seems to be of crucial importance in order to develop artificial
intelligence applications that perfectly mimic the real behavior of nature.
Therefore, for the next decades, we trust that one of the mostinteresting
challenge could be to complete the description of nonlinearmodels by
including the contribution of noise effects.
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APPENDIX A. RESPONSE OF A CELL OF THE OVERDAMPED

NETWORK

In the uncoupled case, and forα = 1/2, a particle of displacementW obeys
to

dW

dt
= −W (W − 1

2
)(W − 1). (75)

Separating the variables in Eq. (75) gives

2dW

W
− 4dW

W − 1/2
+

2dW

W − 1
= −dt, (76)

which can be integrated to obtain

W (W − 1)

(W − 1/2)2
= K exp− 1

2
t, (77)

whereK is an integration constant. Equation (77) can be arranged tobecome
a second order equation inW

W 2

(

1 −Ke−
1

2
t

)

−W

(

1 −Ke−
1

2
t

)

− 1

4
Ke−

1

2
t = 0. (78)

Provided that the discriminant is positive, the solutions are given by:

W (t) =
1

2
± 1

2

√

1

1 −Ke−
1

2
t
. (79)

Assuming that initially, the position of the particle isW (t = 0) = W 0, we
can express the integration constantK under the form

K =
W 0(W 0 − 1)

(W 0 − 1
2
)2

. (80)

Inserting the constant (80) in the solution (79) leads to thefollowing expres-
sion of the displacement:

W (t) =
1

2

(

1 ± |W 0 − 1
2
|

√

(W 0 − 1
2
)2 −W 0(W 0 − 1)e−

1

2
t

)

. (81)
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Assuming that whent 7→ +∞, the particle evolves to the steady states
W = 0 for W 0 < 1/2 andW = 1 for W 0 > 1/2, we finally obtain
the displacement of the particle with initial positionW 0 as

W (t) =
1

2

(

1 +
W 0 − 1

2
√

(W 0 − 1
2
)2 −W 0(W 0 − 1)e−

1

2
t

)

. (82)

APPENDIX B. RECALL ON JACOBIAN ELLIPTIC FUNCTION

We recall here the properties of Jacobian elliptic functions used in section
II.B. These three basic functionscn(u, k), sn(u, k), dn(u, k) play an
important role in nonlinear evolution equations and arise from the inversion
of the elliptic integral of first kind (Abramowitz and Stegun, 1970):

u(ψ, k) =

∫ ψ

0

dz
√

1 − k sin2 z
, (83)

wherek ∈ [0; 1] is the elliptic modulus. The jacobian elliptic functions are
defined by

sn(u, k) = sin(ψ), cn(u, k) = cos(ψ), dn(u, k) =

√

1 − k sin2(ψ). (84)

This definition involves the following properties for the derivatives:

d sn(u, k)

du
= cn(u, k)dn(u, k),

d cn(u, k)

du
= −sn(u, k)dn(u, k),

d dn(u, k)

du
= −ksn(u, k)cn(u, k), (85)

Considering the circular function properties, we also have

sn2(u, k) + cn2(u, k) = 1. (86)

Moreover, using the result (84), we obtain the following identity:

dn2(u, k) + ksn2(u, k) = 1. (87)
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APPENDIX C. EVOLUTION OF AN OVERDAMPED PARTICLE

EXPERIENCING A MULTISTABLE POTENTIAL

The equation of motion of an overdamped particle submitted to the sinusoidal
force (56) expresses

dW

dt
= −β(n− 1) sin

[

2π(n − 1)W

]

, (88)

whereW represents the particle displacement.
The steady states of the system are deduced from the zeros of the nonlinear
force. Using the methodology exposed in section II.A.1, we can establish that
the roots of the nonlinear force correspond alternatively to unstable and stable
steady states. Ifk is an integer, the unstable and stable states of the system
respectively write

Wthk =
k

(n− 1)
W ∗
k =

2k + 1

2(n− 1)
k ∈ Z. (89)

Separating the variables of eq. (88), we obtain

dW

sin

[

2π(n− 1)W

] = −β(n− 1)dt. (90)

Using the identitysin(2a) = 2 sin a cos a, eq. (90) becomes

dW

tan [π(n− 1)W ] cos2 [π(n− 1)W ]
= −β(n− 1)dt. (91)

Next, considering the derivative of the tangent function ineq. (91), yields

1

π(n− 1)

∫ t

0

d tan [π(n− 1)W ]

tan [π(n− 1)W ]
= −

∫ t

0

2β(n − 1)dt. (92)

A direct integration of eq. (92) gives

tan

[

π(n− 1)W

]

= tan

[

π(n− 1)W 0

]

e−β(n−1)22πt. (93)
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whereW 0 denotes the initial position of the particle.
Inverting the tangent function, provides straightforwardly the solution of eq.
(88) under the form

W (t) =
1

π(n− 1)

[

arctan

(

tan(π(n− 1)W 0)e−β(n−1)22πt

)]

+
k

n− 1
, (94)

wherek is an integer coming from the tangent inversion.
Note that from a physical point of view,k must ensure that the particle
position evolves towards one of the stable states of the system for a sufficiently
large time, that is whent 7→ +∞.
Indeed, for an initial condition between two consecutive unstable steady
states, the asymptotic behavior of the uncoupled network can reduce to the
following rule:

if
2k − 1

2(n − 1)
< W 0 <

2k + 1

2(n− 1)
W (t 7→ +∞) =

k

(n− 1)
(95)

This rule can be transformed to get

if k − 1

2
< (n− 1)W 0 < k +

1

2
W (t 7→ +∞) =

k

(n− 1)
(96)

Lastly, identifying eq. (94) with eq. (96) whent 7→ +∞, we deduce thatk
must be the nearest integer ofW 0(n − 1).

APPENDIX D. PERONA AND MALIK ANISOTROPIC DIFFUSION

ALGORITHM

We recall here the algorithm introduced by Perona and Malik to compute their
method based on anisotropic diffusion equation.
The anisotropic diffusion equation (69) can be discretizedwith the time step
dt to obtain

It+1
s = Its +

dt

ηs

∑

p∈Nr

g(∇Is,p)∇Is,p. (97)

In eq. (97),Its represents the brightness of the pixel located at the position
s in a discrete two-dimensional grid which corresponds to thefiltered image
after a processing timet. ηs is the number of neighbors of the pixels, that is
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4, except for the image edge whereηs = 3 and for the image corners where
ηs = 2. The spatial neighborhood of the pixels is notedNr. The local
gradient∇Is,p can be estimated by the difference of brightness between the
considered pixels and its neighborp:

∇Is,p = Ip − Its, p ∈ Nr. (98)

Lastly, the description of the system is completed by defining the edge
stopping functiong(x) as the lorentzian function:

g(x) =
1

1 + x2

K2

, (99)

whereK is a positive parameter.
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