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Université de Lyon, Université Lyon 1, Institut de Science Financière et d’Assurances,

Laboratoire SAF EA 2419, 50 Avenue Tony Garnier, F-69007 Lyon, France
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Université de Lyon, Université Lyon 1, Institut de Science Financière et d’Assurances,

Laboratoire SAF EA 2419, 50 Avenue Tony Garnier, F-69007 Lyon, France
Ph.: +33437287429, Fax: +33437287632, email: stephane.loisel@univ-lyon1.fr
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Abstract
For operational purposes, in Enterprise Risk Management or in insurance for example,
it may be important to estimate remote (but not extreme) quantiles of some function
f of some random vector. The call to f may be time- and resource-consuming so that
one aims at reducing as much as possible the number of calls to f . In this paper, we
propose some ways to address this problem of general interest. We then numerically
analyze the performance of the method on insurance and Enterprise Risk Management
real-world case studies.

Keywords: quantile estimation, risk factors, Enterprise Risk Management, accelerated
algorithm, Simulation in Simulations.

Introduction

We denote by X = (X1, . . . ,Xk) a random vector that can for example correspond to
risk factors and consider a random variable Y which is a function of the risk factors :
Y = f (X1, . . . ,Xk). Our goal is to provide a way of computing the Value at Risk (VaR)
of the random variable Y by simulations. Recall that for α ∈]0, 1[, VaRα(Y) = q is the
α-Value at Risk of Y if and only if it corresponds to the quantile

q = inf{x ∈ R, P(Y ≤ x) ≥ α}.

We are interested in the general problem of estimating remote, but not extreme quan-
tiles of Y thanks to accelerated simulations, in the case (frequent in risk management)
when the function f is complex and very costly to evaluate. For the insurance appli-
cations that we have in mind and that constitute our main motivation, α = 0.5% is the
regulatory quantile threshold and the variable Y corresponds to the net asset value of
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the insurance company after one year.

Since in applications, the computation of f requires some heavy computations, we
are looking for primary risk clouds R such that the conditional Value at Risk equals the
α-VaR :

(0.1) VaRα(Y) = VaRα′(Y|(X1, . . . ,Xk) < R)

with α′ =
α

P((X1, . . . ,Xk) < R)
, and for β ∈]0, 1[,

VaRβ(Y|(X1, . . . ,Xk) < R) = inf{x ∈ R, P(Y ≤ x|(X1, . . . ,Xk) < R) ≥ β}.

At a first stage, we shall assume that the function f is concave and continuous, and
consider compact sets R. We shall construct nested sets Ru (see Sections 2 and 4) and
we are looking for u ∈]0, 1[ such that (0.1) is satisfied for R = Ru but not for R = Ru′ with
u′ > u.
We are faced with two problems. First of all, we shall provide a practical criterion to
recognize that a set R provides an estimation of VaRα(Y) with a reasonable confidence.
Secondly, we shall propose some ways of constructing nested sets Ru. To address these
two questions of general interest, we try to use a non-specific vocabulary in Sections 1
and 2 and apply our methods to the insurance and risk management framework only
from Section 3 on. Nevertheless, we now briefly expose the main motivation of our
paper and the way it is positioned in the insurance and risk management literature.

The definition of economic capital in the new European insurance regulation Sol-
vency II relies on the notion of 1-year equity distribution. Given the complexity of
asset-liability dependencies bred by participating bonuses, dynamic surrenders and
asset-liability management actions, it is not an easy task to obtain this distribution in
closed form for life insurance portfolios. One of the most accurate methods to estimate
this distribution is the nested simulation approach (used for example by Gordy and
Juneja (2008)): primary simulations are carried out and correspond to the real-world
evolution of the different risk drivers. After each primary simulation, one must derive
the economic balance sheet of the company at time 1 year given what has occurred. To
do this, secondary, market-consistent simulations are carried out, in order to compute
a risk-neutral expectation. To estimate a 0.5% quantile of the net value of the company,
this method is time consuming and difficult to implement in practice. A first approach
could consist in using bagplots (see Rousseeuw, Ruts and Tukey (1999)). However, as
mentioned in McNeil et al. (2010), this approach performs well when risk factors follow
an elliptic distribution and when the net asset value is linear in the risk factors. In that
case, one could directly conclude that the Solvency Capital Requirement in the internal
model would be the same as the one in the standard formula. Besides, the linearity of
the net asset value function is not verified and nonlinearities are important in practice
(see Devineau and Loisel (2009b)). Outside of the elliptic assumption, bagplots can be
constructed from numerical algorithms in dimension 2, but it seems not really feasible
in higher dimensions (see the slides of McNeil et al. 2010), which is a problem for this
kind of applications.

Devineau and Loisel (2009a) proposed a method to accelerate this algorithm and
reduce computation times. In this early work, risk factors were assumed to follow a
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multivariate Gaussian distribution, and the convergence of the accelerating algorithm
was only empirically tested.
In this paper, we first aim at proving that, under some conditions on the net value
function that appear to be reasonable in practice, the accelerated estimator is consis-
tent. Second, risk factors may have a non-Gaussian distribution (because marginal
distributions may be heavy-tailed, or because the copula of risk drivers may exhibit
strong tail dependence). They may also be simply obtained by simulation thanks to
some only partially known commercial economic scenario generator. Therefore, we
relax here the Gaussian hypothesis and allow the risk factors to have any copula and
any marginal distributions. We explain how to implement our accelerating algorithm
in both cases where the distribution of the risk factors is known or unknown. We
expose and compare methods involving either geometric quantiles or copula density
level curves or hyper-surfaces with so-called inverse methods. We also provide a veri-
fication algorithm that enables one to check that the algorithm is convergent, under the
hypotheses made on the shape of the net asset value function. This verification pos-
sibility is important to reduce operational risk and model risk, and to build Solvency
II internal models that meet the auditing standards of the second pillar of Solvency II
(dedicated to internal control and audit of the processes). The efficient implementation
of the verification algorithm leads to a nontrivial geometry problem, that we partially
address in this paper. More precisely, to avoid too many computations, one must find
a convex polytop with few extremal points and good enveloping or excluding proper-
ties with respect to the empirical risk driver scatter plot or with respect to a relevant
level curve or hypersurface. Numerical illustrations on real-world saving portfolios are
given, with two and three main risk factors (equity, interest rate, and property). Finally,
we mention some ideas about dimension reduction when the number of risk factors
is too high (which is the case in Solvency II if one keeps all QIS5 (Fifth Quantitative
Impact Study) risk drivers) and about the way to tackle estimation risk due to Monte
Carlo simulation errors. These two issues are briefly highlighted and their in-depth
treatment is left for further research.

