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Introduction

In Economic, as in many other fields, regression analysis aims to both predict the future of phenomena and to interpret the data at hand. In a prediction purpose, one of the main assumptions is the absence of evolution in the modeled phenomenon between the training and the prediction stages. In the opposite case, a new regression model should be estimated independently from the previous analysis. For the same reasons, when the goal of the regression analysis is the phenomenon interpretation, studies of a same phenomenon but in different situation (at different periods of time, in different geographical places, etc.) are generally carried out independently.

In this work, it is shown how a regression model, used in order to predict or to explain a phenomenon in a given situation, can be efficiently adapted to a new situation. For this, adaptive models for linear regression [START_REF] Bouveyron | Adaptive linear models for regression: improving prediction when population has changed[END_REF] and for mixture of regressions [START_REF] Bouveyron | Adaptive mixtures of regressions: Improving predictive inference when population has changed[END_REF] are considered. In a first analysis, the goal is to predict house value in the city of San Jose (California, West coast) from several features as housing units characteristics or socio-economic information about the households that occupy those units. We will see that using a regression model previously built for the city of Birmingham (Alabama, South-East), with the same variables, can leads to spare a new expensive collect of data in the city of San Jose. In the second study, a regression model of the CO 2 emissions according to the gross national product of countries is used for explaining the link between these two indicators. As in the previous study, we will see that data from 1980 and especially the regression model on these data can be useful for the estimation of a regression model on the 1999's data. Moreover, the exhibited link between the two regression models is informative and allows to explain the different evolutions of the economical politics of the considered countries.

The paper is organised as follows. Section 2 presents the two datasets whereas Section 3 briefly review the methodology. Results are then presented and discussed in Section 4. Finally, Sec-tion 5 proposes some concluding remarks.

The data

In this work, two datasets with evolving populations will be studied. This section briefly presents both datasets.

The American Housing Survey dataset

The first dataset used in this study is the 1984 American Housing Survey (AHS) dataset. This is a statistical survey funded by the United States Department of Housing and Urban Development (HUD) and conducted by the U.S. Census Bureau. The AHS survey is the largest regular national housing sample survey in the United States which aims to give each year an overview of the housing conditions in 11 U.S. metropolitan areas. This study focuses on two particular metropolitan areas: the cities of Birmingham, Alabama (South-East) and of San Jose, California (West coast). Fourteen relevant features have been selected among all available features for modeling the housing market of Birmingham. The dataset contains information on the number and characteristics of housing units as well as the households that inhabit those units. The selected features for the study include the number of units in the property (NUNITS), the number of rooms (ROOMS), bedrooms (BEDRMS) and bathrooms (BATHS), the monthly cost of the housing (ZSMHC), the annual cost in maintenance of the unit (CSTMNT), the monthly cost in electricity (AMTE), the number of cars of the household (CARS), the unit surface (UNITSF), the annual salary of the tenant (SAL1) and of the household (ZINC) and the number of persons in the household (PER). Finally, based on these 12 features, the response variable to predict is the value of the housing. The model used is simplified in order to interpret the results more easily: mainly we used a small set of variables and a classical functional form (loglinear) to explain housing prices. Indeed, even if a great number of variables is available in the American Housing Surveys, according to the literature and due to important collinearities, it is sufficient to include some variables belonging to each of the four classes of characteristics: dimensions, comfort, structure (building) including the housing and characteristics of its location. In ad- dition, to avoid the problem of numerous missing values in the fourth class (for instance one third of the owners do not answer the question "Is there a problem with crime in the neighborhood"), proxy variables have been used to take into account the quality of neighborhood with control for the segmentation of the market (personal income, household size, number of cars owned). Finally, in this provisional treatment, a simple specification is used (no quadratic terms and no crossed effects). A more complex specification or mixes of several types of specifications constitute directions for future work. The difference between houses in Birmingham and San Jose is illustrated by Figure 1 which presents the value of the houses according to their surfaces. The present work will show how a regression model of the house value estimated for the city of Birmingham can be adapted to the prediction of the houses values in San Jose.

