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Abstract7

In this paper, the potential of Isogeometric Analysis for strain field measurement by Digital Image Correla-

tion is investigated. Digital Image Correlation (DIC) is a full field kinematics measurement technique based

on gray level conservation principle and the formulation we adopt allows for using arbitrary displacement

bases. The high continuity properties of Non-Uniform Rational B-Spline (NURBS) functions are exploited

herein as an additional regularization of the initial ill-posed problem. k-refinement is analyzed on an artificial

test case where the proposed methodology is shown to outperform usual finite element based DIC. Finally a

fatigue tensile test on a thin aluminum sheet is analyzed. Strain localization occurs after a certain number

of cycles and combination of NURBS into a DIC algorithm clearly shows a great potential to improve the

robustness of non-linear constitutive law identification.
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1. Introduction9

Since a decade, full field measurement techniques have initiated a kind of revolution in solid mechanics.10

They offer the capabilities to access the displacement or strain not only at some pre-defined gauge location11

but on the whole surface of the sample (for conventional 2D techniques). Digital Image Correlation (DIC)12

(Sutton et al. [1]) is one of the most appealing of these full field measurement techniques as it is really user13

friendly: one only needs to take a series of digital images of the sample. Depending on the observation scale,14

the rough surface of the studied specimen can be used as a natural texture or a painted random pattern15

can be spraid on the sample. The randomness of the texture is then exploited to solve the optical flow16

conservation principle, which finally gives access to the displacement at each pixel of the reference image.17

For non-linear constitutive behavior identification, full field measurements have become unavoidable18

because they necessitate to exploit experimental tests up to strain localization, failure or necking. In19
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this context, the natural measured field (the displacement field) must be converted into strains to feed20

identification algorithms. As a derivative of an experimental quantity, strain fields often exhibit large noise21

levels that must be accounted for in the identification procedure (see, e.g., Avril et al. [2]). Another route,22

the one we follow herein, is to work on the measurement step itself. The aim of this paper is to present23

a DIC strategy that allows for strain measurements with higher resolution and lower noise levels. Starting24

from piecewise linear function, one can increase the degree to increase the resolution. However, due to the25

illposedness of the optical flow principle, this will also increase noise measurement. The remedy is to increase26

the “amount” of regularization. Increasing the continuity of the approximation functions of the displacement27

plays this role. We thus look for functions that can be “k” enriched, that is with higher polynomial degree28

while high continuity is maintained, without a prohibitive increase of the number of degrees of freedom.29

Non-Uniform Rational B-Spline functions (NURBS) have such capacities.30

NURBS functions are standards in Computer Aided Design, computer graphics and animation. These31

functions grew out of the pioneering work of Pierre Bézier’s development of Bézier curves and surfaces in the32

late 1960s. B-Spline and later NURBS and T-Splines were developed since then (see, e.g., Farin [3], Piegl33

and Tiller [4], Cohen et al. [5], Rogers [6]). Despite a strong coupling between design and analysis in the34

global design of industrial products, such functions were not used in the analysis until recently. The work35

of Hughes et al. [7], Cottrell et al. [8] on Isogeometric Analysis introduced NURBS functions in a “finite36

element” framework to represent both geometry and solution fields. Despite a real interest in the geometric37

representation built into isogeometric analysis, the smoothness of NURBS and B-Spline functions is the key38

ingredient that drove the use of the approach in various domains of analysis such as turbulence and fluid-39

structure interactions (Bazilevs et al. [9, 10], Akkerman et al. [11])); Cahn-Hilliard phase field modeling40

(Gomez et al. [12]), incompressible problems (Auricchio et al. [13], Elguedj et al. [14])) and structural41

dynamics (Hughes et al. [15]). We propose in this paper to couple isogeometric analysis and DIC in a42

similar way as proposed by Besnard et al. [16] with piecewise linear finite elements.43

The paper is organized as follows: section 2 is dedicated to the optical flow conservation principle,44

section 3 presents the construction of NURBS functions, an example with artificially deformed images is45

then proposed in section 4 while an experiment on a thin aluminum sheet is analyzed in section 5. In46

section 6 we draw conclusions.47

2. Digital Image Correlation algorithm48

2.1. Optical flow conservation principle49

If successive images (mathematically analyzed as continuous gray level functions of the pixel co-ordinates50

in the image frame) of the same sample are captured during its motion, a displacement u produces an51

advection of the local texture of the images. When analyzing a pair of images f and g, the optical flow52
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conservation reads53

f(x) = g(x+ u(x)). (1)

The principle of DIC is to determine u as accurately as possible. The problem is illed-posed by nature as a54

vector field is searched for from a scalar equation. Further, the displacement may be measurable along the55

direction of the gradient of g only. Thus, the first step is to try and solve it in an “average” sense, i.e., by56

minimizing a global error57

η2 =

∫∫

Ω

Φ2(x)dx, (2)

where Ω is the domain of interest and Φ(x) defines the local correlation error:58