Our paper is organized as follows: in Section 1, we propose a way yo estimate the
Value at Risk with few calls to the function f , we prove that it is consistent and provide
confidence intervals, then we recall the accelerating algorithm proposed in Devineau
and Loisel (2009a) and show how to use the estimation to prove that the algorithm
converges to the desired value. In Section 2, we explain how to get the frontiers of
the subset in which secondary simulations can be avoided, both in the case where the
distribution of the risk factors is known and in the case where it is not. In Section 4, we
study efficient and pragmatic ways to construct convex polytops that are useful for the
verification procedure. Numerical illustrations are given in Section 3 in dimensions 2
and 3. The conclusion highlights potential future research developments.

1. An algorithm based on primary risk clouds.

Recall that X = (X1, . . . ,Xk) denotes a random vector of risk factors, that the risk
indicator Y is a function of the risk factors : Y = f (X1, . . . ,Xk) and that our goal is
to provide a way of computing the Value at Risk (VaR) of the random variable Y by
simulations.
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1.1. Estimation of VaRα(Y). For a given convex set R, given a n-sample En = (X1, . . . ,Xn)
of the random vector X, we estimate VaRα(Y) by

q̂R = C( jα) where

(1) m is the number of elements of En that lie outside R,

(2) {Z1, . . . ,Zm
} is the set of elements of En that lie outside R,

(3) for j = 1, . . . ,m, C j = f (Z j),

(4) C(1)
≤ C(2)

≤ · · · ≤ C(m) is the ordered sample of {C1, . . . ,Cm
}

(5) jα is the smallest index j such that j
m ≥ α̂

′ with

α̂′ = α ×
n
m
,

so that jα is the smallest index j such that j ≥ αn.

We denote by q̂ the standard estimator of VaRα(Y) on a n-sample :

q̂ = B( jα)

with B(1)
≤ . . .B(n) the ordered sample of W1 = f (X1), . . . ,Wn = f (Xn).

As an example, if n = 5000, α = 0.5%, m = 500 then α′ = 5% and in order to compute q̂R,
only 500 calls to the f function are needed (rather than 5000 if one considers the entire
sample En).
The question is: how to choose R so that q̂R = q̂ ? The idea is that points in En that
contribute to q̂ are not in the “center” of the cloud. This will be made precise in Section
2.

1.2. Conditions of convergence. First of all, if f is a concave function then it may be
checked with few calls to the function f that q̂ = q̂R.

Theorem 1.1. Let R be a given convex set. Denote MR = infx∈R f (x). With the above notations,
let ` be the number of elements of {C1, . . . ,Cm

} such that C j < MR. If ` > αn then q̂ = q̂R and
thus q̂R is a consistent estimator of q = VaRα(Y).
Moreover, if f is a concave function, the condition C j < MR may be checked with a finite number
of f computations.
Furthermore, fix a confidence threshold β ∈]0, 1[ (namely, β = 5%), and let zβ be the 1 − β
quantile of the standard Normal distribution and ̃ be the smallest index j such that

(1.2)
j

m
≥ α̂′ − zβ

√
α̂′(1 − α)

m

(recall that α̂′ = α n
m ) then

P(C( ̃ )
≤ q) n→∞

−→ 1 − β.
In other words, with an asymptotic 1 − β confidence, C( ̃ ) is a lower bound for VaRα(Y).

Proof. It is well known (see for example Van der Vaart (1998)) that q̂ is a consistent
estimator of q (provided that q is not an extreme quantile, i.e. α is fixed with respect to
n). Our condition that there are more than αn elements C j of the sample outside R with
the property that C j < MR clearly implies that q̂ = q̂R.
For the second part, recall that a concave function on a convex set takes its minimum
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on the extremal points of the convex set. Thus, let S be a convex polytop, such that
R ⊂ S then S has finitely many extremal points on which the minimum of f on S is
reached. Then, MS := inf

x∈S
f (x) ≤ MR In order to compute MS, we have to evaluate f at

the extremal points of S and it is sufficient to have more than αn indexes j such that
C j
≤MS ≤MR.

The last part follows from results on ordered statistics which give asymptotic confidence
intervals for quantiles (see Van der Vaart (1998) for example). Remark that (1.2) is
equivalent to

j
n
≥ α − zβ

√
α(1 − α)

n
.

�

The concavity condition on f may be weakened in various directions. For example,
in dimension 2, if the function f is concave on the upper half space and coordinatewise
decreasing on the other half plane, Theorem 1.1 remains valid. We experienced a real-
world case in which this situation occurred.

Of course, once Theorem 1.1 has been proved, the main question is to find an adequate
convex polytop. We shall propose some ways to obtain it in Sections 2 and 4. Before
going through this section, we show how Theorem 1.1 may be used to validate the so
called accelerated algorithm described in Devineau and Loisel (2009).

