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From logarithmic to subdiffusive polynomial fluctuations
for internal DLA and related growth models∗

Amine Asselah1 Alexandre Gaudillière2

Dedicated to Joel Lebowitz, for his 80th birthday.

Abstract

We consider a cluster growth model on Zd, called internal diffusion limited aggre-
gation (internal DLA). In this model, random walks start at the origin, one at a time,
and stop moving when reaching a site not occupied by previous walks. It is known
that the asymptotic shape of the cluster is spherical. When dimension is 2 or more, we
prove that fluctuations with respect to a sphere are at most a power of the logarithm
of its radius in dimension d ≥ 2. In so doing, we introduce a closely related cluster
growth model, that we call the flashing process, whose fluctuations are controlled easily
and accurately. This process is coupled to internal DLA to yield the desired bound.
Part of our proof adapts the approach of Lawler, Bramson and Griffeath, on another
space scale, and uses a sharp estimate (written by Blachère in our Appendix) on the
expected time spent by a random walk inside an annulus.

AMS 2010 subject classifications: 60K35, 82B24, 60J45.

Keywords and phrases: internal diffusion limited aggregation, cluster growth, ran-
dom walk, shape theorem, logarithmic fluctuations, subdiffusive fluctuations.

1 Introduction

The internal DLA cluster of volume N , say A(N), is obtained inductively as follows. Initially,
we assume that the explored region is empty, that is A(0) = ∅. Then, consider N independent
discrete-time random walks S1, . . . , SN starting from 0. Assume A(k − 1) is obtained, and
define

τk = inf {t ≥ 0 : Sk(t) 6∈ A(k − 1)} , and A(k) = A(k − 1) ∪ {Sk(τk)}.
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In such a particle system, we call explorers the particles. We say that the k-th explorer is
settled on Sk(τk) after time τk, and is unsettled before time τk. The cluster A(N) consists of
the positions of the N settled explorers.

The mathematical model of internal DLA was introduced first in the chemical physics
literature by Meakin and Deutch [13]. There are many industrial processes that look like
internal DLA (see the nice review paper [7]). The most important seems to be electropol-
ishing, defined as the improvement of surface finish of a metal effected my making it anodic
in an appropriate solution. There are actually two distinct industrial processes (i) anodic
levelling or smoothing which corresponds to the elimination of surface roughness of height
larger than 1 micron, and (ii) anodic brightening which refers to elimination of surface defects
which are protruding by less than 1 micron. The latter phenomenon requires an understand-
ing of atom removal from a crystal lattice. It was noted in [13] that, at a qualitative level,
the model produces smooth clusters, and the authors wrote “it is also of some fundamental
significance to know just how smooth a surface formed by diffusion limited processes may
be”.

Diaconis and Fulton [2] introduced internal DLA in mathematics. They allowed explorers
to start on distinct sites, and showed that the law of the cluster was invariant under per-
mutation of the order in which explorers were launched. This invariance, named the abelian
property, was central in their motivation. They treat among other things, the special one
dimensional case.

In dimension two or more, Lawler, Bramson and Griffeath [10] prove that in order to
cover, without holes, a sphere of radius n, we need about the number of sites of Zd contained
in this sphere. In other words, the asymptotic shape of the cluster is a sphere. Then, Lawler
in [9] shows subdiffusive fluctuations. The latter result is formulated in terms of inner and
outer errors, which we now introduce with some notation. We denote with ‖ ·‖ the euclidean
norm on Rd. For any x in Rd and r in R, set

B(x, r) =
{
y ∈ Rd : ‖y − x‖ < r

}
and B(x, r) = B(x, r) ∩ Zd.

For Λ ⊂ Zd, |Λ| denotes the number of sites in Λ. The inner error δI(n) is such that

n− δI(n) = sup {r ≥ 0 : B(0, r) ⊂ A(|B(0, n)|)} .

Also, the outer error δO(n) is such that

n+ δO(n) = inf {r ≥ 0 : A(|B(0, n)|) ⊂ B(0, r)} .

The main result of [9] reads as follows.

Theorem 1.1 [Lawler] Assume d ≥ 2. Then,

P
(
∃n(ω) : ∀n ≥ n(ω) δI(n) ≤ n1/3 log(n)2

)
= 1, (1.1)

and
P
(
∃n(ω) : ∀n ≥ n(ω) δO(n) ≤ n1/3 log(n)4

)
= 1. (1.2)
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Since Lawler’s paper, published 15 years ago, no improvement of these estimates was achi-
eved, but it is believed that fluctuations are on a much smaller scale than n1/3. Moreover,
(1.1) are almost sure upper bounds on errors, and no lower bound on the inner or outer
error has been established. Computer simulations [14, 3] suggest indeed that fluctuations
are logarithmic. In addition, Levine and Peres studied a deterministic analogue of internal
DLA, the rotor-router model, introduced by J.Propp [6]. They bound, in [12], the inner
error δI(n) by log(n), and the outer error δO(n) by n1−1/d.

We now introduce a family of cluster growth models for which a control of the fluctuations
of the cluster shape is easily obtained. These growth models are built so that the asymptotic
shape is spherical, but still they exhibit a large diversity of fluctuations parametrized by a
certain width ranging from a large constant to a power 1/3 of the radius of the asymptotic
sphere. Moreover, all these clusters are coupled to internal DLA, and, as a consequence, we
obtain logarithmic bounds on the fluctuations for internal DLA. We generalize internal DLA
by allowing explorers to settle only at some special times. Thus, each explorer i is associated
with a collection of times {σi,k, k ∈ N} and

τ ∗i = inf {σi,k : Si(σi,k) 6∈ A∗(i− 1)} , and A∗(i) = A∗(i− 1)
⋃
{Si(τ ∗i )}.

The internal DLA is recovered as we choose σi,k = k for all i = 1, . . . , N and k ∈ N. We call
{σi,k, k ∈ N} the flashing times associated to the i-th explorer, and {Si(σi,k), k ∈ N} its
flashing positions.

In this paper, we consider stopping times of a special form, linked with the spherical
nature of the internal DLA cluster. An illustration with one flashing explorer’s trajectory is
made in Figure 1.

Figure 1: Cell decomposition, and flashing positions as stars.

The precise definition of the flashing times requires additional notation, which we post-
pone to Section 3. We describe here key features of flashing processes. We first choose a
sequence of widths, say H = {hn, n ∈ N}, and then partition Zd into concentric shells
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{Sn, n ∈ N}, whose respective widths are {2hn, n ∈ N}. Each shell is in turn partitioned
into cells, which are brick-like domain, of side length equal to the width of the shell. The
flashing times are chosen such that (i) an explorer flashes at most once in each shell, (ii) the
flashing position, in a shell, is essentially uniform over the cell an explorer first hits upon
entering the shell, and (iii) when an explorer leaves a shell, it cannot afterward flash in it.

For a given sequence H, we call the process just described the H-flashing process. Note
that feature (ii) is the seed of a deep difference with internal DLA. The mechanism of covering
a cell, for the flashing process, is very much the same as completing an album in the classical
coupon-collector process. Thus, we need of the order of V log(V ) explorers to cover a cell
of volume V . For internal DLA, with explorers started at the origin, we need only of order
V explorers to cover a sphere of volume V as shown in [10], and we believe that we need
a number of explorers of order |C| to cover a cell C, even if they start on the boundary of
the cell. In addition, feature (ii) allows to localize the covering mechanism, in the sense that
a particle entering a shell cannot flash outside the cell by which it entered into that shell.
Finally, feature (iii) is essential for having a useful coupling between flashing and internal
DLA processes.

Lemma 1.2 Assume that N is an integer, and H is a sequence of positive integers. There
is a coupling between the two processes, using the same trajectories S1, . . . , SN such that

A(N) =
N⋃
i=1

{Si(T (i))}, and A∗(N) =
N⋃
i=1

{Si(T ∗(i))}, (1.3)

and T ∗(i) ≥ T (i) for all i = 1, . . . , N .

As a corollary of Lemma 1.2, we have the following useful result.

Corollary 1.3 Under the hypotheses of the previous lemma, for k ≥ 1,

• if A∗(N) ⊂ ∪j<kSj, then A(N) ⊂ ∪j<kSj,

• if ∪j<kSj ⊂ A∗(N), then ∪j<kSj ⊂ A(N).

An H-flashing process, with hj ≥ h0 for j ≥ 0, and h0 a large constant, produces a cluster
A∗(N), for which we bound easily the inner error, δ∗I (n). Then, to bound the outer error,
δ∗O(n), we follow the approach of [9], though with a slightly simpler proof.

Proposition 1.4 Assume that for j ≥ 1, hj ≤ hj+1 ≤ (1 + 1
2j

)hj, with a large h0. For a
positive constant A∗d, we have

P (∃n(ω) : ∀n ≥ n(ω) δ∗I (n) ≤ A∗dh(n) log(n)) = 1, (1.4)

and,
P
(
∃n(ω) : ∀n ≥ n(ω) δ∗O(n) ≤ A∗dh(n) log2(n)

)
= 1, (1.5)

where h(n) = max{hk ∈ R : rk ≤ n}.
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Finally, we establish lower bound on the inner and outer error.

Proposition 1.5 Assume that h0 is large enough. Then, there is a constant a∗d such that

P (∃n(ω) : ∀n ≥ n(ω) δ∗I (n) ≥ a∗dh(n) log(h(n))) = 1, (1.6)

and,
P (∃n(ω) : ∀n ≥ n(ω) δ∗O(n) ≥ a∗dh(n) log(n)) = 1. (1.7)

Corollary 1.3 and Proposition 1.4, with the choice hj = h0 for all j > 0, imply the
following result for internal DLA.

Theorem 1.6 Assume d ≥ 2. There is a positive constant Ad such that,

P (∃n(ω) : ∀n ≥ n(ω) δI(n) ≤ Ad log(n)) = 1, (1.8)

and,
P
(
∃n(ω) : ∀n ≥ n(ω) δO(n) ≤ Ad log2(n)

)
= 1, (1.9)

Our approach builds on the work of Lawler, Bramson and Griffeath [10], which we first
review. We then sketch our main ideas leading to logarithmic fluctuations for internal DLA.

On previous bounds for internal DLA. We describe the approach of [10], for estab-
lishing the upper bound for the inner error. It is convenient to consider explorers starting
outside the origin with initial configuration denoted η. We denote also by A(Λ, η) the cluster
obtained from explorers initially on η, with an explored region Λ ⊂ Zd.

Now, for a site z ∈ Zd, we call W (η, z) (resp. M(η, z)) the number of explorers (resp. of
random walks) which visit z before settling. For an integer n, and η consisting of |B(0, n)|
explorers at the origin, the authors of [10] first write

{B(0, r) 6⊂ A(∅, η)} ⊂
⋃

z∈B(0,r)

{W (η, z) = 0} .

Then, they look for the largest value of rn (in terms of n) which guarantees that |B(0, rn)| ×
supz∈B(0,rn) P (W (η, z) = 0) be the term of a convergent series.

The approach of [10] is based on the following observations. (i) If explorers would not
settle, they would just be independent random walks; (ii) exactly one explorer occupies each
site of the cluster. Thus, the following equality holds in law.

W (η, z) +M(A(∅, η), z) ≥M(η, z).

Now, an observation of Diaconis and Fulton [2] is that we can realize the cluster by sending
many exploration waves. Let us illustrate this observation with two waves. We first stop
the explorers on the external boundary of a ball of radius R, say ∂B(0, R). We denote
with AR(∅, η) the cluster consisting of the positions of settled explorers, so that AR(∅, η) ⊂
B(0, R). We denote by ζR(η) the configuration with stopped explorers on ∂B(0, R). Then,
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the second wave consists in launching the explorers of ζR(η), with explored region AR(∅, η).
In other words, we have an equality in law

A(∅, η) = AR(∅, η) ∪ A (AR(∅, η), ζR(η)) .

Moreover, if the index R refers only to explorers (or walks) of the first wave, then for
z ∈ B(0, R)

WR(η, z) +MR(AR(∅, η), z) ≥MR(η, z). (1.10)

The authors of [10] consider R = n and z ∈ B(0, n). Since W (η, z) ≥ Wn(η, z), we have
using (1.10), for any α > 0

P (W (η, z) = 0) ≤ P (Mn(η, z) < α) + P (Mn(B(0, n), z) > α) . (1.11)

We then look for sites z such that E[Mn(η, z)] > α > E[Mn(B(0, n), z)] (and η = Nδ0).
Note that Mn(η, z) and Mn(B(0, n), z) are sums of independent Bernoulli variables with well
known large deviation estimates. If we set

2α = E[Mn(η, z)] + E[Mn(B(0, n), z)], and µ̃n(z) = E[Mn(η, z)]− E[Mn(B(0, n), z)],

then,

P (Mn(η, z) < α) ≤ exp

(
−(E[Mn(η, z)]− α)2

2E[Mn(η, z)]

)
≤ exp

(
− µ̃2

n(z)

8E[Mn(η, z)]

)
. (1.12)

Lawler in [9] establishes that for z ∈ B(0, n)

E [Mn(η, z)] ∼ n(n− ‖z‖), and µ̃n(z) ∼ (n− ‖z‖)2 .

Replacing these values in (1.12), the bound n−‖z‖ ≥ n1/3 log(n) is such that P (Wn(η, z) = 0)
is the term of a convergent series.

On logarithmic fluctuations. Our approach is inspired by Lawler, Bramson and Grif-
feath’s work [10]. We develop three original ideas: (i) we propose a cluster growth model, the
flashing processes, whose covering mechanism is simpler than internal DLA, (ii) we look at
an intermediary scale, the scale of cells, since the deviations of the number of visits decrease
with the cell-length, (iii) we build a coupling between internal DLA and flashing processes
which allows to transport bounds from one model to the other.