Φ(x) = [f(x)− g(x+ u(x))]. (3)

The usual approach consists in maximizing a correlation coefficient (Sutton et al. [1, 17, 18]) by searching for59

a piecewise constant, bilinear or other canonical form of displacement field. The image is thus subdivided60

in zones of interest that can overlap and the maximization is performed independently over each of these61

zones. Note that B-spline functions have already been used by Cheng et al. [19] in this context.62

It has been shown in Besnard et al. [16] that prescribing displacement continuity over the entire domain of63

interest plays a regularizing role. Because of the ill-posedness of the problem, the “amount” of regularization64

is directly related to noise sensitivity and thus measurement error and uncertainty.65

2.2. Resolution66

We use in the following the global approach proposed in Besnard et al. [16]. After a description basis is67

adopted for the displacement field68

u(x) =
∑

n∈N

anψψψn(x) = [Ψ(x)]{U}, (4)

an iterative Newton procedure is initiated in order to minimize η2 (Eq. (2)). A sequence of linear system is69

solved until convergence of the solution increment dU is obtained:70

[M](i) {dU} = {b}(i), (5)

with71

M (i)
nm =

∫∫

Ω

(ψψψn · ∇g(x+ [Ψ]{U}(i)))(ψψψm · ∇g(x+ [Ψ]{U}(i)))dx, (6)

and72

b(i)n =

∫∫

Ω

(ψψψn · ∇g(x− [Ψ]{U}(i)))(f(x) − g(x+ [Ψ]{U}(i)))dx, (7)

∇ denoting spatial derivation and i the current iteration number.73
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2.3. Numerical aspects74

To reduce numerical costs, the tangent operator [M](i) is not computed at each iteration. In practice, the75

tangent operator is set to the final one, i.e., replacing ∇g(x+ [Ψ]{U}(i)) by ∇f(x) which can be computed76

once for all. For large deformations or when the choice of a simple initial solution is not the best choice, one77

can adopt a balanced tangent operator by weighting the contribution of the current search direction (using78

∇g(x+ [Ψ]{U}(i))) and the final one (using ∇f(x)).79

The derivation operations are performed numerically by finite differences on the pixel grid of the image.80

The integrals in M
(i)
nm and b

(i)
n are computed as discrete sums over the set of pixels in the domain of interest,81

these pixels are considered as integration cells with one Gauss point per cell.82

The sub-pixel interpolation of the deformed image (the values of g at non-integer value of x+[Ψ]{U}(i))83

is performed using a spline-cubic interpolation of the gray level from the neighbor pixels, see Bornert et al.84

[20] for an overview.85

2.4. Multigrid algorithm86

As mentionned in Besnard et al. [16], a multigrid resolution is an essential feature of the global correlation87

algorithm we use herein. Indeed, due to the ill-posed nature of the problem and the influence of noise, a88

strategy must be adopted in order to introduce progressively the shortest wave lengths of the solution and89

to avoid local minima. This has been decribed and studied in details in Réthoré et al. [21].90

The idea is to start with a coarsened description not only of the displacement field but also of the images91

f and g and then to introduce step by step the whole frequency content of the images and displacement92

basis. For these purposes, we define a “grain” as a generic denomination of a pixel whatever the scale. At93

scale n+ 1, a grain contains 2× 2 grains of scale n, at scale 1 a grain is a pixel. Then the value of f or g in94

gray level for scale n+ 1 at each grain is set to the mean value of the gray level of its “sub”-grains at scale95

n. This procedure is illustrated by Figure ?? and can be seen as a restriction operation R that reads:96

fn+1(xGr) = R(fn,xGr) =
1

22

∑

gr∈Gr

fn(xgr) (8)

where xGr denotes the position of grain Gr of scale n+ 1 in the reference image fn+1 at this scale and xgr97

the position of grain gr of scale n in the reference image fn. The short wave lengths of the image texture98

are thus filtered progressively. For the deformed image g, its correction g(x+ [Ψ]{U}(i)) is first performed99

and then the coarse-graining step is performed.100

The displacement discretization is finite element based and regular meshes are used. It is thus easy101

to coarsen the description of the unknown field. At scale n, elements are h × h grains and thus at scale102

n+ 1 they are still h× h grains since grains have been coarsened. The prolongation of the displacement is103
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performed using the bilinear interpolation of the finite element shape functions (see also Figure ??)104

Un,p = P(Un+1,xp) =
∑

j∈N
n+1
e

Un+1,jN
n+1
j (xn), (9)

where P is the prolongation operator, Un,p is the displacement at node p of level n, (xp) its position, N
n+1
j105

the finite element shape functions supported by nodes j in the set of all nodes Nn+1
e at scale n + 1, and106

