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Introduction

In this paper, we are interested in the discretization of some first order differential inclusions dq dt (t) + U (t, q(t)) ∋ f(t, q(t)), [START_REF] Bastien | Numerical precision for differential inclusions with uniqueness[END_REF] involving a multivalued operator U and a mapping f.

In the case where U is the subdifferential of the indicatrix of a closed convex set K (U (q(t)) = ∂I K (q(t))), G. Lippold has shown in [START_REF] Lippold | Error estimates for the implicit Euler approximation of an evolution inequality[END_REF] that the implicit Euler method converges with an order h, where h is the time-step. In the framework of sweeping processes by moving convex sets K(t) (i.e. U (t, q(t)) = ∂I K(t) (q(t))), J.J. Moreau has proved in [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] the existence of solutions of (1) with f = 0. More precisely, he introduced the Catching-up algorithm to construct discrete solutions converging with an order of precision 1 2 . In [START_REF] Bastien | Numerical precision for differential inclusions with uniqueness[END_REF], U takes the form of a maximal monotone operator perturbed by a Lipschitz coercive function. Similarly the authors regain that the order of convergence is 1 2 . In [START_REF] Colombo | The sweeping processes without convexity[END_REF], U is the proximal normal cone to a uniform prox-regular set Q(t) (i.e. U (t, q(t)) = N(Q(t), q(t)) (see Definition 2.1)). Even if U is not maximal monotone, G. Colombo and V.V. Goncharov also recover the same convergence rate (with f = 0). These schemes adapted to differential inclusions have given rise to other works, see for instance [START_REF] Dontchev | Difference methods for differential inclusions: a survey[END_REF][START_REF] Monteiro Marques | Differential inclusions in nonsmooth mechanical problems, shocks and dry friction[END_REF][START_REF] Lempio | Discrete approximations of differential inclusions[END_REF][START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF].

Here, we deal with a perturbed sweeping process:

dq dt (t) + N(Q(t), q(t)) ∋ f(t, q(t)), (2) 
where Q(t) is defined by a finite number of inequality constraints and known to be uniform prox-regular. We recall that the projection onto such a set is well-defined in its neighbourhood but it cannot be exactly computed. That is why we consider a modified numerical scheme, that is based on a local approximation of Q(t). Near a point q ∈ Q(t) the set Q(t) is replaced with a closed convex set Q(t, q). This substitution makes loose the prescribed regularity of the moving sets (actually these sets are generally supposed to vary in a absolutely continuous way in the sense of the Hausdorff distance). In order to go around this problem, we need to check metric qualification conditions between the sets associated to each constraint. In this context, we keep the same order of convergence:

Theorem 1.1. There exists a constant C 0 > 0 such that for h small enough

q h -q L ∞ ([0,T ]) ≤ C 0 h 1/2 ,
where q and q h are the continuous and discrete solutions of (2).

We emphasize that this new approach allows us to avoid resorting to compactness arguments, used in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF]. So it permits to extend the convergence result of [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] in an infinite dimensional Hilbert space.

The paper is structured as follows: In Section 2, we describe the mathematical framework by specifying notations and assumptions which will be used throughout the paper. Then in Section 3, after recalling the prediction-correction scheme proposed in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF], we prove in Theorem 3.4 that the discrete solution converges to the exact solution with order 1 2 . This proof rests on a metric qualification condition which is checked in Section 4. Finally, we illustrate this result with numerical simulations.

Context

In the sequel, the space R d is equipped with its Hilbertian structure. We write B(x, r) for the open ball of center x ∈ R d and radius r > 0. We consider perturbed sweeping process by a set-valued map Q : [0, T ] ⇉ R d satisfying that for every t ∈ [0, T ], Q(t) is the intersection of complements of smooth convex sets. Let us first specify the set-valued map Q. For i ∈ {1, . . . , p}, let g i : [0, T ] × R d → R be a convex function with respect to the second variable. For every t ∈ [0, T ], we introduce the sets Q i (t) defined by

Q i (t) := q ∈ R d , g i (t, q) ≥ 0 , (3) 
and the feasible set Q(t) (supposed to be nonempty) is

Q(t) := p i=1 Q i (t). (4) 
Let f : [0, T ] × R d → R d be a map, the associated (perturbed) sweeping process can be expressed as follows:

   dq dt (t) + N(Q(t), q(t)) ∋ f(t, q(t)) for a.e. t ∈ [0, T ] q(0) = q 0 ∈ Q(0). (5) 
We write N(Q(t), q(t)) for the proximal normal cone to Q(t) at q(t), defined below.