1.3. An empirical algorithm. In Devineau and Loisel (2009) an algorithm has been
proposed to estimate q with a n-constraint (minimize the number of calls to f ) in an
insurance context. We shall briefly describe it and show how Theorem 1.1 may be used
to validate it.
Recall that in higher dimension the notion of outer points (or outers) may be defined in
several ways (in dimension 1, one may consider as x% outers smaller or greater values
of the sample). In Section 2, we describe how geometric quantiles and depth functions
may be used to define outers. In Devineau and Loisel (2009) the level curves of the
density levels (of a Gaussian vector) where used for this purpose.
According to a definition of outers, the algorithm proceeds as follows. x is fixed (for
α = 0.5%, x = 2 seems to be a convenient choice from an empirical point of view).

– Let R1 be a subset of En such that the x% outers are outside of R1.
– Compute f on these x% outers. A first estimation of q is q̂R1 .
– Consider a smaller subset R2 ⊂ R1 such that the 2x% outlers are outside R2.
– Compute q̂R2 . If q̂R1 = q̂R2 then stop; else continue with the 3x% outers that are

outside R3...
– The algorithm stops as soon as q̂Rk = q̂Rk+1 for some k or at the end if we have used

the whole sample without stopping.
We denote by Rk the stopping cloud (Rk = En if we have used the whole sample). In case
Rk , En (which is of course the interesting case), Theorem 1.1 may be used to verify that
Rk provides a consistent estimator of the Value at Risk, if we assume that f is concave
or has some properties of local concavity. Indeed, consider a convex polytop S ⊃ Rk.
Compute (with as many calls to f as the number of extremal points of S) MS = inf

x∈S
f (x).

If q̂Rk ≤MS then we know that q̂Rk = q̂.
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In Section 5, we compute the probability that the algorithm stops while it should
not.

2. Different ways to determine extremal primary points

We present here different ways to define contours to exclude points that are inside
this border from secondary computations. A first method corresponds to using contour
plots of the joint density of the primary risk driver vector. A clear drawback is that it
has to be estimated if we do not know the distribution of these primary risk drivers (for
example if they are obtained from a black-box proprietary software). Besides, this may
lead to non-convex domains, for example in the case of Gaussian risk driver vectors
with non-trivial Clayton copulas. Another possibility is to use geometric quantiles
(see for example Chaouch and al. (2008)), or a so-called inverse method inspired from
geometric quantiles. These methods lead to more or less elliptical contours or ellipsoids
in higher dimensions, even if the density contours are not elliptic. Another possibility
would be to use depth functions. However this concept works well only in dimension
2, and in higher dimensions for linear functions of elliptic vectors. If one wants to better
take into account the shape of the risk cloud, one could modify the depth function in
order to better stick to the periphery of the risk cloud. Nevertheless, these methods
are not so useful for our problem for two main raisons: the lack of feasibility in higher
dimensions, and the non-convexity of the domains, which prevents us from using
our verification algorithm. So as a conclusion, inverse methods seem to be a good
compromise that gives us the opportunity to check our result when the net asset value
has desirable properties.

2.1. Density contours. In order to accelerate Nested Simulations calculation, it is nec-
essary to measure the risk associated to each simulation and to order them. Thus,
most adverse simulations in terms of solvency are considered. This classification of
scenarios leads to build an execution area with the points that seem the most risky. Re-
member that in the case of an elliptic distribution of risk factors (Gaussian distribution
for example), it is possible to build this area by plotting contours of the simulations
cloud (each point of the cloud being defined by the value of the risk factors for each
simulation). Scenarios to be studied first are the ones inside the execution area. These
scenarios lead to the values of equity which are located in the distribution tail, such as
the quantile that leads to the economic capital is one of these scenarios (see Devineau
and Loisel (2009)).
The key idea is to select scenarios that lead to small equity values at time t = 1 just
with the information given by risk factors. If the risk factors distribution is known, it
becomes easy to define the execution area. Indeed, it is possible to calculate density
contours directly from the density function of the distribution, in such a way that every
point with a density lower than a given threshold is a part of the execution area. There-
fore this area is defined by the points on the border of the cloud, and the threshold can
be determined such as the area is made by a given number of points. In the case where
the distribution is unknown, it is still possible to use a norm to define the contour of
the cloud and focus the analysis on the most adverse simulations.

If the distribution of risk factors is unknown as it is often the case (if risk factors are
deduced from an existing proprietary scenario table, the copula of risk factors may be
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unknown), the density contour of the cloud can be determined with an empirical ap-
proach. This leads to a first limit of the technique that consists in building an execution
area thanks to the density contours. Besides, we shall see further that if this process is
efficient for an elliptic distribution, it is no longer the case for non-elliptic distributions
(such as distribution with a Clayton copula as we study later in this section).
To generalize the construction of the execution region in a ”distribution-free” frame-
work, we have considered other alternatives: the calculation of a multi-dimensional
quantile first, then the introduction of a depth function.

2.2. Geometric quantiles. To characterize the contours of a given distribution, it may
be interesting to estimate the quantiles of the distribution and to consider the lines of
constant density. However, the generalization of the concept of quantile in the multi-
dimensional framework is not straightforward because of the lack of total ordering
criterion in dimension strictly higher than 1. The article by Barnett (1976) proposes
some techniques for ordering multivariate observations and is considered as a true
starting point for the study of bivariate quantiles. Recently, two main approaches have
been developed to define multivariate quantiles that are invariant under rotation and
/ or affine transformation. On the one hand, the geometric quantiles, introduced by
Chaudhuri (1992), are defined as solutions of a problem of a loss function minimization,
by generalizing a known result in dimension 1. On the other hand, another approach
is based on the depth function.

Recall that in dimension 1, the quantile of a random variable X is defined using the
inverse of the distribution function of this variable. If we denote this function F, for
u ∈ [0, 1], the u-quantile is defined as:

QF(u) = F−1(u) = in f
{
y/F(y) ≥ u

}
It may be proved that Q(u) is the solution of a minimization problem (see for example
Chaouch et al. (2008)):

(2.3) Q(u) = argminx∈RE
{
φ(u,X − x)

}
,

with ∀(u, t) ∈ ]−1; 1[ ×R, φ(u, t) = |t| + ut,
so that Q(u) is also the root of the equation

(2.4) E(Sign(x − X)) − u = 0.