Let us describe how the idea of an intermediary scale is used in the context of flashing
processes. Recall that we first partition Zd into a sequence of concentric shells. Each shell is
partitioned into cells whose side length equals the width of the shell. Now, we observe that
a site has good chances to lie inside the cluster if some cell, say C about this site, is crossed
by many explorers. The notation W (η, C) refers to the number of explorers visiting C, when
their initial configuration is η. We drop the index n appearing in Wn(η, z) since there are no
more constraint on not escaping the ball B(0, n). Now, the coupon-collector nature of the
covering mechanism suggests that for some positive constant αd,

W (η, C) ≥ αd|C| × log(|C|) =⇒ C ⊂ A(N) with a large probability. (1.13)
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We neglect in these heuristics the log(|C|) term in (1.13).

Note that in [10], all the explorers start from the origin, whereas here, we only know
that they cross C. For internal DLA, estimating the probability that C is not covered, when
C is large and W (η, C) ≥ αd|C| raises a difficulty which is absent when considering flashing
processes.

We now make our argument more precise. For a scale h and an integer K > 1, to be
determined, assume that B(0, n − Kh) is covered by settled explorers. Partition the shell
S = B(0, n − (K − 1)h)\B(0, n − Kh) into about (n/h)d−1 cells, each of volume hd. It is
also convenient to stop the explorers as they reach the boundary of B(0, n − Kh). Thus,
with such a stopped process, explorers are either settled inside B(0, n − Kh) or unsettled
but stopped on its boundary, that we denote by ∂B(0, n−Kh). What we have called earlier
the number of explorers crossing C is taken here to be the unsettled explorers stopped on
C ∩ ∂B(0, n−Kh).

Assuming (1.13) holds, it remains to show that the probability of the event {∃C ∈ S :
W (η, C) < αd|C|} is small. We improve (1.11) by first using the independence between
W (η, C) and M(B(0, n−Kh), C), and then by replacing AR(∅, η) by B(0, n−Kh) in (1.10)
with R = n−Kh and η = |B(0, n)| 1I0,

W (η, C) +M(B(0, n−Kh), C) ≥M(η, C). (1.14)

Also, we define
µ(C) = E[M(η, C)]− E[M(B(0, n−Kh), C)].

Now, using that M(η, z) and M(B(0, n − Kh), z)) are sums of independent Bernoulli, we
show that (1.14) implies a gaussian type lower tail

P ( W (η, C) < αd|C|) ≤ exp

(
−(µ(C)− αd|C|)2

cν(C)

)
, (1.15)

for a positive constant c, and where ν(C)

ν(C) = var (M(η, C))− var (M(B(0, n−Kh), C)) .

We then show that both µ(C) and ν(C) are of order K|C|. Then, P (W (η, C) < αd|C|) is
summable as soon as K|C| ≥ A log(n).

Recent works on internal DLA. After this paper was submitted, Jerison, Levine and
Sheffield [4] improved our bound on the outer error in d = 2, by following a different approach.
Then, by refining our approach, we obtained in [1] a bound of order

√
log(n) for both internal

and external errors in dimension three or more. Finally, Jerison, Levine and Sheffield [5] by
using their approach proved similar bounds in dimension three or more.

Outline of the paper The rest of the paper is organized as follows. Section 2 introduces
the main notation, and recall well known useful facts. In Section 3, we build the flashing
process, give an alternative construction through exploration waves, and sketch the proof of
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Lemma 1.2. In Section 4, we prove Propositions 1.4 and 1.5 using the construction in terms
of exploration waves. In Section 5, we obtain a sharp estimate on the expected number of
explorers crossing a given cell, and prove feature (ii) of the flashing times. Both proofs are
based on classical potential theory estimates. Finally, in the Appendix, we give a proof of
Lemma 1.2, and recall a result of Sébastien Blachère.

2 Notation and useful tools

2.1 Notation

We say that z, z′ ∈ Zd are nearest neighbors when ‖z − z′‖ = 1, and we write z ∼ z′. For
any subset Λ ⊂ Zd, we define

∂Λ =
{
z ∈ Zd\Λ : ∃z′ ∈ Λ, z′ ∼ z

}
.

For any r ≤ R we define the annulus

A(r, R) = B(0, R) \B(0, r) and A(r, R) = A(r, R) ∩ Zd (2.1)

A trajectory S is a discrete nearest-neighbor path on Zd. That is S : N → Zd with S(t) ∼
S(t+ 1) for all t. For a subset Λ in Zd, and a trajectory S, we define the hitting time of Λ as

H(Λ;S) = min{t ≥ 0 : S(t) ∈ Λ}.

We often omit S in the notation when no confusion is possible. We use the shorthand
notation

Bn = B(0, n), Bn = B(0, n), HR = H(Bc
R), and Hz = H({z}).

For any a,b in R we write a ∧ b = min{a, b}, and a ∨ b = max{a, b}. Let Γ be a finite
collection of trajectories on Zd. For R > 0, z in Zd and Λ a subset of Zd, we call M(Γ, R, z)
(resp. M(Γ, R,Λ)) the number of trajectories which exit B(0, R) on z (resp. in Λ):

M(Γ, R, z) =
∑
S∈Γ

1{S(HR)=z}, and M(Γ, R,Λ) =
∑
z∈Λ

M(Γ, R, z).

When we deal with a collection of independent random trajectories, we rather specify its
initial configuration η ∈ NZd , so that M(η,R, z) is the number of random walks starting
from η and hitting B(0, R)c on z. Two types of initial configurations are important here: (i)
the configuration n1z∗ formed by n walkers starting on a given site z∗, (ii) for Λ ⊂ Zd, the
configuration 1Λ that we simply identify with Λ. For any configuration η ∈ NZd we write

|η| =
∑
z∈Zd

η(z).

For any Λ ⊂ Zd, we define Green’s function restricted to Λ, GΛ, as follows. For x, y ∈ Λ,
the expectation with respect to the law of the simple random walk started at x, is denoted
with Ex, (the law is denoted Px) and

GΛ(x, y) = Ex

 ∑
0≤n<H(Λc)

1{S(n)=y}

 .
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In dimension 3 or more, Green’s function on the whole space is well defined and denoted G.
That is, for any x, y ∈ Zd

G(x, y) = Ex

[∑
n≥0

1{S(n)=y}

]
.

In dimension 2, the potential kernel plays the role of Green’s function

a(x, y) = lim
n→∞

Ex

[
n∑
l=0

(
1 {S(l) = x} − 1 {S(l) = y}

)]
.

2.2 Some useful tools

We recall here some well known facts. Some of them are proved for the reader’s convenience.
This section can be skipped at a first reading.

In [10], the authors emphasized the fact that the spherical limiting shape of internal
DLA was intimately linked to strong isotropy properties of Green’s function. This isotropy
is expressed by the following asymptotics (Theorem 4.3.1 of [11]). In d ≥ 3, there is a
constant Kg, such that for any z 6= 0,∣∣∣G(0, z)− Cd

‖z‖d−2

∣∣∣ ≤ Kg

‖z‖d
with Cd =

2

vd(d− 2)
, (2.2)

where vd stands for the volume of the euclidean unit ball in Rd. The first order expansion
(2.2) is proved in [11] for general symmetric walks with finite d+ 3 moments and vanishing
third moment. All the estimates we use are eventually based on (2.2) and we emphasize
the fact that the estimate is uniform in ‖z‖. There is a similar expansion for the potential
kernel. Theorem 4.4.4. of [11] establishes that for z 6= 0, (with γ the Euler constant)∣∣∣a(0, z)− 2

π
log (‖z‖)− 2γ + log(8)

π

∣∣∣ ≤ Kg

‖z‖2
. (2.3)

We recall a rough but useful result about the exit site distribution from a sphere. This is
Lemma 1.7.4 of [8].

Lemma 2.1 There are two positive constants c1, c2 such that for any z ∈ ∂B(0, n), and
n > 0

c1

nd−1
≤ P0(S(Hn) = z) ≤ c2

nd−1
. (2.4)

We now state an elementary lemma.

Lemma 2.2 Each z∗ in Zd \ {0} has a nearest-neighbor z (i.e. z∗ ∼ z) such that

‖z‖ ≤ ‖z∗‖ − 1

2
√
d
. (2.5)
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Proof. Without loss of generality we can assume that all the coordinates of z∗ are non-
negative. Let us denote by b the maximum of these coordinates and note that

‖z∗‖2 ≤ db2, and b ≥ 1. (2.6)

Denote by z the nearest-neighbor obtained from z∗ by decreasing by one unit a maximum
coordinate. Using (2.6)

‖z∗‖2 − ‖z‖2 = b2 − (b− 1)2 = 2b− 1 ≥ b ≥ ‖z
∗‖√
d
. (2.7)

Note that (2.5) follows from 2‖z∗‖(‖z∗‖ − ‖z‖) ≥ ‖z∗‖2 − ‖z‖2, and (2.7).

We state now a handy estimate dealing with sums of independent Bernoulli variables.

Lemma 2.3 Let {Xn, Yn, n ∈ N} be independent 0-1 Bernoulli variables. For integers n,m
let S = X1 + · · ·+Xn and S ′ = Y1 + · · ·+ Ym. Define for t ∈ R

f(t) = et − 1− t, and g(t) =
(
et − 1

)2
.

If 0 ≤ t ≤ log(2), then

E [exp (t (S − E[S]))]

E [exp (t (S ′ − E[S ′]))]
≤ exp

(
f(t)E [S − S ′] + g(t)

m∑
i=1

E[Yi]
2

)
. (2.8)

Assume now that for κ > 1, supnE[Yn] ≤ κ−1
κ

. If t ≤ 0, then

E [exp (t (S − E[S]))]

E [exp (t (S ′ − E[S ′]))]
≤ exp

(
f(t)E [S − S ′] +

κ

2
g(t)

m∑
i=1

E[Yi]
2

)
. (2.9)

Proof. Let X be a Bernoulli variable, and p = E[X]. Using the inequality ex ≥ 1 + x for
x ∈ R, we have

E [exp (t(X − E[X]))] = pet(1−p) + (1− p)e−tp = e−pt
(
1 + p(et − 1)

)
≤ exp (f(t)E[X]) .

(2.10)
For a lower bound, we distinguish two cases.

First, assume t ≥ 0. We claim that exp(x − x2) ≤ 1 + x for 0 ≤ x ≤ 1. Indeed, we use
three obvious inequalities: ex ≥ 1 + x for x ∈ R, (i) for x ≤ 1, 1 + x + x2 ≥ ex, and (ii)
(1 + x2)(1 + x) ≥ 1 + x+ x2. Thus,

ex
2

(1 + x) ≥ (1 + x2)(1 + x) ≥ 1 + x+ x2 ≥ ex.

This yields the claim. Now, set x = p(et−1), so that x ≤ 1 when et ≤ 2. The last inequality
in (2.10) yields

E [exp (t(X − E[X]))] ≥ exp
(
−tp+ p(et − 1)− p2(et − 1)2

)
= ef(t)p−g(t)p2 . (2.11)
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Assume now that t ≤ 0, and for κ > 1, p < κ−1
κ

. We claim that for 0 ≤ x ≤ κ−1
κ

exp
(
−x− κ

2
x2
)
≤ 1− x. (2.12)

Indeed, we have an additional inequality (iii) 1− x + x2

2
≥ exp(−x) when x ≥ 0. Note also

that (
1 +

κ

2
x2
)

(1− x) ≥ 1− x+
x2

2
⇐⇒ x ≤ κ− 1

κ
.

Thus

e
κ
2
x2(1− x) ≥

(
1 +

κ

2
x2
)

(1− x) ≥ 1− x+
x2

2
≥ e−x.

Now, set x = −p(et − 1) ≥ 0, so that x ≤ κ−1
κ

. We obtain

E [exp (t(X − E[X]))] ≥ exp
(
−tp+ p(et − 1)− κ

2
p2(et − 1)2

)
= ef(t)p−κ

2
g(t)p2 (2.13)

The inequalities (2.8) and (2.9) follow (2.11) and (2.13).

3 The flashing process

In this section, we construct the flashing process, and state the crucial “Uniform hitting
property”. We then present a useful equivalent construction in terms of exploration waves.
Finally, we explain the coupling of Lemma 1.2 and postpone its proof to the Appendix.

3.1 Construction of the process

Partitioning the lattice. We are given a sequence H = {hn, n ∈ N}. We partition the
lattice into shells (Sj : j ≥ 0). For an illustration, see Figure 1. For a given parameter
h0 > 0 the first shell S0 is the ball B(0, h0). For j ≥ 1, shell j is the annulus (see its definition
(2.1))

Sj = A(rj − hj, rj + hj),

where {rj, j ≥ 1} is defined inductively by r1 = h0 + h1, and for j ≥ 1

rj+1 − hj+1 = rj + hj.

In Section 4, we need that (o) H is increasing, (i) j 7→ hj/rj is decreasing, and (ii) hj =

O(r
1/3
j ). These properties are a straightforward consequence of our hypothesis hj ≤ hj+1 ≤

(1 + 1
2j

)hj. Actually we will only need these properties and our hypothesis is no more than
a sufficient condition.

