
HAL Id: hal-00517490
https://hal.science/hal-00517490

Submitted on 14 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of NURBS functions for displacement
derivatives measurment by digital image correlation

Julien Réthoré, Thomas Elguedj, Pierre Simon, Michel Coret

To cite this version:
Julien Réthoré, Thomas Elguedj, Pierre Simon, Michel Coret. On the use of NURBS functions for
displacement derivatives measurment by digital image correlation. Experimental Mechanics, 2010, 50
(7), pp.1099-1116. �10.1007/s11340-009-9304-z�. �hal-00517490�

https://hal.science/hal-00517490
https://hal.archives-ouvertes.fr


Experimental Mechanics manuscript No.

(will be inserted by the editor)

On the use of NURBS functions for displacement

derivatives measurement by digital image correlation
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Abstract In this paper, we propose to investigate the potential improvement of using

Non-Uniform Rational B-Spline (NURBS) functions for displacement measurements

by digital image correlation (DIC). The aim is at improving the performance of DIC

to capture with low uncertainty and low noise levels not only the displacement field

but also its derivatives. Indeed, when the displacement field is used to feed constitutive

law identification procedures, displacement derivatives are required and thus may be

measured with robustness. Two examples illustrate the potential of NURBS for DIC:

a compressive test on a wood sample and a bending test on a steel beam. For the

latter, beam kinematics are adopted and NURBS are used in order to capture the

variation of the curvature (second derivative of the displacement) along the beam axis.

For these two examples, an error study based on a decomposition of the error into
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the correlation error and the interpolation error, is carried out and shows the great

potential of NURBS functions for DIC.

Keywords Digital Image Correlation · Beam · B-splines

1 Introduction

Digital Image Correlation (DIC) is now one of the most popular full-field measurement

techniques not only in the accademic world but also in industry. Since the pioneering

paper by Sutton et al (1983), DIC has been successfully used in a wide range of appli-

cations. If we focus on constitutive model identification, the natural quantity that is

obtained by (DIC), i.e. displacement, has to be post-processed to extract strains. This

step is anything but obvious and has a strong influence on the identification procedure.

The usual approach to DIC is based on a local independent pattern matching. Thus the

strain field is reconstructed from the measured displacement at a set of measurement

points (the pattern centers). A common technique consists in fitting the displacement

field on a finite element (FE) discretization based on a independent mesh so that strains

can be computed using FE shape functions. Note that further filtering is commonly

used at this step in order to reduced noise levels. Even though an established practice,

this may deteriorate the information contained in the measurement.

Recently, Besnard et al (2006) proposed a global approach to solve the optical

flow equation. The main advantage of this formulation is that arbitrary basis func-

tions can be used to describe the searched displacement. Initially, FE were proposed

in Besnard et al but Williams’ series (Roux and Hild 2006) or eXtended FE (Réthoré et al

2007a) have also been used in this framework. When FE are chosen, the approach ap-

pears as extremely robust as it ensures the continuity of the displacement over the
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entire domain of interest and thus decreases the under-determination of the optical

flow equation. Further, as the same functions are used for measurement and identi-

fication, no fitting procedure is needed and the strains are directly derived from the

measured displacement.

The tuning parameter of FE DIC is the element size: not too small to limit the

impact of noise but not too big to capture the variation of the displacement. There is

thus a compromise between correlation error that arises from the ill-posed nature of the

problem, and interpolation error when the actual displacement cannot be interpolated

with the chosen basis functions. One of the main advantages of full field measurement

is that non conventional tests with non-homogeneous strain states can be analysed.

Further, for a robust identification of damage laws or elastic-plastic constitutive laws,

non-homogeneous, up to localization, strain states are required so that the wider range

of strain states is explored. One thus needs to capture localized phenomena and a small

element size is desired. A small element size means high noise levels and thus a less

robust identification. To solve this conflict, one would like to reduce interpolation error

without increasing the correlation error i.e. without increasing the ill-posedness of the

problem. This point is even more critical in the particular case of beams. Indeed, beam

consitutive laws involve the second derivative of the displacement and thus standard

2D FE cannot be used directly.

Non-Uniform Rational B-Spline functions (NURBS) are standards in Computer

Aided Design, computer graphics and animation. They have the capability to be “p”

enriched, i.e. increasing the polynomial order, while high continuity is maintained.