The definition of quantile may be generalized in higher dimension in the following
way. Consider a random vector X which takes its values in Rd, d ≥ 2. Then let

∀(u, t) ∈ Bd =
{
u ∈ Rd/ ‖u‖ ≤ 1

}
×Rd : φ(u, t) = ‖t‖ + 〈u, t〉

and the u-quantile is defined as follows (‖u‖ ≤ 1):

Q(u) = argminx∈RE
{
φ(u,X − x)

}
= argminx∈RE

{
φ(u,X − x) − φ(u,X)

}
.(2.5)

Subtracting φ(u,X) in the equation does not change the solution of the minimization
problem but ensures the existence of the expected value regardless of the expectation
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of X (that may be infinite). The quantile is the solution of the following equation that
generalizes (2.4):

(2.6) E
( x − X
‖x − X‖

)
− u = 0.

In practice, we construct an empirical estimator of the quantile value with n obser-
vations (X1,X2, ..,Xn) of the random vector X that constitute the cloud. This estimator
Qn(u) is defined as a solution of the following equation:

(2.7)
1
n

n∑
i=1

( x − Xi

‖x − Xi‖

)
− u = 0.

The vector u provides information on the position of the quantile: if the norm of u is
close to 1, the quantile is ”extreme”, that is to say away from the median. Furthermore,
the direction of the vector u gives us an indication of the position of the quantile in
regard of the median.

We will look at first two distributions of risk factors in dimension 2 to implement
and understand the technique and analyze its limitations. Then we shall see in Section
3 a case study in dimension 3 by considering three risk factors and the allocation of
economic capital on a saving product.

2.3. Practical use of the geometric quantiles. The geometric quantiles we have just
defined are not invariant through an affine transformation. So that, if the various com-
ponents of the vector X do not have comparable orders of magnitude or if they do not
show similar variations, the quantile results are not satisfactory. If we assume that risk
factors are distributed with a Gaussian copula, it is trivial to standardize risk factors if
necessary to circumvent the problem. If this is not the case, we must use another es-
timation technique, called transformation-retransformation technique (see Chaudhuri
and Sengupta (1993)). This technique in particular makes the quantile invariant under
affine transformation.

It proceeds as follows. Consider a vector X of n observations inRd with n > d + 1 and
α = (i0, i1, .., id) ⊂ {1, ..,n}. The transformation matrix of order (d × s) can be defined as:

X(α) =
(
Xi1 − Xi0 , ...,Xid − Xi0

)
This matrix is used to transform all the points X j such that j < α. The vector α is

determined so that the matrix
[
X(α)T]Σ−1X(α) is close to a diagonal matrix, Σ being

the variance-covariance matrix of the random variable X, and MT the transpose of the
matrix M. This constraint is equivalent to choose α in order to minimize the ratio of
the quotient between the arithmetic and the geometric mean of the eigenvalues of the
matrix

[
X(α)T] Σ̂−1X(α), where Σ̂ is an empirical estimator of Σ. This constraint is also

equivalent to minimize the ratio between the trace and the determinant of this matrix.
The transformation is done through the following formula, ∀ j < α:

Xα
j =

[
X(α)T

]
X j

.
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The dimension of the transformed vector Xα is n − (d + 1). It is also necessary to
transform the vector u while ensuring it remains in the unit sphere. The vector v(α) is
defined as the transform of the vector u:

v(a) =


‖u‖

‖X(α)−1u‖
X(α)−1u si u , 0

0 si u = 0
.

The estimator of the geometric quantile with order v(α) is then calculated from ob-
servations Xα

j such that j < α using the equation 2.7. The estimate of this quantile
is denoted by Rα

n(v). The retransformation step gives the final estimator of the quan-
tile. This estimator of order u is given by Qα

n(u) = X(α)Rα
n(v). The reader can turn to

Chaouch, Gannoun and Saracco (2008) for theoretical validation of this methodology.

To implement this technique on a given cloud of points, a possible method is to
use a Newton-Raphson algorithm. We start by creating a series of N vectors (uk)1≤k≤N
in Bd. Each vector u can be associated with a quantile value calculated using a step
by step solving algorithm: the principle is to compute approximations of quantiles
by recurrence and stop the algorithm when two successive approximations are close
enough. Assuming the initial approximation is composed of marginal means of the
N vectors u, the approximation of order m + 1 is obtained from the approximation of
order m in the following way:

Qm+1
n (u) = Qm

n (u) + Φ−1∆,

with Φ =
∑n

i=1
1

‖Xi−Qm
n (u)‖

(
I2 −

Xi−Qm
n (u)

‖Xi−Qm
n (u)‖

(
Xi−Qm

n (u)

‖Xi−Qm
n (u)‖

)′)
and ∆ =

∑n
i=1

Xi−Qm
n (u)

‖Xi−Qm
n (u)‖

.

By choosing N sufficiently large and a consistent norm u for the N vectors, it is possible
to construct a quantile curve for a given distribution.
Let us implement this methodology on the simple example of a distribution of n achieve-
ments inR2, (X1,X2), introducing a correlation between X1 and X2 and assuming that the
two series have different orders of magnitude. The transformation-retransformation
algorithm allows to plot the outline of the cloud of points by calculating the quantiles
for different directions of the vector u. It appears in the graph below that the quantile
curve takes the shape of the distribution of pairs of achievements, and identifies the
worst scenarios (those that are not included in the curve).

2.4. Inverse method. The major advantage of the geometric quantile approach lies in
the fact that it is a ”distribution-free” method. Indeed, the norm used to classify sce-
narios works under the hypothesis of the normality of the risk factors copula. But this
assumption is not always checked. Risk factors retro-calibrated thanks to ”standards”
diffusion models will not necessarily present a Gaussian copula.