We also define
Σ0 = {0} and Σj = ∂B(0, rj), j ≥ 1.
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Flashing times. The key feature we expect from the flashing process is that its covering
mechanism be simple. More precisely, our construction is guided by property (ii) of the
Introduction which states that the flashing position, in a shell, is essentially uniform over
the cell an explorer first hits upon entering the shell. Thus, we need to define together cells
and flashing times to realize property (ii). It is important that all sites of a shell can be
chosen as flashing sites with about the same frequency. In this respect, let us remark that
a cell in shell Sj cannot be a ball of radius hj centered on Σj. Indeed, if this were the case,
sites at a distance about hj would be in much fewer cells, than sites of Σj, and this would
fail to make the covering of a shell uniform. We find it convenient to build a cell with a
mixture of balls and annuli. A (random) flag Yj tells the explorers whether it flashes upon
exiting either a sphere or the boundary of an annulus, whose distance from Σj is governed
with a random radius Rj of appropriate density. Also, to allow for the possibility of flashing
on its hitting position on Σj, we introduce an additional flag Xj.

More precisely, consider {Xj, Yj, j ≥ 0} a sequence of independent Bernoulli variables
such that

P (Xj = 1) = 1− P (Xj = 0) =
1

hdj
,

and,

P (Yj = 1) = 1− P (Yj = 0) =

{
1 if j = 0,
1
2

if j ≥ 1,

Consider also a sequence of continuous independent variables {Rj, j ≥ 0} each of which has
density gj : [0, hj]→ R+ with

gj(h) =
dhd−1

hdj
. (3.1)

For j ≥ 0, and zj in Σj, let S be a random walk starting in zj, an define a stopping time σ
as follows. If Rj = h for some h ≤ hj then

σ =


0 if Xj = 1,
H(B(zj, h ∧ (rj + hj − ‖zj‖))c) if Xj = 0 and Yj = 1,
H(A(rj − h, rj + h)c) if Xj = 0 and Yj = 0.

We set Hj = H(Σj), and we define the stopping times (σj : j ≥ 0) as

σj = Hj + σ(S ◦ θHj),

where θ stands for the usual time-shift operator. For j ≥ 0 we note that, by construction,
S(t) ∈ Sj for all t such that Hj ≤ t < σj and we say that σj is a flashing time when S(σj)
is contained in the intersection between Sj and the cone with base B(S(Hj), hj/2). We call
such an intersection a cell centered at S(Hj), that we denote C(S(Hj)). In other words, for
any z ∈ Σj

C(z) = Sj ∩
{
x ∈ Rd : ∃λ ≥ 0,∃y ∈ B(z, hj/2), x = λy

}
. (3.2)

The uniform hitting property The main property of the hitting time σ constructed
above is the following proposition, which yields property (ii) of the flashing process to be
defined soon.
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Proposition 3.1 There are two positive constants α1 < α2, such that, for h0 large enough,
j ≥ 0, zj ∈ Σj, and z∗ ∈ C(zj).

α1

hdj
≤ Pzj (S(σ) = z∗) ≤ α2

hdj
. (3.3)

The proof of Proposition 3.1 is given in Section 5.

The flashing process. Consider a family ofN independent random walks (Si : 1 ≤ i ≤ N)
with their stopping times (Hi,j, σi,j : j ≥ 0). Let also zi,j = Si(Hi,j) be the first hitting
position of Si on Σj.

We define the cluster inductively. Set A∗(0) = ∅. For i ≥ 1, we define τ ∗i as the first
flashing time associated with Si when the explorer stands outside A∗(i− 1). In other words,

τ ∗i = min {σi,j : j ≥ 0, Si(σi,j) ∈ C(zi,j) ∩ A∗(i− 1)c} ,

and
A∗(i) = A∗(i− 1) ∪ {Si(τ ∗i )} .

3.2 Exploration Waves

Rather than building A∗(N) following the whole journey of one explorer after another, we
can build A∗(N) as an increasing union of clusters formed by stopping explorers on successive
shells. Similar wave constructions are introduced in [10] and [9]. We use this alternative
construction in the proof of Propositions 1.4 and 1.5.

We denote by ξk ∈ (Zd)N the explorers positions after the k-th wave. We denote byA∗k(N)
the set of sites where settled explorers are after the k-th wave. Our inductive construction
will be such that

ξk(i) 6∈ Σk ⇔ ξk(i) ∈ ∪j<kSj ⇔ ξk(i) ∈ A∗k(N).

For k = 0 we set ξ0(i) = 0, and A∗0(i) = ∅, for 1 ≤ i ≤ N . Assume that for k ≥ 0, A∗k(i) is
built for i = 0, . . . , N . We set A∗k+1(0) = A∗k(N). For i in {1, · · · , N}, we set the following.

• If ξk(i) 6∈ Σk, then

ξk+1(i) = ξk(i) ∈ ∪j<kSj, and A∗k+1(i) = A∗k+1(i− 1).

• If ξk(i) ∈ Σk and Si(σi,k) ∈ C(zi,k) ∩ A∗k(i− 1)c, then

ξk+1(i) = Si(σi,k) ∈ Sk, and A∗k+1(i) = A∗k+1(i− 1) ∪ {Si(σi,k)} .

• If ξk(i) ∈ Σk and Si(σi,k) 6∈ C(zi,k) ∩ A∗k(i− 1)c, then

ξk+1(i) = Si(Hi,k+1) ∈ Σk+1, and A∗k+1(i) = A∗k+1(i− 1).
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In words, for each k ≥ 1, during the k-th wave of exploration, the unsettled explorers move
one after the other in the order of their labels until either settling in Sk−1, or reaching Σk

where they stop. We then define A∗(N) by

A∗(N) =
⋃
k≥1

A∗k(N).

We explain now why this construction yields the same cluster as our previous definition.
An explorer cannot settle inside a shell it has left, and thus cannot settle in any shell Sj
with j < k if it reaches Σk. Now, since each wave of exploration is organized according to
the label ordering, the fact that an explorer has to wait for the following explorers before
proceeding its journey beyond Σk does not interfere with the site where it eventually settles.

3.3 Coupling internal DLA and flashing processes

Proof of Lemma 1.2. For each positive integer N , we build a coupling between A(N) and
A∗(N). We first describe the main features of our coupling in words. Its precise definition
is postponed to the Appendix.

We launch N independent random walks, and build inductively the associated clusters
A(1), A(2), . . . , A(N). In doing so, we use the increments of these random walks to define,
step by step, N flashing trajectories S∗1 , . . . , S∗N up to some times t̄1, . . . , t̄N . Let us describe
informally step i + 1 of the induction. Assume that S∗1 , . . . , S∗i are defined up to some
times t1 ≤ t̄1, . . . , ti ≤ t̄i, and that each site of A(i) is covered by exactly one S∗k(tk) with
1 ≤ k ≤ i. We can think of S∗1(t1), . . . , S∗i (ti) as the positions of stopped flashing explorers,
some of them stopped at one of their flashing times – say on blue sites – some of them
not – say on red sites. Then, we add the i + 1-th explorer and flashing explorer. We set
S∗i+1(0) = Si+1(0) = 0. We add new increments both to Si+1 and to the trajectory of one
flashing explorer, say with label j in {1; . . . ; i+1}, in such a way that the current position of
the walker i+1 and that of the flashing explorer j coincide. The label j is defined inductively
as follows. Initially, j = i + 1. Assume that the walker i + 1 flashes on a red or blue site
inside A(i). This site is occupied by exactly two stopped flashing explorers, j and j′ (and all
other red and blue sites of A(i) are occupied by exactly one flashing explorer). Since flashing
explorers can settle at their flashing times, it makes sense, when j is flashing, to add the
next increment to the trajectory of flashing explorer j′ rather than j. We do so in two cases.
First, when this happens on a red site. In this case, we turn blue that site since j is stopped
at a flashing time. Second, when this happens on a blue site, say z, and j′ > j. Note that in
this case, both explorers flash on z but explorer j reaches z before explorer j′ when launched
in their label order. Our choice is such that the eventual cluster A∗(N) has the correct law.
In all other cases, we keep adding the increments of Si+1 to the same flashing trajectory. It
is important to note that the value of the increment does not depend on the index of the
trajectory we choose to extend. Walker i + 1 eventually steps outside A(i). When the last
walker steps outside A(N − 1) we have

A(N) = {S∗1(t̄1); · · · ;S∗N(t̄N)} with |A(N)| = N. (3.4)

To define A∗(N) we launch again, in their labels order, our flashing explorers from their
current positions (possibly some or none of them since some or all of them can already have
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reached their settling position). We then get

A∗(N) = {S∗1(τ ∗1 ); · · · ;S∗N(τ ∗N)} with |A∗(N)| = N and τ ∗k ≥ t̄k, for all k. (3.5)

Proof of Corollary 1.3. Since a flashing explorer that visited some site beyond a given
shell cannot settle in that shell, the one-to-one map

ψN : S∗k(t̄k) ∈ A(N) 7→ S∗k(τ
∗
k ) ∈ A∗(N), k = 1, . . . , N (3.6)

satisfies, for all k and l,

S∗k(t̄k) 6∈
⋃
m<l

Sm ⇒ S∗k(τ
∗
k ) = ψN(S∗k(t̄k)) 6∈

⋃
m<l

Sm. (3.7)

Thus, for all N ≥ 0 there is a coupling and a one-to-one map ψN between A(N) and
A∗(N) such that for all k ≥ 1

ψN
(
A(N) ∩ Bcrk+hk

)
⊂ A∗(N) ∩ Bcrk+hk

.

The inclusion has two important consequences.

a. If A∗(N) ⊂ Brk+hk , then A(N) ⊂ Brk+hk . Indeed, any site in A(N) outside Brk+hk

produces, through ψN , a site in A∗(N) outside Brk+hk .

b. If Brk+hk ⊂ A∗(N), then Brk+hk ⊂ A(N). Indeed, those sites in A(N) that are mapped
through ψN on A∗(N) ∩ Brk+hk = Brk+hk are necessarily contained in Brk+hk . Since
their number is |Brk+hk | and ψN is one-to-one, they completely cover Brk+hk .

4 Fluctuations

In this section we prove Propositions 1.4 and 1.5. To do so we use the construction in
terms of exploration waves of Section 3.2. Thus, we think of the growing cluster as evolving
in discrete time, where time counts the number of exploration waves. The proofs in this
section rely on potential theory estimates which we have gathered in Section 5, for the ease
of reading.

4.1 Tiles

We recall that we have defined a cell of Sj in (3.2), as the intersection of a cone with Sj. We
need also a smaller shape. We define, for any zj in Σj, and for a small ε0 to be defined later,

C̃(zj) = Sj ∩
{
x ∈ Rd : ∃λ ≥ 0,∃y ∈ B(zj, ε0hj), x = λy

}
. (4.1)
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As in Lemma 12 in [9], concerning locally finite coverings, we claim that, for h0 large enough,
there exist a positive constant KF , and, for each j ≥ 0, a subset Σ̃j of Σj such that

∀y ∈ Sj
∣∣∣{z ∈ Σ̃j : y ∈ C̃(z)

}∣∣∣ ≤ KF and Sj =
⋃
zj∈Σ̃j

C̃(zj). (4.2)

For any zj ∈ Σ̃j, we call tile centered at zj, the intersections of C̃(zj) with Σj. We denote by
T (zj) a tile centered at zj, and by Tj the set of tiles associated with the shell Sj:

Tj =
{
T (zj) : zj ∈ Σ̃j

}
. (4.3)

We choose ε0 to satisfy two properties. First, for any z ∈ Sj, there is z̃j ∈ Σ̃j such that

z ∈
⋂

y∈T (z̃j)

C(y). (4.4)

This is ensured by the choice of a small enough ε0. Indeed, let zj ∈ Σj be a site realizing the
minimum of {‖z − y‖ : y ∈ Σj}. There is λ > 0 and u ∈ B(zj, 1), such that z = λu. Now,
there is z̃j ∈ Σ̃j such that ‖z̃j − zj‖ < ε0hj, and for any y ∈ T (z̃j), we have ‖y− zj‖ < 2ε0hj.
Thus, for ε0 small enough so that 1 + 2ε0hj ≤ hj/2

∀y ∈ T (z̃j), ‖u− y‖ ≤ ‖u− zj‖+ ‖zj − y‖ ≤ 1 + 2ε0hj ≤
hj
2
,

which implies (4.4). Secondly, the size of a tile should be such that for some κ > 1, for any
j ≥ 1, and any tile T ∈ Tj

sup
z∈B(0,rj−hj)

Pz (S(H(Σj)) ∈ T ) ≤ κ− 1

κ
. (4.5)

The inequality (4.5) follows from Lemma 5(b) of [10] (or Lemma 5.1 below) which for a
constant Jd yields

sup
z∈B(0,rj−hj)

Pz (S(H(Σj)) ∈ T ) ≤ Jd
|T |
hd−1
j

.

The choice of ε0 is such that Jd|T | ≤ κ−1
κ
hd−1
j .

4.2 Bounding inner fluctuations

For n ≥ 0, we take N = |Bn|, we recall that A∗k(N) ⊂ A∗k+1(N) for k ∈ N, and A∗(N) =
∪k≥1A∗k(N). We consider

T ∗ = min

{
k ≥ 1 :

⋃
j<k

Sj 6⊂ A∗k(N)

}
. (4.6)

Note that A∗k(N) ⊂ ∪j<kSj, so that T ∗ is the first time k when the kth wave does not cover
all its allowed space. We recall that time is intended as counting the number of exploration
waves.
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For the flashing process if ∪j<kSj 6⊂ A∗k(N), then for any k′ > k, we have ∪j<kSj 6⊂
A∗k′(N), so that T ∗ is also the shell label where the first hole of A∗(N) appear. We have, for
l with rl < n,

P (T ∗ ≤ l) = P (B(0, rl + hl) 6⊂ A∗(N)) ≤
∑
k≤l

P (T ∗ = k + 1). (4.7)

In this section, we estimate from above the probability P (T ∗ = k + 1) assuming rk < n.

