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Abstract—Endoscopy is a standard imaging modality com-
monly used in different medical fields like lesion diagnosis in
hollow organs or mini-invasive surgery. Meanwhile, endoscopic
data suffer from the fact that each image of a video-sequence
only corresponds to a small 2D field of view. This paper presents
a mosaicing algorithm leading to visually coherent large field of
view maps. The ability of the algorithm to build 2D bladder maps
is assessed with both phantom and patient data. This contribution
describes also a 3D cartography method and gives preliminary
surface reconstruction results on phantoms with bladder textures.

Index Terms—2D image mosaicing, 3D surface construction,
3D cartography, bladder, endoscopy.

I. INTRODUCTION

In hollow organs of the human body (e.g., bladder, oe-
sophagus, colon), pathological lesions located on their inner
wall can be detected in video-sequences acquired with cys-
toscopes (rigid endoscopes) or fiberscopes (fibered flexible
cystoscopes). Meanwhile, each image of the sequence visu-
alizes only a small surface of the organ (with corresponding
areas smaller than 1 cm2), while lesions are typically spread
over wide areas i.e. several images. The lesion diagnosis
and tissular status follow up of lesions is difficult since
clinicians have to mentally reconstruct the scene using the
image sequence (i.e. they cannot observe at one go the whole
region of interest). In endoscopic video-sequences, consecutive
images (acquired from different viewpoints) are always par-
tially overlapped. Image mosaicing techniques (registration of
consecutive image pairs) can be used to build maps (large field
of views including the whole region of interest) facilitating the
lesion diagnosis.

Although image mosaicing was used in numerous fields
(astrophysics, consumer photography, remote sensing, etc.),
only few studies were devoted to the cartography of medical
data. Mammography [1], ophthalmology [2], microscopy [3]
and X-ray angiography [4] are among the few examples in
which image mosaicing has been used. These approaches are
either not fully automated or based on the use of a priori
knowledge concerning the geometrical transformation between
the images. Such knowledge is not available for endoscopic
sequences since clinicians freely move the endoscope in the
hollow organs. Moreover, these algorithms were not conceived
to register a large number of images (typically, thousands
of images have to be registered for bladders). Apart from
the present contribution, the only other publication dealing
with image mosaicing of hollow organs describes a cartogra-
phy method for fluorescence bladder endoscope images [5],

(a) (b)

Fig. 1. Bladder images extracted from cystoscopic acquisitions of two
different patients. (a) The blood vessel contours can be segmented. (b) No
significant image primitive (contour, corner, etc.) can be extracted from the
image.

[6]. This work exploits the fact that, in fluorescence en-
doscopy, image primitives can be segmented and used as
homologous structures during the data registration. For the
more widespread (or standard) white light modality, image
primitives cannot usually be extracted in a robust way for
hollow organs. As sketched in Fig. 1, the intra- and inter-
patient bladder texture variability is very strong and images
do not necessarily include significant primitives (contours,
edges, corners). To be as robust and general as possible, a
mosaicing algorithm of hollow organ images shall not rely on
the segmentation of image primitives.

The next section describes a bidimensional (2D) cartography
method leading in a robust way to 2D wide field of views. In
Section III, a tridimensional (3D) reconstruction algorithm is
sketched showing that it is possible to build large 3D field of
views of hollow organs with data of modified endoscopes. The
results presented in Section IV first show the potential of 2D
bladder cartography based on both phantom and patient data,
and illustrate the feasibility of 3D bladder cartography.

II. 2D CARTOGRAPHY ALGORITHM

The registration process used to superimpose the overlap-
ping part (ov) of the source image Iovk+1 on the target image
Ik is given in (1), these images being grey level data obtained
from consecutive (k, k+1) color images of the video-sequence.

T̃ k,k+1
2D = argmax

T
k,k+1
2D

MI
(
Iovk , T k,k+1

2D (Iovk+1)
)

(1)

T̃ k,k+1
2D is the geometrical transformation superimposing Iovk+1

on the target image Iovk . The registration process optimizes the
parameters of T k,k+1

2D such as the MI (mutual information,
see [7]) measure reaches a maximum. The Iovk images do not
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include barrel distortion and light inhomogeneities since these
radial distortions and shading effects affecting endoscopic
data are corrected with the algorithms described in [8], [9].
Moreover, as detailed in [10], the bladder being filled up
with physiological serum during an examination, and due
to the high acquisition rate (25 images/s), the bladder can
be considered as being rigid between two acquisitions k
and k + 1. Consequently, T̃ k,k+1

2D is a 3 × 3 homogeneous
perspective matrix corresponding to a viewpoint difference
and superimposing the i-th pixel P i,k+1

2D with coordinates
(xi,k+1

2D , yi,k+1
2D )T in Ik+1 on the i-th (homologous) point P i,k

2D

with coordinates (xi,k
2D, yi,k2D)

T in Ik. In (2), the six parameters
ars (with r ∈ [1, 2] and s ∈ [1, 3]) depend on the Kx and
Ky scale factors, the Sx and Sy shearing parameters, and the
2D in plane rotation ϕ angle. a31 and a32 correspond to the
perspective change due to out of plane rotations and a33 = 1.