Definition 2.1 ([2]

). Let S be a closed subset of R d . The proximal normal cone to S at x is defined by: We now come to the notion of uniformly prox-regular set. It was initially introduced by H. Federer (in [START_REF] Federer | Curvature measures[END_REF]) in finite dimensional spaces under the name of "positively reached set". Then it was extended in infinite dimensional spaces and studied by F.H. Clarke, R.J. Stern and P.R. Wolenski in [START_REF] Clarke | Proximal smoothness and the lower-C 2 property[END_REF] and by R.A. Poliquin, R.T. Rockafellar and L. Thibault in [START_REF] Poliquin | Local differentiability of distance functions[END_REF].

N(S, x) := v ∈ R d , ∃α > 0, x ∈ P S (x +
Definition 2.2. Let S be a closed subset of R d and η > 0. The set S is said η-prox-regular if for all x ∈ S and v ∈ N(S, x) \ {0}

B x + η v |v| , η ∩ S = ∅.
Equivalently (see [START_REF] Poliquin | Local differentiability of distance functions[END_REF]), S is η-prox-regular if and only if the projection operator

P S is single- valued on {z ∈ R d , d S (z) < η}.
This differential inclusion can be thought as follows: the point q(t), submitted to the perturbation f(t, q(t)), has to stay in the feasible set Q(t). To obtain well-posedness results for (5), we will make the following assumptions which ensure the uniform prox-regularity of Q(t) for all t ∈ [0, T ]. We suppose there exist c > 0 and open sets

U i (t) ⊃ Q i (t) for all t in [0, T ] such that d H (Q i (t), R d \ U i (t)) > c, (A0) 
where d H denotes the Hausdorff distance. We set U (t) := p i=1 U i (t). Moreover we assume there exist constants α, β, M > 0 such that for all t in [0, T ], g i (t, •) belongs to C 2 (U i (t)) and satisfies

∀ q ∈ U i (t) , α ≤ |∇ q g i (t, q)| ≤ β, (A1) ∀ q ∈ R d , |∂ t g i (t, q)| ≤ β, (A2) ∀ q ∈ U i (t) , |∂ t ∇ q g i (t, q)| ≤ M, (A3) and ∀ q ∈ U i (t) , |D 2 q g i (t, q)| ≤ M. (A4)
For all t ∈ [0, T ] and q ∈ Q(t), we denote by I(t, q) the active set at q I(t, q) := {i ∈ {1, . . . , p} , g i (t, q) = 0} [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF] and for every ρ > 0, we put: I ρ (t, q) := {i ∈ {1, . . . , p} , g i (t, q) ≤ ρ} .

In addition we assume there exist γ ≥ 1 and ρ > 0 such that for all t ∈ [0, T ],

∀ q ∈ Q(t) , ∀ λ i ≥ 0, i∈Iρ(t,q) λ i |∇ q g i (t, q)| ≤ γ i∈Iρ(t,q) λ i ∇ q g i (t, q) . ( A5 
)
We will use the following weaker assumption:

∀ q ∈ Q(t) , ∀ λ i ≥ 0, i∈I(t,q) λ i |∇ q g i (t, q)| ≤ γ i∈I(t,q) λ i ∇ q g i (t, q) . (A5')
In particular, this last assumption implies that for all t, the gradients of the active inequality constraints ∇ q g i (t, q) are positive-linearly independent at all q ∈ Q(t), which is usually called the Mangasarian-Fromowitz constraint qualification (MFCQ). Conversely the MFCQ condition at a point q yields a local version of Inequality (A5').

We recall some useful results established in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] (Propositions 2.8, 2.9, 2.11 and Theorem 2.12 in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF]).

Proposition 2.3. For all t ∈ [0, T ] and q ∈ Q(t),

N(Q(t), q) = N(Q i (t), q) = - i∈I(t,q) R + ∇ q g i (t, q).
Proposition 2.4. Under assumptions (A1), (A4) and (A5'), the set

Q(t) is η-prox-regular with η = α M γ , for every t ∈ [0, T ].
Proposition 2.5. Under assumptions (A0), (A1), (A2) and (A5), the set-valued map Q is Lipschitz continuous with respect to the Hausdorff distance. More precisely there exists