For k ≥ 1 and Λ ⊂ Σk, we call Wk(Λ) the number of unsettled explorers that stand in Λ
after the k-th wave, that is

Wk(Λ) =
N∑
i=1

1Λ (ξk(i)) . (4.8)

We now look at the crossings of tiles of Tk. On the one hand, we will use that if Wk(T ) is
large, then it is unlikely that a hole appears in the cell containing T during the k+1th-wave.
We use for this purpose the fact that covering for the flashing process is similar to filling
an album for a coupon-collector model. On the other hand, if rk is small it is unlikely that
Wk(T ) be small. We now make precise what we intend by small and large. For any positive
constant ξ, we write

P (T ∗ = k + 1) =P (T ∗ = k + 1, ∀T ∈ Tk,Wk(T ) ≥ ξ)

+ P (T ∗ = k + 1, ∃T ∈ Tk,Wk(T ) < ξ)

≤P
(
T ∗ = k + 1

∣∣∣∀T ∈ Tk,Wk(T ) ≥ ξ
)

+ P
(
∃T ∈ Tk,Wk(T ) < ξ

)
.

(4.9)

A coupon-collector estimate. The first term in the right hand side of (4.9) is bounded
using a simple coupon-collector argument. Indeed, the event {T ∗ = k+1} implies that there
is an uncovered site in Sk, say z, when explorers stopped in Σk are released. By (4.4), there
is zk ∈ Σ̃k, such that z is a possible settling position of all explorers stopped in T (zk). Now,
knowing that {Wk(T (zk)) ≥ ξ}, Proposition 3.1 tells us that the probability of not covering
this site is less than (1− α1/h

d
k) to the power ξ. In other words,

P
(
T ∗ = k + 1

∣∣∣∀T ∈ Tk,Wk(T ) ≥ ξ
)
≤ |Sk|

(
1− α1

hdk

)ξ
≤ |Sk| exp

(
−α1

ξ

hdk

)
.

Henceforth, we set

ξ = Ahd log(n) with h = sup{hk : rk ≤ n} (4.10)

and A large enough so that∑
k:rk<n

P
(
T ∗ = k + 1

∣∣∣∀T ∈ Tk,Wk(T ) ≥ ξ
)
≤ |Bn| exp (−α1A log n) ≤ 1

n2
. (4.11)
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Estimating {Wk(T ) < ξ}. For any T ∈ Tk, we consider the counting variable Lk(T ) =
M(B(0, rk − hk), rk, T ), and define

Mk(T ) = Wk(T ) +M(A∗k, rk, T ), so that Mk(T )
law
= M(N1{0}, rk, T ). (4.12)

The idea of defining Mk and Lk (for the internal DLA process), and bounding Wk by Mk−Lk,
is introduced in [10]. Our main observation is that Lk(T ) is independent of Wk(T ), and

Wk(T ) + Lk(T ) ≥Mk(T ).

As a consequence, for any positive constants t and ξ (and with the notation X̄ = X−E[X]),

P (Wk(T ) < ξ) ≤etξ × E [exp (−tWk(T ))]

=etξ
E [exp (−t (Wk(T ) + Lk(T )))]

E [exp (−tLk(T ))]

≤ exp (−t (E [Mk(T )− Lk(T )]− ξ))×
E
[
exp

(
−t
(
M̄k(T )

))]
E
[
exp

(
−tL̄k(T )

)] .

Using Lemma 2.3 with condition (4.5), we obtain

logP (Wk(T ) < ξ) ≤− t (E [Mk(T )− Lk(T )]− ξ) + f(−t)E [Mk(T )− Lk(T )]

+
κ

2
g(−t)

∑
y∈B(0,rk−hk)

P 2
y (S(H(Σk)) ∈ T ) .

We now proceed in two steps. We show in Step 1 that for some constant κ′

E [Mk(T )− Lk(T )] ≥ κ′(nd − (rk − hk)d)
hd−1
k

rd−1
k

.

Since {hk/rk, k ≥ 0} is non increasing, it follows that there is a constant κ1 > 0 such that,
for all α > 0, and kα := sup{j ∈ N : rj < n − αh log n}, where h is defined in (4.10), we
have

inf
k≤kα

E [Mk(T )− Lk(T )] ≥ κ′(nd − (n− h)d)
hd−1

nd−1
≥ κ1αh

d log n.

Now, if we choose ξ as in (4.10), with α = 2A/κ1 and k∗ = kα, i.e.,

k∗ := sup

{
j ∈ N : rj ≤ n− 2A

κ1

h log(n)

}
,

then, we get, for all k ≤ k∗,
E [Mk(T )− Lk(T )] ≥ 2ξ. (4.13)

We show in Step 2, that for a constant C depending on the dimension only∑
y∈B(0,rk−hk)

P2
y (S(H(Σk)) ∈ T ) ≤ C E [Mk(T )− Lk(T )] . (4.14)
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Suppose for a moment that Step 1 and Step 2 hold. Since, for some c > 0, max(f(−t), g(−t)) ≤
ct2 when t ≤ 1, there is c′ > 0 such that for k ≤ k∗

logP
(
Wk(T ) < Ahd log(n)

)
≤ inf

0≤t≤1

(
−t+ c(1 +

Cκ

2
)t2
)
E [Mk(T )− Lk(T )]

≤− c′E [Mk(T )− Lk(T )] ≤ −2c′Ahd log(n).

(4.15)

Now, using (4.9), (4.11) and (4.15) for A large enough, we have∑
k<k∗

P (T ∗ = k) ≤ 2

n2
.

Borel-Cantelli’s lemma yields then the inner control of Proposition 1.4.

Step 1. We invoke Corollary 5.4, with n = rk, and ∆n = hk (the hypotheses hk = O(r
1/3
k )

and hk large enough hold here, as seen in the first paragraph of Section 3.1). We have for
some positive constants κ′, K, and for n large enough

E [Mk(T )− Lk(T )] =E[M((|Bn| − |Brk−hk |)10, rk, T )]

+ E[M(|Brk−hk |10, rk, T )]− E[M(Brk−hk , rk, T )]

≥ (|Bn| − |Brk−hk |)P0 (S(Hk) ∈ T )−Khd−1
k

≥2κ′(nd − (rk − hk)d)
hd−1
k

rd−1
k

−Khd−1
k

≥κ′(nd − (rk − hk)d)
hd−1
k

rd−1
k

,

(4.16)

for rk ≤ n and h0 large enough.

Step 2. By Lemma 5.1 below, there is a constant κG such that, for y ∈ B(0, rk − hk), and
z ∈ Σ̃k

Py (S(H(Σk)) ∈ T (z)) ≤ κG|T (z)|
‖z − y‖d−1

.

Therefore ∑
y∈B(0,rk−hk)

P2
y (S(H(Σk)) ∈ T (z)) ≤

∑
j:hk≤j≤2rk

∑
y:j≤|z−y|<j+1

κ2
G|T (z)|2

j2(d−1)
. (4.17)

For a constant Cd, we bound |{y : k ≤ |z − y| < k + 1} ≤ Cdk
d−1. Thus,∑

y∈B(0,rk−hk)

P2
y (S(H(Σk)) ∈ T (z)) ≤

∑
j:hk≤j≤2rk

Cdκ
2
G|T (z)|2

jd−1

≤C ′|T (z)|2
(

1Id=2 log(n) + 1Id>2
1

hd−2
k

)
.

(4.18)

Since |T (z)| is of order hd−1
k , (4.14) holds.
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4.3 Bounding outer fluctuations

This section follows closely [9]. The features of the flashing process allow for some simpli-
fication. We keep the notation of the previous subsection. There, we proved that for some
integer k∗, which depends on n,

P (T ∗ > k∗) = 1− ε(n), with
∑
n≥1

ε(n) < +∞.

The integer k∗ is the largest such that rk∗ ≤ n− 2Ah log(n)/κ1, for a large constant A and
with h defined in (4.10). As a consequence, the following conditional law can be seen as a
slight modification of P .

P ∗(·) = P (·|T ∗ > k∗) (4.19)

We begin by proving that under P ∗ the probability to find some k with n ≤ rk < 2n and
some tile T in Tk with Wk(T ) larger than or equal to ξ′ = 2A′hd log n for a large enough A′

decreases faster than any given power of n. First, note that on {T ∗ > k∗}

Wk(T ) + L∗k(T ) ≤Mk(T ), with L∗k = M (B(0, rk∗ − hk∗), rk, T ) . (4.20)

Our key observation is that the pair (Wk(T ), 1I{T ∗>k∗}) is independent of L∗k. Thus, for any
t > 0,

P (Wk(T ) ≥ ξ′, T ∗ > k∗) ≤e−tξ′E
[
etWk(T ) 1I{T ∗>k∗}

]
=e−tξ

′E
[
exp (t (Wk(T ) + L∗k)) 1I{T ∗>k∗}

]
E
[
etL
∗
k

]
≤e−tξ′

E
[
etMk(T )

]
E
[
etL
∗
k

]
= exp (−t (ξ′ − E [Mk(T )− L∗k]))×

E
[
etM̄k(T )

]
E
[
etL̄
∗
k

] .

By Lemma 2.3, we have

logP (Wk(T ) ≥ ξ′, T ∗ > k∗) ≤− t (ξ′ − E [Mk(T )− L∗k]) + f(t)× E [Mk(T )− L∗k]

+ g(t)×
∑

y∈B(0,rk∗−hk∗ )

P2
y (S(H(Σk)) ∈ T ) . (4.21)

The steps are now similar to the previous proof. We first estimate E [Mk(T )− L∗k]. By
Corollary 5.4, for some positive constant K ′ and for n large enough,

E [Mk(T )− L∗k(T )] ≤ K ′
(
nd − (rk∗)

d
) hd−1

k

rd−1
k

+O(hd−1
k )

≤ K ′dnd−1(n− rk∗)
hd−1
k

rd−1
k

+O(hd−1
k ).

(4.22)
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Note that since rk ≤ 2n, we have rd−1
k = o(nd−1(n− rk∗)) so that O(hd−1

k ) is small compared
to the first term in (4.22). Since k 7→ hk/rk is decreasing, we have for some constant K

E [Mk(T )− L∗k(T )] ≤ Khd log n.

Secondly, we estimate the sum of P 2
y (S(H(Σk)) ∈ T ) which appears on (4.21). We use (4.17)

again to obtain as in (4.18) and for a constant C∑
y∈B(0,rk∗−hk∗ )

P2
y (S(H(Σk)) ∈ T ) ≤ Ch

2(d−1)
k

(
1Id=2 log(n) + 1Id>2

1

(rk − (rk∗ − hk∗))d−2

)
.

Note that rk − (rk∗ − hk∗) ≥ hk, and, since k 7→ hk/rk is decreasing, we have, for n large
enough, hk ≤ hk∗(rk/rk∗) ≤ h× (2n)/(n/2). Thus, for a constant C,∑

y∈B(0,rk∗−hk∗ )

P2
y (S(H(Σk)) ∈ T ) ≤ C

(
1Id=2h

2 log(n) + 1Id>2h
d
)
≤ Chd log(n).

We choose A′ = K to obtain

logP (Wk(T ) ≥ ξ′, T ∗ > k∗) ≤ − (Kt−Kf(t)− Cg(t))hd log(n).

Since we have P (T ∗ > k∗) ≥ 1/2 for A large enough and K can be taken as large as we
want, we have that P ∗(Wk(T ) ≥ ξ′) decreases faster than any given power of n.

Now, let Fk denote the event that no tile T in Σk contains more than ξ′ = 2A′hd log n
unsettled explorers after the k-th exploration wave. We define, with the notation of Section
3, Gk = σ(ξ0, . . . , ξk), and note that Fk and {T ∗ > k∗} are Gk-measurable.

For any tile T ∈ Tk, let zk ∈ Σ̃k be such that T = T (zk) and denote by C̃ = C̃(zk). We
are entitled, by Proposition 3.1, to use a coupon-collector estimate on the number of settled
explorers during the k + 1-th exploration wave. On Fk ∩ {T ∗ > k∗}, and for some positive
constant K1

E
[
|A∗k+1 ∩ C̃|

∣∣∣Gk] ≥ |C̃|(1−
(

1− α1

hdk

)Wk(T )
)

≥ |C̃|
(

1− exp

{
−α1

Wk(T )

hdk

})
=
|C̃|
hdk
Wk(T )

hdk
Wk(T )

(
1− exp

{
−α1

Wk(T )

hdk

})
≥ K1Wk(T ) inf

x≤2A′ logn

1− e−α1x

x
.

We now write for some positive constant K2

inf
x≤2A′ logn

1− e−α1x

x
≥ 1

2A′ log n
inf

x≤2A′ logn

1− e−α1x/2A′ logn

x/2A′ log n

≥ 1

2A′ log n
inf
x≤1

1− e−α1x

x
≥ K2

log n
.
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We conclude that on Fk ∩ {T ∗ > k∗},

E
[
A∗k+1 ∩ C̃

∣∣∣Gk] ≥ K1K2
Wk(T )

log n
. (4.23)

Recall now that property (4.2) implies that KF |A∗k+1 ∩ Sk| ≥
∑

zk∈Σ̃k
|A∗k+1 ∩ C̃(zk)|. Thus,

summing over zk ∈ Σ̃k with C = C(zk) and T = T (zk) in (4.23), we obtain on Fk∩{T ∗ > k∗}

E
[
|A∗k+1 ∩ Sk|

∣∣∣Gk] ≥ K
Wk(Sk)

log n
, where K =

K1K2

KF

.

