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I. INTRODUCTION

Since about one hundred years, nonlinear science hadedttae attention of
researchers to circumvent the limitation of linear themirethe explanation
of natural phenomenons. Indeed, nonlinear differentiabéiqns can model
the behavior of oceans surface (Scott, 1999), the recuerehice age (Benzi
et al, 1982), the transport mechanisms in living cells (Murré889), the in-
formation transmission in neural networks (Naguet@l, 1962; Scott, 1999;
Izhikevich, 2007), the blood pressure propagation in egefPaquerot and
Remoissenet, 1994) or the excitability of cardiac tissugeseler G.W. and
Reuter H., 1977; Keener, 1987). Therefore, nonlinear seieppears as the
most important frontier for a better understanding of mnat{Remoissenet,
1999).

In the recent field of engineering science (Zakharov and \Wabt998;
Agrawal, 2002), taking into account the nonlinearity hdeve¢d to achieve
spectacular progresses in terms of transmission capadaitieptical fibers
via the concept of soliton (Remoissenet, 1999). More rdgenbnlinear
differential equation, arising in many areas of physicsldgy, chemistry and
ecology, have naturally inspired unconventional methdgsacessing which
allow to transcend the limitations of classical linear noeth (Teuscher and
Adamatzky, 2005). This growing interest for processingiapfions based on
the properties of nonlinear systems can be explained bylikeraation that
fundamental progress in several fields of computer scieeems sometimes
to stagnate. Novel ideas coming from interdisciplinarydiebften open
new directions of research with unsuspected applicatidesidcher and
Adamatzky, 2005).

On the other hand, complex processing tasks require mgeitisystems
that are able to adapt and learn by mimicking the behaviouhwhan
brain. Biologically inspired systems, most often desdlitiy nonlinear
reaction-diffusion equations, have then been proposedragaient solutions
to solve very complicated problems unaccessible to modemNeumann
computers. It was in this context that the concept(dV N has been
introduced by L. Chua and L. Yang as a novel class of inforomgbrocessing
systems with potential applications in such areas as imageepsing and
pattern recognition (Chua and Yang, 1988; Chua and Yangg8)198n
fact, CNN is an acronym for Cellular Neural Network when used in
the context of Brain science or Cellular Nonlinear Netwankthie context
of emergence and complexity (Chua, 1998). Since the pioneek of
L.O Chua, the CNN paradigm has rapidly evolved to cover a watege
of applications drawn from numerous disciplines, inclgditificial life,
biology, chemistry, physics, information science, noneorttional methods
of computing (Holderet al, 1991), video coding (Venetianet al, 1995;
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Arenaet al, 2003), quality control by visual inspection (Occhipiet al,
2001), cryptography (Yu and Cao, 2006; Caponettal, 2003), signal-image
processing (Julian and Dogaru, 2002),... (see (Tetzlai22for an overview
of the applications).

In summary, these latest two decades devoted to the studyoiVs
have led scientists to solve problems of artificial intellige by combining
the highly parallel multiprocessor architecture(olN N s with the properties
inherited from the nonlinear bio-inspired systems. Amadmg tasks of high
computational complexity routinely performs with nonlaresystems, one can
cite finding the optimal path in a two dimensional vector figAdjladzeet
al, 1997), image skeletonisation (Chua, 1998), finding thetekbpath in
a labyrinth (Chua, 1998; Rambidi and Yakovenchuk, 2001 )¢antrolling
mobile robot (Adamatzkyet al, 2004). However, the efficiency of these
nonlinear systems for signal-image processing or patesrognition does not
come only from their biological background. Indeed, thelmearity offers
an additional dimension lying in the signal amplitude, whigives rise to
novel properties not shared by linear systems. Noise relagtraa nonlinear
dissipative lattice (Marquiét al, 1998; Comteet al, 1998), contrast enhance-
ment based on nonlinear oscillators properties (Morfu amuhtg, 2004), edge
detection exploiting vibration noise (Honglet al, 1998), optimization by
noise of non-optimum problems or signal detection aided digenvia the
famous stochastic resonance phenomenon (Gammaitahil 998; Chapeau-
Blondeau, 2000; Comte and Morfu, 2003), constitute a nomicése list of
spectacular examples where the properties of nonlinetersgshave allowed
to overcome the limitation of classical linear approaches.

Owing to the rich variety of potential applications insgirby nonlinear
systems, rapidly the efforts of researchers have focusdtdeoaxperimental
realization of such efficient information processing degic Two different
strategies were introduced (Kuhnert, 1986; Chua and Yar”@3)Land
nowadays, the fascinating challenge of artificial intellige implementation
with C N N is still under investigation.

The first technique dates back from the late eighties withvibeks of
L. Kuhnert who proposed to take benefit of the properties obBsov-
Zhabotinsky type media for image processing purposes (&thri986;
Kuhnertet al, 1989). The main idea is that each mico-volume of the active
photo-sensitive chemical medium acts as a one-bit-processresponding
to reduced/oxidized state of the catalyst (Agladtel, 1997). This feature of
chemical photosensitive nonlinear media has allowed tdampnt numerous
tools of image processing. Edge enhancement, classicedtipes of math-
ematical morphology, the restoration of individual comeots of an image
with overlapped components (Rambédial, 2002), the image skeletonisation
(Adamatzkyet al, 2002), the detection of urban roads or the analysis of
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medical images (Teuscher and Adamatzky, 2005) represeamtfaoverview

of processing tasks computed by chemical nonlinear medaveider, even
considering the large number of chemical “processors’yérg low velocity

of trigger waves in chemical media is sometimes incompatibith real

time processing constraints imposed by practical apjdinat(Agladzeet

al, 1997). Nevertheless, the limitations of these unconeeatimethods of
computing no way dismiss the efficiency and high prospediseoprocessing
developed with active chemical media (Adamatzky and de L@ogtello,

2003).