These functions are thus extremely interesting for DIC. They grew out of the pioneer-

ing work of Pierre Bézier’s development of Bézier curves and surfaces in the late 1960s.

B-Spline and later NURBS and T-Splines were developed since then (see, e.g. Farin
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(1995); Piegl and Tiller (1997); Cohen et al (2001); Rogers (2001)). Despite a strong

coupling between design and analysis in the global design of industrial products, such

functions were not used in the analysis until recently. The work of Hughes et al (2005)

on Isogeometric Analysis introduced NURBS functions in a “finite element” framework

to represent both geometry and solution fields. Despite a real interest in the geometric

representation build into isogeometric analysis, the smoothness of NURBS and B-Spline

functions is the key ingredient that drove the use of the approach in various domains of

analysis such as turbulence and fluid-structure interactions (Bazilevs et al 2007, 2008;

Akkerman et al 2008); Cahn-Hilliard phase field modeling (Gomez et al 2008), incom-

pressible problems (Auricchio et al 2007; Elguedj et al 2008) and structural dynamics

(Hughes et al 2008).

In the present paper, we propose to explore the capability of NURBS functions to

solve the DIC “compromise” with two examples: a compression test on a wood sample

and a three-point bending test on a steel beam. After an introduction to the DIC

formulation and the basis of NURBS, a methodology for error assessment is proposed

and then applied to each of the two examples.

2 Digital Image Correlation algorithm

2.1 Optical flow principle

If successive images of the same sample are captured during its motion, a displacement

u produces an advection of the local texture of the images. When analyzing a pair of

images f and g, the optical flow equation reads

f(x) = g(x− u(x)). (1)
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The principle of DIC is to determine u as accurately as possible. The problem is ill-

posed by nature and the first step is to try and solve it in “average”, i.e. by minimizing

a global error

η
2 =

ZZ

Ω

Φ
2(x)dx, (2)

where Ω is the domain of interest and Φ(x) defines the local error:

Φ(x) = [f(x) − g(x− u(x))]. (3)

The usual approach consists in maximizing a correlation coefficient (Sutton et al 1983,

1986, 2000) by searching for a piecewise constant, bilinear or other canonical form of

displacement field. The image is thus subdivided in zones of interest that can overlap

and the maximization is performed independently over each of these zones. Note that

B-spline functions have already been used by Cheng et al (2002) in this context.

It has been shown in Besnard et al (2006) that prescribing displacement continuity

over the entire domain of interest plays a regularizing role. Because of the ill-posedness

of the problem, the “amount” of regularization is directly related to noise sensitivity

and thus measurement uncertainty.

2.2 Resolution

We use in the following the global approach proposed in Besnard et al (2006). After a

description basis

u(x) =
X

n∈N

anψψψn(x) = [Ψ(x)]{U}, (4)

is adopted for the displacement field, an iterative Newton procedure is initiated in

order to minimize η2 (Eq. (2)). A sequence of linear system is solved until convergence
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of the solution increment dU is obtained:

[M](i) {dU} = {b}(i)
, (5)

with

M
(i)
nm =

ZZ

Ω

(ψψψn · ∇g(x− [Ψ]{U}(i)))(ψψψm · ∇g(x− [Ψ]{U}(i)))dx, (6)

and

b
(i)
n =

ZZ

Ω

(ψψψn · ∇g(x− [Ψ]{U}(i)))(f(x) − g(x− [Ψ]{U}(i)))dx, (7)

∇ denoting spatial derivation and i the current iteration. For a detailed description of

the algorithm and its implementation the interested reader may refer to Réthoré et al

(2007b).

3 Non-Uniform Rational B-Splines and Isogeometric Analysis

Non-Uniform Rational B-splines are a standard tool for describing and modeling curves

and surfaces in computer aided design and computer graphics (see Piegl and Tiller

(1997); Rogers (2001) for an extensive description of these functions and their prop-

erties). In this work, we use NURBS as a DIC/analysis tool, which is referred to as

isogeometric analysis by Hughes et al (2005). The aim of this section is to present a

brief overview of features and properties of NURBS-based isogeometric analysis for

DIC problems.

3.1 B-spline and NURBS functions

B-splines are piecewise polynomial functions with a prescribed degree of continuity.