Also, since Wk(Sk) ≤ |B(0, n)|, we have, for n large enough,

E
[
1Fk∩{T ∗>k∗}|A

∗
k+1 ∩ Sk|

]
≥ K

E[1{T ∗>k∗}Wk(Sk)]
log n

− ndP (F c
k ).

Since P (T ∗ > k∗) ≥ 1/2,

E∗
[
|A∗k+1 ∩ Sk|

]
≥ K

E∗[Wk(Sk)]
log n

− 2ndP (F c
k ). (4.24)

In other words, noting that |A∗k+1 ∩ Sk| = Wk(Sk)−Wk+1(Sk+1)

E∗ [Wk+1(Sk+1)] ≤
(

1− K

log n

)
E∗ [Wk(Sk)] + 2ndP (F c

k ). (4.25)

By iterating (4.25), and using our previous estimate on P ∗(Wk(T ) ≥ ξ′), we obtain that for a
large enough ε, E∗[Wln+ε log2 n(Sln+ε log2 n)], is summable, when ln is the lowest index for which
rln ≥ n. Also, the probability (under P !) of seeing at least one explorer reaching the shell
Sln+ε log2 n is summable. Using Borel-Cantelli lemma, this yields the proof of Proposition 1.4.

4.4 Lower bound for the deviations

4.4.1 Proof of Proposition 1.5: the outer deviation

We denote by Kn the largest index such that SKn ⊂ B(0, n), and by En the event that all
explorers stopped on ΣKn , at time Kn, settle afterward in one of the shells {Sj : Kn ≤ j <
Kn+b log(n)} for some positive constant b, and note that En = {A∗(N) ⊂ ∪j<Kn+b log(n) Sj}.

We want to find b such that
∑

n≥1 P (En) < ∞. Using that the flashing times of the
different explorers are independent, we have

P (En) ≤E
[
P
(
all explorers, stopped in ΣKn , flash in ∪j<Kn+b log(n) Sj

∣∣GKn)]
≤E
[(

sup
z∈ΣKn

P
(
an explorer, started on z, flashes in ∪j<Kn+b log(n) Sj

∣∣GKn))WKn (ΣKn )]
.

Also, there are at least |SKn| explorers stopped on ΣKn , and there is a positive ε0 such that
the probability of crossing a given shell without flashing is larger than ε0. Thus,

P (En) ≤E
[(

1− inf
z∈ΣKn

P
(
an explorer started on z is unsettled at time Kn + b log(n)

))|SKn |]
≤
(

1− εb log(n)
0

)|SKn |
.

When choosing b small enough, we reach
∑

n≥1 P (En) <∞.
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4.4.2 Proof of Proposition 1.5: the inner deviation

We recall that Kn is the largest index such that SKn ⊂ B(0, n). The rough idea here is that
when we stop explorers on ΣKn−1 there are necessarily tiles (of ΣKn−1) containing of the
order of hd−1

Kn−1 sites and which receive hdKn−1 explorers. The number of explorers on these
tiles is not enough to cover the associated cells with the coupon collector mechanism. We
now make rigorous such an argument for shells with index of order Kn − log(Kn).

To simplify the notation, let us first define three positive constants c1, c2 and c3 such that
for any k with n/2 ≤ rk ≤ n, we have

|Sk| ≤ c1hkn
d−1,

hdk
supz∈Σk

|B(z, 6hk) ∩ Σk|
|Σk| ≥ c2n

d−1hk, and inf
z∈Σk
|C̃(z)| ≥ c3h

d
k.

(4.26)
Using α2 given in Proposition 3.1, we define

an =
1

8α2

log(hKn), and An =

[
c2c3

4c1

an

]
. (4.27)

Now we assume h0 large enough to have An a strictly positive integer.

We wish now to consider a peel of An shells before ∂B(0, n). Let In be the index of
the inner shell in this peel, that is rIn+An ≤ n < rIn+An+1. Since T ∗ ≤ In + 1 implies
that ∪j≤InSj 6⊂ A∗(N), it is enough to show that P (T ∗ > In + 1) decays faster than any
polynomial in n.

Note that the monotonicity of k 7→ hk/rk and rIn ≥ n/2, imply that 2hIn ≥ hk for
In ≤ k ≤ In + An, and n large enough. Also, on the event {T ∗ > In + 1}, we have
B(0, rIn − hIn) = A∗In(N) after the In-th wave. Thus,

WIn(ΣIn) = |B(0, n)| − |B(0, rIn − hIn)| ≤ 2c1Ann
d−1 × hIn .

A key feature of the flashing process is that explorers stopped, at time In, outside B(z, 3hIn)∩
ΣIn cannot settle in C̃(z). In other words, knowing Gk, the covering of a family of cells
{C̃(zj), j = 1, . . . ,N} are independent events if ‖zi − zj‖ ≥ 6hIn for i 6= j. Now, there is an
integer N and sites {zj, j = 1, . . . ,N} with

∀i 6= j ‖zi − zj‖ ≥ 6hIn , and
∑
j≤N

|B(zj, 6hIn) ∩ ΣIn| ≥ |ΣIn|.

We then get using (4.26)

NhdIn ≥
1

2
c2hInn

d−1. (4.28)

Let
Γ = {j ∈ [1,N ] : WIn(B(zj, 3hIn) ∩ ΣIn) ≤ c3anh

d
In}, and Γc = [1,N ]\Γ.

On {T ∗ > In + 1},

2c1Ann
d−1 × hIn ≥ WIn(ΣIn) ≥

∑
j∈Γc

WIn(B(zj, 3hIn) ∩ ΣIn) ≥ |Γc| ×
(
c3anh

d
In

)
.
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Thus, using the definition of An in (4.27), and the bound (4.28) on N , we obtain

|Γc| ≤ 2c1AnhInn
d−1

c3anhdIn
≤ c1c2c3an

2c3c1 an

N
c2

=
N
2
.

In other words, we have that |Γ| ≥ N /2. Now, as already noticed, knowing GIn , for any
subset I ⊂ [1,N ], the events {C̃(zj) ⊂ A∗In+1(N), j ∈ I} are independent. By conditioning
on GIn , we obtain for h0 large enough

P ({T ∗ > In + 1}) =E

 ∑
I⊂[1,N ], |I|≥N/2

1IΓ=I × P
(
∀i ∈ I, C̃(zj) ⊂ A∗In+1(N)

∣∣GIn)


=E

 ∑
I⊂[1,N ], |I|≥N/2

1IΓ=I ×
∏
i∈I

P
(
C̃(zj) ⊂ A∗In+1(N)

∣∣GIn)


≤ sup
zj∈ΣIn

P
(
A∗In+1(N) ⊃ C̃(zj), WIn(B(zj, 3hIn) ∩ ΣIn) ≤ c3h

d
Inan

)N/2
.

(4.29)

Considering the probability appearing on the right hand side of (4.29), we can think of a
coupon-collector problem, where an album of size |C̃(z)| has to be filled when we collect no
more than c3h

d
In
an coupons. Using inequality (4.31) of Lemma 4.1 below, we show that

P ({T ∗ > In + 1}) ≤ exp
(
−α1

4
a2
n

c2

2
h1−d
In

nd−1
)
.

This concludes the proof.

The result about filling an album, that we just mentioned, is based on the following
simple coupon-collector lemma (together with Proposition 3.1), which we did not find in the
vast literature on such problems.

Lemma 4.1 Consider an album of L items for which are bought independent random cou-
pons, each of them covering one (or possibly none) of the possible L items. If Yi is the item
associated with the i-th coupons, we assume that for positive constants α1, α2, such that for
any j = 1, . . . , L,

α1

L
≤ P (Yi = j) ≤ α2

L
. (4.30)

Let τL be the number of coupons needed to complete the album. Then, for any 0 < A <
1

4α2
log(L), we have

P (τL < AL) ≤ exp

(
−α

2
1A

2e−2α2A

4

√
L

)
≤ exp

(
−α

2
1A

2

4

)
. (4.31)

Proof. We denote by σi the time needed to collect the i-th distinct item after having
collected i − 1 distinct items. The sequence {σ1, σ2, . . . , σL} is not independent, but if
Yk = σ({Y1, . . . , Yk}), and τ(k) = σ1 + · · ·+ σk, then for i = 1, . . . , L(

1− α1(L− i+ 1)

L

)k
≥ P (σi > k

∣∣Yτ(i−1)) ≥
(

1− α2(L− i+ 1)

L

)k
. (4.32)
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Indeed, calling E(i− 1) the set of the first i− 1 collected items,

P
(
σi > k

∣∣∣Yτ(i−1)

)
=P

(
{Yτ(i−1)+1, . . . , Yτ(i−1)+k} ⊂ E(i− 1)

∣∣∣Yτ(i−1)

)
=
(
P
(
Y ∈ E(i− 1)

∣∣∣Yτ(i−1)

))k
=
(

1− P
(
Y 6∈ E(i− 1)

∣∣∣Yτ(i−1)

))k
.

(4.33)

Using (4.30) we deduce (4.32) from (4.33). Formula (4.32) gives that

L

α1(L− i+ 1)
≥ E[σi|Yτ(i−1)] ≥

L

α2(L− i+ 1)
,

as well as

E
[
σ2
i

∣∣∣Yτ(i−1)

]
≤ 2

L2

α2
1(L− i+ 1)2

. (4.34)

Now, we look for B ≤
√
L such that

B
√
L∑

i=
√
L

E[σL−i] ≥ 2AL. (4.35)

Note that
B
√
L∑

i=
√
L

E[σL−i] ≥
L

α2

B
√
L∑

i=
√
L

1

i+ 1
≥ L

α2

log(B).

Thus, condition (4.35) holds for B ≥ exp(2α2A), but recall that B ≤
√
L also, and this gives

a bound on A. Finally, note that

max
{
E
[
σL−i

∣∣∣Yτ(L−i−1)

]
, i =

√
L, . . . , B

√
L
}
≤
√
L

α1

,

and set

Xi =
E
[
σL−i

∣∣∣Yτ(L−i−1)

]
− σL−i(√

L/α1

) ≤ 1.

For x ≤ 1, note that ex ≤ 1 + x+ x2 to obtain for 0 ≤ λ ≤ 1, by successive conditioning

P

B
√
L∑

i=
√
L

σL−i ≤ AL

 ≤P
B

√
L∑

i=
√
L

Xi ≥ α1A
√
L


≤e−λα1A

√
L

B
√
L∏

i=
√
L

(
1 + λ2 supE

[
X2
i

∣∣∣Yτ(L−i−1)

])

≤ exp

(
−λα1A

√
L+ λ2

∑
i

supE
[
X2
i

∣∣∣Yτ(L−i−1)

])
.

(4.36)
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Finally, we have, using (4.34),

B
√
L∑

i=
√
L

supE
[
X2
i

∣∣∣Yτ(L−i−1)

]
≤

B
√
L∑

i=
√
L

α2
1 sup

E
[
σ2
L−i

∣∣∣Yτ(L−i−1)

]
L

≤ 2B
√
L.

The results follows as we optimize on λ ≤ 1 in the upper bound in (4.36).

5 Potential theory estimates

We collect in this section three technical results. In Corollary 5.4, we estimate the differ-
ence between the expected number of independent random walks exiting a ball B(0, n) at a
distinguished site, whether the random walks are initially on the origin or are spread over
a sphere B(0, rn) with rn < n. Corollary 5.4 is used to bound the mean number of explor-
ers exiting some large ball from a given site, and its proof relies on a discrete mean value
property Theorem 5.2, which in turns relies on Blachère’s Proposition B.1 written in the
Appendix. Then, Lemma 5.1 improves an estimate of Lawler, Bramson and Griffeath in
[10] dealing with the exit site distribution from a sphere when the initial position is not the
origin. Indeed, Lemma 5(b) of [10], states that when d ≥ 2, there is a positive constant Jd
such that for any r > 0, z ∈ B(0, r), and z∗ ∈ ∂B(0, r), we have

Pz(S(Hr) = z∗) ≤ Jd
(‖z∗‖ − ‖z‖)d−1

. (5.1)

Thus, when ‖z∗‖−‖z‖ is small, (5.1) is useless. Since we need bounds on the sum of squares
of Pz(S(Hr) = z∗) over z ∈ B(0, r − h) of order log(r) in d = 2, and of order 1/hd−2 when
d > 2, we establish the following.

Lemma 5.1 There is a positive constant κG such that, for all r > 0, if z ∈ Br, z∗ ∈ ∂Br,
then

Pz(S(Hr) = z∗) ≤ κG
‖z − z∗‖d−1

. (5.2)

Finally, we prove the uniform hitting property, Proposition 3.1, for the boundary of a cell.
Though the property is natural, the non-spherical nature of a cell, makes its proof tedious.

5.1 A discrete mean value theorem

The following result has interest on its own.

Theorem 5.2 There are positive constants K0 and Ka such that for any sequence {∆n, n ∈
N} with K0 ≤ ∆n ≤ n1/3, for any z ∈ Bn with n− ‖z‖ ≤ 1, we have, setting rn = n−∆n,∣∣ |Brn| ×Gn(0, z)−

∑
y∈Brn

Gn(y, z)
∣∣ ≤ Ka. (5.3)
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Remark 5.3 Note that a related (but distinct) property was also at the heart of [10].
Namely, for ε > 0, and n large enough, if z ∈ Bn, and n− ‖z‖ ≥ εn,

|Bn| ×Gn(0, z) ≥
∑
y∈Bn

Gn(y, z). (5.4)

We start with proving the following useful corollary of Theorem 5.2.