However, the Transformation-Retransformation (TR) approach used above is very
costly in calculation time in the way that it solves an equation step by step with a
Newton-Raphson algorithm. Besides, there is no need from a strictly operational point
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Figure 1. quantile curve obtained using the algorithm of transformation-
retransformation on an elliptical cloud

of view in insurance to build the border of the execution area to determine which sce-
narios are inside, the method can be used just to classify scenarios and to study the
extreme ones. Indeed, if we reverse the problem, we just have to associate a threshold
vector u for each pair of achievements. Assuming that the executing area satisfies good
properties (including the fact that the norm of the quantile is a monotonic function of
the vector threshold), it is possible to classify the scenarios according to their associated
threshold, and thus characterize the notion of periphery of the cloud.

The first step is to determine, in the same way as in the TR algorithm, a transformation
matrix X(α) with dimension d×d. Let us consider every pair of achievements as a value
of a transformed quantile. We can deduce the empirical estimator of Rα:

Rα
n = X−1(α)X.

From these transformed points that we consider as values of quantiles, denoting Xα

the vector of transformed random variables, we deduce for each point of the distribution
a vector v such that:

v =
1
n

n∑
i=1

Rα
n − Xα

i∥∥∥Rα
n − Xα

i

∥∥∥ .
The norm of the vector u is the same as the vector v by definition. The vector v

we have just defined can be calculated in order to give a value of the degree of risk
associated to each scenario.
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In this way, with the same distribution as introduced above, the scenarios with an
associated threshold of high norm are correctly located on the outskirts of the cloud, as
shown in the graph below.
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Figure 2. The points with threshold vectors of higher norm are pointed in red

2.5. Clayton copula. The density contours given by threshold vectors are often ellipti-
cal. We present the case of vectors with Gaussian marginal distributions linked with a
Clayton copula. The implementation of the transformation-retransformation algorithm
leads to an elliptical execution area border as shown on figure 4. The density contour
does not fit the shape of the cloud whose points in the lower left quadrant are clustered
around the diagonal, while those in the upper right quadrant are scattered around the
same diagonal. We thus observe an operational limit of geometric quantiles and can
deduce that it will be difficult to plot the contours of non-convex clouds (such as the
cloud formed by the Clayton copula) with this method.

The drawing of both contour lines obtained from the copula density and quantile
lines obtained by the method of transformation-retransformation clearly shows the
error due to the non-convexity of the cloud. The poor quality of adjustment induced
by a Gaussian copula hypothesis results from a failure of ellipticity of a Clayton copula
cloud.

Using the inverse method on the same distribution, the same result appears.
Prioritization of simulations with the norm of the threshold vectors in the geometric

quantile approach does not provide satisfactory contours of the cloud, the execution
area border being convex.
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Figure 3. Geometric quantile contour in black versus density contour in
red for a Clayton copula
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Figure 4. Determination of the 100 points with quantiles of highest norm
for the Clayton copula
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2.6. Depth function. To answer to the issues mentioned above and find a totally
”distribution-free” method, it can also be useful to consider another approach of mul-
tivariate quantiles. Along with the geometric quantiles, the notion of depth function
has been developed in recent years to characterize the quantiles of a distribution in
multi-dimensions.

The depth of a point that belongs to a cloud is used to quantify the fact that this point
is on the outskirts of the cloud or whether it is inside of it. The principle is to determine
if such a point is surrounded by other points or not.
To quantify the depth of each point, we introduce the half-space defined by a point y
of the cloud and a vector u of dimension d. This area is characterized by the following
equation:

Hy,u =
{
x ∈ Rd/u′x ≥ u′y

}
The depth function then associates to each point of the plane the minimal probability

to find other points in the half-space defined above. If we consider the empirical
probability calculated from the points of the cloud (xi), the depth function is defined as
follows:

p(y) = in fu∈Rd

{
P(Hy,u)

}
p̂(y) = minu∈Rd

1
N

i=1∑
N

1{u′xi≥u′y}.

It is then possible to classify the points of the cloud by increasing depth and thus
characterize the extreme scenarios. If this method is effective for convex distributions,
it is unlikely that it works on non-convex distributions, since the execution area built
with this method is an intersection of half-spaces. The region border is therefore con-
vex by definition. The prioritization of scenarios by increasing depth can not solve the
issues raised by the use of geometric quantiles. Indeed, the non-convexity implies the
existence of points located on the edge of the cloud and yet with a depth that can be
high, which is non coherent with the definition we want to give to the depth function.
This phenomenon is explained by the graph below, showing the example of the Clayton
copula.

On the graph appear on one side the line that defines a half-plane Hy,u for a point
y located in a hollow of the cloud and for a vector u such that the minimum of the
empirical probability of this half -space is reached, and on the other side a circle around
some of the points that belong to this half-space. This situation highlights the fact
that by construction, the depth of the studied point does not match its actual position
relative to the cloud. Indeed we observe a point on the periphery of the cloud whose
depth is high. Moreover, we note that the points of lowest depth pointed in red on the
graph are all located in convex areas of the cloud.
In the case of a non-convex cloud, the conclusion is that such an approach systematically
fails. Besides, this approach is difficult to implement in dimension larger than 3 because
of the complexity of estimating the depth for each point.

2.7. Modified Depth Function. We present in this section a new measure: the modified
depth function. We are changing the definition of depth so that a point in a hollow is not
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Figure 5. Calculation of the depth of a point on the outskirts of Clayton copula

penalized as it is the case in the previous example with the standard depth definition.
We calculate the probability to find other points in a parabola instead of considering a
half-space. Noting the modified depth p∗ and H∗y,u the parabola that has its origin in y
and with u as its directional vector, we define this function as follows:

p∗(y) = in fu∈Rd

{
P(H∗y,u)

}
p̂∗(y) = minu∈Rd

1
N

i=1∑
N

1
{u′(xi−y)≥‖(xi−y).u⊥‖

2
}

The use of this indicator very close to the depth previously introduced can greatly
improve the quality of adjustment in some non-convex cases like in the case of the
Clayton copula.
On Figure 2.7, the parabola is the curve that defines the modified depth. The items that
appear in the circle and were taken into account in the calculation of the standard depth
are not part of the parabola, which implies that the modified depth of points in the
non-convex areas is sufficiently low to consider these points as outers (in the periphery
of the cloud). Pointing the points of lowest modified depth in red, the outline of the
cloud appears.