Univariate B-spline basis functions are constructed from a knot vector, a set of coor-

dinates in parametric space, Ξ =
˘

ξ1, ξ2, . . . , ξn+p+1

¯

, where ξi ∈ R is the ith knot,
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i is the knot index, i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n is the

number of basis functions. More than one knot can be placed at the same location in

the parametric space.

B-spline basis functions for a given order p, are defined recursively in the parametric

space by way of the knot vector Ξ. Beginning with piecewise constants (p = 0) we have

Ni,0(ξ) =

8

>

>

>

>

<

>

>

>

>

:

1 if ξi ≤ ξ < ξi+1,

0 otherwise.

(8)

For p = 1, 2, 3, . . ., the basis is defined by the Cox-de Boor recursion formula:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (9)

Note that the maximum continuity is Cp−1 when the first and last knots have unit

multiplicity. The opposite configuration is when all the internal knot have pmultiplicity.

In this case p-finite element functions (C0) are constructed1. Figure 1 shows C0 FE

functions and Cp−1 NURBS functions for p = 2 on a two-element mesh. A key point is

that for a given polynomial order p, a description using NURBS functions have higher

continuity and it also has fewer degrees of freedom: 4 instead of 5 in this case, nel + p

instead of nel × p + 1 in the general case (nel being the number of elements). Only

these two cases will be considered in the following.

4 A priori performance analysis

The aim of this analysis is to evaluate a priori the performance of the correlation

algorithm for a given basis function. As mentionned in the introduction, the choice of

1 Note that in standard FE analysis, Lagrange polynomials are used, which are different

from the C0 functions used here but produce similar results.
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the element size is a matter of compromise between correlation error and interpolation

error. This is thus important to estimate the contribution of these two sources of error

on the total error that will be obtained in a real case. We propose to proceed in three

steps:

1. to evaluate the correlation error, we perform a DIC analysis over the domain of

interest of the initial image with a deformed image which is artificially translated

by ut pixel in each direction. As the prescribed displacement is constant no inter-

polation error arises at this step.

2. for a given displacement field us that is not in the interpolation space of the basis

function, we evaluate the interpolation error by comparing us with its L2 projection

onto the basis function. As no DIC problem is solved, no correlation error arises at

this step.

3. we perform a DIC analysis with an image that is obtained by artificially deforming

the initial image with the displacement field of step 2.

For step 1, the value of ut = 0.5 pixel is chosen because it produces the maximum

correlation error. The displacement prescribed at steps 2 and 3 is chosen of the following

form:

us(s) = u0 sin

"

ω

2π

„

1 −

˛

˛

˛

˛

2
s

max(s)
− 1

˛

˛

˛

˛

«2
#

, (10)

where ω = nωπ
2, u0 = 1 pixel and s the co-ordinate of the current pixel in a certain

frame. Whereas the amplitude of the displacement is constant, the amplitude of its

derivatives is varying. Further the sine function is not in the interpolation space of any

polynomial basis.

For step 2, the L2 projection is performed in the following way:

Arg

»

min

ZZ

Ω

(u− us)
2 dx

–

. (11)
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For each step, the error is obtained by taking the standard deviation of the gap between

the computed displacement (by DIC or L2 projection) and the prescribed displacement

(ut or us), i.e. the RMS (root mean square) error.

Comparing the results of step 3 with those of steps 1 and 2, we can thus evaluate

the competition between correlation error and interpolation error when an actual DIC

analysis is performed. The analysis is then carried out varying the element size h, the

polynomial degree p and the level of continuity (C0 or Cp−1) to estimate the influence

of these parameters on the performance of DIC.

5 2D DIC analysis of a compression test on a wood sample

5.1 Test description

The goal of this test is to investigate stiffness variations in the radial direction for a

specimen of spruce (softwood). In the transverse plane, wood is constituted by annual

rings. In the specimen presented here, the width of the rings is around 1 mm. Each

growth can be divided between early wood, brighter on the photograph (Figure 2a),

and late wood, darker.

The growth direction goes from the top left of the photograph to the bottom

right. Early wood grows rapidly during spring and is very light (0.2 to 0.3 g/cm3). Its

density varies continuously from the beginning of early wood to the end of late wood,

where density can reach 1.2 g/cm3. This density variation leads to important stiffness

variation across the annual ring: for example shear modulus goes from 15 to 300 MPa.