⎛⎝βi,k xi,k
2D

βi,k yi,k2D

βi,k

⎞⎠=

⎛⎜⎜⎜⎜⎝
Kx cos(ϕ)︸ ︷︷ ︸

a11

−Sx sin(ϕ)︸ ︷︷ ︸
a12

tx︸︷︷︸
a13

Sy sin(ϕ)︸ ︷︷ ︸
a21

Ky cos(ϕ)︸ ︷︷ ︸
a22

ty︸︷︷︸
a23

a31 a32 1

⎞⎟⎟⎟⎟⎠
⎛⎝xi,k+1

2D

yi,k+1
2D

1

⎞⎠ (2)

The MI mutual information is computed from the grey level
entropies Hk(I

ov
k ) and Hk+1(T

k,k+1
2D (Iovk )) of the overlapping

parts of images Iovk and T k,k+1
2D (Iovk+1) and the joint grey level

entropy Hk,k+1(I
ov
k , T k,k+1

2D (Iovk+1)). In (3), gk and gk+1 are
the grey levels of Iovk and T k,k+1

2D (Iovk+1), respectively. p(gk)
and p(gk+1) are the grey level probability density functions
of Iovk and T k,k+1

2D (Iovk+1) and p(gk, gk+1) is a joint proba-
bility density function. The grey levels range in [gmin, gmax]
(typically, gmin = 0 and gmax = 255).

MI(Iovk , T k,k+1
2D (Iovk+1)) = Hk(I

ov
k )+

Hk+1(T
k,k+1
2D (Iovk+1))−Hk,k+1(I

ov
k , T k,k+1

2D (Iovk+1))
(3)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hk (I
ov
k ) = −

gmax∑
gk=gmin

p (gk) ln(p(gk))

Hk+1

(
T k,k+1
2D (Iovk+1)

)
= −

gmax∑
gk+1=gmin

p(gk+1) ln (p(gk+1))

Hk,k+1

(
Iovk , T k,k+1

2D (Iovk+1)
)
=

−
gmax∑

gk=gmin

gmax∑
gk+1=gmin

p(gk, gk+1) ln(p(gk, gk+1))

Two images are registered when the MI-value is maximal, i.e.,
when the grey levels of the homologous (superimposed) pixels
of Iovk and T k,k+1

2D (Iovk+1) are statistically as similar as possible.
The ars parameters of T̃ k,k+1

2D (see (2)) are determined with a
stochastic steepest gradient method. In (4), the ars parameters
and the λj

rs convergence step are updated for each j iteration
of the optimization process.

aj+1
rs = ajrs + λj

rs

∂MI(Iovk , T k,k+1
2D, j (Iovk+1))

∂ajr,s
(4)

Fig. 2. Parzen’s window for a bladder image coded on 256 grey level values
(real and approximated probability density functions).

The mutual information cannot be computed exactly
in an analytical way, because it depends on the
discrete entropies Hk(I

ov
k ), Hk+1(T

k,k+1
2D (Iovk )), and

Hk,k+1(I
ov
k , T k,k+1

2D (Iovk+1)). As a consequence, the evaluation
of the ∂IM/∂ars partial derivatives is not an easy task. A first
possible solution is to compute the derivatives numerically
by a finite difference scheme. An alternative is to use an
analytical approximation of the 1D and 2D entropies involved
in the mutual information computation. We chose the second
strategy since it directly leads to the computation of the
∂IM/∂ars partial derivatives, and it is known to be more
robust [11]. The p(gk), p(gk+1) and p(gk, gk+1) probability
density functions thus need to be analytically approximated.
Fig. 2 illustrates that the grey level histograms of bladder
images consist of a sequence of peaks (or modi). As detailed
in the following, such multimodal functions can be modeled
as a sum of Gaussian functions computed using the Parzen’s
window method.

In the proposed implementation of Parzen’s window, all
Gaussian curve approximating a probability density function
have the same standard deviation. σk, σk+1 and σk,k+1 are the
standard deviations to be determined during the optimisation
for p(gk), p(gk+1) and p(gk, gk+1), respectively. In practice,
the p(g) probability density functions (computed with all grey
levels) are replaced by the p∗(g) empirical probability density
functions determined with two samples randomly chosen in
the overlapping parts of Iovk (sample A) and T k,k+1

2D (Iovk+1)
(sample B). A and B include NA and NB pixels. gaA and gbB
are the grey levels of the a-th and b-th pixel of A and B,
respectively. In the following, the im subscript symbol refers
either to the k target image (Iovk ) or to the k+ 1 transformed
source image (T k,k+1

2D (Iovk+1)). As mathematically formulated
in (5), a p∗(gbB,im) empirical probability corresponds to the
sum of values computed for grey level gbB,im with the Gaussian
functions centered on the gaA,im acting as mean values.

p∗(gbB,im) =
1

N im
A

Nim
A∑

a=1

(
1√

2πσim

e
−

(gb
B,im

−ga
A,im

)2

2σ2
im

)
(5)
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Fig. 3. Convergence step evolution. (a) λk
r,s = λ

k+1
r,s = λ

k+2
r,s =λk+3

r,s .
After the oscillation detection, the λ

k+4
r,s parameters equal 85% of the λ

k+3
r,s

parameters. (b) Mutual information computed for two bladder images. In this
parameter space, the two translation parameters of the perspective registration
matrix are represented. The top of the peak is localized in a1,3 = 14 pixels
and a2,3 = 5 pixels.