By contrast, analog circuits do not share the weakness opteeious
strategy of integration. Therefore, because of their tiead- processing
capability, electronic hardware devices constitute thessthacommon way to
implementC' N N's (Chua and Yang, 1988). The first step to electronically
develop aC' NN for image processing purposes consists of designing an
elementary cell. More precisely, this basic unit@fV Ns usually contains
linear capacitors, linear resistors, linear and nonlineartrolled sources
(Chua and Yang, 1988; Comte and Marquié, 2003). Next, to ¢etep
the description of the network, a coupling law between dsllmtroduced.
Owing to the propagation mechanism inherited from the oomtiis-time
dynamics of the network, the cells do not only interact witleit nearest
neighbors but also with cells that are not directly connetdgether. Among
the applications which can be electronically realized, cae cite character
recognition (Chua and Yang, 1988), edge filtering (Corateal, 2001;
Chenet al, 2006), noise filtering (Marquiét al, 1998; Comteet al, 1998;
Julian and Dogaru, 2002), contrast enhancement and gray dstraction
with a nonlinear oscillators network (Morfu, 2005; Morétial, 2007).

On the other hand, the principle 6TN N's integration with discrete electronic
components is closely related to the development of noatiredectrical
transmission lines (NLTLs) (Remoissenet, 1999). Indeedjeu certain
conditions (Chua, 1998), the parallel processing of infation can be ruled
by nonlinear differential equations which also describe ¢lrolution of the
voltage at the nodes of an electrical lattice. It is thenrcieat considering a
one dimensional lattice allows signal filtering, while ending the concept to
a two dimensional network can provide image processingegijins.

The development of NLTLs was mainly motivated by the fact thase
systems are quite simple and relatively un expansive exgeral devices
allowing to study quantitatively the properties of nonhnevaves (Scott,
1970). In particular, since the pioneering works by Hiratd Suzuki (Hirota
and Suzuki, 1970) and by Nagashima and Amagishi (Nagashich&mag-
ishi, 1978) on electrical lines simulating the Toda latffgeda, 1967), these
NLTLs, which can be considered as analog simulators, pesigseful way to
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check how the excitations behave inside the nonlinear mediéger, 1985;
Kuusela, 1995; Marquiét al, 1995; Yamgouét al, 2007).

This chapter is mainly devoted to the presentation of somécpéar
nonlinear processing tools and to discuss their electiomptementation with
discrete components.

After having introduced the readers into a brief mechardesicription of
nonlinear systems, we first present a review of the progedidoth purely
inertial systems and overdamped systems. Then, in thewfioiipsections,
we take advantage of these properties to develop uncoovahtnethods of
processing. Especially, considering the features of gurartial systems,
we reveal the possibility to perform various image progegsasks such as
contrast enhancement of a weakly contrasted picture, ttraction of gray
levels, or the encryption of an image. The electronic skefthe elementary
cell of this inertial CNN is proposed and the nonlinear properties which
allows the previous image processing tasks are experitheimeestigated.
Next, the third part of this chapter is exclusively devotedthe filtering
applications inspired by reaction-diffusion media, liker instance, noise
filtering, edge detection or extraction of interest regioms weakly noisy
contrasted picture. In each case, the elementary cell cdlgatronicC N N
is developed and we experimentally investigate its belmawidhe specific
context of signal-image processing. We conclude by diseggshe possible
microelectronic implementations of the previous nonlnegstems. In
addition, the last section contains some perspectivesifard developments
inspired by recent properties of nonlinear systems. Iri@dar, we present a
paradoxical nonlinear effect known as stochastic resanéBenziet al, 1982;
Gammaitonket al, 1998; Chapeau-Blondeau, 1999) which is supposed to have
potential applications in visual perception (Simonattal, 1997).

We trust that the multiple topics proposed in this contiims will help
the readers in better understanding the potential apjitatbased on the
properties of nonlinear systems. Moreover, the variouselgic realizations
presented in this chapter will constitute a serious baakugglofor future
experiments and studies devoted to nonlinear phenomenattelVfor an
interdisciplinary readership of physicist and engineeas,finally hope that
this chapter will encourage the readers to perform their experiments.
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[I. MECHANICAL ANALOGY

In order to understand the image processing tools inspiyeldeoproperties of
nonlinear systems, we present here a mechanical analo@pgsé nonlinear
systems. From a mechanical point of view, we consider a obfggarticles

of massM submitted to a nonlinear forcg deriving from a potentia and
coupled with springs of strength. If W, represents the displacement of the
particlen, the fundamental principle of the mechanics writes:

d*W, aw, dd
M n no_ 1
dt? +A dt aw,, + B, @)
2
whereM ddt2 represents the inertia term ahgg corresponds to a friction

force. Furthermore, the resulting elastic foigg applied to thent" particle
by its neighbors can be defined by:

R,=D (Wj—Wn>, )
JENT

whereNr is the neighborhood, namelyr = {n — 1,n + 1} in the case of
a one dimensional chain.
We propose to investigate separately the purely inertiglecahat is

2 2
Md W >> )\M, and the overdamped one deduced W}\téw << )\d—W.
dt? dt dt? dt

A. Overdamped Case

In this section, an overdamped system is presented by riegjehe inertia
term of eq. (1) compared to the friction force. We specificatinsidetr = 1
and the case of a cubic nonlinear force

fW) = -WW —a)(W —1), (3)

deriving from the double well potentid(WW) = — fOW f(u)du as repre-
sented in figure 1 for different worths of The roots of the nonlinear force
0, and1 correspond to the positions of the local minima of the paatnt
namely the well bottoms, whereas the raotrepresents the position of
the potential maximum. The nonlinearity threshelddefines the potential
barrier A between the potential minimum with the highest energy amd th
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FIGURE1. Double well potential deduced from the nonlinear force (3) Fora < 1/2 the
well bottom with highest energy is locatedlat = 0, the potential barrier is given by
A =[5 f(uw)du = ¢(a) — ¢(0) . (b) Fora > 1/2 the symmetry of the potential is reversed:
W = 1 becomes the position of the well bottom of highest energythagbotential barrier is