Un+1,j the nodal values of the displacement at level n+ 1.107

Note that for all the scales but the finest one, first order polynomial shape functions are used whereas108

for the finest scale NURBS functions will be used in the sequel. For the transition between scale 2 and scale109

1, after a linear interpolation of the nodal displacement from the coarse to the fine mesh using P, the initial110

displacement on a p-degree basis (see section 3), is obtained by L2 projection. In practice 3 to 5 scales are111

used. The first computation on the coarsest one is initialized by estimating a rigid body translation at each112

node of the corresponding mesh. One could think of using NURBS functions at every scale of the multigrid113

algorithm in the present case. This would render the algorithm more complex, especially in order to form114

prolongation and restriction operators and does not improve the results further. Indeed, the only role of the115

resolution of the coarsened problems is to avoid local minima, the final resolution being done on the fine116

grid, we only need the performance of NURBS functions at that particular scale.117

3. Non-Uniform Rational B-Splines and Isogeometric Analysis118

Non-Uniform Rational B-Splines (NURBS) are a standard tool for describing and modeling curves and119

surfaces in computer aided design and computer graphics (see Piegl and Tiller [4], Rogers [6] for an extensive120

description of these functions and their properties). In this work, we use NURBS as a DIC/analysis tool,121

which is referred to as isogeometric analysis by Hughes et al. [7], Cottrell et al. [8]. The aim of this section122

is to present a brief overview of features and properties of NURBS-based isogeometric analysis for 2D DIC123

problems.124

3.1. B-spline and NURBS functions125

B-splines are piecewise polynomial functions with a prescribed degree of continuity. Univariate B-126

spline basis functions are constructed from a knot vector, a set of coordinates in parametric space, Ξ =127

{ξ1, ξ2, . . . , ξn+p+1}, where ξi ∈ R is the ith knot, i is the knot index, i = 1, 2, . . . , n+ p+1, p is the polyno-128

mial order, and n is the number of basis functions. More than one knot can be placed at the same location129

in the parametric space. If m is the multiplicity of a given knot, the functions are Cp−m continuous at that130

location. If the knots are equally spaced, the knot vector is said to be uniform and non-uniform otherwise.131

A knot vector is referred to as open if its first and last knots have multiplicity p + 1. This results in the132

5



basis being interpolatory at the endpoints of the interval. A knot vector is referred to as periodic if its first133

and last knots have unit multiplicity.134

B-spline basis functions for a given order p, are defined recursively in the parametric space by way of135

the knot vector Ξ. Beginning with piecewise constants (p = 0) we have136

Ni,0(ξ) =











1 if ξi ≤ ξ < ξi+1,

0 otherwise.

(10)

For p = 1, 2, 3, . . ., the basis is defined by the Cox-de Boor recursion formula:137

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (11)

Let d denote the number of spatial dimensions. A B-spline curve in R
d is defined as follows:138

C(ξ) =

n
∑

i=1

Ni,p(ξ)Bi, (12)

where Bi ∈ R
d denotes control point i.139

Important properties of B-spline curves are:140

• Affine Covariance: An affine transformation of a B-spline curve is obtained by applying the transfor-141

mation to its control points.142

• Convex Hull : A B-spline curve lies within the convex hull of its control points (see Rogers [6] for the143

relationship between the convex hull and the polynomial degree of the curve).144

• Variation Diminishing: A B-spline curve in R
d cannot cross an affine hyperplane of codimension 1145

(e.g., , a line in R
2, a plane in R

3) more times than does its control polygon (see Piegl and Tiller [4]).146

With the use of tensor products, the concept can be extended to multiple dimensions. For a B-spline147

surface, we start by defining two knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1} and H = {η1, η2, . . . , ηm+q+1} and148

an n × m = s net of control points Bi,j = Bk. One-dimensional basis functions Ni,p and Mj,q, with149

[i, j] ∈ [{1, . . . , n}, {1, . . . ,m}], of order p and q respectively are defined from the knot vectors, and their150

tensor product forms the two-dimensional basis functionN k,r(ζ) = Ni,p(ξ)Mj,q(η), where ζ = ξ×η, k = i×j151

and r = p× q. The B-spline surface is defined by the extension of Eq. (12):152

S(ζ) =

s
∑

k=1

N k,r(ζ)Bk. (13)

A similar description can be constructed for higher dimensional spaces, for example to form a B-spline153

volume in 3D.154

A rational B-spline object in R
d is obtained from the projection of a nonrational (polynomial) B-spline155

object in R
d+1. To obtain a NURBS curve in R

2, we start by defining a set of control points called156
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projective points Bw
i ∈ R

3, associated with a B-spline curve in R
3 with knot vector Ξ. The control points157

for the NURBS curve are given by158

(Bi)j =
(Bw

i )j
ωi

with j = 1, 2, (14)

where (Bi)j is the j-th component of Bi and ωi = (Bw
i )3 is the third component of Bw

i and is referred to as159

the i-th weight. The NURBS basis function of order p are defined by the following equation:160