Equation (5) is used to determine the p∗(gbB,k) probabilities
with the gaA,k and gbB,k grey levels of the Ak and Bk samples
consisting of Nk

A and Nk
B pixels randomly chosen in the

Ik target image. Equation (5) is also employed to compute
the p∗(gbB,k+1) probabilities of the transformed source image.
However, the gaA,k+1 and gbB,k+1 grey levels are not randomly
chosen in T k,k+1

2D (Iovk+1), but are the homologous points of
the pixels selected in Iovk . Consequently, Nk+1

A = Nk
A and

Nk+1
B = Nk

B . The Ak, Bk, Ak+1 and Bk+1 samples are
also used to compute the joint empirical probability function.
p∗(gbB,k, g

b
B,k+1) is obtained with (5) in which the sum and

the 1D Gaussian function have simply to be replaced by a
double sum (one sum over the gaA,k and one sum over the
gaA,k+1) and a 2D Gaussian function, respectively.

In practice, the image entropies and the joint entropy can
be approximated by the H∗

k (I
ov
k ) and H∗

k+1(T
k,k+1
2D (Iovk+1))

empirical image entropies and the H∗
k,k+1(I

ov
k , T k,k+1

2D (Iovk+1))
joint empirical entropy. Equation (6) allows for the computa-
tion of the empirical entropies of the target and transformed
source images (im stands again for k or k + 1). The joint
empirical entropy can also be determined with (6) by replacing
the sum and the 1D Gaussian function by a double sum and
a 2D Gaussian function.

H∗
im(Iovim) =− 1

N im
B

Nim
B∑

b=1

ln

⎛⎜⎝ 1

N im
A

Nim
A∑

a=1

e
−

(gb
B,im

−ga
A,im

)2

2σ2
im√

2πσim

⎞⎟⎠ (6)

The maximization of the approximated probability density
functions leads to the minimization of the entropies [7].
The registration algorithm performs, at each j iteration, two
sequential steps:

1) minimization of the empirical entropy values, and
2) maximization of the mutual information value.

The empirical entropies are minimized by adjusting the stan-
dard deviations of the Gaussian functions using the derivatives

of the analytical functions of Hk(I
ov
k ), Hk+1(T

k,k+1
2D (Iovi+1))

and Hk,k+1(I
ov
k , T k,k+1

2D (Iovk+1)) with respect to σk, σk+1 and
σk,k+1 (see (7)).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σj+1
k = σj

k − λj
k

∂H∗

k(I
ov
k )

∂σ
j

k

σj+1
k+1 = σj

k+1 − λj
k+1

∂H∗

k+1(T
k,k+1,j
2D (Iov

k+1))
∂σ

j

k+1

σj+1
k,k+1 = σj

k,k+1 − λj
k,k+1

∂H∗

k,k+1(Iov
k ,T

k,k+1,j
2D (Iov

k+1))
∂σ

j

k,k+1

(7)

with ∂H∗

im(Iov
im)

∂σim
=

− 1
Nim

B

Nim
B∑

b=1

Nim
A∑

a=1

e
−

(gb
B,im

−ga
A,im

)2

2σ2
im

(
(gb

B,im−ga
A,im)2

σ2
im

−1

)
N im

A

√
2πσ2

im p∗im(gbB,im)

The mutual information is maximized with the derivatives
of the empirical entropies with respect to the ars parameters
given in (2). In (8), ∂g/∂ars corresponds to the grey level
variations with respect to the ars value modifications. Gx and
Gy are the components along �x and �y of the grey level gradient
of the point with coordinates (x, y) in T k,k+1,j

2D (Iovk+1).

aj+1
rs = ajrs + λj

rs

∂H∗

k+1(T
k,k+1,j
2D (Iov

k+1))
∂a

j
rs

−λj
rs

∂H∗

k,k+1(Iov
k ,T

k,k+1,j
2D (Iov

k+1))
∂a

j
rs

(8)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂H∗

k+1(T
k,k+1,j
2D (Iov

k+1))
∂a

j
r,s

=

− 1

N
k+1
B

N
k+1
B∑
b=1

⎡⎣ 1

N
k+1
A

√
2πσ3

k+1p
∗(gb

B,k+1)

N
k+1
A∑

a=1

(
−(gbB,k+1

gaA,k+1)e
−

(gb
B,k+1

−ga
A,k+1

)2

2σ2
k+1

(
∂gb

B,k+1

∂a
j
r,s

− ∂ga
A,k+1

∂a
j
r,s

)⎞⎠⎤⎦

∂g

∂a
j
rs

=

⎡⎢⎣
Gxx

a31x+a32y+1
Gxy

a31x+a32y+1
Gx

a31x+a32y+1
Gyx

a31x+a32y+1
Gyy

a31x+a32y+1
Gy

a31x+a32y+1
βx

(a31x+a32y+1)2
βy

(a31x+a32y+1)2
β

(a31x+a32y+1)2

⎤⎥⎦
β = Gx(a11x+ a12y + a13) +Gy(a21x+ a22y + a23)