As a consequence, in such a compression test, strains decrease continuously across the

growth ring and then increase deeply between one year late wood and the following

year early wood. This rapid transition is uneasy to catch with classical DIC techniques.
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The initial image and the domain of interest is shown by Figure 2a. The domain of

interest is a square of 640-pixel side. Figure 2b shows the deformed image. The right

side of the specimen has its horizontal displacement fixed and the compressive load is

applied on the left side. The vertical displacement along the left and right faces is not

fixed.

5.2 Uncertainty analysis

For the uncertainty analysis, the frequency parameter of us is nω = 5. The co-ordinate

s is set to the sum of the x and y co-ordinates so that the gradient of us is along

the first diagonal of the domain of interest. For the analysis, the initial image is de-

formed along the x and the y direction with the same prescribed displacement us (all

the component of the strain tensor εxx, εyy and εxy thus have the same value at a

given pixel). Figure 3a shows this displacement field. One would have noticed that the

wood structure gives prefered orientation to the image gradient. Yet, from Eq. (1),

the displacement are measurable in the direction of the image gradient only. For the

uncertainty analysis, the artificial displacement field us is more or less parallel to the

wood line structure, i.e. orthogonal to the image gradient. The setup is thus the least

favorable. The element size h is successively set to 16, 32, 64 and 128 pixels. Cp−1

NURBS functions and C0 FE functions of degree 1 to 3 are tested.

As an illustration, Figure 3 presents the evolution of the displacement ux and the

strain εxx along the diagonal of the domain of interest. For 32-pixel elements with

Cp−1 NURBS functions with p = 3, ux and εxx obtained by DIC and by L2 projection

are plotted and compared with the prescribed displacement and strain. With this set
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of parameters, no visible difference is observed for the displacement whereas small

deviation of the correlated strain is obtained at the maximum amplitude points.

On Figure 4 the correlation error (step 1) and the interpolation error (step 2) for

displacement and strains are plotted as a function of the mesh size for C0 FE functions

and Cp−1 NURBS functions of different degrees. One observes that for displacement

or strain the correlation error decreases as a power law of h whereas the interpolation

error increases as a power law of h. For all the cases (whatever the value of p and the

continuity) the exponant of the correlation error is about −1.5 for the displacement

(Figure 4a) and about −2.5 for strains (Figure 4c). This difference could have been

anticipated from a dimensional analysis. For Cp−1 NURBS functions the correlation

error is almost independent on the degree p whereas for C0 FE functions it is increased

by a factor of 3 between p = 1 and p = 2 and by a factor of 2 between p = 2 and

p = 3 for the displacement. For strains the same observations holds but with a factor

of 6 between p = 1 and p = 2 and a factor of 3 between p = 2 and p = 3. Concerning

the interpolation error, whatever the continuity, power law exponants of 2, 3, and 4

for p from 1 to 3 are obtained for the displacement and 1, 2, and 3 for strains. The

only significative difference between Cp−1 NURBS functions and C0 FE functions is

revealed for p = 3 with lower error level on displacement and strains for the latter.

At this point, one of the main advantages of using Cp−1 NURBS functions is clearly

pointed out: increasing the polynomial order p allows for higher convergence rate of the

interpolation error but the correlation error remains constant. Indeed, for Cp−1 NURBS

functions increasing p by 1 costs only 1 degree of freedom per dimension whereas it

costs nel degrees of freedom per dimension for C0 FE functions. Further, increasing

the order of continuity not only decreases the number of degrees of freedom but also

increases the size of the support of each NURBS function. Hence, for Cp−1 NURBS
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functions, increasing p only raises by a very small “amount” the under-determination

of the system and the correlation error is unchanged.

Figure 5 allows to compare the total error (step 3) for bilinear FE (p = 1), C0 FE

with p = 3 and Cp−1 NURBS with p = 3. For p = 1, (Figure 5a and Figure 5d), the

total error is controled by the interpolation error and lowest error level is obtained for