The CO 2 -GNP dataset

Economic aspects of diffusion of greenhouse gases and their impact on environment play an important role on the countries economies, and their analysis have attracted a great interest in the last twenty years [START_REF] Barker | Measuring economic costs of co2 emission limits[END_REF][START_REF] Grubb | Influence of socio-economic inertia and uncertainty on optimal co2-emission abatement[END_REF]. As pointed out by [START_REF] Hurn | Estimating mixtures of regressions[END_REF], the study of such data could also be useful for countries with low GNP in order to clarify in which development path they are embarking. The objectives of this study is to investigate the relationship and causality between gross national product (GNP) and carbon dioxide gas (CO 2 ) This paper will show on this dataset how the use of the 1980's data can be helpful in the analysis of 1999's data, by improving the quality of the regression models used to explain the relationship between the gross national product and the CO 2 emissions. Moreover, our analysis will allow to give information about the evolution of this relationship from 1980 to 1999, and then to explain the economical political choices of particular countries.

Adaptive models in regression

In this work, the adaptive regression models proposed in [START_REF] Bouveyron | Adaptive linear models for regression: improving prediction when population has changed[END_REF] and [START_REF] Bouveyron | Adaptive mixtures of regressions: Improving predictive inference when population has changed[END_REF] will be used to analyze and understand the population evolution of the two datasets presented in the previous section. This section briefly reviews these adaptive regression models.

Adaptive linear models

The general setting of regression analysis is to identify a relationship (the regression model) be-tween a response variable and one or several explanatory variables. Adaptive linear models have been defined in order to adapt an existing regression model to a new situation, in which the variables are identical but with a possible different probability density distribution and the relationship between response and explanatory variables could have changed.

Linear models for regression In regression analysis, the data S = {(x 1 , y 1 ), ..., (x n , y n )} which arise from a population P , are assumed to be independent and identically distributed samples from an unknown distribution, where x = (x (1) , . . . , x (p) ) ∈ R p and Y ∈ R. In regression studies, Y is considered as a stochastic variable and x as a deterministic one. A general data modeling problem is to identify the relationship between the explanatory variable x (or covariate) and the response variable Y (or dependent variable). Both standard parametric and nonparametric regression approaches start with the following model:

Y = f (x, β) + ǫ, (1) 
with ǫ ∼ N (0, σ 2 ) and where β is a vector of real regression parameters. The most common model is the linear form:

f (x, β) = β 0 + d i=1 β i ψ i (x), (2) 
with β = (β 0 , β 1 , . . . , β d ) ∈ R d+1 are the regression parameters, and (ψ i ) 1≤i≤d is a basis of regression functions. In particular, usual linear regression occurs when d = p and ψ i (x) = x (i) .

How to adapt a regression model to another population? Let us assume that the estimation of the regression function f has been obtained in a preliminary study by using the sample S, and that a new regression model has to be adjusted on a new sample S * = {(x * 1 , y * 1 ), ..., (x * n * , y * n * )}, measured on the same variables but arising from another population P * (n * is generally assumed to be small). The new regression model on P * can be written:

Y |x * ∼ N (f (x * , β * ), σ 2 ), with f (x * , β * ) = β * 0 + d i=1 β * i ψ i (x * ).
Let us now precise the focus of adaptive linear models by making the two following assumptions. Firstly, the variables (Y, x) and (Y * , x * ) are assumed to be the same but measured on two different populations. Secondly, the size n * of the observation sample S * = (y * i , x * i ) i=1,n * of population P * is assumed to be small compared to the number of observations of the reference population P . Otherwise, the mixture regression model could be estimated directly without using the training population.