It is possible to extend the parabola by adding a multiplying term in the constraint of
the indicator appearing in the calculation of the modified depth. A deeper theoretical
analysis on the properties of the modified depth function is necessary to study its
domain of applicability. This will be the purpose of a further work.
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Figure 6. Determination of the extreme points of the Clayton copula
with modified depth

3. Numerical application

We detail here the application of the methods presented in the previous section.
Studying the case of a ”standard” insurance company, the goal of the following results
is to compare the use of a basic accelerator (using density level curves) and the use of
geometric quantiles (or depth function).

3.1. Description of liability and models. The portfolio that we consider in this study
is a saving portfolio with low guaranteed interest rate. We have projected this portfolio
using an internal model that performs ALM stochastic projections and the calculation
of equity after one year. This projection tool enables us to model the profit sharing
mechanism, as well as dynamic lapses of the policyholders when the interest rates
handed out by the company are deemed insufficient in relation to the reference interest
rate offered by the competitors.

At a first stage, we consider the stock and interest rate as related risks at a first stage
(2-dimensional study). At a second stage, stock implied volatility risk is introduced,
which leads to a 3-dimensional study. The tables of economic scenarios that are used
were updated on December 31th, 2009.
The net asset value at time 1 is a function of the considered risks. For real portfolios, it
has been observed that a concavity are a partial concavity hypothesis for f is reasonable
(recall that the standard formula uses an affine function).

3.2. Results for 2 risks. First, let us consider only the stock and the interest rate risks.
We consider in this section two different acceleration algorithms. The first one uses the
density level curves to define outers whereas the second one uses geometric quantiles.
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In this example, the risk vector is assumed to be Gaussian. Let us note that many
of the models used by the insurance business are Gaussian (are Gaussian based).
Nevertheless, these Gaussian hypotheses must be relaxed in order to take into account
non Gaussian dependencies between risks as well as heavy tailed distributions that
are relevant for insurance business. This is why we propose to use distribution free
approaches such as geometric quantiles or depth functions.
In the table below we compare the execution of the accelerated algorithm (as described
in Section 1.3) when the outers are defined by using density level curves with respect
to geometric quantiles. For these executions, n = 5000, α = 0.5% and x = 2. We give the
number Kma of points that lie outside the stopping cloud Rk and the number of calls
to function f before the algorithm stops.

Method Density level curve Geometric quantile
Kma 153 150
Number of calls
to f

300 300

Table 1. Convergence of the accelerator algorithm in dimension 2

Both methods lead to equivalent results. Indeed, geometric quantiles capture well the
shape of the cloud for elliptical distributions.
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Figure 7. Distribution of risk factors - red points represent highest geo-
metric quantiles and blue ones are points on highest density level curves

The table below illustrates the confidence bounds for the VaR as described in Section
1, for n = 5 000, n = 50 000, n = 500 000. Of course, and particularly if the size n



17

n 5 000 50 000 500 000
Estimated VaR (thou-
sand AC)

−39 375 −41 787 −43 058

rank 25 250 2 500
Lower 5% confidence
bound (thousand AC)

−44 722 −43 840 −43 173

rank 20 236 2 458
Table 2. Confidence bounds

of the sample is not too large, the use of a confidence bound rather than a pointwise
estimation should be preferred.

3.3. Results for 3 risks. In this section we introduce a new risk: the stock implied
volatility risk.

Method Density level curve Geometric quantile
Kma 105 292
Number of calls
to f

300 400

Table 3. Convergence of the accelerator algorithm in dimension 3

Due to the introduction of the stock implied volatility risk, the algorithm converges
more slowly using geometric quantiles rather than the level curves. We conclude from
this observation that in the case where the assumptions on the distribution of risk fac-
tors do not raise an issue, geometric quantiles are not useful to locate extreme scenarios
in terms of equity value. The use of density level curves is therefore highly efficient as
well as easy to implement for an elliptical distribution of risk factors.

Besides, we note that the results obtained with the modified depth function on this
product lead to similar results to those obtained with the geometric quantiles. We infer
that these methods are useful when the distribution of risk factors no longer meets
certain assumptions (such as the ellipticity). But they do not improve the results if
these assumptions are met.

4. Construction of the convex verification subset

In general, it might be quite difficult to construct a verification convex polytop or
polygon (introduced in Subsection 1.2) that is not too far from the border of Ru (in
order to avoid to include or exclude too many points in comparison to Ru) and does not
have too many vertices (in order to limit secondary, time costly simulations to evaluate
the position). Here we present a simple, pragmatic way to address the 2-dimensional
case where the distribution of the risks vector is elliptical. It might be extended in
practice to geometric quantiles whose level curves are not far from being elliptical in
that case. Recall that the accelerating algorithm starts from outers of the cloud and
goes back towards its center. Consider the example studied in the previous section,
with two risk drivers (asset and interest rate risks). The first step is to use dilatations
to restrict without loss of generality Ru’s defined by circles. In that case, the algorithm
converged after 3 rounds of 100 simulations: the result after considering 300 outlying
simulations (keeping points that are outside the green circle in Figure 8 below) is the
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same as the one after 200 (out of 5000) outlying simulations (keeping points that are
outside the blue circle). Therefore, it makes sense to use a convex verification polygon
that lies in between the two circles. The radiuses of the two circles are very close to
the respective theoretical 94% and 96%-quantiles of the radius of a standard Gaussian
vector (r1 = 2.37 and r2 = 2.54). Therefore the minimal number of vertices for the
regular polygon included in the outside circle with first extremal point (r2, 0) to contain
the circle of radius r1 is given by

d
π

Arccos
(

r1
r2

)e = 9

in our case. The convex polygon and the two circles are shown in Figure 8.