16-pixel elements: 1.1 10−2 pixel for displacement and 0.8 10−3 for strains. On the

contrary, for C0 FE functions with p = 3 (Figure 5b and Figure 5e), the correlation

error overcomes the interpolation error for displacement and strains. The lowest error

level is obtained for 64-pixel elements: 1.1 10−2 pixel for displacement and 0.4 10−3 for

strains. For Cp−1 NURBS function with p = 3, the competition between correlation

error and interpolation error is well balanced and an optimal choice of the element

size appears to be 32 pixels. For this element size the global error is 1.0 10−2 pixel for

displacement and 0.4 10−3 for strains. One may also consider the intersection point

between the line of the correlation error and the one of the interpolation error. This

point defines the minimum total error that is potentially reachable with the basis

function. For bilinear FE, we have 4.0 10−3 pixel and 6.0 10−4 for displacement and

strains, for C0 FE with p = 3, 2 10−3 pixel and 1.5 10−4 and for Cp−1 NURBS with

p = 3, 0.9 10−3 pixel and 0.5 10−4. This shows that the improvement brought by the

use of NURBS is even higher.

5.3 Results

Now that the performance of the correlation algorithm has been evaluated, the analysis

is performed between the initial image (Figure 2a) and the final one (Figure 2b). A

first analysis is performed using 32-pixel FE and a second one using 64-pixel element
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based Cp−1 NURBS functions with p = 3. The deformed meshes and the correlation

residual are presented in Figure 6 while Figure 7 shows three components of the strain

tensor (εxx, εyy and εnt the shear strain in the co-ordinate system aligned with the

wood structure).

The displacement magnitude is up to 50 pixels and localized deformation patterns

are obtained due to the density variation of wood. Using 32-pixel FE or 64-pixel Cp−1

NURBS functions with p = 3, the deformed look similar and no difference is visible on

the residual map: the mean residual is 1.36% of the image dynamic for FE and 1.43% for

NURBS. On the contrary, significant differences between the two analysis are obtained

in Figure 7. Figures 7a,b,d,e show the strains εxx and εyy in the image co-ordinate

system that is aligned with the mesh direction. FE leads to piecewise constant strains

with discontinuities across element edges. Further, the strain patterns are aligned with

the mesh. Using Cp−1 NURBS functions with p = 3 and a coarser mesh, the variation of

strains between early wood and late wood is better captured. This is most significant in

Figures 7c,f where the map of εnt (the shear strain in a co-ordinate system aligned with

the wood structure) is shown. It is observed that the strain is concentrated within the

early wood (up to 5% strain) whereas the late wood remains almost undeformed. Using

FE, this transition is also captured but its geometrical support is “mesh dependent” as

the iso-strain contour are aligned with the mesh. In addition to a better compromise

between correlation error and interpolation error, another advantage of using NURBS

functions for DIC is thus emphasized: the strain pattern are described with more

accuracy and without “mesh dependent” geometrical structures.
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6 Beam DIC analysis of a three-point bending test

6.1 Test description

The use of NURBS for DIC is now tested on a three-point bending test, Figure 8. The

set-up is fixed into a servo-hydraulic tension-compression machine of 10 kN capacities.

The specimen is a steel beam of a 10x10 mm section rested on 2 cylinders with a 120

mm span. During the loading, a serie of 213 images are taken with a digital camera

(2048x2048 pixels). With this configuration, 1 pixel is equal to 0.066 mm. Figure 8

shows 4 stages of the loading : a) is the undeformed state (step 0), b) is a deformed

image in the elastic regime (step 60), c) is an image at the maximum load (step 200)

and d) is the final image after unloading (step 213). The domain of interest covers

140 × 1800 pixels centered below the central point.

6.2 Beam kinematics

For this test on a steel beam, the identification procedure should focus on the rela-

tionship between the flexural moment and the curvature. The kinematic quantity to

extract from the measurement is thus the cuvature field along the beam axis. One can

try a 2D approach using FE and then average the displacement over the beam width

but this will not give access to the curvature as second order derivatives of FE shape

functions vanish.

The global formulation of DIC we use herein allows for decomposing the displace-

ment on arbitrary basis function. It is thus possible to introduce a basis function

constructed according to beam kinematics as in Hild et al (2009). We start with func-

tions that capture the variation of the displacement ubx orthogonal to the beam axis y
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due to bending:

u
b
x(y) =

X

n∈N

u
b
nψn(y). (12)

The displacement uby along the beam axis is derived from the rotation of the section.

Using Euler-Bernoulli assumptions, the rotation θEB is equal to the derivative of ubx.