Corollary 5.4 In the setting of Theorem 5.2, and for any Λ ⊂ ∂Bn∣∣∣E [M(|Brn|10, n,Λ)]− E [M(Brn , n,Λ)]
∣∣∣ ≤ Ka|Λ|. (5.5)

Proof. Note that (5.5) holds if for any z∗ ∈ ∂Bn∣∣|Brn| × P0 (S(Hn) = z∗)−
∑
y∈Brn

Py (S(Hn) = z∗)
∣∣ ≤ Ka. (5.6)

By a classical decomposition (Lemma 6.3.6 of [11]), we have for a finite subset B ⊂ Zd,
y ∈ B, and z∗ ∈ ∂B

Py (S(H(∂B) = z∗) =
1

2d

∑
z∈B,z∼z∗

GB(y, z). (5.7)

For B = B(0, n), we replace in (5.6) the value of Py(S(H(∂B)) = z∗) by the right hand side
in (5.7), and are left with proving that for any z ∈ Bn with n− ‖z‖ ≤ 1, we have (5.3).

Proof of Theorem 5.2. When d ≥ 3, we express Gn(0, z) in term of Green’s function
(Proposition 4.6.2(a) of [11]),

Gn(0, z) = G(0, z)− Ez[G(0, S(Hn))].

Now, using Green’s function asymptotics (2.2), there is a constant K1 (independent on n)
such that ∣∣∣∣vdGn(0, z)− 2

α(z)

nd−1

∣∣∣∣ ≤ K1

nd
, where α(z) = Ez [‖S(Hn)‖ − ‖z‖] . (5.8)

In d = 2, Gn is expressed in terms of the potential kernel (Proposition 4.6.2(b) of [11])

Gn(0, z) = −a(0, z) + Ez[a(0, S(Hn))].

Using (2.3), we have
πGn(0, z) = 2α(z)/n+O(1/n2).

Now, rdn = nd − d∆nn
d−1 + O(∆2

nn
d−2), so that using (5.8), and the hypothesis ∆n =

O(n1/3), and 0 ≤ n− ‖z‖ ≤ 1∣∣∣Brn∣∣∣Gn(0, z) =
(
rdn +O(rd−1

n )
)(

2
α(z)

nd−1
+O(

1

nd
)

)
=
(
nd − d∆nn

d−1 +O(∆2
nn

d−2) +O(nd−1)
)(

2
α(z)

nd−1
+O(

1

nd
)

)
= 2α(z)(n− d∆n) +O(1)

(5.9)
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Since {‖Sn‖2 − n, n ∈ N} is a martingale (with the natural filtration),

Ez[‖S(Hn)‖2]− ‖z‖2] = Ez[Hn] =
∑
y∈Bn

Gn(y, z).

Using n− ‖z‖ ≤ 1, this yields for a constant Kl∣∣∣∣∣∑
y∈Bn

Gn(y, z)− 2α(z)n

∣∣∣∣∣ ≤ Kl. (5.10)

We now invoke Proposition B.1 of the Appendix. There is Kb such that for z ∈ Bn with
n− ‖z‖ ≤ 1∣∣∣∣∣∣
∑

y∈A(rn,n)

Gn(y, z)− 2α0(z)d∆n

∣∣∣∣∣∣ ≤ Kb, where α0(z) = Ez
[
‖S(Hn)‖−‖z‖

∣∣∣Hn < H(Brn)
]
.

(5.11)
From (5.10) and (5.11), we obtain∣∣∣∣∣∣

∑
y∈Brn

Gn(y, z)− 2nα(z) + 2α0(z)d∆n

∣∣∣∣∣∣ ≤ Kl +Kb. (5.12)

Now, from (5.9) and (5.12) we obtain for a constant K2,∣∣∣∣∣∣
|Brn|Gn(0, z)−

∑
y∈Brn

Gn(y, z)

− 2 (α0(z)− α(z)) d∆n

∣∣∣∣∣∣ ≤ K2.

Now, from

|α0(z)− α(z)| ≤ Pz (H(Brn) < Hn)×
(
α0(z) + Ez

[
‖S(Hn)‖ − ‖z‖

∣∣∣Hn > H(Brn)
])
,

and the gambler’s ruin estimate, for K0 > 0 and z ∈ A(n− 1, n),

Pz (H(Brn) < Hn) ≤ K0

∆n

,

we deduce that
∆n|α0(z)− α(z)| ≤ 2∆nPz (H(Brn) < Hn) ≤ 2K0.

The desired result follows.

5.2 Proof of Lemma 5.1.

We follow the proof of Lemma 5(b) of [10]. Set D := ‖z − z∗‖. Let O′ be a closest point to
(1 + D

4r
)z∗ in B(z∗, D

4
). We define B′1 := B(O′, D

4
), B′2 := B(O′, D

2
), and we note that

‖z − z∗‖ ≤ ‖z −O′‖
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and, for all x in ∂B′2, the triangle inequality ‖z − z∗‖ ≤ ‖z − x‖+ ‖x− z∗‖ implies that

min
x∈∂B′2

‖z − x‖ ≥ D

3
.

Now, define

τ := inf {t > 0 : S(t) ∈ {z} ∪Bc
r} , and τ ′ := inf {t > 0 : S(t) ∈ B′1 ∪ ∂B′2} .

By a last exit decomposition together with the strong Markov property

Pz(S(Hr) = z∗) =Gr(z, z)Pz∗(S(τ) = z)

≤Gr(z, z)Pz∗(S(τ ′) ∈ B′2) max
x∈∂B′2

Px(S(τ) = z)

=Pz∗(S(τ ′) ∈ B′2) max
x∈∂B′2

Gr(x, z)

≤Pz∗(S(τ ′) ∈ B′2) max
x∈∂B′2

Gr+D(x, z).

(5.13)

A gambler’s ruin estimate yields, for some positive constant c

Pz∗(S(τ ′) ∈ B′2) ≤ c

D
.

The desired result follows from (5.13) and the previous bound after we show that for a
constant c, such that for all x satisfying ‖x− z‖ ≥ D

3

Gr+D(x, z) ≤ c

Dd−2
(5.14)

On the set V := B(z, D
4

), the map y 7→ G(x, y) is harmonic. By Harnack’s inequality, we
have

Gr+D(x, z) ≤ c

Dd

∑
y∈V

Gr+D(x, y) =
c

Dd
Ex[Y ], (5.15)

where c is a positive constant and Y is the number of visits of V before time Hr+D. By
taking the supremum over the entering site of V in (5.15)

Gr+D(x, z) ≤ c

Dd
sup
y∈V

Ey[Y ].

It remains to show that supy∈V Ey[Y ] ≤ JD2, for some positive constant J . This is identical
to (2.10) of [10], and we omit this last step.

5.3 Proof of Proposition 3.1

For j ≥ 0, consider zj in Σj. We show that for positive constants α1, α2, and for all z∗ in
C(zj) we have (3.3). The random walk has initial condition S(0) = zj.

First, when z∗ = zj, S(σj) = zj if and only if Xj = 1. This happens with probability
1/hdj , and gives the result in this case.
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Assume z∗ ∈ C(zj)\{zj}. We recall that the unbiased Bernoulli variable Yj decides
whether the explorer can flash upon exiting either a sphere or an annulus. More precisely,
we draw Rj with density gj given in (3.1), and if Yj = 1 (resp. Yj = 0) the walk flashes
upon exiting the ball of center zj and radius Rj ∧ (rj +hj −‖zj‖) (resp. A(rj −Rj, rj +Rj))
provided S(σj) ∈ C(zj).
Step 1: Flashing when exiting a sphere (Yj = 1). We first prove the upper bound
when Yj = 1 and Xj = 0. It is obvious that

z∗ ∈ ∂B(zj, ‖z∗ − zj‖), but z∗ 6∈ ∂B(zj, ‖z∗ − zj‖ − 1).

Thus, Rj ∈]‖z∗ − zj‖ − 1, ‖z∗ − zj‖], and there is a constant C such that

P (Xj = 0, Yj = 1, Rj ∈]‖z∗ − zj‖ − 1, ‖z∗ − zj‖]) ≤ C
‖z∗ − zj‖d−1

hdj
. (5.16)

On the other hand, by (2.4) of Section 2.2

P
(
S(σj) = z∗

∣∣∣ Xj = 0, Yj = 1, Rj ∈]‖z∗ − zj‖ − 1, ‖z∗ − zj‖]
)
≤ c2

‖z∗ − zj‖d−1
. (5.17)

The upper bound in the case {Xj = 0, Yj = 1} follows from (5.16) and (5.17).

We turn now to the lower bound when Yj = 1 and Xj = 0. Since we want a lower bound,
we consider the event that the walk flashes on z∗ when exiting a sphere only in the case
where

∣∣‖z∗‖ − rj∣∣ < hj/2. Note that by Lemma 2.2, z∗ has a nearest neighbor, say z, which
satisfies

‖z − zj‖ ≤ ‖z∗ − zj‖ −
1

4
√
d
.

This means that if h ∈ V := [‖z∗ − zj‖ − 1/(4
√
d), ‖z∗ − zj‖[, then z∗ ∈ ∂B(zj, h). Thus,

Pzj (S(σj) = z∗) ≥ P (Xj = 0, Yj = 1, Rj ∈ V )× inf
h∈V

Pzj (S(H(∂B(zj, h))) = z∗)

≥ chd−1

hdj
inf
h∈V

Pzj (S(H(∂B(zj, h))) = z∗)

≥ chd−1

hdj
× c1

hd−1
(using (2.4)).

The lower bound in the case Yj = 1, Xj = 0, and
∣∣‖z∗‖ − rj∣∣ < hj/2 is obtained.

Step 2: Flashing when exiting an annulus (Yj = 0). The upper bound for this case is
close to the case Yj = 1. It is obvious that

z∗ ∈ ∂A(rj−|‖z∗‖−rj|, rj+|‖z∗‖−rj|), but z∗ 6∈ ∂A(rj−|‖z∗‖−rj|+1, rj+|‖z∗‖−rj|−1).

Thus, necessarily Rj ∈]|‖z∗‖ − rj| − 1, |‖z∗‖ − rj|], and

P (Yj = 0, Rj ∈]|‖z∗‖ − rj| − 1, |‖z∗‖ − rj|]) ≤ C
|‖z∗‖ − rj|d−1

hdj
.
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For h > 0, define Dh = A(rj −h, rj +h). It is enough to prove that for some constant c, and
for any h such that z∗ ∈ ∂Dh, (and h ∈]|‖z∗‖ − rj| − 1, |‖z∗‖ − rj|])

Pzj (S(H(Dch)) = z∗) ≤ c

hd−1
. (5.18)

Note the following fact. If ‖z∗‖ > ‖zj‖, and the walk exits Dh at z∗, then the walk exits
B(0, rj + h) at z∗, whereas if ‖z∗‖ < ‖zj‖, and the walk exits Dh at z∗, then the walk enters
B(0, rj − h) at z∗. In both cases, Lemma 5(b) of [10] yields then (5.18). (Actually, Lemma
5(b) of [10] is formulated to cover only the case ‖z∗‖ > ‖zj‖, but its proof covers both cases).

We turn now to the lower bound. By Lemma 2.2, z∗ has a nearest neighbor, say z,∣∣‖z‖ − rj∣∣ ≤ ∣∣‖z∗‖ − rj∣∣− 1

4
√
d
. (5.19)

This means that if h ∈ V := [
∣∣‖z∗‖ − rj∣∣− 1/(4

√
d),
∣∣‖z∗‖ − rj|[, then z∗ ∈ ∂Dh.

We only need to consider the case
∣∣‖z∗‖ − rj∣∣ ≥ hj/2. It is enough to prove, for h ∈ V ,

z∗ ∈ C(zj) ∩ ∂Dh, and for some constant c (that depends on d)

Pzj (S(H(Dch)) = z∗) ≥ c

hd−1
. (5.20)

Let y∗ be the closest site of ∂B(0, rj) to the segment [0, z∗], and let x∗ be in Rd given by

x∗ = (rj +
h

2
)
z∗

‖z∗‖
.

Note that if z̃ ∼ z and z̃ satisfies (5.19), then ‖x∗ − z̃‖ < infz∈∂Dh ‖x∗ − z‖, and we define

R∗ =
1

2

(
‖x∗ − z̃‖+ inf

z∈∂Dh
‖x∗ − z‖

)
.

Define

D̃h = A(rj −
h

2
, rj +

h

2
), and set Γ = B(x∗, R∗) ∩ ∂(D̃ch).

Thus, if ‖z∗‖ > ‖zj‖, then Γ is the boundary of the lower hemisphere of the ball B(x∗, R∗).
We need also the time τ+ = inf{n ≥ 1 : S(n) ∈ Dch ∪ {zj}}. By a last exit decomposition,
and the strong Markov property, we have

Pzj (S(H(∂Dh)) = z∗) = GDh(zj, zj)Pz∗
(
S(τ+) = zj

)
≥ GDh(zj, zj)Pz∗

(
H(Γ) < τ+

)
min
x∈Γ

Px (S(τ) = zj)

≥ Pz∗
(
H(Γ) < τ+

)
min
x∈Γ

GDh(x, zj).