We consider the following transformation model between both regression functions for modeling the link between both populations:

f (x * , β * ) = φ(f (x, β)). (3) 
Since the transformation model ( 3) proposed in the previous section is a very general model, we propose to assume that the transformation function φ has the following form:

φ(f (x, β)) = f (x, λβ)
with λ ∈ R d+1 . This transformation can be also written in term of the regression parameters of both models as follows:

β * i = λ i β i ∀i = 1, . . . , d, (4) 
with λ i ∈ R. Let us also notice that the regression functions ψ i are assumed to be the same for both regression models, which is natural since the variables are identical in both populations.

A family of transformation models As the number of parameters to estimate for the transformation ( 4) is equal to (d + 1), learning this transformation model is equivalent to learn a new regression model from the sample S * . It is therefore necessary to reduce the number of free parameters and that can be done by imposing constraints on the transformation parameters λ i . Then, a family of 7 transformation models is considered, named further Adaptive Linear Models, from the most complex model (hereafter M 0 ) to the simplest one (hereafter M 6 ): d. This model is the most complex model of transformation between both populations P and P * , and is equivalent to learning a new regression model from the sample S * .

• Model M 0 : β * 0 = λ 0 β 0 and β * i = λ i β i , for i = 1, ...,
• Model M 1 : β * 0 = β 0 and β * i = λ i β i for i = 1, ..., d. This transformation model assumes that both regression models have the same intercept β 0 .

• Model M 2 : β * 0 = λ 0 β 0 and β * i = λβ i for i = 1, ..., d. This transformation model assumes that the intercept of both regression models differ by the scalar λ 0 and all the other regression parameters differ by the same scalar λ.

• Model M 3 : β * 0 = λβ 0 and β * i = λβ i for i = 1, ..., d. This transformation model assumes that all the regression parameters of both regression models differ by the same scalar λ.

• Model M 4 : β * 0 = β 0 and β * i = λβ i for i = 1, ..., d. This transformation model assumes that both regression models have the same intercept β 0 and all the other regression parameters differ by the same scalar λ.

• Model M 5 : β * 0 = λ 0 β 0 and β * i = β i for i = 1, ..., d. This transformation model assumes that both regression models have the same parameters except the intercept.

• Model M 6 : β * 0 = β 0 and β * i = β i for i = 1, ..., d. This model assume that both populations P and P * have the same behavior.

The numbers of parameters to estimate for these transformation models are presented in Table 2. Remark that it is possible to consider intermediate models, by imposing specific constraints on some parameters λ i for given i ∈ {1, . . . , d}. The practician could use his experimental knowledge to introduce some intermediate models especially useful for his application.

Estimation procedure and model selection

The estimation procedure is made of two main steps corresponding to the estimation of the regression parameters on the population P and the estimation of the transformation parameters using samples of the population P * . The natural way for the first estimation step is to use the ordinary least squares (OLS) procedure. Once the regression parameters of population P have been learned, the parameters of the transformation models can also be estimated using the OLS procedure. However, by lack of space, the corresponding estimators are

Model M 0 M 1 M 2 M 3 M 4 M 5 M 6 Parameters numbers d+1 d 2 1 1 1 0
Table 1: Complexity (number of parameters) of the transformation models. We recall that the models M 0 and M 6 correspond respectively to OLS on P * and OLS on P . not presented in this paper but can be found in [START_REF] Bouveyron | Adaptive linear models for regression: improving prediction when population has changed[END_REF]. Finally, the cross validation PRESS criterion [START_REF] Allen | The relationship between variable selection and data augmentation and a method for prediction[END_REF] is used in order to select the most appropriate model for the data among the 7 Adaptive Linear Models.