In the parameter space (see Fig. 3(b)), the MI-surface consists
of a peak whose top is a global maximum (small maxima
are avoided by the stochastic steepest gradient). At the first
iteration (j = 1), the k-th image (target) and the k+1-th image
(source) are completely superimposed (T k,k+1

2D is an identity
matrix at j = 1) and the MI-value is systematically on peak
flank due to the small endoscope displacement between two
acquisitions k and k+1. The initial λ1

rs converge step values
have to be fixed so that the optimization algorithm remains
into the peak and converges towards the top. In practice,
the convergence is ensured when each a1rs taken separately
leads to displacement smaller than 2% of the source image
diagonal. As illustrated in Fig. 3(a), the λj

rs are kept constant
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Fig. 4. 2D map example of a human bladder. (a) Mosaic built with 500 images.
(b) Endoscope trajectory and positions of some images on this trajectory.

{ck}

�yck

�xck

�zck

Ock

Camera coordinate
system

P i,k
2D

Laser projector

Ik

Intersection P i,k
3D

Fig. 5. 3D reconstruction of the P
i,k

3D
points on the internal organ

surface. For the k-th viewpoint and the i-th point, two 3D lines
containing P

i,k
3D

are being estimated. They issue from the camera
optical centre and the diffractive lens, respectively.

while the algorithm is progressing towards the peak top. When
the algorithm oscillates around the top, the values of the λj

rs

are updated by diminishing their current value by 15%. The
peak top is supposed to be reached when the ajrs lead to
displacements smaller than 1 pixel.

Finally, for a video-sequence, the 2D-map is constructed by
placing all images in a common 2D coordinate system (i.e. that
of the first image of the sequence) using all T̃ k,k+1

2D . T̃ 1,k+1
2D

is the global transformation representing the geometrical rela-
tionship between the coordinate system k + 1 and that of the
first acquisition (k=1). T̃ 1,k+1

2D is calculated with (9).

T̃ 1,k+1
2D =T̃ k,k+1

2D × T̃ 1,k
2D =

k−1∏
j=0

T̃ k−j,k−j+1
2D (9)

Fig. 4 shows a result obtained for a human bladder se-
quence. The T̃ k,k+1

2D transformations were computed for 500
images and used in (9) to generate the 2D map of Fig. 4(a).
This figure shows that it is possible to reconstruct visually
coherent maps (without texture discontinuities) facilitating
the diagnosis. Results quantifying the 2D-map construction
accuracy and robustness are discussed in Section IV.

III. TOWARDS 3D CARTOGRAPHY

In 2D large fields of view as represented in Fig. 4(a),
whole regions of interest can be seen at one go. This type
of visualization is clearly advantageous from the diagnosis
point of view. However, this 2D representation suffers from
limitations. Indeed, even if an organ has been completely
scanned with the endoscope, it may happen that a region
of interest is divided into two and located on two different
map border parts. In brief, a single tissue of interest can be
divided into several parts, located in different disconnected
regions in the 2D map. To alleviate this connectivity problem,

and because clinicians mentally reconstruct organs when they
observe 2D images, building 3D maps (3D large field of view
surfaces with texture and color information) is of great interest.
It can be expected that the 3D maps will not suffer from the
above-mentioned connectivity issue when the whole organ is
scanned.

In the following, we describe a modified endoscope relying
on a combination of two light channels. For each viewpoint,
the instrument allow for the reconstruction of a set of 3D
points located on the internal organ surface (subsection III-A).
The knowledge of a large number of 3D points (measured
for all viewpoints) will allow us to sketch a 3D cartography
algorithm (subsections III-B, III-C and III-D).

A. 3D endoscope principle

Typical endoscopes consist of two channels: the input
channel illuminates the tissue with white light whereas the
output channel allows for the acquisition of the reflected light
with a camera. In [12], an additional channel was used to
obtain 3D information with endoscopes. A green collimated
laser source passes through a diffractive optics (holographic
binary phase lens) built to generate a given light pattern (a
dot matrix in [12]). This light pattern is projected through the
third channel onto the surface to be reconstructed. Classical
projector [12] and camera calibration [13] methods lead to
the evaluation of the instrument parameters allowing for the
computation of the 3D laser dot center positions. A detailed
description of the 3D dot reconstruction method is given
in [12]. Before going further, we summarize the principle of
this reconstruction algorithm, since it is the starting point of
our 3D cartography algorithm.

Let n be the number of green dots projected for each
endoscope position. Consider a given viewpoint k and the cor-

2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010) 
                                                        Tuxtla Gutiérrez, Chiapas, México.   September  8-10,  2010. 