A= [ fu)du = ¢(a) — p(1).

potential maximum. To explain the propagation mechanisthigichain, it is
convenient to define thexcited statéy the position of the potential minimum
with the highest energy, and thest stateby the position corresponding to the
minimum of the potential energy. As shown in figurédl, the excited state
is 0 and the rest state iswhen the nonlinearity threshold < 1/2. In the
casea > 1/2, since the potential symmetry is reversed, the excitee stat
becomed and the rest state i(figure 1(b)). The equation which rules this
overdamped nonlinear systems can be deduced from eq. d8ednwhen
the second derivative versus time is neglected compardubtiirst derivative
and when\ = 1, eq. (1) reduces to the discrete version of Fisher’'s equatio
introduced in the 1930’s as a model for genetic diffusiosifer, 1937):

aw,
T DW,iq1 + Wyq —2W,) + fF(W,,). 4

1. Uncoupled case

We first investigate the uncoupled case, thabDis= 0 in eq. (4) to reveal the
bistability of the system. The behavior of a single partafidisplacementV’
and initial positiont’’° obeys to

AW
= W —a)(W —1). (5)

The zeros of the nonlinear forc W = 1 andW = 0 correspond to
stable steady states, whereas the sklte= « is unstable. The stability
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analysis can be realized by solving eq. (5) substitutingniielinear force
f=-W(W —a)(W — 1) by its linearized expression near the considered
steady statedl’* € {0,1,a}. If fy-(W*) denotes the derivative versiis

of the nonlinear force folW = W*, we are led to solve:

dw . " *
E:fW(W)(W_W)"i'f(W) (6)
The solution of Eq. (6) can then be easily expressed as
(W U
W(t)=W*4CefvWit _ 22~ 7
w fw (W) )

whereC' is a constant depending on the initial condition, that isithtal
position of the particle. The solution (7), obtained witlireelr approximation
of the nonlinear forcef, shows that the stability is set by the sign of the
argument of the exponential function.
Indeed, forllW* = 0 andIW* = 1, the sign offy (W *) is negative, involving
thatV (¢ — oo) tends to a constant. Therefore, the two poifts = 0 and
W* =1 are stable steady states.
On the other hand, fd* = «, fy/(W*) is positive, inducing a divergence
for W(t — o0). W* = «is an unstable steady state.

We now focus our attention to the particular case= 1/2 since it will
allow interesting applications in signal and image proicgssontext.

This case is intensively developed in Appendix A, where ghswn that
the displacement of a particle with initial positid%i® can be expressed by

1

Wo 1
W(t) N 5(1 * \/(WO _ %)2 _ WO(WO _ l)e%t) ®)

This theoretical expression is compared in figure 2 to theerigal results
obtained solving eq. (5) using a fourth order Runge-Kutgoathm with
integrating time steplt = 1072 . As shown in figure 2, when the initial
conditionW? is below the unstable state= 1/2, the particle evolves toward
the steady statds Else, if the initial conditio??® exceeds the unstable state
a = 1/2, the particle evolves towards the other steady stafherefore, the
unstable states = 1/2 acts as a threshold and the system exhibits a bistable
behaviour.

2. Coupled case

We now consider the coupled case  0). In such systems ruled by eq.
(4), the balance between the dissipation and the nonliyegiies rise to
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FIGURE2. Bistable behaviour of the overdamped system in the @asel /2. Left: Evolution
of a particle for different initial conditions in the ran¢@ 1]. The solid line is plotted with the
analytical expression (8) whereas {9 signs correspond to the numerical solution of €%). for
different initial conditionsi?’© € [0; 1]. The potentiak obtained by integrating the nonlinear force
(3) is represented at the right to provide a reference.

the propagation of a kink, that is a localized wave, calldtusgive soliton
which propagates with constant velocity and profile (Resengt, 1999). To
understand the propagation mechanism, we first considewvea& coupling
limit and the caser < 1/2. The case of strong couplings, which corresponds
to a continuous medium, will be discussed later since italto theoretically
characterize the waves propagating in the medium.

1.1. Weak coupling limit As shown in figure 3a), initially, all particles
of the chain are located at the positidrthat is at the excited state. To initiate
a kink, an external forcing allows the first particle to crtespotential barrier
in W = « and to fall in the right well, at the rest state defined by thsifmn
W = 1. Thanks to the spring coupling the first particle to the selaame, but

despite the second spring, the second particle attemptass the potential
3

barrier with heightA (o) = —% + % (Morfu, 2003) (see figure 8h)).

According to the value of the resulting force applied to themsd particle
by the two springs compared to the nonlinear fofcbetween|0, «a], two
behaviors may occur:

1. If the resulting elastic force is sufficiently importantallow the second
particle to cross the potential barriér(«), then this particle fall in the
right well and pulls the next particle down in its fall. Sineach particle
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*(W.) = | (W,)

A(a):

FIGURE3. Propagation mechanisrtu) Initially all particles of the chain are in the excited state
0, that is at the bottom of the well with highest ener@}) State of the chain far > 0. The first
particle has crossed the potential barreand attempts to pull the second particle down in its fall.

of the chain successively undergoes a transition from thiezkstate) to

the rest statd, a kink propagates in the medium. Moreover, its velocity
increases versus the coupling and as the barrier decrezmaeglfy, asy
decreases).

2. Else, if the resulting force does not exceed a criticaliedl.e. if D <
D*(«)), the second particle cannot cross the potential barrittars stays
pinned at a positiom in [0; «[: it is the well known propagation failure
effect (Keener, 1987; Erneux and Nicolis, 1993; Klagkal, 2000; Comte
et al, 2001).