Adaptive mixture models

As an alternative to linear models for modeling complex systems, the mixture of regressions is a popular approach which has been introduced by [START_REF] Goldfeld | A markov model for switching regressions[END_REF] as the switching regression model. In particular, this model is often used in Economics for modeling phenomena with different phases. It assumes that the dependent variable Y ∈ R can be linked to a covariate x = (1, x (1) , ..., x (p) ) ∈ R p+1 by one of K possible regression models:

Y = x t β k + σ k ε, k = 1, ..., K (5) 
where ε ∼ N (0, 1), β k = (β k0 , ..., β kp ) ∈ {β 1 , . . . , β K } is the regression parameter vector in R p+1 and σ 2 k ∈ {σ 2 1 , . . . , σ 2 K } is the residual variance. The conditional density distribution of Y given x is therefore:

p(y|x) = K k=1 π k φ(y|x t β k , σ 2 k ), (6) 
where π 1 , ..., π K are the mixing proportions (with the classical constraint

K i=1 π k = 1), and φ(•|x t β k , σ 2 
k ) is the Gaussian density parametrized by its mean x t β k and variance σ 2 k . As for the adaptive linear models, the new population P * , for which we want to predict Y , is assumed to be different from the training population P . The mixture regression model for P * can be written as follows:

Y * = x * t β * k + σ * k ε * p(y * |x * ) = K * k=1 π * k φ(y * |x * t β * k , σ * k 2 ) (7) with ε * ∼ N (0, 1), β * k ∈ {β * 1 , . . . , β * K * } and σ * k ∈ {σ * 1 , . . . , σ * K * }.
In addition to the assumptions made in the previous section, as both populations have the same nature, each mixture is assumed to have the same number of components (K * = K). Under these assumptions, the goal is then to predict Y * for some new x * by using both samples S = (y i , x i ) i=1,n and S * .

A family of transformation models Following the strategy of the linear case, the general transformation model is considered:

β * k = Λ k β k , (8) 
where Λ k = diag(λ k0 , λ k1 , . . . , λ kp )

σ * k is free,
where diag(λ k0 , λ k1 , . . . , λ kp ) is the diagonal matrix containing (λ k0 , λ k1 , . . . , λ kp ) on its diagonal completed by zeros. The family of parsimonious models is defined by imposing some constraints on Λ k :

• M M 1 assumes that both populations are the same population: Λ k = I d is the identity matrix,

• M M 2 assumes that the link between populations is covariate and mixture component independent:

-M M 2a : λ k0 = 1, λ kj = λ and σ * k = λσ k ∀1 ≤ j ≤ p, -M M 2b : λ k0 = λ, λ kj = 1 and σ * k = σ k ∀1 ≤ j ≤ p, -M M 2c : Λ k = λI d and σ * k = λσ k , -M M 2d : λ k0 = λ 0 , λ kj = λ 1 and σ * k = λ 1 σ k ∀1 ≤ j ≤ p,
• M M 3 assumes that the link between populations is covariate independent:

-M M 3a : λ k0 = 1, λ kj = λ k and σ * k = λ k σ k ∀1 ≤ j ≤ p, -M M 3b : λ k0 = λ k , λ kj = 1 and σ * k = σ k ∀1 ≤ j ≤ p, -M M 3c : Λ k = λ k I d and σ * k = λ k σ k , -M M 3d : λ k0 = λ k0 , λ kj = λ k1 and σ * k = λ k1 σ k ∀1 ≤ j ≤ p,
• M M 4 assumes that the link between populations is mixture component independent:

-M M 4a :

λ k0 = 1 and λ kj = λ j ∀1 ≤ j ≤ p, -M M 4b : Λ k = Λ with Λ a diagonal ma- trix,
• M M 5 assumes that Λ k is unconstrained, which leads to estimate the mixture regression model for P * by using only S * .

Moreover, the mixing proportions are allowed to be the same in each population or to be different between both populations P and P * . In the latter case, they consequently have to be estimated using the sample S * . Corresponding notations for the models are respectively M M • and pM M • . Table 2 gives the number of parameters to estimate for each model. If the mixing proportions are different from P to P * , K -1 parameters to estimate must be added to these values.