It thus writes:

θ
EB(y) =

X

n∈N

u
b
nψ

′
n(y), (13)

where ψ′
n = dψn

dy and the unknown ubn are the same as those describing the evolution of

ubx. For large rotations or when the length of the beam is of the same order of magnitude

as its width, Timoshenko assumptions are more appropriate. In this case, the rotation

θT is independent from the orthogonal displacement and its writting involves its own

degrees of freedom:

θ
T (y) =

X

n∈N

tnψ
′
n(y). (14)

Note the relation between displacement and rotation is invalidated but we keep describ-

ing the rotation with the derivatives ψ′
n of the functions that describe the displace-

ment. The curvature is directly obtained by differenciation of the rotation whatever the

kinematic assumption. The axial displacement uy is now written in term of a generic

rotation field θ which will match θEB or θT :

u
b
y(x, y) = −x θ(y). (15)

To accomodate test imperfection, a traction-compression kinematic is added to this

bending description. A translation and a constant strain define this additional motion

for the entire domain of interest of length ℓ. Two unknowns (ut1 and ut2) are thus

required to decompose this displacement uty:

u
t
y = u

t
1 +

y

ℓ
u
t
2. (16)
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In the following ψn functions are chosen as C0 FE functions or Cp−1 NURBS functions.

Here the advantage of NURBS functions is straightforward as they ensure the continuity

of the rotation and curvature along the axis (for p ≥ 3). Due to the crude description

of the tension kinematic, NURBS functions also warrant the continuity of the axial

strain. Note that functions of degree at least 2 must be used for non-zero curvature

fields.

6.3 Uncertainty analysis

The same methodology as for the previous example is adopted in this section. The

frequeny parameter of the prescribed displacement us is nω = 5. The co-ordinate s is y

and us is affected to the orthogonal displacement ux. Euler-Bernoulli’s assumptions are

then invoked to derive the corresponding rotation, axial displacement and curvature.

The analysis is carried out for h being equal to 8, 18, 25, 60, 100 and 225 pixels in

the axial direction, the size of the beam elements in the orthogonal direction being

the width of the domain of interest. Cp−1 NURBS functions and C0 FE functions of

degree 2 to 5 are considered.

Figure 9 shows the comparison of the displacement, rotation and curvature between

the prescribed displacement, the projected displacement and the measured displace-

ment for h = 100 pixels and Cp−1 NURBS functions with p = 5. Except at the center of

the beam where the highest curvature amplitude is reached, a quasi-perfect agreement

is obtained. Concerning the correlation error and the interpolation error, the results

and their interpretation are similar to those for the 2D case. For the sake of clarity,

only the results for NURBS function with p = 5 are presented in Figure 10. Power law

decrease, respectively increase, is obtained for the correlation error, respectively the
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interpolation error. Concerning the correlation error, the exponent for the displace-

ment is 0 and is decremented by −1 each time this field is differenciated: we have −1

for the rotation and −2 for the curvature. The behaviour of the interpolation error is

not as clear but it goes from an exponent that should be 2 for the displacement to 4

for the curvature. The total error is limited by its two contributions (correlation error

and interpolation error). For the displacement, a minimum of 4.0 10−3 pixel is reached

for h = 8 pixels. The minimum of the total error at 6.0 10−5 on the rotation is ob-

tained for h = 60 pixels. The total error on the curvature fits with a strong accordance

the maximum between the correlation error and the interpolation error; the minimum

value of 1.5 10−6 pixel−1 is obtained for h = 60 pixels.

Figure 11 compares the correlation error for three discretizations : C0 FE functions

with p = 5 and Euler-Bernoulli assumptions, Cp−1 NURBS functions with p = 5 and

Euler-Bernoulli assumptions and Cp−1 NURBS functions with p = 5 and Timoshenko

assumptions. The evolution of the error on the rotation and the curvature are pre-

sented. Despite the additional number of unknown invoked in the Timoshenko model

to describe the rotation, no significant difference is obtained compared to the Euler-

Bernoulli type beam. On the contrary, C0 FE functions give a raise of the correlation

error by a factor of roughly 10. It is thus demonstrated that the higher continuity order

provided by NURBS functions allows for much more robust measurements of rotation

and curvature fields.