The mechanical model associated with eq. (4) reveals thabhenweak
coupling limit the characteristics of the nonlinear systera ruled by the
coupling D and the nonlinear threshold. Moreover, the propagation of a
kink is due to the transition from the excited state to thé seste and is only
possible when the couplin® exceeds a critical valuP*(«).

1.2. Limit of continuous media The velocity of the kink and its profile
can be theoretically obtained in the limit of continuous methat is when
the couplingD is large enough compared to the nonlinear strength.
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Then, in the continuous limit, the discrete Laplacian of €¢) can be
replaced by a second derivative versus the space vatiable

ow O*W
TR

+ f(W). (9)

This equation, introduced by Nagumo in the 1940s as an el@myear®presen-
tation of the conduction along an active nerve fiber, has goant meaning
in understanding transport mechanism in biological syst@dagumcet al,
1962; Murray, 1989).

Unlike the discrete equation (4), the continuous equa®ra{imits prop-
agative kink solution only iffo1 f(u)du # 0, which reduces tax # 1/2 in
the case of the cubic force (3) (Scott, 1999).

Introducing the propagative variabfe= 2z — ct, these kinks and anti-kinks
have the form (Fife, 1979; Henry, 1981)

W) =5 [1 + tanh (N%(g - £o>>], (10)

where&, is the initial position of the kink for = 0 and where the kink
velocity is defined by: = +1/D/2(1 — 2a).

Whena < 1/2, the excited state i8, and the rest state is Therefore, the
rest statel spreads in the chain, which set the sign of the velocity atingr
to the profile of the kink initiated in the nonlinear system:

1. If the profile is given by (¢) = % [1 — tanh (Tg_D(g — §O)>] , a kink

propagates from left to right with a positive velocity= /D /2(1 — 2«)
(fig. 4.(a) left).

2. Else, if the profile is set bW/ () = %[1+tanh (ﬁ(g—go)ﬂ , akink

propagates from right to left with a negative velocity: —/D/2(1—2«)
(fig. 4.(a) right).

Whena > 1/2, since the symmetry of the potential is reversed , the excite
states becomes and the rest state 8. The propagation is then due to a
transition betweer to 0 which provides the following behaviour:

LUW(E) =4 [1 — tanh (Tg_D(g - 50))] , a kink propagates from right
to left with a negative velocity = \/D/2(1 — 2«) (fig. 4.(b) left).
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FIGURE4. Propagative solution of the continuous Nagumo equa@ipmith D = 1. Spatial
representation of the kink fdr= 0 in dotted line and for = 20 in solid line. The arrow indicates
the propagation direction, the corresponding potentieggsesented at the right end to provide a
reference(a) a = 0.3. (b) @ = 0.7.

2. Else ifW(¢) = 1 [1 + tanh (2\/12_D(§ - 50))] , a kink propagates from

left to right with a positive velocityy = —+/D/2(1 — 2«) (fig. 4.(b)
right).

B. Inertial systems

In this section, we neglect the dissipative term of eq. (Ijhpared to the
inertia term and we restrict our study to the uncoupled cadeteover, in
image processing context, it is convenient to introduce @inear force f

under the form

fWV) = —Z(W —m)(W —m — a)(W —m + a), (11)

where,m anda < m are two parameters which allow to adjust the width and
heightA = wla*/4 of the potentialp (fig. 5):

BOW) = — /O Fu)du. (12)
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«—first particle: W,

_— second particle: W,

Potential energy

2
m-ai 2
W (Arb. Unit)
FIGURES. Double well potential deduced from the nonlinear forcE) {epresented for

m = 2.58, a = 1.02 andwg = 1. A particle with an initial conditioiV? < m — a+/2 evolves
with an initial potential energy above the barrisr

The nonlinear differential equation which rules the undedpghain can be
deduced by inserting the nonlinear force (11) into eq. (Ihw) = 0.
Neglecting the dissipative term, the particles of unitagsmare then ruled
by the following nonlinear oscillator equations:

LW,
= ). (13)

1. Theoretical analysis

We propose here to determine analytically the dynamics efribnlinear
oscillators obeying to eq. (13) (Morfu and Comte, 2004; Mcef al, 2006).
Settingz; = W; — m, eq. (13) can be rewritten as

dzxi

Tk —wizi(z; — a)(z; + ). (14)

Noting ¥ the initial position of the particlé and considering that all the
particles have initially a null velocity, the solutions of.e (14) can be
expressed with the Jacobian elliptic functions as

z;(t) = 2%cen(wit, k;), (15)
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wherew; and0 < k; < 1 represent respectively the pulsation and the
modulus of thecn function (see recall on the properties of Jacobian elliptic
function in Appendix B).

Deriving twice eq. (15) and using the properties (85), we get

CZ? = —2dwisn(wit, k;)dn(wit, k;),
d*x; 0 2 2 2
I —z,w;cen(wit, k;) |dn(wit, k;) — kisn®(wit, k;)|. (16)

Using the identities (86) and (87), eq. (16) can be rewriéign

(17)

dQZL'i . 2]{710012 9 2](31—1 02
a2 9 T 2k; Ti |

2

Identifying this last expression with eq. (14), we get thdsption of the
Jacobian elliptic function

w; = woy/ 2 — a2, (18)
and its modulus
1 20
22Y — a2 (19)

Lastly, introducing the initial conditio®V = x? + m, the solution of eq.
(13) can be straightforwardly deduced from egs. (15), (b8)@9):

Wi(t) = m + (W —m)en(wit, k;), (20)

with

L = my
2 (W2 —m)? —

wi(W2) = wo /(W2 —m)2 —a? and k(W) = = (21)

Both the modulus and the pulsation are driven by the initiaddition 1.
Moreover, the constraints to ensure the existence of theapahw; and of
the modulus respectively writg3V? — m)? — o > 0 and0 < k; < 1.
These two conditions restrict the range of the allowedahitbnditionsiv

to | — oo; m — a\/i] U [m + av/2; + oo|, as shown in figure 6, where
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FIGUREG. . (a): Normalized pulsation /wy versus the initial conditioV?. (b) Modulus
parametek versusWZ.O. The parameters of the nonlinearity = 2.58, a = 1.02 impose the
allowed amplitude range— oo; 1.137] |J[4.023; + oof.

the pulsation and the modulus are represented versus tia¢doinditioniV.
Note that this allowed range of initial conditions corresgsalso to a particle
with an initial potential energy exceeding the barrebetween the potential
extrema (see figure 5).