Estimation procedure and model selection

As before, the estimation procedure is made of two steps. The first step consists in estimating model parameters for the reference population P whereas the second one focuses on the estimation of the link parameters. The estimation of the mixture regression parameters β * k are deduced afterward by plug-in. Conversely to the case of linear models, parameter estimation can not be done with the standard OLS procedure and the estimation has to be carried out by maximum likelihood using a missing data approach via the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data (with discussion)[END_REF]. Estimation details can be found in [START_REF] Bouveyron | Adaptive mixtures of regressions: Improving predictive inference when population has changed[END_REF]. Finally, in order to select among the transformation models previously defined the most appropriate model of transformation between the populations P and P * , we propose to use the PRESS criterion [START_REF] Allen | The relationship between variable selection and data augmentation and a method for prediction[END_REF] or the Bayesian Information Criterion (BIC, [START_REF] Schwarz | Estimating the dimension of a model[END_REF]).

Experimental results

The two adaptive strategies reviewed in the previous will be now applied to the AHS and CO2/GNP datasets.

The housing market data

A semi-log regression model for the housing market of Birmingham was learned using all the 1541 available samples and, then, the 7 adaptive linear In order to evaluate the ability of the adaptive linear models to transfer the Birmingham knowledge to San Jose in different situations, the experiment protocol was applied for different sizes of San Jose samples ranging from 5 to 921 observations. For each dataset size, the San Jose samples were randomly selected among all available samples and the experiment was repeated 50 times for averaging the results. For each adaptive linear model, the PRESS criterion and the mean squard error (MSE) were computed, by using the selected sample for PRESS and the whole San Jose dataset for MSE.

Figure 3 shows the logarithm of the MSE for the different adaptive linear models regarding to the learned with a very small number of observations and becomes more efficient for learning datasets larger than 50 observations. The model M 1 has a similar behavior for small learning datasets but turns out to be less interesting than M 0 when the size of the learning dataset is larger. These behaviors are not surprising since both models M 0 and M 1 are very complex models and then need large datasets to be correctly learned. Conversely, the models M 2 to M 5 appear not to be sensitive to the size of the dataset used for adapting the Birmingham model. Particularly, the model M 2 obtains very low MSE values for a learning dataset size as low as 20 observations. This indicates that the model M 2 is able to adapt the Birmingham model to San Jose with only 20 observations. Moreover, Table 3 indicates that the model M 2 provides better prediction results than the model M 0 for the housing market of San Jose for learning dataset sizes less than 100 observations. Naturally, since the model M 0 is more complex, it becomes more efficient than the model M 2 for larger datasets even though the difference is not so big for large learning datasets. Figure 4 shows that the PRESS criterion, which will be used in practice since it is computed without a validation dataset, allows the practician to successfully select the most appropriated transfer model. Indeed, it appears clearly that the PRESS curves are very similar to the MSE curves computed on the whole dataset. Finally, in such a context, the transformation parameters obtained by the different adaptive linear models can be interpreted in an economic way and this could be interesting for economists. In particular, the estimated transformation parameters by the model M 2 with the whole San Jose dataset are λ 0 = 1.439 and λ = 0.447. The results obtained, mainly a proportionality between the parameters, suggest that, in this case, the contribution of each characteristic to the growth of the housing value in the second city is just one half of what it is in the first one, while, in the same time, the basic price in the second city is one time and a half greater. This results from a simple regulation produced by the market, if the constraint of the same specification for the two cities is validated by the statistical results. In terms of MSE and PRESS we obtain good indicators of the validation of this constraint within the scope defined for this initial approach.

Model M M 1 M M 2a-c M M 2d M M 3a-c M M 3d M M 4a M M 4b M M 5 Param. 0 1 2 K 2K p + K p + K + 1 K(p + 2)
To summarize, this experiment has shown that the adaptive linear models are able to transfer the knowledge on the housing market of a reference city to the market of a different city with a small number of observations. Furthermore, the interpretation of the estimated transformation parameters could help the practician to analyze in an economic way the differences between the studied populations.