Figure 8. The two circles and a convex verification polygon in the model
of Subsection

Note that we considered here Gaussian risk factors to illustrate our method because this
corresponds to models used by insurance companies. Nevertheless we encourage the
use of distributions with heavier tails for risk drivers that feature this kind of pattern.
In that case, a few outers might be far away from the rest of the risk cloud, and the
circles are likely to have larger radiuses and to be less close to each other. In that
case one would need fewer vertices to build a verification convex polygon between the
two circles. However, it might be interesting to increase a bit the number of vertices
in order to get a verification convex polygon that better sticks to the outer circle. To
illustrate this, we present an example in which (standardized, i.e. decorrelated) risk
drivers are drawn from an isotropic distribution where the radius of the 2-dimensional
vector is distributed as a stable distribution with infinite mean (this might be the case
for operational risk as mentioned by McNeil et al. (2005)). Let X be a centered 2-
dimensional isotropic stable random vector with characteristic function exp(−γα0 |u|

α).

The amplitude (radius) of X is defined by R =
√

X2
1X2

2. From Nolan (2005), when the
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dimension is d = 2 and when α = 1, the c.d.f. of R is given for r > 0 by

FR(r) = 1 −
γ0√
γ2

0 + r2
.

Stable distributions may be simulated thanks to Jonh Nolan’s STABLE program (avail-
able at http://academic2.american.edu/˜jpnolan/stable/stable.html).

For γ0 = 0.15, the 94% and 96%-quantiles of R are respectively around 2.5 and 3.75.
In that case the minimal number of vertices for a regular polygon to lie in between the
two circles falls down to 4, but one may choose to keep it equal to 9 for example in
order to enlarge the verification zone. The risk cloud is shown in Figure 9. One outer in
the upper left-hand corner prevents us from seeing anything. We thus logarithmically
rescale the radius of outers (outside the circle of radius 3.75) in order to obtain a
transformed graph that is easier to read. The two circles and two convex polygons are
shown in Figure 10 (after rescaling the radius of outers). Note that in that case it might
be difficult to value the position of the company in the few very extreme scenarios,
because the world would be very different in those cases, and evaluation would obey
different rules.

Figure 9. The risk cloud in the stable isotropic case without rescaling

In a more general setting, once one of the above-mentioned techniques (depth func-
tion, inverse methods, geometric quantiles, density level curves) has enabled us to
avoid to evaluate the position of the insurance company at a certain number of points,
it is possible to quickly construct the convex hull of those points thanks to several
convex hull algorithms. Note that of course, if depth function is used in the case of
Clayton copula risk clouds as the one of Figure 3, the outers are not outside a convex
subset, and consequently the verification algorithm will not be as efficient as in the case
of convex Ru’s.

Here we show an example with 200 points randomly drawn on a sphere in order to get
something comparable to our problem in dimension 3: recall that in our case with 5000

http://academic2.american.edu/~jpnolan/stable/stable.html
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Figure 10. The two circles and a convex verification polygon in the stable
isotropic case (after rescaling the radius of outers with a logarithmic
transform)

primary simulations, we have 200 points between two spheres that delimit the zones of
non-execution after step K ≥ 1 and step K+1. So our situation is not too far from the one
where 200 points are randomly drawn on the outer sphere (because all the other points
inside in inner sphere are likely to be included in the convex hull of the 200 points drawn
on the outer sphere (or in between the two spheres). The convex hull of the 200 points
is determined thanks to the QuickHull algorithm applet developed by Tim Lambert
and available at http://www.cse.unsw.edu.au/˜lambert/java/3d/hull.html. The
convex hull is shown in Figure 11. The number of vertices is still reasonable (a few
hundreds) for the verification algorithm in that case.

Figure 11. The convex hull of 200 points randomly drawn on the sphere
in dimension 3 (obtained from Tim Lambert’s Java Applet)

http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html
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5. Probability that the algorithm stops although it should not

Insurers cannot do more than 5000 simulations in many cases. The SdS accelerator
can improve computation times if things go well (if we have enough information on the
characteristics of the net asset value function). If it is not the case, then the algorithm
may take time to converge, and after more than 10 or 20 iterations, even if the algorithm
finally converges, the user should be cautious, and in that case it could be necessary
to run the 5000 points if doubts are present. So in reality what do not want to occur
too often corresponds to events during which the algorithm stops very quickly (after a
few runs of 100 points, fewer than 5 or 10, say) despite the fact that the target empirical
quantile has not been reached yet. We aim at showing that, even in the case where we
have absolutely no idea of what the net asset value function looks like, the probability
of such bad events is quite small.
Let Rk be the rank (between 1 and 5000) of the 25th smallest value in sub-sample number
k ≥ 1 that contains all the points of the first k rounds (i.e. 100k if we select 100 points per
round). We assume that samplings are without replacement and independent (apart
from their without replacement characteristics).
For 25 ≤ r ≤ 4925, we have

P(R1 = r) =
C24

r−1C75
5000−r

C100
5000

.

Given that R1 = r ≤ 4825, we have that

P(R2 = r|R1 = r) =
C100

5000−r−75

C100
5000−100

.

From the total probability formula, the probability that the accelerating algorithm
inappropriately stops after 2 iterations is

q2 = P(R2 = R1 ≥ 26) =

4825∑
r=26

C24
r−1C75

5000−r

C100
5000

C100
5000−r−75

C100
4900

.

With Maple, one gets that q2 = 5.363×10−9: it would be bad luck to stop inappropriately
after the second run!
After 9 runs, for 25 ≤ r ≤ 4125, we have

P(R9 = r) =
C24

r−1C875
5000−r

C900
5000

.