K L > 0 such that ∀t, s ∈ [0, T ] , d H (Q(t), Q(s)) ≤ K L |t -s|. Theorem 2.6. Let T > 0 and f : [0, T ] × R d → R d be a measurable map satisfying: ∃K f > 0 , ∀q, q ∈ s∈[0,T ] Q(s) , ∀t ∈ [0, T ] , |f(t, q) -f(t, q)| ≤ K f |q -q| (8) ∃L f > 0 , ∀q ∈ s∈[0,T ] Q(s) , ∀t ∈ [0, T ] , |f(t, q)| ≤ L f (1 + |q|). (9) 
Then, under Assumptions (A0), (A1), (A2), (A4) and (A5) for all q 0 ∈ Q(0), the following problem

   dq dt (t) + N(Q(t), q(t)) ∋ f(t, q(t)) for a.e. t ∈ [0, T ] q(0) = q 0 , (10) 
has one and only one absolutely continuous solution q satisfying q(t) ∈ Q(t) for every t ∈ [0, T ].

Time-stepping scheme

Let us detail the numerical scheme proposed in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] to approximate the solution of (10) on the time interval [0, T ]. Let n ∈ N ⋆ , h = T /n be the time step and t n k = kh be the computational times. We denote by q n k the approximation of q(t n k ) with q n 0 = q 0 . The next configuration is computed as follows:

q n k+1 := P Q(t n k+1 ,q n k ) (q n k + hf(t n k , q n k )) (11) 
with

Q(t, q) := {q ∈ R d , g i (t, q) + ∇ q g i (t, q), q -q ≥ 0 ∀ i} for q ∈ U (t) := p i=1 U i (t).
We recall that all the gradients ∇ q g i (t, q) are well-defined provided that q ∈ U (t). Indeed it can be checked that this scheme is well-defined, more precisely for

h < c K L Q(t n k+1 , q n k ) ⊂ Q(t n k+1 ) ⊂ U (t n k+2 ) (12) 
with c and K L respectively given by Assumption (A0) and Proposition 2.5 (see Proposition 3.1 in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF]). Thus every computed configuration is feasible and the set Q(t, q) can be seen as an inner convex approximation of Q(t) with respect to q. The dependence on q of Q(t, q) do not allow us to have recourse to usual techniques (see for instance [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF][START_REF] Monteiro Marques | Differential inclusions in nonsmooth mechanical problems, shocks and dry friction[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusion with perturbation[END_REF]) based on the time-regularity of the sets Q(t). This scheme is a prediction-correction algorithm: predicted position vector q n k + hf(t n k , q n k ), that may not be admissible, is projected onto the approximate set of feasible configurations.

Before stating the result of convergence, we introduce some last notations. We define the piecewise constant function f n as follows,

f n (t) = f(t n k , q n k ) if t ∈ [t n k , t n k+1 [, k < n and f n (T ) = f(t n n-1 , q n n-1 ). ( 13 
)
We denote by q n the continuous, piecewise linear function satisfying for k ∈ {0, . . . , n}, q n (t n k ) = q n k . To finish, we introduce the functions ρ and θ defined by

ρ n (t) = t n k and θ n (t) = t n k+1 if t ∈ [t n k , t n k+1 [, ρ n (T ) = T and θ n (T ) = T.
We recall some results about these approximate solutions (see Subsection 3.2 in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] for details) :

Theorem 3.1. Let us suppose that there exists

H f > 0 for all q ∈ s∈[0,T ] Q(s) and t, s ∈ [0, T ] |f(t, q) -f(s, q)| ≤ H f |t -s| 1/2 . ( 14 
)
Then with the assumptions of Theorem 2.6, q n tends to q in C 0 ([0, T ], R d ), where t → q(t) is the unique solution of (10).

Remark 3.2. We can replace the definition (13) of f n with

f n (t) = 1 h t n k+1 t n k f(s, q n k )ds if t ∈ [t n k , t n k+1 [, k < n and f n (T ) = 1 h T T -h f(s, q n n-1 )ds. Proposition 3.3. There exist C, D, K > 0 such that sup n q n L ∞ ([0,T ]) ≤ C, sup n dq n dt L ∞ ([0,T ]) ≤ K and for n large enough, d Q(t n k+1 ,q n k ) (q n k ) ≤ Dh. ( 15 
)
We now come to the main result of the present paper which specifies the convergence order of the previous scheme.

Theorem 3.4. Under ( 14), there exists a constant C 0 > 0 such that for n large enough

q n -q L ∞ ([0,T ]) ≤ C 0 T n 1/2
, where q is the solution of (5).