2. Nonlinear oscillators properties

To illustrate the properties of nonlinear oscillators, vensider a chain of
length N = 2 particles with a weak difference of initial conditions andtw
a null initial velocity. The dynamics of these two oscillegas ruled by eq.
(20), where the pulsation and modulus of both oscillatoesdiven by their
respective initial condition. Moreover, we have restidoberr study to the case
of the following nonlinearity parameters = 2.58, o = 1.02, wy, = 10* .
We have applied the initial conditiod? = 0 to the first oscillator, while
the initial condition of the second oscillator is set#d) = 0.2, which
corresponds to the situation of fig. 5.

Figure 7(a) shows that the oscillations of both particles take placenin t
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FIGURE7. (a) Temporal evolution of the two oscillators. Top: evolutiditiee first oscillator
with initial condition Wy = 0. Bottom: evolution of the second oscillator with initialruition
Wg = 0.2. (b) Temporal evolution of the displacement differerfcieetween the two oscillators.

Parametersin = 2.58, a = 1.02 andwg = 1.

range[W?; 2m — W] as predicted by eq. (20), thatfi; 5.16] for the
first oscillator and0; 4.96] for the second one. Moreover, owing to their
difference of initial amplitude and to the nonlinear beloawf the system,
the two oscillators quickly attain a phase opposition fog first time at
t = tope = 1.64 x 1072, This phase opposition corresponds to the situation
where the first oscillator has reached its minimii(¢,,:) = 0, whereas
the second oscillator has attained its maximidf(t,,;) = 4.96. As shown
in figure 7(b), the displacement differenaét) = Ws(t) — Wy(¢) is then
maximum fort = t,,, and become®(t,,;) = 4.96. For this optimal
time, a “contrast enhancement" of the weak difference dfainconditions
is realized, since initially the displacement differencas@(t = 0) = 0.2.
Note that in fig. 7(b), the displacement difference between the two oscillators
also presents a periodic behavior with local minima andllotaxima. In
particular, the differencé(t) is null fort = 3.96 x 1075, ¢ = 1.81 x 1074,
t = 35 x 1074 ¢t = 521 x 107% minimum fort = 1.4 x 1074,
t = 464 x 1074, ¢t = 1.47 x 1073 and maximum fort = 3 x 1074,
t = 6.29 x 1074, t = 1.64 x 10~3. These characteristic times will be
of crucial interest in image processing context to definefiltered tasks
performed by the nonlinear oscillators network.

Figure 6(a) reveals that the maximum variation of the pulsation comgpare
to the amplituddV’?, that isAw /wy, is reached folW? = m — a/2, that
is for a particle with an initial potential energy near theriga A. Therefore,
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to quickly realize a great amplitude contrast between the dgcillators, it
could be interesting to launch them with an initial amplagudeann — av'2,
or to increase the potential barrier height We choose to investigate this
latter solution by tuning the parameter of the nonlineasityhen the initial
amplitude of both oscillators remaif®? = 0 andW; = 0.2. The results

[npt topt
- TN |
X S
1 1
Nl Nl
§f\! -1 &N -1
T Y Lo
%-5 %-5
0 1 2 3 0 1 2 3
t x 107 t x 1073
(@) (b)
tapt tnpt
5
S S
= 2!
~ -1 ~ -]
> ~
13 13
%_5 %_5
0 1 2 3 0 1 2 3
t x10° t x10°7
(© (d)

FIGURES. Influence of the nonlinearity parameteon the displacement differendebetween
the two oscillators of respective initial conditiosand0.2. Parametersn = 2.58 andwo = 1. (a):
(topt = 1.75 x 1073; ¢ = 0.4). (b): (topt = 1.66 x 1073; o = 1.05). (c):

(topt = 1.25 x 1073; o = 1.5). (d): (topt = 0.95 x 1073; o = 1.63).
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are reported in figure 8, where we present the evolution ofiiffierenced (¢)
for different worths ofo.

As expected, when the nonlinearity parameténcreases, the optimal time
is significatively reduced. However, wheris adjusted near the critical value
(m—WJ)/+/2 asin figure 8d), the optimum reached by the differenife)
is reduced tod.517 for « = 1.63 instead 0f4.96 for &« = 1.02. Even
if it is not the best contrast enhancement which can be peddrby the
system, the weak difference of initial conditions betwedsm tivo oscillators
is nevertheless strongly enhanceddos= 1.63.

To highlight the efficiency of nonlinear systems, let us édesthe case of
alinear forcef (W) = —woW in eq. (13).

In the linear case, the displacement differea¢e) between two harmonic
oscillators can be straightforwardly expressed as

0(t) = ecos(wpt), (22)

where e represents the slight difference of initial conditionsvibetn the
oscillators. This last expression shows that it is impdesib increase
the weak difference of initial conditions since the diffiece §(¢) always
remains in the rangé—¢; ¢]. Therefore, taking into account nonlinearity
is a convenient solution to overcome the limitation of linegstem and to
enhance a weak amplitude contrast.

[1l. I NERTIAL SYSTEMS

In this section, we present different image processingstaskpired by
the properties of the nonlinear oscillators presented atige [I.B. Their
electronic implementation is also discussed.