Given that R9 = r ≤ 4025, we have that

P(R10 = r|R9 = r) =
C100

5000−r−875

C100
5000−900

.

From the total probability formula, the probability that R10 = R9 ≥ 26 is

q̃10 = P(R10 = R9 ≥ 26) =

4025∑
r=26

C24
r−1C875

5000−r

C900
5000

C100
5000−r−875

C100
5000−900

.

With Maple, one gets that q̃10 = 6.94%: this probability is too high: it means that if
we are not sure about the hypotheses and if the algorithm converges after 10 runs,
it might be useful to have a look at the estimations of VaRα for 99% ≤ α ≤ 99.5%,
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say. The probability to choose the empirical VaRβ with β < 99% (instead of VaR99.5%)
is P(R10 = R9 ≥ 51) and is equal to 0.448%. Similarly, the probability to choose the
empirical VaRβ with β < 99.25% (instead of VaR99.5%) is P(R10 = R9 ≥ 38) and is equal
to 1.88%. Note that the principal terms that contribute to this value are the ones for
100 ≤ r ≤ 300.
Let us now consider an intermediate case that occurs quite often: convergence after 5
runs. The probability that the algorithm gives the same 25 worst scenarii in the fourth
and fifth runs is P(R5 = R4 ≥ 26) and is equal to 0.323%, which is acceptable. Note that
this is higher than the probability that the algorithm inappropriately stops exactly at
the fifth run, because the algorithm could have stopped earlier.

Note that in reality, when we know something about the net asset value function,
R1 is likely to be small (much smaller than in the case where we do not anything
about the function, because we have better chances to choose bad scenarios with some
information than without any). Without information, as P(R2 = r|R1 = r) is decreasing
in r ∈ [25, 4825], the conditional probability to have Rk+1 = Rk = r ≥ 26 given that Rk = r
decreases with r: this is good news, because the probability to have a problem is larger
when the error is quite small. Besides, in the case with information, the probability
to have have smaller values of Rk is higher than in the case without information. One
could think that the probability of failure of the algorithm increases in the information
we have about the net asset value function, which would be very bad. Actually, with
some information, one has much better chances to find new small values at the k-th
run than in the case without information. To take this into account, one could use the
fact that one can use the values of the first runs and the characteristics of the net asset
value function to choose the next points and to bound the probability of failure of the
algorithm (using for example Lipschitz parameter of the net asset value function).

6. Conclusion and further research

We have provided a way to accelerate the nested simulation method in Solvency II
and more generally to accelerate the estimation of quantiles of complicated functions of
random vectors with some patterns, as well as a verification process. The results were
mainly presented on real-world partial internal models of insurance companies, with
typical models, parameters, evaluation techniques and number of simulations that are
currently used by most European companies. Of course, we plea for the use of at least
1 million primary simulations to estimate the 99.5% VaR of the net asset value function
at time 1 to get better results, which would lead to around 60 000 evaluations with
stochastics on stochastics if our method performs as well with that many points as with
5000 simulations (which is not guaranteed). We hope that this target will be reach-
able in the near future thanks to computing time improvements. It might however be
complicated to use the same verification technique and to build convex hulls with that
many points in general. However the polygon with 9 vertices in dimension 2 presented
before is likely to work even better if many points are simulated, because the empirical
quantiles of the radius will be closer and closer to the theoretical ones. Nevertheless,
many questions still remain to be addressed: the models and the evaluation techniques
should be improved (but this is not the topic of this paper); estimation problems might
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arise also because secondary simulations are used to evaluate the position of the com-
pany at time 1, and they should be controlled.

In the case where density level curves are unknown, some extreme value techniques
could be used as a complement and provide some useful information. Note that here
we would typically try to estimate level curves outside of which at least 4% or 6% of the
points lie, whereas the methods developed for example by Einmahl (2010) for stable
vectors are designed for cases where very few observations lie outside the level curve
(and sometimes not even a single one). However, in some cases where heavy tails are in-
volved, this theory could prove useful even if it would be at the limit of its applicability.

Another drawback of this two-step approach is that it implicitly requires the multi-
dimensional risk process to be Markovian: one only relies on the current position of
the risk drivers at time t = 1 to evaluate the company’s net asset value at that time.
It might be useful, at least for ORSA studies (Own Risk and Solvency Assessment) to
have a better view on the speed and the direction in which markets and insurance risks
are moving. Of course, some supplementary risk factors could be used to take into
account some path characteristics, but this would be at the cost of dimension...
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Figure 12. Case with 3 risk drivers: impact of asset risk and interest rate
risk: red points are projections of the risk vectors with lower net asset
value at time 1

The main issue to be tackled is probably the curse of dimensionality: if one keeps all
risk drivers of an insurance group, dimension could be around 200. In a partial internal
model, dimension might be around 5 or 10 very often. In that case, dimension reduction
is needed thanks to variable selection or other techniques. In fact, some risk factors
might play a minor role, and consequently non-execution zones can become half-spaces
or hyper-cylinders. We just highlight this phenomenon on a real-world portfolio with
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Figure 13. Case with 3 risk drivers: impact of asset risk and property
risk: red points are projections of the risk vectors with lower net asset
value at time 1
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Figure 14. Case with 3 risk drivers: impact of interest rate risk and
property risk: red points are projections of the risk vectors with lower net
asset value at time 1

three risk drivers: asset risk, interest rate risk and property risk. Figures 12, 13 and 14
show the interest rate and the property risk drivers play a minor role. One way to
get an idea of the importance of each risk driver is to use sensibilities, leading to 2-
dimensional projected non-execution zones that are larger or smaller depending on the
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importance of each risk. In that case, only the asset risk is dominant, and consequently
the 3-dimensional non execution zone is not far from a half-space (corresponding to
low asset performances). With more risk drivers, it might be much more difficult to
choose the main risk drivers and to control the error created by ignoring or using a
proxy of the other risk drivers. We keep this for further research.
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