The CO 2 -GNP data

A mixture of second order polynomial regressions seems to be particularly well adapted to fit the link between the CO 2 emissions and the log-GNP, and will be used in the following. For the two groups of countries are easily distinguishable: a first minority group (about 25% of the whole sample) is made of countries for which a grow in the GNP is linked to a high grow of the CO 2 emission, whereas the second group (about 75%) seems to have more environmental political orientations. This country discrimination in two groups is more difficult to obtain on the 1999's data: it seems (from Figure 2) that countries which had high CO 2 emission in 1980 have adopted a more environmental development than in the past, and a two-component mixture regression model could be more difficult to exhibit.

In order to help this distinction, adaptive mixture models are used to estimate the mixture regression model on the 1999's data. The eight models pM M 2a to pM M 3d (since pM M 4a and pM M 4b are equivalent to pM M 2a and pM M 2c for p = 1), classical mixture of second order polynomial regressions with two components (MR) and usual second order polynomial regression (UR) are considered. Different sample size of the 1999's data are tested: 30%, 50%, 70% and 100% of the S * size (n * = 111). The experiments have been repeated 20 times in order to average the results. Table 4 summarizes these results: MSE corresponds to the mean square error, whereas PRESS and BIC are the model selection criteria introduced in Section 3. In this application, the total number of available data in the 1999 population is not sufficiently large to separate them into two training and test samples. For this reason, MSE is computed on the whole S * sample, although a part of it has been used for the training (from 30% for the first experiment to 100% for the last one). Consequently, MSE is a significant indicator of predictive ability of the model when 30% and 50% of the whole dataset are used as training set since 70% and 50% of the samples used to compute the MSE remain independent from the training stage. However, MSE is a less significant indicator of predictive ability for the two last experiments and the PRESS should be preferred in these situations as indicator of predictive ability. Table 4 first allows to remark that the 1999's data are actually made of two components as in the 1980's data since both PRESS and MSE are better for MR (2 components) than UR (1 component) for all sizes n * of S * . This first result validates the assumption that both the reference population P and the new population P * have the same number K = 2 components, and conse-quently the use of adaptive mixture of regression does make sense for this data. Secondly, adaptive mixture models turns out to provide very satisfying predictions for all values of n * and particularly outperforms the other approaches when n * is small. Indeed, both BIC, PRESS and MSE testify that these models provide better predictions than the other studied methods when n * is equal to 30%, 50% and 70% of the whole sample. Furthermore, it should be noticed that adaptive mixture model provide stable results according to variations on n * . In particular, the models pM M 2 are those which appear the most efficient on this dataset and this suggests that the link between both populations P and P * is mixture component independent. This application illustrates well the interest of combining informations on both past (1980) and present (1999) situations in order to analyze the link between CO 2 emissions and gross national product for several countries in 1999, especially when the number of data for the present situation is not sufficiently large. Moreover, the competition between the adaptive mixture models is also informative. Indeed, it seems that three models are particularly well adapted to model the link between the 1980's data and those of 1999's data: pM M 2a , pM M 2b and pM M 2c . The particularity of these models is that they consider the same transformation for both classes of countries, which means that all the countries have the same kind of evolution. The estimated mixture of two regression models on the 1980's data is: with π 1 = 0.15, σ * 2 1 = 4.9, π 2 = 0.85 and σ * 2 1 = 0.87.

These results are illustrated by Figure 5. One can first remark that there are still two groups of countries: the first group of countries has a low ratio CO2/GNP whereas the second one as a highest ratio. Without trying to generalize, the presence of two types of countries may indicate the existence of two different environmental politics. In particular, one can remark that USA, Canada and Australia remain in the group of high CO2/GNP ratio whereas Belgium, Netherlands, Finland and New Caledonia have moved from the high CO2/GNP group to the low CO2/GNP group.

