
HAL Id: hal-00517466
https://hal.science/hal-00517466

Submitted on 24 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Definition of ”Abstraction Level” for Metamodels
Martin Monperrus, Antoine Beugnard, Joël Champeau

To cite this version:
Martin Monperrus, Antoine Beugnard, Joël Champeau. A Definition of ”Abstraction Level” for
Metamodels. 7th IEEE Workshop on Model-Based Development for Computer Based systems, 2009,
San Francisco, United States. �10.1109/ECBS.2009.41�. �hal-00517466�

https://hal.science/hal-00517466
https://hal.archives-ouvertes.fr


Accepted for publication in the 7th IEEE Workshop on Model-Based Development for Computer Based Systems (MBD'2009) co-
located with ECBS'2009

A Definition of “Abstraction Level” for Metamodels

Martin Monperrus
TU Darmstadt

Germany

Antoine Beugnard
TELECOM Bretagne

France

Joël Champeau
ENSIETA

France

Abstract

In model-driven software development, the first-class data
are models, which are all structured by a metamodel. In
this paper, we propose a definition of abstraction levels
for metamodels based on set theory and compatible with
MOF. We claim that splitting metamodels into different
abstractions levels raise their organizational quality. We
present application cases of this statement.

1. Introduction

Model-driven development is an approach to software
development that is supposed to address the inability of
third-generation languages to alleviate the complexity of
platforms and express domain concepts effectively [1]. Prac-
tically, models can ground code generation and model trans-
formation.

Every model is structured by a metamodel, and is said
to conform to it [2]. Hence, metamodels are very impor-
tant artifacts of a model-driven development. They can
be composed of several hundred of classes, such as in
the UML metamodel [3]. Dealing with big metamodels
involves organizing them with sub-packages. The problem
is that packages are created without any constrains, since
the package semantics is very weak. Packages only denote
an organizational point of view.

In this paper, we claim that metamodels can be semanti-
cally organized following their internal abstraction.

Hence, our contribution is a definition of what is an
abstraction level in a metamodel. This definition is made
with the set theory. On top of this well-formed definition, we
explore three application cases. A significant benefit of our
definition is the ability to remove the redundant definition
of the highest abstraction level in multiple metamodels
(e.g., UML, ECORE and AADL). This paves the way to
better interoperability between these metamodels and the
corresponding tools.

The remainder of this paper is organized as follows.
In section 2, we give a definition of abstraction level
for metamodels. Then, we discuss in section 3 how this
definition can be applied. We finally explore related works
and conclude.

2. A New Definition of Abstraction Level

Let’s consider a metamodeling architecture with the con-
cepts (or corresponding concepts) of class, inheritance, as-
sociation and association specialization. For example, MOF
[4] satisfies these conditions.

These are mapped onto four sets:
• SC the set of classes.
• SI the set of inheritance relationships, a set of ordered

2-tuples of elements of SC . We have SI ⊂ (SC , SC).
• SA the set of association relationships, a set of ordered

2-tuples of elements of SC . We have SA ⊂ (SC , SC).
• SS the set of association specialization relationships,

a set of ordered 2-tuples of elements of SA. We have
SS ⊂ (SA, SA) i.e SS ⊂ ((SC , SC), (SC , SC)).

Definition 1: An abstraction level L in a metamodel is a
subset of classes such that every relationship which cross the
frontier have the same orientation and are only inheritance
and specialization.

Let L = (LC , LA) such as LC ⊂ SC and LA ⊂ SA. Let
LC = SC rLC and LA = SArLA. L is an abstraction level
if and only if : @(x, y), (z, t) ∈ SI , x, t ∈ LC ∧ y, z ∈ LC

and @(x, y), (z, t) ∈ SS , x, t ∈ LA ∧ y, z ∈ LA.

In what follows, we will use the expression upper levels
to indicate more abstract levels. However, these upper levels
are assigned smaller numbers in order to get a top-down
representation and unbounded positive numbering It is the
opposite of the OMG numbering strategy.

In figure 1, a metamodel of an aircraft company is
presented. While it can simply be considered as a model,
in a pure MDE viewpoint this is also a metamodel (cf. [5]).
This metamodel is extremely simplified in order to maintain
its legibility. The metamodel uses the following modeling
features:

• inheritance (exemplified as (1) LongRangeAirliner in-
herits Vehicle)

• specialization of associations (exemplified as (2)
CFM56C propulses A340)

According to our definition of ”abstraction level”, there
are 3 abstraction levels in the metamodel of figure 1. They
are showed figure 2. The uppermost one is very abstract and
deals with abstract concepts such as Vehicle and Engine. The
middle abstraction level is about LongRangeAirliner. The
lowest abstraction level is dedicated to the A340.