IEEE Catalog Number: CFP10827-ART 
ISBN: 978-1-4244-7314-4 
978-1-4244-7314-4/10/$26.00 ©2010 IEEE 

288
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�xck

�zck

Ock

Camera coordinate
system

P i,k
2D

Ik

P i,k
3D

{c1}

�yc1

�xc1

�zc1
Oc1

Camera coordinate
system

I1

�x
Ik

�yIk

P i,1
3D

P i,1
2D
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surface

Endoscope displacement

�xI1

�yI1

Fig. 6. Available data subset for each k position of the endoscope: one
Ik distortion free grey level image, eight P

i,k

2D
points, and eight P

i,k

3D
reconstructed points. Ik is represented with the color of the acquired image
to show that the high hue contrast between the green dots and the reddish
organ tissue facilitates the segmentation of the P

i,k

2D
points.

responding image Ik. In order to reconstruct the 3D position
of the i-th green dot center (i = 1, . . . , n), its 2D position
must first be estimated in image Ik by an image segmentation
procedure (see Fig. 5). The camera parameters are then used
to determine the 3D line passing through the optical center of
the camera and the i-th dot. Similarly, the 3D line issuing from
the diffractive lens and passing through the dot center can be
computed. The total number of 3D lines is equal to 2n (n lines
per channel) since there are n projected dots. The 3D position
of the i-th dot (resulting from the dot projection onto the organ
surface) is finally found by researching its corresponding pair
of lines (association of two lines among 2n) and intersecting
them.

In this contribution, an experimental set-up based on the
principle of the endoscope described in [12] is used to project
n = 8 green dots onto the internal organ surface (see Fig. 6,
and [14]). Due to the weak number of dots and their small
size, each green dot projection is only spread over a few image
pixels. Thus, the main texture and color information remain
available in the acquired images. It is also noticeable that,
due to the weak endoscope displacement in bladders (some
mm/s) in comparison with the acquisition speed (25 images
per second), we can assume that the bladder (filled up with
water) surface does not change between two consecutive image
acquisitions.

As illustrated in Fig. 6, a data sequence consists of M im-
ages Ik (for k ∈ {1, . . . ,M}) and additional computed infor-
mation (eight P i,k

2D 2D dot projection centers extracted from Ik
and eight P i,k

3D reconstructed dot centers, with i ∈ {1, . . . , 8}).
For the k-th viewpoint, the coordinates of the P i,k

3D points
are known in the local coordinate system (Ock, �xck , �yck , �zck),
where the Ock origin corresponds to the camera optical center.

To solve the 3D surface reconstruction problem, it is neces-
sary to place all P i,k

3D points in a common coordinate system,

for instance that of the first data set (Oc1, �xc1 , �yc1 , �zc1)
1. The

3D point coordinate transformation is guided by the successive
registrations of consecutive Ik and Ik+1 image pairs. Similar
to the 2D mosaicing method, and prior to the registration, the
images are being converted in grey levels and their distortions
are corrected [14] (in the following, Ik stands for these
distortion free grey level images). However, the final 3D map
which will be superimposed on the reconstructed surface will
include the color information.

B. Geometrical considerations

The P i,k
2D and P i,k

3D points are mathematically related by the
homogeneous perspective matrix K fully defined by the f , Sx,
Sy , and (u0, v0) intrinsic camera parameters. In (10), f (line
in bold in Fig. 6) refers to the camera focal length, Sx and Sy

correspond to the size of the pixels along the x and y axes,
respectively, and (u0, v0) are the coordinates of the Ock optical
centre projection onto the Ik image plane.

z i,k
3D

[
P i,k
2D

1

]
=

⎡⎢⎣
f
Sx

0 u0 0

0 f
Sy

v0 0

0 0 1 0

⎤⎥⎦[
P i,k
3D

1

]
= K

[
P i,k
3D

1

]
(10)

with P i,k
2D =

(
xi,k
2D

yi,k2D

)
and P i,k

3D =

⎛⎝xi,k
3D

yi,k3D

zi,k3D

⎞⎠ .

The T k,k+1
3D geometrical transformation between (Ock, �xck ,

�yck , �zck ) and (Ock+1
, �xck+1

, �yck+1
, �zck+1

), corresponding to
two consecutive endoscope viewpoints, is a rigid transforma-
tion involving three rotations (Rx, Ry , and Rz) and three
translations (Tx, Ty, and Tz). As formulated in (11), T k,k+1

3D

can be used to compute the new coordinates of point P i,k+1
3D

(reconstructed by the endoscope for the k+1-th viewpoint)
into the coordinate system of the k-th viewpoint. The point
displaced from the k+1 coordinate system into that of the k-
th acquisition is denoted by P̂ i,k

3D . It is worth noticing that P̂ i,k
3D

computed with (11) differs from the P i,k
3D point provided by the

endoscope for viewpoint k since the laser dot locations on the
internal wall surfaces change between two endoscope positions
k and k+1 (no homologous 3D points are reconstructed with
the endoscopic data).[

P̂ i,k
3D

1

]
= T k,k+1

3D

[
P i,k+1
3D

1

]
(11)

Since in (11), P̂ i,k
3D and P i,k+1

3D refer to the same physical point
located on the surface (they are only expressed in two different
coordinate systems) their 2D projections (P̂ i,k

2D and P i,k+1
2D ,

respectively) refer to homologous points. The geometrical
transformation aligning P i,k+1

2D on P̂ i,k
2D is a 2D perspective

transformation T k,k+1
2D :

βi,k

[
P̂ i,k
2D

1

]
= T k,k+1

2D

[
P i,k+1
2D

1

]
(12)

1This placement in a common coordinate system is referred by discrete
surface construction.
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(a) (b) (c)

Fig. 7. 2D cartography test protocol. (a) Image acquisition path applied to the bladder photograph phantom for quantifying mosaicing precision (169 images :
I001, I002 . . . I169). (b) Regular grid of black dots overprinted on the pig bladder photograph phantom. (c) Panoramic image (1947 × 1187 pixels) constructed
from the 169 acquired images.