Ri,p(ξ) =
Ni,p(ξ)ωi

∑n

i=1Ni,p(ξ)ωi

. (15)

The NURBS curve is then defined by161

Cn(ξ) =

n
∑

i=1

Ri,p(ξ)Bi. (16)

This can be generalized to define NURBS surfaces and volumes.162

3.2. Isogeometric analysis for DIC163

The main features of NURBS based isogeometric analysis are given in Cottrell et al. [8] and references164

herein. The reader can find many of the details and some applications in Hughes et al. [7], Cottrell et al.165

[8], Bazilevs et al. [9, 10], Akkerman et al. [11], Gomez et al. [12], Auricchio et al. [13], Elguedj et al.166

[14], Hughes et al. [15].167

Some features of the NURBS based isogeometric analysis that are build into the method in order to168

perform mechanical computations are not necessary when applied to DIC. Based on the observation that169

the computational domain is a regular rectangular grid formed on the pixel discretization of the image, and170

the fact that the geometric description of the area of interest is not needed, the physical and parametric171

meshes are superposed (see Figure ??). Another interesting point is that no boundary conditions need to be172

applied on the domain. Consequently having the basis function to be interpolatory on the boundary of the173

domain is not necessary. This means that the use of open knot vectors is not mandatory and other types174

of knot vectors can be considered We propose here to use periodic B-spline functions in a similar way as175

proposed in Bazilevs et al. [9] for periodic boundary conditions imposition. This necessitates to introduce176

additional knots in the vector in order to produce incomplete basis functions on the first and last elements.177

This has to be done in order to preserve the partition of unity property of the basis. The use of periodic178

knot vectors produces the same number of basis functions as with open knot vectors, thus the same number179

of unknowns. However, it is computationally more efficient as we only need to form the 1D basis functions180

and integral contributions based on one element, and reuse this evaluation on all the elements in all the181

spatial directions. This is particularly true as we employ a pixel based numerical integration which consists182

in a sub-quadrilateral decomposition of elements with a one Gauss point rule in each pixel. A comparison of183

basis functions generated from open and modified periodic knot vectors is shown in Figure ?? for quadratic184
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to quintic B-spline basis. We can observe that with open knot vectors, the basis functions in boundary185

elements have a different shape than the ones in the interior elements. On the contrary, with periodic knot186

vector, basis functions have the same shape in all the elements, which allow us to compute them once and187

for all for one 1D element and reuse these values for all the mesh.188

The choice of using periodic knot vectors was done only to simplify numerical implementation and189

improve the numerical cost of the method. The example presented in the sequel were also performed using190

open knot vectors and no difference was observed in the result.191

It is interesting to note here that the basis functions obtained for C0 linear NURBS are exactly the same192

as the standard piecewise linear finite elements, therefore for that particular case, the method is exactly the193

same as the one introduced in Besnard et al. [16].194

4. Artificial test195

The first example we present here can be viewed as an a priori performance analysis of the method. A196

common question in DIC as in analysis is the choice of the element size. In DIC, this point is a matter197

of compromise between correlation and interpolation errors. The correlation error arises from the ill-posed198

nature of the problem, and the interpolation error when the actual displacement cannot be interpolated with199

the chosen basis functions. It is important at this point to estimate the contribution of these two errors,200

and to see how high order NURBS functions behave when compared to standard low order finite element201

functions. Another interesting point comes from the fact that DIC is not a purely numerical problem but is202

affected by experimental uncertainty. Thus, the sensitivity to measurement noise also needs to be addressed.203

To study the correlation error, we employ a common technique which consists in performing a DIC anal-204

ysis over the domain of interest of the initial image with a deformed image which is artificially translated by205

ut pixels in the horizontal direction. As the prescribed displacement is constant, no interpolation error arises206

at this step. For the interpolation error, we choose a displacement field us that is not in the interpolation207

space of the basis functions, and compare it with its L2 projection onto the basis functions. As no DIC208

problem is solved, no correlation error arises at this step. Finally, we solve a complete DIC problem based209

on the same predefined solution us. We impose the reference displacement field us on a given picture to210

create a simulated deformed picture. This is similar to the use of problems with a known analytical solution211

in numerical methods for convergence analysis and is a common strategy employed in the DIC literature to212

study algorithm efficiency and “convergence”.213

As proposed in Bornert et al. [20], we only impose a displacement field with a horizontal component.214

We choose the following displacement form:215

us(X) = U0 sin

[

ωx

2π

(

1−

∣

∣

∣

∣

2
X

max(X)
− 1

∣

∣

∣

∣

)2
]