(5.21)

Since z∗ ∈ C(zj), we have ‖y∗ − zj‖ ≤ hj/2, so that y∗ and zj can be connected by 10
overlapping balls of radius hj/10 in such a way that, applying Harnack’s inequality 10 times
(see Theorem 6.3.9 in [11]) to the harmonic map y 7→ GDh(x, y), we can estimate from below
the last factor in (5.21). For any x ∈ Γ

GDh(x, zj) ≥ c10
HGDh(x, y∗).
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We use again Harnack’s inequality on the harmonic functions x 7→ GDh(x, y∗), to obtain

min
x∈Γ

GDh(x, y∗) ≥ cHGDh(x′, y∗),

where x′ ∈ B(x∗, R∗/2) and ‖x′ − y∗‖ ∈ [h
4
− 1, h

4
]. The purpose of choosing x′ is to have

y∗ ∈ B(x′, h/4), and B(x′, h/2) ⊂ Dh so that GDh(x′, y∗) ≥ GB(x′,h/2)(x
′, y∗).

When dimension is 2, the classical expansion of GB(x′,h/2)(x
′, ·) (see Proposition 6.3.5 of

[11]) gives with a constant K2

GB(x′,h/2)(x
′, y∗) ≥ 2

π
log

(
h/2

‖x′ − y∗‖

)
− K2

‖x′ − y∗‖
≥ 2

π
log 2− 4K2

h
. (5.22)

When h is large enough, GB(x′,h/2)(x
′, y∗) ≥ log(2)/π.

When dimension is larger than 2, by using (2.2), there is a constant Kd such that, when
h is large enough

GDh(x′, y∗) =G(x′, y∗)− Ex′ [G(S(H(Dch)), y∗)]

≥ Cd
hd−2

(
4d−2 − 1

)
− Kg

hdj
≥ Kd

hd−2
.

(5.23)

As a consequence of (5.23), we just need to prove that the first factor in (5.21) is of order
1/h at least. We realize the event {H(Γ) < τ+} in two moves: the walk first hits the sphere
B(x∗, R∗/2), and then exits from the cap ∂B(x∗, R∗) ∩ D̃h.

Pz∗
(
H(Γ) < τ+

)
≥ 1

2d
Pz̃ (H(B(x∗, R∗/2)) < H(Bc(x∗, R∗)))

× inf
y∈∂B(x∗,R∗/2)

Py
(
S
(
H (Bc(x∗, R∗))

)
∈ D̃h

)
.

(5.24)

The first factor in the right hand side of (5.24) is of order 1/R∗, that is of order 1/h. To
deal with the second factor, we invoke Harnack’s inequality to have for y ∈ ∂B(x∗, R∗/2),
and for x′′ the closest point of Zd to x∗,

Py
(
S
(
H (Bc(x∗, R∗))

)
∈ D̃h

)
≥ cHPx′′

(
S
(
H (Bc(x∗, R∗))

)
∈ D̃h

)
. (5.25)

We invoke now (2.4) to obtain for some constant K3

Px′′
(
S
(
H (Bc(x∗, R∗))

)
∈ D̃h

)
≥ c1
|∂B(x∗, R∗) ∩ D̃h|
|∂B(x∗, R∗)|

≥ K3. (5.26)

We gather (5.24), (5.25) and (5.26) to obtain the desired lower bound.

APPENDIX
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A Coupling and proof of Lemma 1.2

We give a precise definition of our coupling. To avoid heavy notation we write the coupling
algorithm as a pseudo-code.

First of all, we draw N independent sequences of independent Bernoulli and continuous
random variables ((Xk,l, Yk,l, Rk,l : l ≥ 0) : 1 ≤ k ≤ N) as in Section 3. In addition, we call
(Uk : k ≥ 1) the sequence of the increments of a generic independent simple random walk
on Zd. From these two sources of randomness we extract our explorer and flashing explorer
trajectories with their associated clusters. The flashing times will be adapted to the flashing
explorer trajectories as in Section 3.

Our pseudo-code is made of two loops of sizeN that make precise the previous description.
With the first loop we build our N random walk trajectories ((Si(t) : 0 ≤ t ≤ τi) : 1 ≤ i ≤ N)
with their associated clusters A(1), . . . , A(N). Step by step, within this first loop, we also
define pieces of the flashing explorers trajectories S∗1 , . . . , S∗N . With the second loop we
complete the trajectories of the flashing explorers to build the associated cluster A∗(N).
During the algorithm, tk ∈ N stands for the time up to which the trajectory of flashing
explorer k has been defined (k ∈ {1; · · · ;N}). We use the same t for the time governing
the evolution of each simple random walk Si. The index j is updated before adding each
random walk increment to the partial sum of Si and S∗j . The updating procedure uses the
index j′ described in Section 3.3, and we denote by ∆ = U the increment. Each encountered
U stands for the first unused random variable in the sequence (Uk : k ≥ 1).

The main advantage of the pseudo-code formalism is that it allows, through the as-
signment operator ‘←’, expressions of the kind j ← max(j, j′) or tj ← tj + 1 rather than
j(θ+1) = max(j(θ), j′(θ)) and tj(θ+1)(θ+1) = tj(θ)(θ)+1 with θ a discrete parameter ordering
the sequence of our elementary moves. It makes also implicit identities like tk(θ+ 1) = tk(θ)
for any quantity tk that does not need to be updated. Our following pseudo-code can be re-
written in a classical inductive way with θ running through {(i, t) ∈ {1; · · · ;N}×N : t ≤ τi}
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according to lexicographic order. Marks (a) and (b) refer to remarks (a) and (b) below.

A(0)← ∅;
For i = 1 to N

j ← i;
t← 0; tj ← 0;
Si(t)← 0; S∗j (tj)← 0; (Note that Si(t) = S∗

j (tj))

While Si(t) ∈ A(i− 1)

If tj is a flashing time for explorer j(a), then
j′ ← unique index(b) k ∈ {1; · · · ; i} \ {j}

such that S∗k(tk) = S∗j (tj) = Si(t);
If tj′ is not a flashing time for explorer j′(a), then j ← j′;
Otherwise j ← max(j, j′);

∆← U ; Si(t+ 1)← Si(t) + ∆; S∗j (tj + 1)← S∗j (tj) + ∆;
(so that Si(t + 1) = S∗

j (tj + 1))

t← t+ 1; tj ← tj + 1;
A(i)← A(i− 1) ∪ {Si(t)};
i← i+ 1;

A∗(0)← ∅;
For k = 1 to N

While tk is not a flashing time for explorer k(a) or S∗k(tk) ∈ A∗k−1{
S∗k(tk + 1)← S∗k(tk) + U ;
tk ← tk + 1;

A∗(k)← A∗(k − 1) ∪ {S∗k(tk)};
k ← k + 1;

Remarks:

(a) Recall that for l = j, j′ or k, S∗l is defined up to time tl as well as its associated flashing
times.

(b) One checks by induction on i that just after the instruction “A(i)← A(i−1)∪{Si(t)}”
we have

A(i) = {S∗1(t1); · · · ;S∗i (ti)} and |A(i)| = i. (A.1)

To do so, one checks by induction on t < τi, that

A(i− 1) = {S∗1(t1); · · · ;S∗j−1(tj−1);S∗j+1(tj+1); · · · ;S∗i (ti)} and |A(i− 1)| = i− 1.
(A.2)

Since we always have S∗j (tj) = Si(t) this proves by induction that j′ is well defined.

The key observation is that for each increment U , the index of the explorer that follows
this increment depends on the whole previous construction, but the value of U does not
depend on it. As a consequence, we build independent random walks S1, . . . , SN coupled
with independent flashing random walks S∗1 , . . . , S∗N . Then, one simply checks by induction
on i and k that

A(i) = {S1(τ1); · · · ;Si(τi)} and A∗(k) = {S∗1(τ ∗1 ); · · · ;S∗k(τ
∗
k )} (A.3)
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for all 1 ≤ i, k ≤ N .

Finally, define (t̄1, . . . , t̄N) and (τ ∗1 , . . . , τ
∗
N) the values of (t1, . . . , tN) at the end of the

first and last cycle respectively. Since t1, . . . , tN can only increase during our loops, we have
τ ∗k ≥ t̄k for all k. Then (3.4) and (3.5) follow from (A.1) and (A.3).

B Time spent in an annulus (By S.Blachère)

This section is devoted to an asymptotic expansion of the expected time spent in an annulus
A(rn, n) for rn < n, when the random walk is started at some point z within the annulus,
and before it exits the outer shell.

Proposition B.1 There are positive constants K0, Kb, such that for any sequence {∆n, n ∈
N} with K0 ≤ ∆n ≤ n1/3, for any z ∈ A(rn, n), we have setting rn = n−∆n,∣∣∣∣∣∣

∑
y∈A(rn,n)

Gn(z, y)−
(
2d∆nα0(z)− d(n− ‖z‖)2

)∣∣∣∣∣∣ ≤ Kb ((n− ‖z‖) ∨ 1) , (B.1)

with
α0(z) = Ez

[
‖S(Hn)‖ − ‖z‖

∣∣∣H (Bc(0, n)) < H (B(0, rn))
]
.

Proof. Our strategy is to decompose a path into successive strands lying entirely in the
annulus. The first strand is special since the starting point is any z ∈ A(rn, n). The other
strands, if any, start all on ∂B(0, rn). We estimate the time spent inside the annulus for
each strand. Let us remark that we make use of three facts: (i) precise asymptotics for
Green’s function, (ii) (G(0, S(n)), n ∈ N) is a martingale, and (iii) (‖S(n)‖2 − n, n ∈ N) is
a martingale.

Choose z ∈ A(rn, n). We define the following stopping times (Di, Ui, i ≥ 0), correspond-
ing to the ith downward and upward crossings of the sphere of radius rn. Let θ(n) act on
trajectories by time-translation of n-units. Let τ = H(Brn) ∧Hn, D0 = U0 = 0, and

D1 = τ1H(Brn )<Hn +∞1Hn<H(Brn ).

If D1 <∞, then U1 = Hrn ◦ θ(D1) +D1, whereas if D1 =∞, then we set U1 =∞. We now
proceed by induction, and assume Di, Ui are defined. If Di = ∞, then Di+1 = ∞, whereas
if Di <∞, (and necessarily Ui <∞) then

Di+1 = Ui +
(
τ1τ=H(Brn ) +∞1τ=Hn

)
◦ θ(Ui), and Ui+1 = Di+1 +Hrn ◦ θ(Di+1).

With this notation, we can write

∑
y∈A(rn,n)

Gn(z, y) = Ez [τ ] +
∞∑
i=1

Ez [τ ◦ θ(Ui)1Di<∞]

= Ez[τ ] + Pz (D1 <∞)× I(z),

(B.2)
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where

I(z) =
∞∑
i=1

Ez
[
τ ◦ θ(Ui)

∣∣∣Di <∞
] i−1∏
j=1

(
1− Pz

(
Dj+1 =∞

∣∣∣Dj <∞
))

. (B.3)

Now, we compute each term of the right hand side of (B.2).

We have divided the proof in three steps.

Step 1: First, we show that there is a positive constant K, (independent of z and n) such
that when z ∈ A(rn, n), then∣∣∣∣Pz (D1 <∞)− α0(z)

∆n

∣∣∣∣ ≤ K

∆2
n

((n− ‖z‖) ∨ 1) . (B.4)

Note that when z ∈ B(0, n), and n− ‖z‖ ≤ 1, (B.4) yields∣∣∣∣∣∣Pz (D1 <∞)−
Ez
[
‖S(τ)‖ − ‖z‖

∣∣∣D1 =∞
]

∆n

∣∣∣∣∣∣ ≤ K

∆2
n

, (B.5)

Secondly, we show that for z ∈ A(rn, n), and i ≥ 1∣∣∣∣∣∣Pz
(
Di+1 =∞

∣∣∣Di <∞
)
−

Ez
[
(‖S(Ui)‖ − ‖S(Di+1)‖) 1D1◦θ(Ui)<∞

∣∣∣Di <∞
]

∆n

∣∣∣∣∣∣ ≤ K

∆2
n

.

(B.6)
Our starting point is the classical Gambler’s ruin estimate, which in dimension 2 reads with
the potential kernel instead of Green’s function,

Pz (D1 <∞) =
G(0, z)− Ez

[
G(0, S(τ))

∣∣∣D1 =∞
]

Ez
[
G(0, S(τ))

∣∣∣D1 <∞
]
− Ez

[
G(0, S(τ))

∣∣∣D1 =∞
] . (B.7)

We now expand Green’s function (resp. the potential kernel) using asymptotics (2.2) (resp.
(2.3)). For this purpose, it is convenient to define a random variable

X(z) =
1

‖z‖
(
‖S(τ)‖2 − ‖z‖2

)
.

Note that for any z ∈ A(rn, n), X(z)/‖z‖ is small. Indeed,

X(z)

‖z‖
=

(‖S(τ)‖ − ‖z‖) (‖S(τ)‖+ ‖z‖)
‖z‖2

(B.8)

Since ∆n = n− rn = O(n1/3), we have for n large enough

X(z)

‖z‖
≤ 2(n+ 1)∆n

(n−∆n)2
≤ 8∆n

n
, and sup

z∈A(rn,n)

(
|X(z)|
‖z‖

)3

≤ 83∆3
n

n
× 1

n2
. (B.9)



Fluctuations for internal DLA 37

More precisely, X(z) is of order 2(‖S(τ)‖ − ‖z‖). Indeed, ∆3
n ≤ n, and (B.8) yields

X(z) = 2 (‖S(τ)‖ − ‖z‖) +

(
(‖S(τ)‖ − ‖z‖)2

‖z‖

)
=⇒

∣∣X(z)− 2 (‖S(τ)‖ − ‖z‖)
∣∣ ≤ 1

∆n

.