Accepted for publication in the 7th IEEE Workshop on Model-Based Development for Computer Based Systems (MBD'2009) co-
located with ECBS'2009

Figure 1. A metamodel of an aircraft company

Figure 2. The metamodel contains 3 abstraction levels

3. Application cases

In this section, we explore the use of abstraction levels in
different application cases.

3.1. Splitting existing metamodels into abstraction
levels

Since one can assume that metamodelers have already
implicitly used abstraction levels in their metamodels, we
explored whether abstraction levels may already exist in real-
world metamodels1.

1. The exploration was semi-manual. A fully automatic search of ab-
straction levels is an instance of (k,2)-partite graph problem (cf. [6]).

Let’s consider the Ecore metamodel [7] shown in figure
3, put at the end of the paper for reasons of space. Since
the Ecore metamodel was created by people who are truly
aware of the essence of metamodeling, it is likely to contain
or almost contain abstraction levels. Indeed, this metamodel
contains 3 abstraction levels.

The figure 4 shows the highest abstraction level of the
Ecore metamodel. This abstraction level is highly reusable.
It defines a root class EObject, the notion of a named
element ENamedElement and the notion of annotation
EAnnotation. Annotations are like comments in program-
ming languages, they are simply essential for maintenance
and reuse. The Ecore version of annotations is powerful,
it’s a reference to an EObject with a double mapping
String(source), String(key) → String(value). It is a



Accepted for publication in the 7th IEEE Workshop on Model-Based Development for Computer Based Systems (MBD'2009) co-
located with ECBS'2009

Figure 3. The Ecore metamodel split into three abstraction levels

mean of embedding semantic information in annotations, à
la Javadoc. More or less the same abstraction level is found
in a lot of other metamodels, such as UML [3], AADL [8]
and others. This is a duplication which could be avoided with
the use of abstraction levels. Hence, if it has been explicitly
an abstraction level, a documentation generator would work
with Ecore, UML and AADL.

The two other abstraction levels of figure 3 are well-
formed abstraction levels just by changing the eExceptions
reference from EClassifier to EClass This change makes
appear a new layer which is really meaningful. It forbids to
be able to throw an Eclassifier, i.e. potentially a EDataType

or an EEnum. In regard to existing exception mechanisms, it
is better to only throw Eclass. Indeed, the EMF editor hard-
codes this rule whereas it could be made explicit directly
into the Ecore metamodel.

Splitting a single-level metamodel into smaller leveled
metamodels is one way of addressing reusability. Actually,
by construction, a more abstract level is totally indepen-
dent from more concrete levels, i.e. there are no cross-
dependencies between two adjacent levels. All relationships
(inheritance, specialization) go in one and only one direction,
from Ln+1 to Ln. Each level does not depend on the levels
below it. Thus, upper levels become totally reusable parts



Accepted for publication in the 7th IEEE Workshop on Model-Based Development for Computer Based Systems (MBD'2009) co-
located with ECBS'2009

Figure 4. A reusable part of the Ecore metamodel

(see figures 2,3). This provides a more flexible and extensi-
ble metamodeling framework in which each abstraction level
can be refined. The upper level of the figure 2 can be used
to define another kind of vehicle like an automobile and
the second abstraction level of this figure can provide the
support for a new type of LongRangeAirliner.

3.2. A measure of abstraction

Since metamodels are important artifacts of Model Driven
Engineering, we need to measure them in order to char-
acterize them, as well as extracting a typology, patterns,
etc. Indeed, quality assessment and assurance is not pos-
sible without a complete picture of the characteristics of a
software product [9]. The definition of abstraction levels we
propose naturally leads to measuring the abstraction of a
given metamodel.

Definition 2: The quantity of abstraction of a given meta-
model is the maximum number of stacked abstraction levels.

Every measure has a scale, which can be nominal, ordinal,
interval, ratio or absolute (see [10], [9] for more details). The
measure of abstraction presented in this paper represents
a count (the number of stacked abstraction levels). Hence
it has an absolute scale. This scale permits a full range
of descriptive statistics to be applied. This measure of
abstraction defines a relation R which is has more or an
equal number of abstraction levels. This relation defines a
mathematical order relation between metamodels.