A. Image processing

By analogy with a particle experiencing a double well patnthe pixel
number(i, j) is analog to a particle (oscillator) whose initial positicorre-
sponds to the initial gray IevéVi?j of this pixel. Therefore, itV x M denotes
the image size, we are led to consider a two dimensional mkiwo Cellular
Nonlinear Network C N N), consisting of uncoupled nonlinear oscillators.
The node;, 5 of this CNN obeys to

dQVVi-j 2
e —wo(Wij —m—a)Wi; —m+a)(W;; —m),  (23)
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withi =1,2...N andj = 1,2.., M.

Note that we take into account the range of oscillatihs 2m — W]
predicted in section 11.B.2 to define the gray scale of thegesa namely)
for the black level an@m = 5.16 for the white level.

The image to process is first loaded as initial condition atrtbdes of the
C' N N. Next, the filtered image for a processing titnean be deduced noting
the position reached by all oscillators of the network a$ #pecific timet.
More precisely, the state of the network at a processing tim@btained by
solving numerically eq. (23) with a fourth order Runge-kKadgorithm with
integrating time stegt = 10~°.

1. Contrast enhancement and image inversion

The image to process with the nonlinear oscillator netwarkhie weak
contrasted image of figure (&). Its histogram is restricted to the range
[0; 0.2], which means that the maximum gray level of the im&ge) is the
initial condition of at least one oscillator of the netwowile the minimum
gray level of the imag€0) is also the initial condition of at least one oscillator.
Therefore, the pixels with initial gray leveél and 0.2, oscillate with the
phase differencé(t) predicted by figure 7b). In particular, as explained
in section 11.B.2, their phase differendét) can be null for the processing
timest = 3.96 x 1074, 1.81 x 1074, 3.5 x 10~%, 5.21 x 10~*; minimum for
t=1.4x10"%4.64 x 1074, 1.47 x 10~3 and maximum fot = 3 x 1074,
6.29 x 1073, 1.64 x 1073. As shown in figure 9b), (d), (f) and (h),
the image goes through local minima of contrast at the psicgsimes
corresponding to the zeros @ft) . Furthermore, the processing times
providing the local minima of(¢) realize an image inversion with a growing
contrast enhancement (Fig. (&), (¢) and (j)). Indeed, since the minima
of §(t) are negative, for these processing times the minimum ofrthiali
image becomes the maximum of the filtered image and viceavelastly,
the local maxima of(¢) allow to achieve local maxima of contrast for the
corresponding processing times (Figs.(e9. (i), (k)). Note that the best
enhancement of contrast is attained at the processing timfor which §(t)

is maximum. The histogram of each filtered image in fig. 9 ats@als the
temporal dynamic of the network. Indeed, the width of thegmhistogram is
periodically increased and decreased, which involvesttteatontrast of the
corresponding filtered image is periodically enhanced duced.

Another, interesting feature of the realized contrast i®iteined by the
plot of the network response at the processing tigpe (Morfu, 2005). In-
deed, this curve also represents the gray level of the pitéhe filtered image
versus their initial gray level. Therefore, the horizordals corresponds to
the initial gray scale, namelfp); 0.2], whereas the vertical axis represents
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FIGURE. Filtered images and their corresponding histogram néthwith the nonlinear
oscillators network (23) for different processing timés) : Initial image (¢ = 0). (b) :
t=2396x107% (c):t=14x10"% (d): t =181 x 1074, (e) : t =3 x 10™%. (f) :
t=35x10"% (g) :t =464 x 1074, (h) : t =521 x 1074, (4) : t = 6.29 x 1074, (§) :
t=1.47 x 1073, (k) : t = topt = 1.64 x 1073, Parametersm = 2.58, o = 1.02, wp = 1.
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FIGURE10. Response of the nonlinear system for different nontityeparametersy at the
corresponding optimal tim&,,: (solide line) compared to a uniform rescaling (dotted liri)e
curves are obtained with egs. (20) and (21) setting the tintleet optimum value defined by the
maximum ofé(t) (see fig. 8). In addition, we let the initial conditioHXB’iO varying in the range

[0; 0.2] in egs. (20) and (21)a): (topt = 1.75 x 107 3; a0 = 0.4). (b):
(topt = 1.66 x 1073; a = 1.05). (¢): (topt = 1.25 x 1073; a = 1.5). (d):
(topt = 0.95 x 1073;a = 1.63). wo = 1

the gray scale of the processed image. Such curves aredpiotfgyure 10
for different values of the nonlinearity parameterand at the optimal time
defined by the maximum of(¢). In fact, these times were established in
section 11.B.2 at figure 8.

Moreover, to compare our nonlinear contrast enhancementitaform one,
we have superimposed (in dotted line) the curve resultiognfa simple
multiplication of the initial gray scale by a scale facton flg 10.(a), since
the response of the system for the lowest value: i most often above the
dotted lines, the filtered image at the processing tippe = 1.75 x 103
for a = 0.4 will be brighter than the image obtained with a simple rescal
As shown in Fig. 10.(b), increasing the nonlinearity parameterto 1.05
involves an optimum timé.66 x 10~2 and symmetrically enhances the light
and dark gray levels. When the nonlinearity parameter igstelfl to provide
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the greatest potential barrier (Figs. 10c) and (d)), the contrast of the
medium gray level is unchanged compared to a simple regcdliforeover,
the dark and light grays are strongly enhanced with a grelitrtion when
the potential barrier is maximum, that is for the greatefiievaf o (Fig. 10.

(d)).

2. Gray level extraction

Considering processing times exceeding the optimal tigpe we propose
to perform a gray level extraction of the continuous graylescapresented
figure 11(a) (Morfu, 2005). For a sake of clarity, it is convenient to ride
the white level by).2 whereas the black level remaifis

For the9 specific times presented in figure 11, the response of therayst
displays a minimum which is successively reached for eawcél lef the
initial gray scale. Therefore, time acting as a discrimimgparameter, an
appropriate threshold filtering allows to extract all psalith a gray level in
a given range. Indeed, in figure 11, the simplest case of aaurthreshold
Vi, = 0.25 provides9 ranges of gray & closely different processing times,
which constitutes a gray level extraction.