Proof. We check that the sequence (q n ) n is of Cauchy type. Let m ≥ n be large enough. Since for k ∈ {0, .., n -1}

q n k+1 = P Q(t n k+1 ,q n k ) (q n k + hf(t n k , q n k )) and Q(t n k+1 , q n k ) is a closed convex set, it comes : for all y ∈ R d q n k + hf(t n k , q n k ) -q n k+1 , y -q n k+1 ≤ |q n k + hf(t n k , q n k ) -q n k+1 |d Q(t n k+1 ,q n k ) (y). ( 16 
)
By Assumption ( 9) and Proposition 3.3, we get for almost t ∈ [0, T ],

f n (t) - dq n dt (t) ≤ L f (1 + C) + K. (17) 
Consequently by dividing ( 16) by h, we obtain for all

y ∈ R d - dq n dt (t) -f n (t), y -q n (θ n (t)) ≤ C 1 d Q(θ n (t),q n (ρ n (t)) (y) (18) 
with

C 1 := L f (1 + C) + K. Taking y = q m (θ m (t)), it follows - dq n dt (t) -f n (t), q m (θ m (t)) -q n (θ n (t)) ≤ C 1 d Q(θ n (t),q n (ρ n (t)) (q m (θ m (t))).
First case : |q m (θ m (t))q n (ρ n (t))| ≤ r/8 (with r later introduced in Theorem 4.9). Let us choose w

∈ P Q(θ n (t)) (q m (θ m (t))). Hence w ∈ Q(θ n (t)) and |w -q n (ρ n (t))| ≤ |w -q m (θ m (t))| + r 8 ≤ d H (Q(θ n (t)), Q(θ m (t))) + r 8 ≤ K L T n + r 8 < r 4 
by Proposition 2.5, for n large enough. Moreover from ( 12) it comes q n (ρ n (t)) ∈ Q(ρ n (t)) ⊂ U (θ n (t)) for n > T K L /c and then Inequality [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] implies that

d Q(θ n (t),q n (ρ n (t)) (q n (ρ n (t))) ≤ r 4 
for n large enough. Then, by Theorem 4.9 and Proposition 3.6, we deduce

d Q(θ n (t),q n (ρ n (t)) (w) ≤ κ|q n (ρ n (t)) -w| 2
where κ := ΘpM/(2α). Hence with Propositions 3.3 and 2.5

d Q(θ n (t),q n (ρ n (t))) (q m (θ m (t))) ≤ κ|q n (ρ n (t)) -w| 2 + |q m (θ m (t)) -w| ≤ κ|q n (ρ n (t)) -w| 2 + d H (Q(θ n (t)), Q(θ m (t))).
Since

|q n (ρ n (t)) -w| ≤ |q n (ρ n (t)) -q n (t)| + |q n (t) -q m (t)| + |q m (t) -q m (θ m (t))| + |q m (θ m (t)) -w| ≤ KT n + |q n (t) -q m (t)| + KT m + K L T m ≤ |q n (t) -q m (t)| + 2 KT n + K L T n ,
we get

d Q(θ n (t),q n (ρ n (t))) (q m (θ m (t))) ≤ 2κ|q n (t) -q m (t)| 2 + 2κ 2KT + K L T n 2 + K L T n .
Finally,

- dq n dt (t) -f n (t), q m (θ m (t)) -q n (θ n (t)) ≤ 2C 1 κ|q n (t) -q m (t)| 2 + C 2 n , with C 2 := C 1 (K L T + 2κT 2 (2K + K L ) 2 ). Second case : |q m (θ m (t)) -q n (ρ n (t))| ≥ r/8.
Then by [START_REF] Venel | Modélisation mathématique et numérique de mouvements de foule[END_REF],

- dq n dt (t) -f n (t), q m (θ m (t)) -q n (θ n (t)) ≤ C 1 |q m (θ m (t)) -q n (θ n (t))| ≤ C 1 |q m (θ m (t)) -q n (ρ n (t))| + C 1 KT n ≤ 8 r C 1 |q m (θ m (t)) -q n (ρ n (t))| 2 + C 1 KT n ≤ 16 r C 1 |q m (t) -q n (t)| 2 + 64 r C 1 KT n 2 + C 1 KT n .
End of the proof :