Weyuker’s set of nine properties [11] provides a frame-
work to evaluate a measure. These abstract properties help
to characterize measures and to provide correct definition for
them. For instance, the first axiom reflects the intuition that a
measure should give different values for different programs.
Among these nine axioms, those numbered 5, 6 and 9 are
link to monotonicity and increasing of complexity when
programs are composed. Since no such composition relation
between metamodels is considered, these properties do not
make sense. When considering the other six properties, the
measure of abstraction fulfills all of them.

3.3. A criterion for driving the metamodeling pro-
cess

Once we are dealing with many levels of modeling,
the relationship between two levels must be clearly iden-
tified and defined. In object-oriented modeling, there are
abstractions on the program side and concrete data on
the instances/memory side. When metamodeling this clear
separation is fuzzier. Our definition of abstraction level
help to clearly identify when and how to introduce a new
abstraction level.

In this paper, we call abstraction gap the need for splitting
a metamodel into two smaller metamodels, so that the only
relationships crossing the abstraction frontier are those of
inheritance and specialization. Every level corresponds to
a given abstraction level. The example above illustrates
this point. Even though the Vehicle and LongRangeAirliner
entities are both abstractions, they are not at the same level
of abstraction.

The abstraction gap can be jumped over in two directions,
identifying either a more abstract level or a more concrete
level. The first is called a bottom-up jump and the latter a
top-down jump.

A top-down jump involves creating a new level. This new
level will contain less abstract concepts. Making a top-down
jump (creating a new lower level) is triggered by the need
to specialize an association as shown in figure 5. Top-down
jumps are usually done in a refinement process.

A bottom-up jump is also the creation of a new level,
which will contain more abstract concepts. A bottom-up
jump (creating a new upper level) is triggered by the need
to generalize an association, as seen in the figure 6.

Depending on the jump type, a new modeling level will be
added above or under the level currently being manipulated.
In the case of a bottom-up jump, the numbering of the level
being handled will be changed. As mentioned above, a top-
down jump is a kind of refinement, which is a classic way
of modeling and creating a system. However, the need to
explicit concrete cases in order to extract abstractions is
a usual cognitive process. In fact, this abstraction process
is often done internally, by the brain, without the help of
any notation or tool. For abstractions which are hard to
detect, concrete cases must be described before obtaining
the common factors, i.e. the abstraction itself.

What triggers the creation of a new abstraction level?
We saw in the previous example that creating a sub-class
does not necessarily trigger a level jump. Actually, clas-
sifying (sub-classing or generalizing) is a way of creating
abstraction levels. However, it is not suitable to create a
new abstraction level each time a classifier is created. The
reason is mainly because models would become too much
clustered, i.e the modeling would not be done with the right
grain. This does not mean that it should never be made along
with a jump over the abstraction gap; that decision is up



Accepted for publication in the 7th IEEE Workshop on Model-Based Development for Computer Based Systems (MBD'2009) co-
located with ECBS'2009

Figure 5. Top-down jump over the abstraction gap

Figure 6. Bottom-up jump over the abstraction gap

to the modeler. With his or her domain knowledge, (s)he is
able to determine the correct abstraction grain, i.e. where the
addition of a classifier will act as a jump over the abstraction
gap.

Specializing associations is much more different. Un-
like sub-classing, specialization of associations restricts the
possible models. Another specialization is to change the
cardinality of an association. Specializing the associations
or modifying their properties (e.g. multiplicities) represents
a refinement and a restriction of possible models. That is
why association specialization is a key potential trigger.
The need to specialize an association is a serious indication
of a modeling level change, i.e. a trigger to create a new
abstraction level (for both bottom-up and top-down jumps).

4. Related work

In 1979, Parnas stated [12] he had not found a relation
“more abstract than” that would allow me to define an
abstraction hierarchy. Our definition allows to define a
more abstract than relation between class modules (i.e.;
packages). Note that the stack of abstraction levels exposed
in this paper follows the module usage hierarchy pattern
defined by Parnas.

Atkinson et al. explored [13] issues and solution to
multilevel modeling. As Atkinson et al. we believe that
multilevel modeling is useful. Compared to their work, our

contribution is fully operationalized in the MOF world, so
as to give a clear and ready-to-use way of manipulating
abstraction levels to MOF users.