T k,k+1
2D is mathematically defined by the 3× 3 homogeneous

matrix of (2), βi,k being a value due to the perspective change.

C. Relationship between the T k,k+1
2D and T k,k+1

3D matrices

Applying (10) to the point P̂ i,k
3D obtained with (11), we have:

ẑ i,k
3D

[
P̂ i,k
2D

1

]
= K T k,k+1

3D

[
P̂ i,k
3D

1

]
. (13)

From (12) and (13) we finally deduce (14). For at least four
P i,k+1
3D points (in practice i ∈ (i, . . . , N) and N = 8), the

unique solution T k,k+1
2D of (14) is an over-determined system

of 2N equations which corresponds to a given T k,k+1
3D .

1

ẑi,k3D

KT k,k+1
3D

[
P i,k+1
3D

1

]
=

1

βi,k
T k,k+1
2D

[
P i,k+1
2D

1

]
. (14)

It is worth noticing that T k,k+1
2D aligns all homologous

pixels of Ik+1 on Ik (not only the laser dot projections);
two consecutive images Ik+1 and Ik share large overlapping
regions corresponding to homologous 2D data. This remark
is the starting point of our 3D large field of view map
construction algorithm (determination of the T k,k+1

3D trans-
formations), which enables all P i,k

3D points to be placed in a
common coordinate system. We now describe this positioning
algorithm.

D. Positioning of the 3D points in a common coordinate
system (3D discrete surface construction)

The 3D rigid transformation between two cystoscope positions
k and k + 1 is computed using an optimization method.

At the j-th iteration, T k,k+1
3D is actualized by minimizing a

squared error corresponding to the superposition of the source
image T k,k+1

2D (Ik+1) and the k-th target image Ik:

E(T k,k+1
3D ) =

∥∥∥Iovk − T k,k+1
2D (Iovk+1)

∥∥∥2 . (15)

As in Section II, the superscript ov refers to the overlapping
parts of both images. The error E is defined as a sum of
quadratic grey level differences between both 2D images Ik

and T k,k+1
2D (Ik+1). It is a function of T k,k+1

3D : when T k,k+1
3D

is set, the corresponding T k,k+1
2D perspective transform can be

deduced in the following way:

1) T k,k+1
3D is used to position the P i,k+1

3D points in the
coordinate system of acquisition k, yielding P̂ i,k

3D .
2) The homogeneous perspective matrix K is then used to

project the P̂ i,k
3D points in the k-th image plane, yielding

P̂ i,k
2D .

3) Finally, the T k,k+1
2D parameters are being estimated by

solving the over-determined linear system (12).

Performing steps 1) to 3) is equivalent to iteratively solve
the over-determined system (14). E is optimized with respect
to T k,k+1

3D using the simplex algorithm and the preceding
estimated transform T k−1,k

3D as initial solution.
Once all T k,k+1

3D have been estimated, it is straightforward
to deduce the global transform T 1,k

3D from the k-th to the first
camera coordinate systems:

T 1,k
3D =

k−1∏
j=1

T j,j+1
3D . (16)

For each viewpoint k and for each 3D point P i,k
3D , i ∈

{1, . . . , n}, T 1,k
3D is used to place P i,k

3D in the first camera co-
ordinate system (considered as the global system). In practice,
because the number of viewpoints is huge and there are n = 8
3D points per viewpont, positioning all 3D points results in a
large number of points in the global coordinate system. The
points are finely distributed on the organ surface.

IV. RESULTS AND DISCUSSION

A. 2D cartography

In order to quantify the mosaicing precision of the 2D
cartography, a fine control of the cystoscope movements and
the precise knowledge of its position coordinates relative to the
bladder wall are needed (such information is not available in
clinical in vivo conditions). Therefore, a dedicated acquisition
protocol on a phantom with precise control of the cystoscope
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Fig. 8. Panoramic image from a sequence of cystoscopic images obtained
in clinics.

positions was undertaken. A 3D motorized micrometric po-
sitioning system allowed for applying in-plane translations
and scale factor variations along −→x , −→y and −→z axis (0.1 μm
precision), as well as in- and out of- plane rotations (0.01◦

precision). The phantom is a printed photograph (10×12 cm)
of the inner surface of a widely opened pig bladder, after
excision. The pig bladder was chosen for its similarities to
the human one in terms of texture and anatomy. The image
acquisition sequence was performed following the predefined
path sketched in figure 7(a) and implying 2 rotations and 3
translations of the cystoscope. The 1st acquisition direction
included a combined translation of 42 mm in −→x and 42 mm
along −→z (scale-factor variation). The 2nd direction involved
a movement of 42 mm translation along −→y coupled to an
in-plane rotation from 0 to 20◦. The 3d direction movement
is composed of a -42 mm translation along −→x with an off-
plane rotation from 0 to 16◦ (perspective modification). The
last acquisition path involved translations along −→y and −→z ,
and in- and off-plane rotations simultaneously, returning the
device to its starting position. 42 images were acquired along
each direction with the first (I001) and last (I169) images taken
at the same cystoscope position.