6.4 Results

The series of deformed images presented in Figure 8 are now analyzed. A 2D analysis

using 16-pixel elements with bilinear FE functions is considered as a reference because
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this description has no kinematic assumption. Figure 12 compares the deformed shape

for the three deformed images obtained with the reference analysis and one performed

with 10 elements using Cp−1 NURBS functions with p = 5 and Euler-Bernoulli as-

sumptions. A very good agreement is obtained between these analysis for the three

stages. A maximum displacement of 40 pixels is obtained at the maximum load level

that leads to an important plastic deformation of the beam. The remaining displace-

ment after unloading is about 20 pixels. Figure 13 shows the evolution of the rotation

and curvature for the second analysis. The rotation vanishes at the centre of the beam

whatever the applied load and symmetric evolutions are obtained. For the first loading

step (step 60), the maximum rotation is ±0.017 at both ends of domain of interest.

At step 200, the maximum rotation is ±0.058 but it seems that higher gradients are

measured near the centre of the beam. For step 213, the rotation remains constant

±0.022 appart from the region near the center of the beam where strong plastic strains

occurred. These results are enforced by examining the evolution of the curvature (Fig-

ure 13b). At step 60, a piecewise linear curvature is obtained which confirms the elastic

state at this step. For step 200, a strong intensification of the curvture is obtained in

a 500-pixel central section of the beam with curvature as high as −2.6 10−4 pixel−1.

In the rest of the beam the evolution of the curvature remains linear which shows an

elastic behaviour. After unloading, the curvature vanishes out of the central section of

the beam wherein remaining curvature with a maximum level of −1.8 10−4 pixel−1 is

measured.

For comparison purposes, Figure 14a,c show the rotation at step 200 for 4 analysis:

the reference analysis with 2D FE (the displacement has been averaged over the beam

width and then differenciated to obtain the rotation), 10 Euler-Benoulli beam elements

using C0 FE functions with p = 5 and Cp−1 NURBS functions with p = 5 and
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10 Timoshenko beam elements using Cp−1 NURBS functions with p = 5. All the

results are in very good agreement, which is also confirmed by the error maps shown

in Figure 15, mean correlation residual being respectively 1.38%, 1.43%, 1.43% and

1.40% of the image dynamic. Only a slight difference in the rotation between the

last two analysis (Euler-Benoulli and Timoshenko) is detected. The differenciation

that is performed to obtain the curvature, presented in Figure 14b,d, enlarges the

differences between these analysis. Of course, the curvature cannot be obtained from

the 2D analysis despite this is the meaningfull data for identification. FE and NURBS

curvatures follow the same evolution except that the FE curvature field is discontinuous

which will not be appropriate for consitutive law identification. For this step, where

quite large and concentrated rotations are obtained, it appears that the Euler-Bernoulli

beam model underestimates the maximum level of curvature of about 0.3 10−4 pixel−1

which is much higher than the uncertainty of 0.05 10−4 pixel−1 for the corresponding

element size. Note that the uncertainty analysis has been carried out with curvature

levels similar to those of the experiment (about 2.0 10−4 pixel−1).This again increases

the confidence in the experimental results.

Last, Figure 16 presents the axial strain εyy in percent for the four above compared

analysis at the maximum load level. In addition to the strain level, the iso-0 line (the

neutral axis of the beam) of εyy is drawn with a black line. For the 2D reference

analysis, Figure 16a, the strain map is noisy and many iso-0 lines exist which makes

the determination of the neutral axis quite uneasy. For Cp−1 NURBS functions, Euler-

Bernoulli and Timoshenko beam kinematics, Figure 16b,d, provide comparable results

with a maximum amplitude of ±0.02 of εyy in the middle section of the domain of

interest. Note that the neutral axis is not located on the axis of the beam as it is the

case for elastic states. At this step when most of the deformation is concentrated in the
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middle of the beam, the neutral axis appears as a curved line that goes from the tension

side 600 pixels bellow the middle of the beam to the tension side 600 pixels above the

middle. This line goes through the centre of the beam section at the middle of the

beam which suggests that the material has kept a tension / compression symmetry.

For C0 FE functions, the continuity of the axial strain is not ensured and an erratic

description of the neutral axis is obtained.