, (17)
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where ωx = 5π2, U0 = 1pixel and X is the horizontal coordinate in the image reference axis. This produces216

a symmetric sinusoidal displacement field with an increasing frequency from the boundary of the image217

to the center. The corresponding component of the strain field Exx also presents a sinusoidal shape with218

increasing frequency and amplitude from the boundary to the center of the image. We only impose a219

horizontal displacement as it allows us to study the variation of the measurement error in the vertical220

direction. Contrary to standard numerical simulation with a similar solution, we expect the computed221

horizontal displacement component to vary along different vertical lines.222

4.1. A priori performance and noise sensitivity analysis223

Following Réthoré et al. [22], we can study noise sensitivity by doing a perturbation analysis of Eq. (5).224

The idea is to consider that both the reference and deformed image are corrupted by a random noise.225

This noise is supposed to be of zero mean and spatially uncorrelated. For simplicity, we consider that the226

deformed image is noiseless and that the deviation from optical flow conservation given in Eq. (1) allows us227

to define an effective noise that only affects the reference image. Consequently, this effective noise has twice228

the variance of the initial noise, that is 2σ2. The perturbation induced on the “displacement” vector [dU]229

is of zero mean but spatially correlated. Its correlation kernel [C] is given by230

< {dU}{dU} >= 2[C]σ2 = 2[M]−1σ2 (18)

Figure ?? shows the square root of the diagonal elements of [C] averaged over all the degrees of freedom.231

The curves are plotted with the contribution of boundary degrees of freedom for Cp−1 in Figure ?? and C0
232

NURBS in Figure ??, and without the contribution of the boundary dofs in Figure ?? and Figure ??. We233

can see that the noise sensitivity decreases as the element size increases for all values of the degree for C0
234

NURBS and for degrees up to p = 3 for Cp−1 NURBS with boundary dofs. We can also see in both cases235

that the sensitivity increases with the degree of the NURBS functions, no matter the continuity. Further,236

for Cp−1 NURBS with boundary dofs, the slope of the sensitivity vs element size is changing as the degree237

is increased and as the element size is increasing, in particular, the sensitivity is constant then increases for238

the quartic case. Without boundary dofs, the results are almost identical for C0 NURBS that with boundary239

dofs. On the contrary, with Cp−1 NURBS, we can see that the sensitivity decreases with the element size for240

all degrees and with lower error levels than with C0 NURBS. This indicates that higher continuity provides241

less sensitivity to noise for interior dofs.242

We also plot in Figure ?? sensitivity maps as the norm of the rows of [C], these maps are plotted with243

a value for each degree of freedom and are not interpolated using basis functions as for displacement fields.244

On Figure ??, we plot these maps for Cp−1 NURBS. These sensitivity maps are not homogeneous due to the245

heterogeneous nature of the gradient of the reference image. We can clearly see that the boundary degrees246

of freedom have a sensitivity that is much higher than on the inside of the domain. The support of these247

9



degrees of freedom is much smaller, one half and one fourth on the corners, than the one of the inside degrees248

of freedom. We can see that the difference between the sensitivity on the boundary and on the inside is249

increasing with the degree of the functions. We also plot on Figure ?? the same maps only with the degrees250

of freedom that have a zero contribution on the boundary of the domain. We can see that the maps look251

similar and that the scale is more or less multiplied by a factor of five each time the degree is increased.252

Finally we plot on Figures ?? and ?? the same maps for C0 NURBS for p = 1, 2, 3 for all the degrees of253

freedom and for the interior degrees of freedom.254

4.2. Error analysis255

The error analysis is decomposed into three steps in order to analyze the correlation and interpolation256

errors separately and together. The first step consists in studying the correlation error by analyzing an257

image deformed by a rigid body translation. The second step is devoted to the analysis of the interpolation258

error. Finally the last step consists in analyzing the results of the DIC algorithm using an image deformed259

by the same displacement field as for the step 2; this analysis produces what is called the total error.260

For the first step, i.e., the analysis of the correlation error, the value of ut = 0.5 pixel is chosen because261

it produces the maximum correlation error. The displacement prescribed at steps 2 and 3 is the one given262

in Eq. (17). For step 2, the L2 projection is performed in the following way:263

Arg

[

min

∫∫

Ω

(u− us)
2
dx

]

. (19)

For each step, the error is obtained by taking the standard deviation of the gap between the computed264

displacement (by DIC or L2 projection) and the prescribed displacement, i.e., the RMS (root mean square)265

error.266

By comparing the results of the last step with the first ones, we are able to evaluate the competition267

between the correlation and the interpolation errors in DIC analysis with given parameters. We performed268

such an analysis with varying values for the element size h, the polynomial degree p, and the continuity i.e.,269

C0 or Cp−1. This allows us to estimate the influence of these parameters on the performance of NURBS270

based DIC. In all the results presented below, the strain field is computed as in the usual finite elements271

setting, that is by computing the derivatives of the basis functions at the integration points.272