(B.10)
When dimension d > 2, we set η(d) = d−2

2
. In order to use Green’s function asymptotics

(2.2), we express S(τ) in terms of X(z) as follows

1

‖S(τ)‖d−2
=

1

‖z‖d−2

(
1 +

X(z)

‖z‖

)−η(d)

. (B.11)

We have a constant Kd such that∣∣∣∣∣
(

1 +
X(z)

‖z‖

)−η(d)

−

(
1− η(d)

X(z)

‖z‖
+ η(d)

η(d) + 1

2

(
X(z)

‖z‖

)2
)∣∣∣∣∣ ≤ Kd

n2
. (B.12)

For d > 2 and any z 6= 0, (2.2), (B.11) and (B.12) yields∣∣∣∣G(0, S(τ))−G(0, z)− η(d)Cd

(
− X(z)

‖z‖d−1
+
η(d) + 1

2

X(z)2

‖z‖d

)∣∣∣∣ ≤ Kd

nd
. (B.13)

In dimension 2, the potential kernel asymptotic yields for K2 > 0∣∣∣∣a(0, S(τ))− a(0, z)− 1

π

(
X(z)

‖z‖
+

1

2

X(z)2

‖z‖2

)∣∣∣∣ ≤ K2

n2
. (B.14)

In view of (B.14), we assume henceforth that (B.13) holds, but in d = 2 we think of η(d)Cd =

1/π, and η(d)+1
2

= 1/2.

Using (B.7) and (B.13), we obtain

Pz (D1 <∞) =
Ez
[
X(z)

∣∣∣D1 =∞
]
− C̄(z) +O( 1

n
)

Ez
[
X(z)

∣∣∣D1 =∞
]
− Ez

[
X(z)

∣∣∣D1 <∞
]

+ C(z)− C̄(z) +O( 1
n
)
, (B.15)

where

C̄(z) =
η(d) + 1

2
Ez
[
X2(z)

‖z‖

∣∣∣D1 =∞
]
, and C(z) =

η(d) + 1

2
Ez
[
X2(z)

‖z‖

∣∣∣D1 <∞
]
.

(B.16)
Using (B.9), we have some rough estimates on C̄ and C. For any z ∈ A(rn, n),

C̄(z) = O

(
∆2
n

n

)
= O

(
1

∆n

)
, and C(z) = O

(
∆2
n

n

)
= O

(
1

∆n

)
. (B.17)

Using (B.10), we have better estimates for C̄ and C.

C̄(z) = d
(n− ‖z‖)2

‖z‖
+O

(
(n− ‖z‖) ∨ 1

n

)
, C(z) = d

(‖z‖ − rn)2

‖z‖
+O

(
(‖z‖ − rn) ∨ 1

n

)
.

(B.18)
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The rough estimates (B.17) together with (B.10) allow us to derive from (B.15) an estimate
for Pz(D1 <∞), for any z ∈ A(rn, n).

Pz (D1 <∞) =
Ez
[
‖S(τ)‖ − ‖z‖

∣∣∣D1 =∞
]

+O
(

1
∆n

)
Ez
[
‖S(τ)‖ − ‖z‖

∣∣∣D1 =∞
]
− Ez

[
‖S(τ)‖ − ‖z‖

∣∣∣D1 <∞
]

+O
(

1
∆n

)
=
α0(z) +O

(
1

∆n

)
∆n(1 +O

(
1

∆n

)
)
.

(B.19)

This yields (B.4) since α0(z) ≤ 1 + (n− ‖z‖) ∨ 1 ≤ 2(n− ‖z‖) ∨ 1.

Case where z ∈ ∂B(0, rn).
On {D1 =∞}, we have

X(z) = 2 (‖S(τ)‖ − ‖z‖) +O(
1

∆n

). (B.20)

On {D1 <∞}, we have

X(z) = 2 (‖S(τ)‖ − ‖z‖) +O(
1

n
).

This implies

C̄(z) = d
∆2
n

‖z‖
+O(

∆n

n
), and C(z) = O(

1

n
). (B.21)

Thus,

Pz (D1 =∞) =
2Ez

[
‖z‖ − ‖S(τ)‖

∣∣∣D1 <∞
]

+ C(z) +O( 1
n
)

Ez
[
X(z)

∣∣∣D1 =∞
]
− Ez

[
X(z)

∣∣∣D1 <∞
]

+ C(z)− C̄(z) +O( 1
n
)

=
Ez
[
‖z‖ − ‖S(τ)‖

∣∣∣D1 <∞
]

+O( 1
n
)

∆n +O(1)

=
Ez
[
‖z‖ − ‖S(τ)‖

∣∣∣D1 <∞
]

∆n

+O(
1

∆2
n

).

(B.22)

In order to obtain (B.6), we write (B.22) on {Di <∞}, and z = S(Ui) as follows. There is
a constant K such that on the event {Di <∞},∣∣∣∣∣ES(Ui)

[
1Di+1=∞

]
−

ES(Ui)

[
(‖S(Ui)‖ − ‖S(τ)‖) 1D1◦θ(Ui)<∞

]
∆n × PS(Ui) (D1 <∞)

∣∣∣∣∣ ≤ K

∆2
n

. (B.23)

Note that (B.22) implies that PS(Ui) (D1 <∞) = 1 + O(1/∆n), so that (B.23) reads as we
integrate over {Di <∞} with respect to Ez∣∣∣∣∣Pz (Di+1 =∞, Di <∞)−

Ez
[
1Di<∞ (‖S(Ui)‖ − ‖S(τ)‖) 1D1◦θ(Ui)<∞

]
∆n

∣∣∣∣∣ ≤ KPz(Di <∞)

∆2
n

.

(B.24)
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We obtain (B.6) as we divide both sides of (B.24) by Pz(Di <∞).

Step 2: We show now that for any z ∈ A(rn, n) we have∣∣Ez [τ ]−
(
d∆nα0(z)− d(n− ‖z‖)2

) ∣∣ ≤ K ((n− ‖z‖) ∨ 1) . (B.25)

When z ∈ Bn and n− ‖z‖ ≤ 1,(B.25) reads∣∣Ez [τ ]−
(
d∆nα0(z)− d(n− ‖z‖)2

)
≤ K. (B.26)

When z ∈ A(rn, n), and i ≥ 1, we show that∣∣∣∣∣∣
Ez
[
τ ◦ θ(Ui)

∣∣∣Di <∞
]

d∆2
n

−
Ez
[
(‖S(Ui)‖ − ‖S(Di+1)‖) 1D1◦θ(Ui)<∞

∣∣∣Di <∞
]

∆n

∣∣∣∣∣∣ ≤ K

∆2
n

.

(B.27)
Using that {‖S(n)‖2 − n, n ∈ N} is a martingale, and the optional sampling theorem (see
Lemma 3 of [10])

Ez [τ ] =Ez
[
‖S(τ)‖2

]
− ‖z‖2 = ‖z‖ × Ez [X(z)]

=‖z‖ ×
(
Ez
[
X(z)

∣∣∣D1 =∞
]
Pz(D1 =∞) + Ez

[
X(z)

∣∣∣D1 <∞
]
Pz(D1 <∞)

)
.

Thus, using (B.15), simple algebra yields

Ez [τ ] = ‖z‖ ×
(
(C(z)− C̄(z))Pz(D1 <∞) + C̄(z)

)
+O(1). (B.28)

By recalling (B.18) and (B.4)

Ez [τ ] =d

((
(‖z‖ − rn)2 − (n− ‖z‖)2 +O(∆n)

)(α0(z)

∆n

+O(
(n− ‖z‖) ∨ 1

∆2
n

)

))
+ d(n− ‖z‖)2 +O((n− ‖z‖) ∨ 1)

=d(2‖z‖ − n− rn)α0(z) + d(n− ‖z‖)2 +O((n− ‖z‖) ∨ 1)

=d∆nα0(z)− d(n− ‖z‖)2 +O ((n− ‖z‖) ∨ 1)

This yields (B.25).

Assume now that z ∈ ∂B(0, rn). From (B.28), we have

Ez [τ ] = ‖z‖ ×
(
(C̄(z)− C(z))Pz(D1 =∞) + C(z)

)
+O(1).

We use (B.6) and (B.21) to obtain

Ez [τ ] =‖z‖

(d∆2
n +O(∆n)

)Ez
[
‖z‖ − ‖S(τ)‖

∣∣∣D1 <∞
]

∆n

+O(
1

∆2
n

)

+O(1)

=d∆nEz
[
‖z‖ − ‖S(τ)‖

∣∣∣D1 <∞
]

+O(1).

(B.29)
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Now, write (B.29) as follows. There is a constant K such that for any z ∈ ∂B(0, rn)∣∣∣∣Ez [τ ]

d∆2
n

− Ez [‖z‖ − ‖S(τ)‖1D1<∞]

∆nPz(D1 <∞)

∣∣∣∣ ≤ K

∆2
n

. (B.30)

Note that by (B.22) ∆nPz(D1 <∞) = ∆n +O(1) and |‖z‖ − ‖S(τ)‖1D1<∞| ≤ 1, thus∣∣∣∣Ez [τ ]

d∆2
n

− Ez [‖z‖ − ‖S(τ)‖1D1<∞]

∆n

∣∣∣∣ ≤ K

∆2
n

. (B.31)

We replace z by S(Ui) in (B.31) under the event {Di <∞} to obtain∣∣∣∣∣ES(Ui) [τ ]

d∆2
n

−
ES(Ui)

[
(‖S(Ui)‖ − ‖S(D1 ◦ θ(Ui))‖) 1D1◦θ(Ui)<∞

]
∆n

∣∣∣∣∣ ≤ K

∆2
n

, (B.32)

We multiply both sides of (B.32) by 1Di<∞, take the expectation on both side of (B.32), and
divide by Pz(Di <∞) to obtain (B.27).

Step 3: For i ≥ 1, we show the following bounds

2 ≥ γi ≥
1

4d
√
d
, where γi = Ez

[
(‖S(Ui)‖ − ‖S(Di+1)‖) 1Di+1<∞

∣∣∣Di <∞
]
. (B.33)

The upper bound is obvious. For the lower bound, first we restrict to {Di < ∞}, so
that Ui < ∞. By Lemma 2.2, S(Ui) has a nearest neighbor x, within B(0, rn) such that
‖S(Ui)‖ − ‖x‖ ≥ 1/(2

√
d), and (B.33) is immediate.

Step 4: We show (B.1) using (B.2). For p such that 1 ≤ p ≤ ∞, let

σp =

p∑
i=1

Ez
[
τ ◦ θ(Ui)

∣∣∣Di <∞
] i−1∏
j=1

(
1− Pz

(
Dj+1 =∞

∣∣∣Dj <∞
))

. (B.34)

Now, (B.3) reads I(z) = limp→∞ σp (this is the limit of an increasing sequence). We establish
in this step that, for some constant K̃, any integer n

lim
p→∞

∣∣∣∣1− σp
d∆2

n

∣∣∣∣ ≤ K̃

∆n

. (B.35)

Once we prove (B.35), we have all the bounds to estimate the right hand side of (B.2).
Indeed, using (B.25), (B.4) and (B.35), we have

Ez[τ ] + Pz (D1 <∞)× I(z) =d∆nα0(z)− d(n− ‖z‖)2 +O ((n− ‖z‖) ∨ 1)

+

(
α0(z)

∆n

+O

(
(n− ‖z‖) ∨ 1

∆2
n

))
×
(
d∆2

n +O(∆n)
)

= 2d∆nα0(z)− 2d (n− ‖z‖)2 +O ((n− ‖z‖) ∨ 1) .

(B.36)
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In order now to prove (B.35), we introduce first some shorthand notation. For p and j
positive integers

ap = 1− σp
d∆2

n

, αj = Pz
(
Dj+1 =∞

∣∣∣Dj <∞
)
, and βj =

Ez
[
τ ◦ θ(Uj)

∣∣∣Dj <∞
]

d∆2
n

.

(B.37)
With this notation (B.6) and (B.27) read as follows.∣∣∣∣αj − γj

∆n

∣∣∣∣ ≤ K

∆2
n

, and

∣∣∣∣βj − γj
∆n

∣∣∣∣ ≤ K

∆2
n

, so that |αj − βj| ≤
2K

∆2
n

. (B.38)

Let us rewrite (B.34) as

a1 = 1− β1 and ap = ap−1 − βp
p−1∏
j=1

(1− αj) for p > 1. (B.39)

In order to establish (B.35), we show by induction that∣∣∣∣∣ap −
p∏
j=1

(1− αj)

∣∣∣∣∣ ≤ εp, (B.40)

with for p > 1

εp = εp−1 +
2K

∆2
n

p−1∏
j=1

(1− αj) and ε1 =
2K

∆2
n

. (B.41)

Note that it is easy to estimate εp from (B.41). By (B.38) and for K0 large enough there is
a constant κS such that

εp ≤
2K

∆2
n

(
1 +

p∑
k=1

exp

(
−

k∑
j=1

αj

))

≤2K

∆2
n

(
1 +

p∑
k=1

exp

(
−

k∑
j=1

γj
2∆n

))
≤ 2K

∆2
n

κS∆n =
2KκS

∆n

.

Now, by (B.38) (B.40) holds for p = 1, and we assume it holds for p− 1. Then

(1− βp)
p−1∏
j=1

(1− αj)− εp−1 ≤ ap ≤ (1− βp)
p−1∏
j=1

(1− αj) + εp−1. (B.42)

Then by (B.38), we have (B.40) with εp satisfying (B.41).

Now (B.35) follows as we notice that Step 3 implies, together with (B.38) and for K0

large enough, that

lim
p→∞

p∏
j=1

(1− αj) = 0.
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