Moreover, owing to the response of the system, the width @&tktracted
gray level ranges reduces in the light gray. Indeed, thegangracted in
the dark gray for the processing timle= 3.33 x 1072 (fig. 11(c)) is
approximatively twice greater than the range extractedhénlight gray for
t = 3.51 x 10~ (figure 11(7)). To perform a perfect gray level extraction,
the threshold has to match with a slight offset the temporalution of the
minimum attained by the response of the system. Under thegditons, the
width of the extracted gray range is set by the value of tHeof

Note that, the response of the system after the optimal psiogtimes also
allows to consecutively enhance fragment of the image wiiterént levels
of brightness, which is also an important feature of the ienpgpcessing.
For instance, in Belousov-Zhabotinsky-type media thipprty of the system
enabled Rambidi and co-workers to restore individual comepds of the pic-
ture when the components are overlapped (Ramdtidi, 2002). Therefore,
we trust that considering the temporal evolution of the immbapded in our
network could give rise to other interesting image procegsperations.

3. Image encryption

Cryptography is another field of application of nonlineastsyns. In fact, the
chaotic behavior of nonlinear systems can sometimes peodbaotic-like
waveforms which can be used to encrypt signals for securerzorications
(Cuomo and Oppenheim, 1993; Dedietual, 1993). Even if many attempts
to break the encryption key of these cryptosystems and tgevet the



NONLINEAR SYSTEMS FOR IMAGE PROCESSING 23

i

0 0.2
@
6 6 6
Sy R Sy
( 0 0
0 woe 02 0 we 02 0 wo 02
(b) © (d)
6 6 6
Sy \ Sy / Sy \
0 0 0
0 wo 02 0 wo o 02 0 wo 02

N
(=)}
N

oL
S
S
(=]
[\
(=)
S
>
(=]
(3]
(=]
S
(=]
[\)

FIGURE11l. Gray level extraction. The response of the system iesepted at the top of each
figure. At the bottom of each figure, a threshold filtering & fiftered image is realized replacing the
pixel gray level with 0.2 (white) if that gray level exceette threshold/;;, = 0.25, otherwise with
0 (black). (a) : Initial gray scalg(t = 0). (b) : t = 3.3 x 1073, (c) : t = 3.33 x 1073. (d) :
t=3.36x10"3.(e) :t =3.39 x 1073, (f) : t =3.42 x 1073. (g) : t = 3.45 x 1073. (h) :
t=3.48 x 1073, (i) : t = 3.51 x 1073, (§) : t = 3.54 x 10~3. Nonlinearity parameters:
m = 2.58, o = 1.02 andwg = 1
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information have been reported (Short and Parker, 1998&tnet al, 2003),
cryptography based on the properties of chaotic osciblastifl attracts the
attention of researchers owing to the promising applicatiof chaos in data
transmission field (Kwok and Tang, 2007).

Contrary to most studies, where the dynamics of a singleahi usually
considered, we propose here a strategy of encryption bas#tealynamics
of a chain of nonlinear oscillators. More precisely, we ¢desthe case of
a noisy image loaded as initial condition in the inertia retnintroduced in
section I.B. In addition, we add a uniform noise oyref.1; 0.1] to the weak
contrasted picture of the coliseum represented in Fig:)9Since the pixels
of the noisy image take a gray level in the rarig®.1; 0.3], an appropriate
change of scale is realized to reset the dynamics of the gvayd to[0; 0.2].
The resulting image is then loaded as initial condition ia tietwork. For a
sake of clarity, the filtered images are presented at diftgpeocessing times
with the corresponding system response in figure 12.

Before the optimal time, we observe the behavior descrimedection
III.LA.1: the image goes through local minima and maxima afitcast until
the optimum time,,,, = 1.64 x 10~3, where the best contrast enhancement
is realized (Fig 12a)).

Next, for processing times exceedifg;, the noisy part of the image seems
to be amplified while the coherent part of the image beginsetdels and
less perceptible (see Fig. 1&) and 12(c) obtained fort = 3.28 x 10~*
andt = 6.56 x 1073). Lastly, for greater processing times, namely=
8.24 x 1072 andt = 9.84 x 1073, the noise background has completely
hidden the coliseum which constitutes an image encryption.

Note that this behavior can be explained with the respongedfystem, as
represented below each filtered image of Fig. 12. Indeed,thetresponse
of the system versus the initial condition does not displdpexiodic-like"
behavior, the coherent part of the image remains perceffiy). 12(a) and
(b)). By contrast, as soon as‘eriodicity” appears in the system response,
the coherent image begins to disappear (Fig.(d. Indeed, the response
of Fig. 12(c) shows that 4 pixels of the initial image with 4 different gray
levels take the same final value in the encrypted image (seartow lines).
Therefore, the details of the initial image, which corrasgmto quasi-uniform
area of the coherent image, are merged and thus disappéde eéntrypted
image. Despite the previous merging of gray levels, sindeenmduces
sudden changes in the gray levels of the initial image, tHsenconserves
its random feature in the encrypted image. Moreover, sineesystem tends
to enlarge the range of amplitude, the weak initial amoumiaige is strongly
amplified whatever the processing time exceedjpg The periodicity of the
system response can then be increased for larger procédsserguntil only
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FIGURE12. Encrypted image and the corresponding response of tiimear oscillators
network for different times exceedirtg,:. (a) : Enhancement of contrast of the initial image for
t=topt = 1.64 x 1073, (b) : 1 =3.28 x 1073. (¢) : t = 6.56 x 1073, (d) : t = 8.24 x 1073,
(e) : t = 9.84 x 1073, Parametersin = 2.58, a = 1.02, wo = 1.

the noisy part of the image is perceptible (Fig. (#2.and(e)). A perfect
image encryption is then realized.