By setting C 3 := max{2C 1 κ, 16C 1 /r} and C 4 := max{C 2 , 64C 1 (KT ) 2 r + C 1 KT }, we get - dq n dt (t) -f n (t), q m (θ m (t)) -q n (θ n (t)) ≤ C 3 |q m (t) -q n (t)| 2 + C 4 n . Therefore - dq n dt (t) -f n (t), q m (t) -q n (t) ≤ C 3 |q m (t) -q n (t)| 2 + C 5 n ,
with C 5 := C 4 + 2C 1 KT . By summing the previous inequality and the other one obtained by changing the role of n and m, it yields

dq m dt (t) - dq n dt (t), q m (t) -q n (t) ≤ 2C 3 |q m (t) -q n (t)| 2 + 2C 5 n + |f n (t) -f m (t)||q m (t) -q n (t)|.
Furthermore by ( 8) and ( 14)

|f n (t) -f m (t)| ≤ |f(ρ m (t), q m (ρ m (t))) -f(ρ m (t), q n (ρ n (t)))| + |f(ρ m (t), q n (ρ n (t))) -f(ρ n (t), q n (ρ n (t)))| ≤ K f |q m (ρ m (t)) -q n (ρ n (t))| + H f |ρ n (t) -ρ m (t)| 1 2 ≤ K f |q m (t) -q n (t)| + 2K f KT n + H f |ρ n (t) -ρ m (t)| 1 2 ,
and so

|f n (t) -f m (t)||q m (t) -q n (t)| ≤ K f |q m (t) -q n (t)| 2 + 2K f KT n + H f T n 1 2 |q m (t) -q n (t)| ≤ ( 1 2 + K f )|q m (t) -q n (t)| 2 + 1 2 2K f KT + H f √ T 2 1 n .
Finally,

dq m dt (t) - dq n dt (t), q m (t) -q n (t) ≤ (2C 3 + 1 2 + K f )|q m (t) -q n (t)| 2 + C 6 n , with C 6 := 2C 5 + 1 2 2K f KT + H f √ T 2
. By applying Gronwall's Lemma, we have

q m -q n L ∞ ([0,T ]) ≤ 2C 6 n 1/2 exp((2C 3 + 1 2 + K f )T ).
Then, we conclude the proof by taking the limit for m → ∞.

Remark 3.5. This proof allows us to get around the compactness arguments employed in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] to obtain the convergence of q h . Consequently, this result can be extended to the Hilbertian case. Then it can be checked that the limit satisfies the differential inclusion ( 5) by following the same reasoning as in [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF].

It remains to prove Proposition 3.6 and Theorem 4.9. We now check the first result whereas the second one will be established in the next section.

Proposition 3.6. For i ∈ {1, ..., p} and q ∈ U (t) we set Qi (t, q) := {q ∈ R d , g i (t, q) + ∇ q g i (t, q), qq ≥ 0}.

Then, for all t ∈ [0, T ], all q ∈ Q(t) and all q ∈ U (t), we have for all i ∈ {1, ..., p}

d Qi (t,q) (q) ≤ M 2α |q -q| 2 . ( 19 
)
Proof. Let consider i ∈ {1, ..., p}, q ∈ U (t) and q ∈ Q(t) ⊂ Q i (t). We assume that q / ∈ Qi (t, q) (otherwise [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] obviously holds). For ℓ ≥ 0, we define z(ℓ) := q + ℓ∇g i (t, q).

The point z(ℓ) belongs to Qi (t, q) if and only if g i (t, q) + ∇g i (t, q), qq + ℓ|∇g i (t, q)| 2 ≥ 0, which is equivalent to ℓ ≥ ℓ 0 := -g i (t, q) + ∇g i (t, q), qq |∇g i (t, q)| 2 ≥ 0.

Thus,

d Qi (t,q) (q) ≤ |q -z(ℓ 0 )| ≤ ℓ 0 |∇g i (t, q)| ≤ - g i (t, q) + ∇g i (t, q), q -q |∇g i (t, q)| ≤ 1 |∇g i (t, q)| 1 0 sD 2
q g i (t, q + s(qq))(qq, qq)ds, because g i (t, q) ≥ 0. We conclude to [START_REF] Venel | A numerical scheme for a whole class of sweeping process[END_REF] by Assumptions (A1) and (A4).

Metric qualification condition

This section is devoted to the proof of Theorem 4.9, which corresponds to a metric qualification condition for the sets Qi . Aiming that, we recall some notions of subdifferential calculus.

Definition 4.1 (proximal subdifferential). Let f : R d → R be a lower semicontinuous function which is finite at x ∈ R d . The proximal subdifferential of f at x is defined by

∂ P f (x) := x ⋆ ∈ R d , ∃α, β > 0, ∀|h| ≤ β, f (x + h) -f (x) ≥ x ⋆ , h -α|h| 2 .
Definition 4.2 (limiting subdifferential). Let f : R d → R be a lower semicontinuous function which is finite at x ∈ R d . The limiting (or Mordukhovich) subdifferential of f at x is defined by The Clarke subdifferential ∂ C f (x) of f at x can be defined (see [START_REF] Clarke | Proximal smoothness and the lower-C 2 property[END_REF]) as the closed convex hull of the limiting subdifferential :

∂ L f (x) := x ⋆ ∈ R d , x ⋆ = lim k→∞ x ⋆ k with x ⋆ k ∈ ∂ P f (x k ), x k → x and f (x k ) → f (x) .
∂ C f (x) := conv ∂ L f (x).
This notion has been extended for less regular functions, we refer the reader to [START_REF] Rockafellar | Directionally Lipschitzian functions and subdifferential calculus[END_REF] for details.