A grid of regularly spaced black dots was printed over the
photograph of the bladder (see figure 7(b)) and exploited for
calculating an error em representing a measure of both the
registration accuracy and the panoramic image construction
accuracy (mosaicing accuracy). The panoramic image obtained
after applying our mosaicing algorithm to the acquired image
sequence is shown in figure 7(c). Automatic computation of
the registration/mosaicing error was carried out after rigid
registration and segmentation of every visible dots (31 dots)
in the panoramic image. The error measure em was calcu-
lated as the mean Euclidean distance between the coordinates
(xj

m, yjm) of Np dot centroids segmented in the panoramic
image and the coordinates (xj

r, y
j
r) of the homologous dot

(a) (b)

Fig. 9. Two phantoms with different realistic bladder textures. (a) Simulated
sphere. (b) Real half cylinder.

centroids segmented in the photograph, so that:

em =
1

Np

Np∑
j=1

√
(xj

m − xj
r)2 + (yjm − yjr)2. (17)

The mean em registration error between two consecutive
images Ik+1 and Ik amounts to 1.047 pixels. For such errors,
two superimposed images present no texture discontinuities
so that the registered images are always visually coherent. As
illustrated by the patient data results of Figs. 4(a) and 8, the
2D maps are without texture discontinuities as long as the
cystoscope trajectory do not include closed loops. For closed
loops, due to registration error accumulation over the image
sequence, using only the mutual information based registration
algorithm leads to texture discontinuities between the first and
last images of the loop. For the phantom sequence of Fig. 7,
the em mean mosaicing error between images I001 and I169
amounts to 43.14 pixels. To diminish strongly this error, we
proposed an algorithm [10] that superimposes the first and last
loop images while keep the visual coherence of the images
located into the loop. The mutual information based method,
associated to this accumulation error correction algorithm, was
used to build the map of Fig. 7(c). In this panoramic image the
em mean value is now 3.35 pixels. As seen in Fig. 7(c), visual
coherence is ensured for the loop. Considering that the size
of the panoramic image is 1947 × 1187 pixels, the maximum
error represents less than one percent of the image height.

Our mosaicing algorithm was applied to clinical cystoscopic
sequences for demonstrating its applicability to real condi-
tions (in vivo) and for performing a qualitative validation on
clinical data [15]. These panoramic images were analyzed
by urologists who validated their visual coherence. Although
the mosaicing errors were not measured here, the clinicians
estimated they were small enough to allow them to not distort
the quality of image interpretation and analysis.

B. 3D surface construction

Since the T k,k+1
3D and T k,k+1

2D transformations are unknown
for real bladder data, two phantoms were used to assess the
3D textured surface construction algorithm. The first phantom,
consisting of a simulated surface superimposed by real human
bladder texture, was used to obtain quite realistic data and to
test the inherent accuracy and the robustness of the 3D surface
reconstruction. The second phantom, consisting of a real
surface with bladder texture, allows for the acquisition of data
with the active vision system described in section III-A. Both
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I II III

Fig. 10. I, II and III : three images extracted from real endoscopic exams
during the robustness evaluation tests. The chosen images present strong
differences both in texture and illumination.

phantoms exhibit known parametric 3D shapes allowing for a
quantitative assessment of the surface construction algorithm.

B.1 Algorithm robustness and inherent accuracy
The simulated surface is a 5 cm radius sphere (see Fig. 9(a)).

For the robustness assessment, three images (see Fig.
10) exhibiting various textures and illumination conditions
were extracted from human endoscopic sequences and mapped
onto the inner surface of the simulated half sphere. Image
acquisitions were simulated using realistic camera parameters
(K matrix and distortion coefficients values) and by applying
known 3D displacements to the virtual 3D endoscope. The
simulated images and the P i,k

3D laser points were used by the
surface construction algorithm to find the 3D transformations.
The transformations calculated with our surface construction
algorithm are ideally equal to the known transformations used
to simulate the data (2D image sequence and 3D laser dots).
These experiments allow for the assessment of the largest
endoscope viewpoint change leading to successful 3D point
displacements from the k-th + 1 into the k-th coordinate
system. Table I provides the parameter value intervals. The
algorithm robustness is acceptable since the interval limits
of table I correspond to transformations being by far larger
than those of real endoscope displacements. Indeed, the 25
images per second acquisition rate and the small endoscope
displacement speed (few mm/s) lead to translations and
rotations typically smaller than 0.3 mm and 1◦, respectively.