To take advantage of this phenomenon for image encryptiencoherent
information, that is the enhanced image of Fig.(&42. must be restored using
the encrypted image of Fig. 12). Fortunately, owing to the absence of
dissipation, the nonlinear systems is conservative anerséde. It is thus
possible to go back to the optimal time that is when the infdfom was the
most perceptible.

However, the knowledge of the encrypted image is not suffidie com-
pletely restore the coherent information, since at the ygiimm time, the
velocity of the oscillators was not null. Consequentlysihecessary to know
both the position and the velocity of all particles of thewmtk at the time
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FIGURE 13. Sketch of the elementary cell of the inertial systemanda are adjusted with
external DC sources whereasX is the inverting amplifier gain obtained usifig.081C N
operational amplifier. Th& N4148 diode allows to introduce the initial conditiomﬁ’io.
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of encryption. The information can then be restored solvinmerically eq.
(23) with a negative integrating time stdp= —107°.

Under these conditions, the time of encryption constittiesencryption
key.

B. Electronic implementation

The elementary cell of the purely inertial systems can beldg@ed according
to the principle of figure 13 (Morfet al, 2007). First, a polynomial source
is realized with analogAD633JNZ multipliers and classical inverting
amplifier with gain— K. Taking into account the scale factbf10 V! of
the multipliers, the response of the nonlinear circuit torgout voltagelV; is
given by

2

P(W,) = 1

(Wi —m)(W; —m — a)(W; — m + «), (24)

where the rootsn, m — a, m + « of the polynomial circuit are set with
three different externaDC' sources. As shown in figure 14, the experimental
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FIGURE 14. Theoretical cubic law (24) in solid line compared to thpegimental characteristic
plotted with crosses. Parameters:= 2.58 V, a = 1.02 V, K = 10.

characteristic of the nonlinear source is then in perfece@agent with its
theoretical cubic law (24).

Next, a feedback between the input/output of the nonlinieewits is ensured
by a double integrator with time constaRC' such that

K2
W:_m//(wi_ero‘)(Wi—m—a)(Wi—m)dt. (25)

Deriving twice eq. (25), the voltaghd’; at the input of the nonlinear circuit
obeys to

W K?2
dt2 100R2(C?

(W, —m+a)(W; —m —a)(W; —m), (26)

which corresponds exactly to the equation of the purelytisesystem (13)
with

wo = K/(10RC). 27)

Lastly, the initial conditionW? is applied to the elementary cell via a
1N4148 diode with threshold voltagér = 0.7 V. Indeed, we adjust the
diode anode potential td’ + V; with an external DC source involving that
the diode cathode potential is initially seti. Then, according to section
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FIGURE15. :(a): Temporal evolution of two elementary cells of the chainhwitspective initial
conditionst = 0V (top) andWé) = 0.2V (bottom). (b): Evolution of the voltage difference
between the two oscillators. Parameteis= 10, R = 10K2, C = 10nF, m = 2.58V,
a = 1.02V, topt = 1.46ms.

11, the circuit begins to oscillate in the rang&’”; 2m — W], while the
potential of the diode anode remaiis + 1. Assuming thatn > W} /2,
which is the case of our experiments, the diode is instaoiasig blocked
once the initial condition is introduced. Note that usingiedé to set
the initial condition presents the main advantage to “bagérnhe effect of
dissipation inherent in electronic devices. Indeed, thenisic dissipation of
the experiments tends to reduce the amplitude of the asoilRlV”. As
soon as the potential of the diode cathode is beltif; the diode conducts
instantaneously, introducing periodically the same ahitondition in the
elementary cell. Therefore, the switch between the twaestaf the diode
presents the advantage to refresh the oscillations ardplito their natural
worths as in absence of dissipation.

In summary, the oscillations are available at the diode adghand are
represented in figure 15. (a) for two different initial camhs, namely
WD = 0V (top) andW? = 0.2V (bottom). As previously explained,
the way to introduce the initial condition allows to balartbe dissipative
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FIGURE16. Response of the system to a set of initial conditﬁdﬁ% € [0; 0.2] at the optimal
time. The solid line is obtained with egs. (20), (21) and @atting the time to the theoretical
optimal valuel.64ms, the initial condition varying irfj0; 0.2V]. The crosses are obtained
experimentally for the corresponding optimal time6ms. ParameterskR = 10K 2, C' = 10nF,
m = 2.58V,a =1.02V, K = 10.

effects since the oscillation remains with the same angitutnamely in
the rangel0V'; 5.34V] for the first oscillator with initial conditiord, and
[0.2V7; 5.1V] for the second one. Moreover, these ranges match with a
fairly good agreement the theoretical predictions presgbint section 11.B.2,
that is [0V; 5.16V] for the first oscillator and0.2V; 4.96V] for the
second one. Figure 1) also reveals that the two oscillators quickly
achieve a phase opposition at the optimal tipp = 1.46ms instead
of 1.64ms as theoretically established in section 11.B.2. The oatidhs
difference between the two oscillators in figure (b%.reaches local minima
and maxima in agreement with the theoretical behaviourrebsgen section
Ill. A maximum of 5.1V is obtained corresponding to the phase opposition
Wi(top) = OV andWsy(t,,:) = 5.1V. Therefore, the weak difference of
initial conditions between the oscillators is stronglyrieased at the optimal
time ¢,,.. Despite a slight discrepancy ©1% for the optimal time, mainly
imputable to the component uncertainties, a purely inemtalinear system
is then implemented with the properties of section Ill.

To perfectly characterize the experimental device, we nosu$ on
the response of the nonlinear system to different initiahdittons in the
range[0V; 0.2V]. The plot of the voltage reached at the optimal time
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topt = 1.46ms versus the initial condition is compared in figure 16 to
the theoretical curve obtained for the optimum time definedséction
I1.B.2, namely1.64 ms. The experimental response of the system is then
gualitatively confirmed by the theoretical predictions,iethallows to valid

the experimental elementary c