The following property is a special case of the exact sum rule for the Clarke subdifferential (see Theorem 2 of [START_REF] Rockafellar | Directionally Lipschitzian functions and subdifferential calculus[END_REF]): 

0 ∈ ∂ C f (x) + ∂ C φ(x).
Let us recall the variational principle of Ekeland (see [START_REF] Ekeland | On the variational principle[END_REF]).

Proposition 4.5 (Ekeland variational principle). Let f : R d → R ∪ {+∞} be a lower semicontinuous function which is bounded from below. Let ǫ > 0 and x ∈ R d such that

inf f ≤ f (x) ≤ inf f + ǫ.
Then for all λ > 0, there exists w ∈ R d satisfying

• f (w) ≤ f (x) • |x -w| ≤ λ • for all z = w, f (z) > f (w) -ǫ λ |z -w|.
The following result comes from Theorem 2.1 in [START_REF] Ioffe | On metric and calmness qualification conditions in subdifferential calculus[END_REF]. For an easy reference, we detail the proof.

Lemma 4.6. Let f : R d → R + ∪ {+∞} be a lower semi-continuous function and x 0 with f (x 0 ) = 0. Assume there exist γ, δ > 0 such that for all

x ⋆ ∈ x∈B(x 0 ,2δ) f (x)>0 ∂ C f (x) we have |x ⋆ | ≥ γ. Then for all x ∈ B(x 0 , δ), d {f =0} (x) ≤ γ -1 f (x). Proof. Let x ∈ B(x 0 , δ). If f (x) ≥ γδ, then d {f =0} (x) ≤ |x -x 0 | ≤ δ ≤ γ -1 f (x).
Now, we assume that 0 < f (x) < γδ and we set ǫ := f (x). Applying the variational principle of Ekeland (see Proposition 4.5) to f with ǫ and any λ ∈]γ -1 ǫ, δ[. There exists

w = w(λ) ∈ R d such that f (w) ≤ f (x), |x -w| ≤ λ and ∀z = w, f (z) > f (w) - ǫ λ |z -w|.
Consequently, w minimizes f + ǫλ -1 | • -w| and by Lemma 4.4 it comes

0 ∈ ∂ C f (w) + ∂ C ψ(w)
where

ψ(•) = ǫλ -1 | • -w|. So there exists x ⋆ ∈ ∂ C f (w) with |x ⋆ | ≤ ǫλ -1 < γ. If f (w) > 0, that is in contradiction with the assumptions as |w -x 0 | ≤ |w -x| + |x -x 0 | ≤ 2δ
and so we deduce that necessarily f (w) = 0. Then we conclude to the desired result, since

d {f =0} (x) ≤ |x -w| ≤ λ holds for every λ ∈]γ -1 ǫ, δ[.
From now on, we come back to the framework of the previous sections and prove the metric qualification condition of sets Qi .

In the sequel, we introduce convex sets C i for i ∈ {1, ..., p} and their intersection C = p i=1 C i .

We consider the following set-valued map F F :

R d ⇉ R dp x → F (x) := (C 1 -x) × • • • × (C p -x). (20) 
Let us note that 0 ∈ F (x) if and only if x ∈ C.

Proposition 4.7. Consider the function f defined by f (x) := d F (x) (0) where F is given by (20). The map f is Lipschitz continuous and for all x / ∈ C,

∂ P f (x) ⊂ ∂ C f (x) =    i, x / ∈C i y i |y|    ,
where y = P F (x) (0). In other words, for all i ∈ {1, ..., p},

y i + x ∈ P C i (x), hence -y i ∈ N(C i , x + y i ). Proof. For all x ∈ R d , f (x) = d F (x) (0) = d Π (φ(x))
where Π := ⊗ p i=1 C i and φ(x) := (x, . . . , x) ∈ R dp . For x / ∈ C,

∂ C f (x) = ∂ C (d Π • φ)(x) = t (1, . . . , 1) • ∂ C d Π (φ(x))
thanks to Corollary 1 in [START_REF] Rockafellar | Directionally Lipschitzian functions and subdifferential calculus[END_REF]. By convexity of the sets C i , d Π is a convex function and so