7 Conclusions

In this paper, we analysed the benefit of using high continuity NURBS functions for

displacement measurement by Digital Image Correlation. After a brief remainder of

the problem formulation and the NURBS definition and properties, we proposed a

methodology to assess how given basis functions may solve the DIC compromise. In-

deed, through the two examples we proposed further, the competition between the

correlation error (due to the illposedness of the problem) and the interpolation error

(due to the variability of the displacement field to capture) was illustrated. Further,

when the displacement is aimed at feeding non-linear consitutive law identification,

non-homogeneous strain states are expected. The interpolation error must then be re-

duced. In a finite element context this means decreasing the mesh size or increasing the

degree of the shape functions. We showed that this leads to a larger number of degrees

of freedom and thus higher uncertainty and noise levels. Using NURBS functions, that

can be seen as high degree FE with high continuity (Cp−1 for degree p), the number

of degrees of freedom is decreased and the support of each function is enlarged. The

conditioning of the problem is thus significantly improved and uncertainty and noise

levels significantly reduced. For the 2D example as well as for the one using beam kine-
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matics, NURBS functions showed their ability to capture from digital images not only

a displacement field but also its first (and second) derivatives with lower uncertainty

levels.
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Fig. 1 (a) p = 2 C0 finite element functions and (b) p = 2 Cp−1 NURBS functions for two

elements.
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Fig. 2 Domain of interest for the wood sample on the initial image (a), the final state (b).
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Fig. 3 Uncertainty study: the mesh for 64-pixel elements deformed by the displacement field

used for the uncertainty analysis (a)( the colormap gives the displacement norm in pixel)

comparison of the displacement (b) and εxx strain (c) along the diagonal of the domain of

interest for 32-pixel elements with Cp−1 NURBS functions with p = 3.
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Fig. 4 Evolution of the correlation error (left) and interpolation error (right) as functions of

the element size. Figure (a,b) shows displacement error and figures (c,d) strain error.
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Fig. 5 Measurement uncertainty on displacement (top) and strain (bottom). From left to

right bilinear FEM, bicubic FEM (C0, p = 3) and NURBS (Cp−1, p = 3). The total error is

depicted with square marks, the correlation error with lines and the interpolation error with

dashed lines.
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Fig. 6 Deformed mesh (left, amplification factor 10 in pixel) and error field (right) normalized

by the dynamic of the initial image for FEM bilinear functions based on 32-pixel elements (top),

NURBS functions with p = 3 based on 64-pixel elements (bottom).
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Fig. 7 εxx, εyy and εnt strain for FEM bilinear functions based on 32-pixel elements (top),

NURBS functions with p = 3 based on 64-pixel elements (bottom).
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Fig. 8 Domain of interest for the steel beam on the initial image (a), deformed images: in the

elastic regime (b), at the maximum load level (c) after unloading (d).
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Fig. 9 Uncertainty study: comparison of the displacement (a) the rotation (b) and the cur-

vature (c) along the beam axis for 100-pixel elements using Cp−1 NURBS functions with

p = 5.
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Fig. 10 For Cp−1 NURBS functions with p = 5, evolution of the displacement uncertainty

(a), the rotation uncertainty (b) and the curvature uncertainty (c).
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Fig. 11 Comparison of the correlation error on the rotation (a) and the curvature (b) for

different discretization strategies.
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Fig. 12 Deformed meshes in pixel for three deformed images for a bidimensional analysis with

16-pixel element (top) and an analysis with beam elements using Cp−1 NURBS function with

p = 5 (bottom).
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Fig. 13 Evolution of the rotation and curvature along the beam axis for 10 Euler-Bernoulli

beam elements using NURBS functions with p = 5.
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Fig. 14 Comparison of rotation (left) and curvature (right) for different discretizations (top)

and for different beam models (bottom).
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Fig. 15 Comparison of the error maps normalized by the dynamic of the initial image in

percent for: (a) 2D FE with 16-pixel elements, (b) 10 Euler-Bernoulli beam elements using

NURBS functions with p = 5, (c) 10 Euler-Bernoulli beam elements using FE C0 functions

with p = 5, (d) 10 Timoshenko beam elements using NURBS functions with p = 5
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Fig. 16 Comparison of the axial strain εyy in percent for: (a) 2D FE with 16-pixel elements,

(b) 10 Euler-Bernoulli beam elements using NURBS functions with p = 5, (c) 10 Euler-

Bernoulli beam elements using FE C0 functions with p = 5, (d) 10 Timoshenko beam elements

using NURBS functions with p = 5. The black line is the iso-0 of εyy.
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