The results are presented in Figures ?? to ??. In Figure ??, we plot the correlation error and the273

interpolation error for displacement and strain as a function of the element size for C0 and Cp−1 NURBS274

for p = 1, 2, 3. We can see that for both fields, the correlation error decreases as a power law of h whereas275

the interpolation error increases as a power law of h. The slope for the correlation error is about 1 for all276

cases for the displacement and about 2 for the strain. For Cp−1 NURBS the error is almost independent of277

the degree, whereas for C0 NURBS the error level increases with the degree with a relatively constant slope.278

The error level is approximately increased by a factor of 10 when the degree is increased by one unit. For279
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the interpolation error, as it could be anticipated, the slopes are respectively of 2, 3, 4 for the displacement280

and 1, 2, 3 for the strain with p = 1, 2, 3. The error levels are this time in favor of the C0 functions compared281

to the Cp−1 functions for both fields. We can also note that the slopes tend to diminish as h becomes small282

for the C0 functions.283

In Figure ??, we plot the RMS error on the horizontal displacement on the top and on the strain on the284

bottom as a function of the element size in pixels. We plot on the same graphs the correlation error with285

plain lines, the interpolation error with dashed lines and the total error with square marks. On the left part,286

we use C0 piecewise linear functions, in the middle we use C0 piecewise cubic NURBS and on the right, we287

use C2 piecewise cubic NURBS. Note that for C0 piecewise cubic NURBS the algorithm did not converge for288

8-pixels elements. With C0 piecewise linear functions, the total error is governed by the interpolation error289

and lowest error levels are obtained for 8-pixels elements. On the contrary, for the C0 cubic NURBS, the290

total error is mostly governed by the correlation error for both the displacement and the strain. The lowest291

error is attained for 32-pixels elements. For Cp−1 NURBS functions, the competition between correlation292

and interpolation error is well balanced and an optimal choice of the element size for this particular case293

appears to be 16 pixels with C2 cubic functions. We might also want to consider the intersection point294

between the correlation and interpolation error curves. This point defines the minimum total error that is295

potentially reachable with the basis functions considered. With Cp−1 NURBS, we can see that for both the296

displacement and the strain, this ”optimal” point gives smaller errors when compared to C0 NURBS.297

The horizontal displacement and strain solution profiles can be seen in Figures ?? to ??. We plot the298

imposed and computed fields versus the horizontal coordinate in pixels. We superpose the values of the299

computed fields for all vertical coordinates; this allows us to see the variation of the solution along the300

vertical direction. We plot the results with Cp−1 and C0 functions for 8, 16, 32 and 64 pixels per elements.301

In Figure ??, the missing figures correspond to cases for which the method did not converge no matter the302

number of scales used in the multigrid algorithm and the initial value of the displacement considered. We303

can clearly see on the strain curves that when the element size starts to increase, the solution is much better:304

it has fewer oscillations in the horizontal direction and fewer variations along the vertical direction. Then305

when the element size keeps increasing, the discretization error dominates and we are not able to capture306

the solution. The comparison of the Cp−1 and C0 cases clearly shows the superiority of smooth high order307

functions for strain measurements (Figures ?? and ??).308

Finally, we plot in Figure ?? a three-dimensional visualisation of the εxx strain component (amplified309

1000 times in the z-direction) and of the error on the εxx strain component (amplified 3000 times in the310

z-direction). We plot the results obtained with 16 pixels per elements with C0 linear, C2 cubic and C0 cubic311

NURBS. This figure also shows that we obtain much better results in terms of strain with higher order and312

higher continuity of the discretization functions.313
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5. Experimental test314

This section is dedicated to an experimental test performed on a thin aluminum sheet.315

5.1. Material and devices316

The present tests have been carried out on co-rolled aluminum alloys thin-sheet currently used in thermal317

exchangers for motor industry. This kind of multi-material structure is made out of two or three different318

aluminum alloys having different liquidus temperatures (Tclad−liquidus < Tcore−liquidus). A specific temper-319

ature increase leads to the melting of the clad and, by capillarity, to the formation of brazed joints between320

beforehand-assembled exchanger components. The core material ensures mechanical strength and thermal321

properties whereas clads ensure mechanical exchangers cohesion after the joining process. The low thickness322

of the structure (between 0.2 − 0.3mm before brazing) allows to optimize the thermal exchange capacity323

thanks to the increase of the exchange surface area. The material configuration studied is made up of Al-Mg324

alloy for the core material (75% of the thickness) and Al-Si and Al-Zn alloys (respectively 15% and 10% of325

the thickness) for the two clads. Samples were manufactured from industrial co-rolled sheets with a theo-326

retical section of 15 × 0, 27mm2. Other sample dimensions are shown in Figure ??(a). Observations were327

carried out on Al-Si clad before the brazing step. Fatigue tests have been performed at room temperature328

at MATEIS lab using an 8516 INSTRON hydraulic testing device combined with a 5kN loadcell (maximum329

stress of 180MPa, load ratio of R = 0.1 and sinusoidal waveform at F = 10Hz). The thickness of each330

samples have been controlled with a thickness indicator Mitutoyo IP65.331

The images are 1200× 1600 pixels with 8-bit digitization. The reference image is shown in Figure ??(b).332