∂ C f (x) = t (1, . . . , 1) • ∂ P d Π (φ(x)),
see Remark 4.8. First we claim that

∂ P d Π (φ(x)) ⊂ [⊗ p i=1 E i (x)] S(0, 1), (21) 
with E i (x) :=

d C i (x) d Π (φ(x)) ∂ P d C i (x) if x / ∈ C i and E i (x) := {0} else.
Indeed, let x ⋆ belong to ∂ P d Π (φ(x)). By definition, for some α > 0 and for all small enough

h ∈ R dp , d Π (φ(x) + h) -d Π (φ(x)) ≥ x ⋆ , h -α|h| 2 .
Let us fix an index i ∈ {1, . . . , p} and set h = (0, . . . , 0, h i , 0, . . . , 0). Since

d Π (φ(•)) 2 = i d 2 C i , it follows that for all small enough h i ∈ R d d Π (φ(x)) 2 + d C i (x + h i ) 2 -d C i (x) 2 -d Π (φ(x)) 2 ≥ x ⋆ i , h i -α|h i | 2 .
By a first order expansion, we get

d C i (x + h i ) 2 -d C i (x) 2 2d Π (φ(x)) ≥ x ⋆ i , h i -α ′ |h i | 2 ,
with another numerical constant α ′ . Then, we obtain with another constant α ′′ and for all small enough

h i ∈ R d d C i (x) d Π (φ(x)) (d C i (x + h i ) -d C i (x)) ≥ x ⋆ i , h i -α ′′ |h i | 2 .
If x ∈ C i then d C i (x) = 0 and so we deduce that x ⋆ i = 0. If x / ∈ C i then by definition of the proximal normal cone, d Π (φ(x))

d C i (x) x ⋆ i ∈ ∂ P d C i (x) ⊂ S(0, 1), see Remark 4.8. So |x ⋆ i | = d C i (x)d Π (φ(x)
) -1 and so |x ⋆ | = 1, which concludes the proof of (21). Let us now finish the proof of the proposition. Thus

∂ C f (x) ⊂ i, x / ∈C i E i (x) ⊂ i, x / ∈C i d C i (x) d Π (φ(x)) ∂ P d C i (x).
We set z = (z 1 , ..., z p ) ∈ R dp with for all i, z i = P C i (x) or equivalently z = P Π (φ(x)). By Theorem 1.105 in [START_REF] Mordukhovich | Variational Analysis and Generalized Differentiation I: Basic Theory[END_REF],

∂ P d C i (x) ⊂ ∂ P d C i (z i ) ∩ S(0, 1) = x -z i |x -z i | .
Consequently, we have

∂ C f (x) ⊂ i, x / ∈C i E i (x) ⊂    i, x / ∈C i d C i (x) d Π (φ(x)) x -z i |x -z i |    =    i, x / ∈C i x -z i |φ(x) -z|    .
We finish the proof by choosing y := φ(x)z ∈ R dp . 

-|h| ≥ x ⋆ , h -α|h| 2 .
By dividing by |h| and letting ǫ go to 0, we deduce that |x ⋆ | ≥ 1. We also conclude to

|x ⋆ | = 1 since d S is 1-Lipschitz.
Theorem 4.9. There exist r and Θ such that for all t ∈ [0, T ], for all q ∈ U (t) satisfying d Q(t,q) (q) ≤ r/4 and all q ∈ B(q, r/4),

d Q(t,q) (q) ≤ Θ p i=1 d Qi (t,q) (q).

Indeed we can choose Θ = 2γβ

α and r = min( 4ρ 13β , α 2M γ ).

Proof. Consider r = min( 4ρ 13β , α 2M γ ). Let us fix t ∈ [0, T ] and q ∈ U (t) satisfying d Q(t,q) (q) ≤ r/4. Consequently there exists q 1 ∈ B(q, r/4) such that q 1 ∈ Q(t, q). We define a Lipschitz map f := d F (•) (0) where F is given by (20) with C i = Qi (t, q). First we check the assumptions of Lemma 4.6 for the function f with x 0 = q 1 . Indeed f (q 1 ) = 0 because q 1 ∈ Q(t, q). Let us consider q ∈ B(q 1 , r) ∩ Q(t, q) c , so q ∈ B(q, 2r). By Proposition 4.7, ∂ C f (q) = {q ⋆ } where q ⋆ := i, q / ∈ Qi (t,q) p ⋆ i with p ⋆ = p/|p| and p = P F (q) (0). Moreover for i satisfying q / ∈ Qi (t, q), -p ⋆ i ∈ N(C i , q + p i ). Let us define J(t, q) := {j, g j (t, q) + ∇g j (t, q), qq < 0} = {j, q / ∈ Qj (t, q)}.