This experiment are therefore shown that the use of adaptive models for switching regression can help the practician in understanding and interprating the evolution of the studied phenomenum.

Conclusion

When carrying out a regression analysis to analyze a phenomenon which have already been studied in different conditions, adaptive models can help to exploit the previous analysis in order to emphasize the quality of the current one. In this paper, we have shown how a regression model predicting the house value can be adapted from the US South-East to the US West coast, and how the regression of the CO 2 emissions in function to the gross national product in 1999 can be estimated by using information about the same analysis in 1980. In such contexts, the adaptive models proposed in [START_REF] Bouveyron | Adaptive linear models for regression: improving prediction when population has changed[END_REF] and [START_REF] Bouveyron | Adaptive mixtures of regressions: Improving predictive inference when population has changed[END_REF] can help the practician in both improving the prediction quality and for understanding the evolution of the studied phenomenon. Let us finally notice that similar models exist in a classification context [START_REF] Biernacki | A generalized discriminant rule when training population and test population differ on their descriptive parameters[END_REF][START_REF] Jacques | Extension of model-based classification for binary data when training and test populations differ[END_REF] as well and allow to classify observations in a situation different from the one in which the classification rule has been estimated.
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 1 Figure 1: Housing value vs surface for Birmingham (AL, USA) and San Jose (CA, USA)
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 2 Figure 2: Emissions of CO 2 per capita versus GNP per capita in 1980 (left) and 1999 (right).
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 34 Figure 3: MSE results for the Birmingham-San Jose data.
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 5 Figure 5: Emissions of CO 2 per capita versus GNP per capita in 1980 (left) and 1999 (right) and estimated adaptive mixture models (with model pM M 2c for 1999).

CO 2 = 2 CO 2

 222 26.96 -9.62 log(GN P ) + 0.88 log(GN P ) 2 CO 2 = 13.42 -4.57 log(GN P ) + 0.40 log(GN P ) 2 with respective probability π 1 = 0.26 and π 2 = 0.74 and residual variances σ 2 1 = 3.10 and σ 2 1 = 0.55. The model for the 1999's data obtained with model pM M 2c (for the whole sample size) is obtained with a link parameter λ = 1.26: CO 2 = 33.92 -12.1 log(GN P ) + 1.11 log(GN P ) = 16.89 -5.75 log(GN P ) + 0.50 log(GN P ) 2

Table 2 :

 2 Number of parameters to estimate for each model of the proposed family.

	Model	10 obs. 25 obs. 50 obs. 100 obs. 250 obs. all obs.
	Model M 0 3.5×10 7	576.9	386.1	336.8	310.7	297.5
	Model M 2	414.8	356.7	342.1	336.0	332.5	330.1
	Model M 6 1528.9	1528.9 1528.9	1528.9	1528.9	1528.9

Table 3 :

 3 MSE results for the Birmingham-San Jose data. size of the used San Jose samples. Similarly, Figure4shows the logarithm of the PRESS criterion. Firstly, Figure3indicates that the model M 6 , which corresponds to the Birmingham's model, is actually not adapted for modeling the housing market of San Jose since it obtains a not satisfying MSE value. Let us notice that the curve corresponding to the MSE of the model M 6 is constant since the regression model has been learned on the Birmingham's data and consequently does not depend on the size of the San Jose's dataset selected for learning. Secondly, the model M 0 , which is equivalent to OLS on the San Jose samples, is particularly disappointing (large values of MSE) if

Table 4 :

 4 MSE on the whole 1999's sample, PRESS and BIC criterion for the 8 adaptive mixture models (pM M 2a to pM M 3d ), usual regression model (UR) and classical regressions mixture model (MR), for 4 sizes of the 1999's sample: 33, 55, 77 and 111 (whole sample). Lower BIC, PRESS and MSE values for each sample size are in bold character.

	1980's data,