In [5], Kühne aims to start establishing a consensus
on the notions of model and metamodel in model-driven
engineering. While the multilevel issue is not central to
this paper, it appears in background. Our definition of an
abstraction level is equivalent to the ontological model-of
relation of Kühne. Our contribution is a a concrete definition
of the ontological model-of relation of Kühne.

In [14], Sangal et al. manage the dependencies of soft-
ware through a matrix. This dependency matrix ground the
expression of explicit design rules. Our contribution refines
their work by defining a special kind of dependency for
metamodels based on abstraction.

In the UML2 specification [3], the issue of abstraction
level is partially addressed by the Abstraction concept. Our
work clarifies the semantic of the abstraction dependency.
In a sense, our work defines a clear way to get a possibly
infinite number of meta-layers (UML 2.0 infrastructure
specification, § 7.2.7, p. 28).

Furthermore, the profile mechanism of UML [3] gives the
user a way to explicitly handle 2 levels of abstraction: the
classes in M1 and the meta-classes of the profile in M2.
The existence of this mechanism in such a standard demon-
strates the need to manipulate several levels of abstraction.
However, this mechanism is not sufficient. Our definition



Accepted for publication in the 7th IEEE Workshop on Model-Based Development for Computer Based Systems (MBD'2009) co-
located with ECBS'2009

is a objective criterion that allows to define more than two
abstraction levels.

5. Conclusion

Model-driven system development involves many points
of views. These points of views may have a different analysis
grain, which means considering different abstraction levels.
Metamodeling is a powerful modeling technique, in which it
is possible to deal with different abstraction levels. However,
their was no definition of what is an abstraction level in a
metamodel.

In this paper, we have proposed a well-defined and
unambiguous definition of abstraction level in metamodels.
This contribution paves the way to better handling of abstrac-
tions in metamodels and during the metamodeling process.
Several applications of the abstraction level definition have
been presented. We defined a measure of abstraction for
existing metamodels. We showed how to improve existing
metamodels, by isolating reusable abstraction levels. Finally,
this definition of abstraction in metamodels gave insights
about how to handle abstraction while metamodeling. Future
work will explore how to leverage the modularity enforced
by abstraction levels to build reusable model transforma-
tions.

Acknowledgement

This work was partly supported by the feasiPLe project,
Federal Ministry of Education and Research (BMBF), Ger-
many.

References

[1] D. C. Schmidt, “Model-driven engineering,” IEEE Computer,
vol. 39, pp. 25–31, February 2006.

[2] J. Bézivin, “On the unification power of models,” Software
and System Modeling, vol. 4, pp. 171–188, May 2005.

[3] OMG, “UML 2.0 superstructure,” tech. rep., Object Manage-
ment Group, 2004.

[4] OMG, “MOF 2.0 specification,” tech. rep., Object Manage-
ment Group, 2004.

[5] T. Kuehne, “Matters of (meta-) modeling,” Software and
System Modeling, vol. 5, no. 4, pp. 369–385, 2006.

[6] H. A. Muller and J. S. Uhl, “Composing subsystem struc-
tures using (k,2)-partite graphs,” in Proceedings of the IEEE
Conference on Software Maintenance, 1990.

[7] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.
Grose, Eclipse Modeling Framework. Addison-Wesley, 2004.

[8] SAE, “AADL Standard,” tech. rep., Society of Automotive
Engineers, 2006.

[9] B. Henderson-Sellers, Object-Oriented Metrics, measures of
complexity. Prentice Hall, 1996.

[10] H. Zuse, Software Complexity. Berlin: Walter de Gruyter,
1991.

[11] E. J. Weyuker, “Evaluating software complexity metrics,”
IEEE Transactions on Software Engineering, vol. 14, no. 9,
pp. 1357–1365, 1988.

[12] D. L. Parnas, “Designing software for ease of expansion and
contraction,” IEEE Transactions on Software Engineering,
vol. 5, pp. 128–138, Mar. 1979.

[13] C. Atkinson and T. Kühne, “The essence of multilevel meta-
modeling,” in Proceedings of the 4th International Conference
UML’2001 (M. Gogolla and C. Kobryn, eds.), vol. 2185 of
LNCS, pp. 19–33, Springer, 2001.

[14] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using de-
pendency models to manage complex software architecture,”
SIGPLAN Not., vol. 40, no. 10, pp. 167–176, 2005.