The inherent reconstruction accuracy was tested by as-
sessing the ability of the algorithm to precisely reconstruct
surface shapes. A large field of view pig bladder photography
was projected onto the inner surface of the half sphere (for
urologists, pig bladder textures are visually very close to
those of human bladders). As for the previous robustness
evaluation experiment, image acquisitions were performed
using a virtual endoscope. 65 instrument displacements were

Transformation value intervals
3D transformation parameters 2D 3D
Translation (Tx and Ty) ±76 pixels ±5 mm
Scale factor (Tz) ±30% ±12.5 mm
In plane rotation (Rz) ±20◦ ±20◦

Out of plane rotations (Rx and Ry) ±7◦ ±7◦

TABLE I
PARAMETER VALUE INTERVALS OBTAINED FOR THE INNER HALF SPHERE

SURFACE MAPPED WITH THE IMAGES OF FIGURE 10

(a)

−80 0 800

0

40

80 mm

(c)
(b)

Fig. 11. Results obtained with real (acquired) data. (a) Reconstructed 3D
points and interpolated cylinder. (b) 2D panoramic image to be stuck in the
cylinder. (c) 3D map constructed for the sequence of 40 acquisitions: the
textured image (b) is stuck on the cylinder using the known P

i,k
2D

/P i,k
3D

point
correspondence.

simulated by setting T̃ k,k+1
3D and T̃ k,k+1

2D transformations, the
˜ symbol denoting the reference (simulated) transformations.
Each T̃ k,k+1

3D transformation is a combination of the following
elementary translations and rotations: 0.66 mm for Tx, Ty,
and Tz translations and 2◦ for Rx, Ry , and Rz rotations.
These parameters actually lead to displacements that are larger
than those typically observed with endoscopes (simulation of
extreme acquisition conditions).

After applying the 3D surface construction method to the
simulated sequence, we computed the Euclidean distances
between all 3D points of the discrete surface and the sphere
centre. The computed mean radius and standard deviation
amount to 5.02 cm ± 0.26 cm (ideally 5 cm ± 0 cm).
Such errors are by far sufficient to apply 3D cartography to
hollow organ lesion diagnosis (it makes medically no sense to
reconstruct bladder surfaces with a high precision).

B.2 Accuracy assessment using real (acquired) data
Another pig bladder photography was used to map the inner

surface of the half cylinder (see Fig. 9(b)). Forty acquisitions
(each acquisition yields an image and eight P i,k

3D points) were
performed using an experimental set-up similar to that of
[12] (a white light source endoscope, a CCD camera, and a
miniaturized diffractive optics generating eight laser beams).
This phantom is quite realistic (real bladder textures) and the
illumination conditions are very close to those of real bladder
scenes viewed by 3D endoscopes.

As sketched in Fig. 11(a), we computed the cylinder passing
at best through the constructed point cloud, all P i,k

3D points
being placed in the coordinate system of the first acquisition
(k = 1). The discrete surface construction error is defined as
the difference between the exact cylinder radius (8 cm) and
the average distance between the main cylinder axis and the
3D points all placed in the first coordinate system.

This error amounts to 0.8 mm. Such a 3D representation of
hollow organs with sub-millimetre accuracy is by far sufficient
for clinicians. The panoramic image obtained as output is
shown in Fig. 11(b). It does not include texture discontinuities
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and the visual coherence is quite good. Also, the laser spots
which are included in the data images have been removed
from the panoramic image since the transformed images are
overlapped and pixels containing laser points can be replaced
by homologous (grey level) pixels of other images. The 3D
map is finally generated by sticking the panoramic image on
the reconstructed 3D surface (see Fig. 11(c)).

V. CONCLUSION AND FURTHER WORK

Even if scanners provide accurate 3D anatomical and/or
functional data, they cannot by used for lesions diagnosis in
hollow organs or during mini-invasive surgery. For such tasks,
endoscopy is the appropriate image modality. The drawback
of cystoscopes or laparascopes lies in the small field of view
of the acquired 2D images. This paper is among the few
contributions of the literature dealing with wide field of view
construction of human organs using endoscopic data.

The proposed 2D bladder cartography algorithm is robust
and accurate, and leads to visually coherent maps facilitating
lesion diagnosis in hollow organs (as confirmed by the urolo-
gists the authors are working with). The aim of further work
is to diminish the computation time of the proposed algorithm
(one minute is required to register two images). One solution
to reach this goal is to predict the endoscope trajectory in
order to select the images to be registered. Indeed, currently all
images of the sequence are registered even if two consecutive
images have large overlapping parts (typically 90% of the
image surface). The endoscope displacement prediction can
be used to select only the images presenting a minimal image
overlapping that ensures an accurate registration.

Preliminary results were also given for a 3D cartography
algorithm of inner bladder walls. The cartography algorithm
consists of a first step placing in a common coordinate system
all 3D points acquired from different viewpoints by a 3D
active vision based instrument. Tests performed with phantoms
exhibiting simple and analytically known shapes demonstrate
the potential of the surface construction algorithm. The aim
of a further work is compute, using the discrete surfaces,
continuous bladder surfaces with textures. Bi-cubic splines can
for instance be used in a piecewise fitting scheme to interpolate
accurately the 3D discrete points. The 2D endoscopic images
can then be projected on the interpolated points to obtain a
continuous surface with natural color and texture information.
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