This Figure also presents the boundary of the domain of interest and the mesh for 16-pixels elements.333

Figure ??(c) and (d) show the deformed images at 6000 and 8500 cycles. The pixel size for these images is334

pix2m = 10.7µm. The part of the sample shown in the image corresponds to a zoom on the active region at335

the center of the specimen. Note that the images are actually rotated of 90o compared to the representation336

of Figure ??(a).337

5.2. Results338

First, the analysis is carried out using 16-pixel elements with C0 piecewise linear functions. Figure ??339

shows the displacement results at 8500 cycles: the map ?? gives the horizontal displacement in pixel, the340

map ?? the vertical displacement and the deformed mesh is shown on Figure ??. Figure ?? shows the local341

correlation residual (|f(x)− g(x+u(x))|) in gray level in % of the dynamic of the reference image (223 gray342

levels) . Except inside the zone where strain localization is suspected, the correlation error is lower than343

2%. Inside the localization zone, maximum values of about 8% are obtained. This allows a high level of344

confidence in the results. From Figure ??, it appears that the deformation is localized within a band which345

orientation with respect to the loading direction is about 65o. For a deeper analysis, the three components346
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of the Green-Lagrange strain tensor (Exx,Eyy and Exy) are presented in Figure ?? after 8500 cycles. It is347

confirmed that the strain is localized within a band whose width is about 200 pixels with an average level of348

Exx of about 15%. It is also observed that conjugate bands (with a −65o angle with respect to the loading349

direction) have developed but with lower strain levels (about 5%). Figure ?? reveals that Eyy is localized350

along the same patterns as Exx with a strain intensity of about 2 to 3%. Figure ?? concerns Exy which is351

almost homogeneous and about noise measurement.352

Figure ?? shows Exx after 8500 cycles for different discretization bases for the displacement. For a C0
353

linear basis, Figures ?? to ?? show the results for 16, 32 and 64-pixel elements. It is observed that the noise354

is reduced when the element size increases; but a coarser description of the localization patterns is obtained.355

For comparison, the same analysis is performed using a C2 cubic NURBS functions in Figures ?? to ??. The356

same observations arise concerning the effect of noise measurement, but the higher continuity of C2 cubic357

NURBS functions allows for a better description of the strain localization for a given mesh size. Concerning358

correlation error, average values of 1.43%, 1.47% and 1.68% are obtained for C0 linear functions whereas359

C2 cubic functions give 1.62%, 1.46% and 1.51%. In this case it appears that 32-pixel elements with C2
360

cubic NURBS is a good compromise between noise sensitivity reduction and discretization error. Figure ??361

shows a 3D visualization of Exx for 16-pixel elements with C0 linear interpolation and for 32-pixel elements362

with C2 cubic interpolation. Finally Figure ?? presents the evolution of the components Exx (top) and Eyy363

(bottom) of the strain tensor using 32 pixel elements and C2 cubic NURBS at various number of cycles.364

6. Conclusion365

High continuity properties of NURBS functions were exploited in the present paper to improve the per-366

formance of strain field measurement by digital image correlation. After a brief reminder of the problem367

formulation of finite element based DIC, and the definition of the functions used in NURBS based isogeo-368

metric analysis, we proposed a new methodology for robust and efficient strain measurement from digital369

images.370

An a priori performance study was performed on an artificially deformed image. After studying the371

noise sensitivity of the proposed approach, we showed that it allows us to obtain a good balance between372

interpolation and correlation errors. Indeed we showed that NURBS functions allow us to obtain higher373

order functions with high continuity with a very small increase in the number of degrees of freedom. When374

compared to C0 high order polynomial, smooth NURBS produce few functions with a larger support. This375

results in improving the conditioning of the problem, and consequently reducing noise level and uncertainty.376

This was demonstrated on an artificially deformed image with a imposed displacement profile specifically377

designed to test the robustness of the method.378

Finally, we applied the proposed method to an experimental example, in which localized strain patterns379
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are observed. We compared standard low order finite element DIC techniques with the proposed method380

and showed its good behavior.381
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Figure 1: Illustration of the restriction operation (left) and the prolongation operation (right).