It is well-known that there also exist nonnegative reals (λ i ) i∈J(t,q) satisfying q ⋆ = i∈J(t,q) λ i ∇g i (t, q).

Hence by Assumption (A4)

|q ⋆ | = i∈J(t,q) λ i ∇g i (t, q) ≥ i∈J(t,q) λ i ∇g i (t, q 1 ) - M r 4 i∈J(t,q) λ i . Since q + p i ∈ P C i (q), Proposition 3.6 yields |p i | = d C i (q) ≤ M 2α (2r) 2 ≤ r.
Moreover for all i ∈ J(t, q), q + p i ∈ ∂ Qi (t, q) so we have by Assumption (A1) with the convexity of g i g i (t, q) ≤ -∇g i (t, q), q + p iq ≤ β(|q -q| + |p i |) ≤ 3βr.

Hence by Assumption (A1), g i (t, q 1 ) ≤ 3βr + βr/4 = 13 4 βr.

Due to the choice of r, we deduce that 13βr ≤ 4ρ and thus J(t, q) ⊂ I ρ (t, q 1 ). From Assumptions (A1), (A4) and (A5), we deduce that

|q ⋆ | ≥ γ -1 i∈J(t,q) λ i |∇g i (t, q 1 )| - M r 4 i∈J(t,q) λ i ≥ ( α γ - M r 4 ) i∈J(t,q) λ i ≥ α 2γ i∈J(t,q) λ i ≥ α 2γβ i∈J(t,q) λ i |∇g i (t, q)| ≥ α 2γβ i∈J(t,q) |p ⋆ i | ≥ α 2γβ |p ⋆ | = α 2γβ .
We can also apply Lemma 4.6 and we obtain that for all q ∈ B(q 1 , r/2) ⊃ B(q, r/4)

d Q(t,q) (q) ≤ Θ   i∈J(t,q) d Qi (t,q) (q) 2   1/2 ≤ Θ p i=1 d Qi (t,q) (q).

Numerical simulations

The aim of this section is to illustrate the convergence order with an example (due to the modelling of crowd motion in emergency evacuation). We refer the reader to [START_REF] Venel | Modélisation mathématique et numérique de mouvements de foule[END_REF][START_REF] Maury | A discrete contact model for crowd motion[END_REF] for a complete and detailed description of this model.

We quickly recall the model. It handles contacts, in order to deal with local interactions between people and to describe the whole dynamics of the pedestrian traffic. This microscopic model for crowd motion (where people are identified to rigid disks) rests on two principles. On the one hand, each individual has a spontaneous velocity that he would like to have in the absence of other people. On the other hand, the actual velocity must take into account congestion. Those two principles lead to define the actual velocity field as the Euclidean projection of the spontaneous velocity over the set of admissible velocities (regarding the non-overlapping constraints between disks).

More precisely, we consider N persons identified to rigid disks. For convenience, the disks are supposed here to have the same radius r. The center of the i-th disk is denoted by q i ∈ R 2 . Since overlapping is forbidden, the vector of positions q = (q 1 , .., q N ) ∈ R 2N has to belong to the "set of feasible configurations", defined by

Q := q ∈ R 2N , D ij (q) ≥ 0 ∀ i = j , (22) 
where D ij (q) = |q iq j | -2r is the signed distance between disks i and j. If the global spontaneous velocity of the crowd is denoted by U(q) = (U 1 (q 1 ), .., U N (q N )) ∈ R 2N , the previous crowd motion model can be described by the following differential inclusion:

dq dt + N(Q, q) ∋ U(q). ( 23 
)
This evolution problem fits into the theoretical framework developed in this paper.

For the numerical simulations, we treat an emergency evacuation of a square room (10x10) initially containing N = 150 persons (identified to rigid disks of radius r = 0.2). Since the exact solution is unknown, we approach the error as follows qq h L ∞ ≃ max i=1,...,10 |q h min (t i )q h (t i )| := e h (24

)
where t i := iT /10. We choose h min := 0.01 and h ∈ {0.02, 0.025, 0.04, 0.05, 0.0625, 0.08, 0.1, 0.2, 0.5}. We observe in Figure 1 that the empirical order of convergence is 1 2 . Note that for a time step h close to h min , the approximation (24) is not valid.
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