ξpix = ηpix = {0, 16, 32, . . . , 144, 160}

knot vector definition

Mesh extraction and

based on pixel numbering

Zone of Interest and mesh

defined on the digital image from knot vectors

ξ = η = {−ph, . . . ,−h, ξpix, 160 + h, . . . , 160 + ph}

Basis functions construction

0 16 1601441281129680644832

32

48

64

80

96

112

128

144

160

16

0

Figure 2: Zone of interest and mesh definition on digital image (left), computational mesh extraction and knot vectors creation

from pixel numbering (center), and basis functions evaluation from knot vectors (right).
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Figure 3: Unidimensional B-Spline basis functions with p = 2 (left) to p = 5 (right) with open knot vectors (top) and periodic

knot vector (bottom)
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Figure 4: Mean sensitivity in pixels/gray levels versus element size for (a) Cp−1-continuous NURBS and (b) C0-continuous

NURBS, and without the degrees of freedom that have support on the boundary elements for (c) Cp−1-continuous NURBS

and (d) C0-continuous NURBS.
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Figure 5: Sensitivity map in pixel of the degrees of freedom in the vertical direction. (a) Cp−1 NURBS with 16 pixels per

elements for p = 1 . . . 4 (left to right). (b) Cp−1 NURBS with 16 pixels per elements for p = 1 . . . 4 without the degrees of

freedom that have support on the boundary elements. (c) C0 NURBS with 16 pixels per elements for p = 1 . . . 3. (d) C0 NURBS

with 16 pixels per elements for p = 1 . . . 3 without the degrees of freedom that have support on the boundary elements.

19



10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Element size [pixel]

R
M

S
 e

rr
or

 [p
ix

el
]

 

 

p=1
p=2
p=3
Cp−1 NURBS

C0 NURBS

(a)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Element size [pixel]

R
M

S
 e

rr
or

 [p
ix

el
]

 

 

p=1
p=2
p=3
Cp−1 NURBS

C0 NURBS

(b)

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Element size [pixel]

R
M

S
 e

rr
or

 []

 

 

p=1
p=2
p=3
Cp−1 NURBS

C0 NURBS

(c)

10
0

10
1

10
2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Element size [pixel]

R
M

S
 e

rr
or

 []

 

 

p=1
p=2
p=3
Cp−1 NURBS

C0 NURBS

(d)

Figure 6: Evolution of the correlation error (left) and interpolation error (right) as a function of the element size for the

displacement (top) and strain (bottom).
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Figure 7: Measurement uncertainty on displacement (top) and strain (bottom). From left to right C0 piecewise linear, C0

piecewise cubic and C2 piecewise cubic NURBS. The total error is depicted with square marks, the correlation error with lines

and the interpolation error with dashed lines.
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Figure 8: Artificial test. Imposed and computed horizontal displacement profiles for Cp−1-continuous k−refined NURBS with

8, 16, 32 and 64 pixels per element for p = 1 (left), p = 3 (center) and p = 4 (right).
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Figure 9: Artificial test. Imposed and computed εxx strain component profiles for Cp−1-continuous k−refined NURBS with 8,

16, 32 and 64 pixels per element for p = 1 (left), p = 3 (center) and p = 4 (right).
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Figure 10: Artificial test. Imposed and computed horizontal displacement profiles for C0-continuous NURBS with 8, 16, 32

and 64 pixels per element for p = 1 (left), p = 3 (center) and p = 4 (right).
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Figure 11: Artificial test. Imposed and computed εxx strain component profiles for C0-continuous NURBS with 8, 16, 32 and

64 pixels per element for p = 1 (left), p = 3 (center) and p = 4 (right).
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(a) (b)

(c) (d)

(e) (f)

Figure 12: Artificial test: 3D visualisation of the εxx strain component (on the left, amplified 1000 times), and the error on the

εxx strain component (on the right, amplified 3000 times) for a mesh of 16-pixels per elements with C0 linear (top), C2 cubic

(middle) and C0 cubic (bottom) NURBS.
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Figure 13: (a): sample geometry. (b): reference image (1200× 1600 pixels with 8-bit digitization) domain of interest and mesh

for 16-pixel elements. (c): deformed image after 6000 cycles. (d): deformed image after 8500 cycles.
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Figure 14: For 16-pixel elements with C0 piecewise linear functions: horizontal (a) and vertical (b) displacement after 8500

cycles in pixel. (c) shows the local correlation error in % of the dynamic of the reference image (223 gray levels) and (d) the

deformed mesh.
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Figure 15: For 16-pixel elements with C0 piecewise linear functions: Exx (a), Eyy (b) and Exy (c) components of the Green-

Lagrange strain tensor after 8500 cycles.
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Figure 16: Comparison of Exx for different mesh size and interpolation degrees after 8500 cycles: from left to right 16, 32 and

64-pixel elements, top C0 linear functions, bottom C2 cubic functions.
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(a) (b)

Figure 17: 3D visualization of Exx after 8500 cycles for 16-pixel elements with C0 linear functions (left) and for 32-pixel

elements with C2 cubic functions (right).
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Figure 18: Evolution of Exx (top) and Eyy (bottom) for 32-pixel elements with C2 cubic functions: (a,e) 6000 cycles, (b,f)

7000 cycles, (c,g) 8000 cycles and (d,h) 8500 cycles.
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